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Introduction

Bias Definition
Bias has been defined as the choice of a specific generalization
hypothesis over others, restricting the search space and model
representation, making learning from data possible [Mitchell, 1997].
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Hypothesis and search space

(a) Search space.

Decision Tree

Neural Network

Random Forest

SVM

(b) Preference bias of ML algo-
rithms.
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Hypothesis and search space

(c) Search space.

Decision Tree

Neural Network

Random Forest

SVM

(d) Preference bias of ML algo-
rithms.

The effect of bias for Data Science is that several algorithms are
usually tried. This is called trial-and-error approach.
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Trial-and-error approach

Performance Evaluation

Algorithm 1

Algorithm k

... algorithm recommendation

Data 

Manual
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Trial-and-error approach

Laborious and subjective;
Increase the training time;
Can cause overfitting;
Decrease the experimental reproducible.
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Meta-Learning (MtL) approach

  

Data characterization

Performance Evaluation

Algorithm 1

Algorithm k

...

Meta-features +
Algorithm performance

Meta-learning

Algorithm recommendationData repository

…
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Meta-Learning (MtL) approach

Laborious but objective;
Remove the training time;
Can avoid overfitting;
Towards the experimental reproducible.
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Open gaps

Increase the reproducible in MtL;
Improve data characterization with new meta-features;
Improve the MtL performance;
Management of bias.
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Meta-learning

MtL Definition
Study of methods that explore metaknowledge in order to
improve or to obtain more efficient ML solutions
[Brazdil et al., 2009].

Algorithm Selection Applications:

Optimization [Kanda et al., 2011];
Time series analysis [Rossi et al., 2014];
Gene expression tissue classification [de Souza et al., 2010];
SVM parameter tuning [Mantovani et al., 2015].
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Algorithm Selection Framework

Algorithms
α ∊ A

Problem Instances 
p ∊ P

Evaluation measures
y ∊ Y

Instance Features
f(p) ∊ F

Learning with 
meta-base S

Figure: Algorithm selection framework. (Adapted from
[Smith-Miles, 2008])
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Introduction Meta-Learning Complexity Measures Standard Analysis Prospective work

Problem Instances (P)

The problem instances P are datasets p that will be used to
generate the meta-base. They can be collected from:

UCI [Lichman, 2013];
Keel [Alcalá-Fdez et al., 2011];
OpenML [Vanschoren et al., 2013];
Artificial datasets [Vanschoren and Blockeel, 2006];
Datasetoids [Prudêncio et al., 2011].
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Instance Features (F)

The meta-features F are designed to extract general properties of
datasets f(p). They are able to provide evidence about the future
performance of the investigated techniques [Soares et al., 2001].
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Instance Features (F)

The main groups of meta-features are:

General: Extract simple and basic information;
Statistical: Capture data distribution indicators;
Information-theoretic: Capture the amount of information
in the data and their complexity;
Model-based: Extract characteristics like the shape and size
of a Decision Tree (DT) model induced from a dataset.
Landmarking: Represents the performance of simple and
efficient learning algorithms.
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Instance Features (F)

The general meta-features are basic information directly
extracted from the dataset:

number of attributes, instances and classes;
frequency of instances in each class.
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Instance Features (F)

The statistical meta-features extract information about the data
distribution:

correlation and covariance matrix;
skewness and kurtosis.
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Instance Features (F)

The information-theoretic meta-features capture the amount of
information in the datasets:

entropy;
mutual information;
noise signal ratio.
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Instance Features (F)

The model-based meta-features are information extracted from
a DT model:

tree depth;
distribution of the leaves in the tree;
number of nodes.
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Instance Features (F)

The landmarking meta-features are the performance of a set of
fast and simple learners:

Linear Discriminant;
Elite-Nearest Neighbor;
One node DT-models.
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Algorithms (A)

They represent a set of the algorithms α that will be applied to the
datasets α(p) in the algorithm selection process.

Classifiers, regressors and clustering algorithms
[Garcia et al., 2018, Pimentel and de Carvalho, 2019]
Pre-processing algorithms [Garcia et al., 2016b]
Hyperparameters [Mantovani et al., 2015]
Optimization [Kanda et al., 2011]
...
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Evaluation Measures (Y)

The models induced by the algorithm α can be evaluated by
different measures to the datasets y(α(p)). They are mainly:

Accuracy, Fβ, AUC and kappa for classification;
MSE, RMSE for regression problems;
...
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Meta-base (S)

The meta-base S is a collection of meta-examples. A
meta-example is the characterization measures from the datasets
f(p) plus the evaluation of the algorithms y(α(p)) for these
dataset.
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Meta-base (S)

Meta-{classification, regression and ranking}:

  

Meta-classification

Best 
Classifier

meta-features

Meta-regression

Classifier
Performance

meta-features

Meta-ranking

Ranking of
algorithms

meta-features

A 1 1 2 3

Figure: Example of meta-bases.
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Recommendation System based on MtL

Predicting the classifier performance:

Datasets

Meta-features

Classification
performance

Meta-datasets Regression techniques

Classification performance
estimation

f(p)

P

y(a(p))

S = f(p) + y(a(p))

base-level meta-level

Figure: Example of MtL system to predict classifiers performance.
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Complexity Measures

There are many other groups of meta-features:
1 Complexity Measures [Ho and Basu, 2002];
2 kNN and Perceptron -based meta-features

[Filchenkov and Pendryak, 2015];
3 Relative meta-features [Soares et al., 2001];
4 Clustering meta-features [de Souza et al., 2010].
5 ...
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Complexity Measures

There are many other groups of meta-features:
1 Complexity Measures [Ho and Basu, 2002];
2 kNN and Perceptron -based meta-features

[Filchenkov and Pendryak, 2015];
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4 Clustering meta-features [de Souza et al., 2010].
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Complexity Measures

There are four main groups of complexity measures:
1 Feature-based measures, which characterize how

informative the available features are to separate the classes;
2 Linearity measures, which try to quantify whether the

classes can be linearly separated;
3 Neighborhood measures, which characterize the presence

and density of same or different classes in local neighborhoods;
4 Network measures, which extract structural information

from the dataset by modeling it as a graph.
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Feature-based Measures

Volume of Overlapping Region (F2):

f
1

f
2

(a) Artificial dataset.

  

f
1

f
2

maxmin(f
1
)     minmax(f

1
)

      minmax(f
2
)

   maxmin(f
2
)

(b) Calculating F2.
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Feature-based Measures

Volume of Overlapping Region (F2):

  

f
1

f
2

maxmin(f
1
)     minmax(f

1
)

      minmax(f
2
)

   maxmin(f
2
)

F 2 =

m∏
i

max{0, min max(fi)−max min(fi)}
max max(fi)−min min(fi)

,

(1)

Asymptotic complexity:
O(m · n · nc)
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Measures of Linearity

Sum of the Error Distance by Linear Programming (L1)

  

   

f
1

f
2

ε
i

Figure: Example of L1 computation. The examples misclassified by the
linear SVM are highlighted in gray.
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Measures of Linearity

Sum of the Error Distance by Linear Programming (L1)

  

   

f
1

f
2

ε
i

SumErrorDist =
1
n

n∑
i=1

εi. (2)

L1 = 1−
1

1 + SumErrorDist
(3)

Asymptotic complexity: O(n2)
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Neighborhood Measures

Fraction of Borderline Points (N1)

f
1

f
2

(a) Artificial dataset.

●

●

●

●

●
●

●

●

●

●

(b) Minimum Spanning Tree
and the detected points in
the decision border.
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Neighborhood Measures

Fraction of Borderline Points (N1)

●

●

●

●

●
●

●

●

●

●

Figure: Calculating N1.

N1 =
1
n

n∑
i=1

I((xi, xj ) ∈ MST ∧ yi 6= yj )

(4)

Asymptotic complexity:
O(m · n2)
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Network Measures

Average density of the network (Density)

f
1
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(a) Artificial dataset.

●
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●●

●
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(b) Building the graph
(unsupervised)
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●
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●

●

●

●
●

●

●

(c) Pruning process (su-
pervised)

Data Characterization for Meta-Learning Prof. Lúıs Paulo Faina Garcia 37
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Network Measures

Average density of the network (Density)

●

●

●

●

●

●

●
●

●

●

Figure: Calculating Density.

Density = 1− 2|E|
n(n− 1) (5)

0 ≤ |E| ≤ n(n− 1)
2

Asymptotic complexity:
O(m · n2)

Data Characterization for Meta-Learning Prof. Lúıs Paulo Faina Garcia 38
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Complexity Measures

Problems:

High asymptotic cost!
It is faster to run the algorithms than extract the complexity
measures.

Possible solutions:

Simulate the Complexity Measures.
Work to simplify mathematical formulation.
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Standard Analysis

Evaluating the MtL to predict the classifier performance:

Meta-base Analysis: Distribution of the algorithms in the
meta-base and etc...
Meta-level Analysis: Error of the meta-regressors to predict
the performance of each classifier.
Base-level Analysis: Performance of the meta-regressors to
predict the best classifier for a dataset.
Execution time: Difference of execution time between
trial-and-error and MtL approach.
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Meta-base Analysis
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Figure: Performance of the base-classifiers.
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Meta-level Analysis
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Figure: RMSE of each meta-regressor for each classifier.
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Base-level Analysis

Random Default
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Figure: Improvement of base-classifier accuracies over baselines.
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Execution time
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pute the meta-features and clas-
sifiers.
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Meta-features Importance
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Figure: Top-ranked meta-features selected by the RF meta-regressor
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Prospective work

Main interests:

Proposing a framework to extract meta-features;
Simulating the Complexity Measures;
Investigating new measures like Clustering Indexes and types
of model-based
Constructing meta-models for AutoML;
Solving real problems with MtL.
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Collaborations

Ana (ITA) Andre (USP) Adriano (UTFPR) Edesio (USP)

Joaquin (TU/E) Carlos (FEUP) Tin (IBM Watson)
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MtL for Noise Detection

  

Noise
imputation

Standard and
complexity
measures

Noise
Filters p@n

Base-level

Meta-level

Data
sets

Classifiers Leave-one-out
Meta
dataAccuracy

Figure: Selecting Noise Filters for data cleasing [Garcia et al., 2016a]
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MtL for Data Streams

Figure: Selecting ML algorithms for Data Streams [Rossi et al., 2014]
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MtL for AutoML

Figure: Defining AutoML pipelines with MtL.
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Prospective work

Journal papers
Lorena, A., Garcia, L., Lehmann, J, Souto, M., & Ho, T. (2019).
“How Complex is your classification problem?”. ACM Computing
Surveys - accepted
Alcobaça, E., Siqueira, F., Garcia, L., Rivolli, A., & de Carvalho, A.
(2019). “MFE: Towards reproducible meta-feature extraction”.
Journal of Machine Learning Research. - submitted
Rivolli, A., Garcia, L., Soares, C., Vanschoren, J., & de Carvalho,
A., (2019). “Characterizing classification datasets: a study of
meta-features for meta-learning”. Information Science - submitted
Garcia, L., Rivolli, A., Alcobaça, E., Lorena, A., & de Carvalho, A.
(2019). “Boosting Meta-Learning with Simulated Data Complexity
Measures.” Intelligent Data Analysis - submitted
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Prospective work

Packages
Garcia, L., & Lorena, A. (2018). “ECoL: Extended Complexity
Library in R”. R package version 0.3.0.
https://CRAN.R-project.org/package=ECoL.
Rivolli, A., Garcia, L., & de Carvalho, A. (2017). “mfe:
Meta-Feature Extractor”. R package version 0.1.3.
https://CRAN.R-project.org/package=mfe.
Alcobaça, E., Siqueira, F., Garcia, L., & de Carvalho, A. (2019).
“pymfe: Python Meta-Feature Extractor”. Python package version
0.0.3. https://pypi.org/project/pymfe/.
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