
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

RVSec: Runtime Verification Methods for High
Precision Detection of Cryptography API Misuse

Adriano Torres

Dissertation presented as a partial requirement for graduation in the
Postgraduate Program In Informatics - PPGI

Supervisor
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2022

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

RVSec: Runtime Verification Methods for High
Precision Detection of Cryptography API Misuse

Adriano Torres

Dissertation presented as a partial requirement for graduation in the
Postgraduate Program In Informatics em - PPGI

Prof. Dr. Rodrigo Bonifácio de Almeida (Supervisor)
CIC/UnB

Prof. Dr. Leopoldo Teixeira Prof. Dr. Vander Alves
UFPE UnB

Prof. Dr. Ricardo Pezzuol Jacobi
Coordenador do Programa de Pós-graduação em Informática - PPGI

Brasília, 21 de february de 2022

Resumo

O uso incorreto de APIs de criptografia pode causar vulnerabilidades em software. Por-
tanto, recentemente, foram propostas ferramentas baseadas em análise estática para de-
tecção de mau uso. Estes detectores encontram diversos maus usos, mas diferem em suas
capacidades e limitações, alem de não detectarem alguns bugs. Neste trabalho, investig-
amos verificação em tempo de execução (RV, de Runtime Verification em Inglês) - como
uma alternativa baseada em análise dinâmica para detectar mau uso de crypto APIs. RV
monitora execução de programas em relação a especificações formais, e há evidência da
eficiência e eficácia do seu uso na deteccção de bugs em software.

Neste estudo empírico sobre a eficácia e eficiência da aplicação de análise dinâmica
para detectar tais maus usos, nós propomos um um protótipo baseado em JavaMOP
- uma implementação de Monitoring-Oriented Programming para Java - para realizar
Verificação em Runtime (RV) de 22 classes da Java Cryptography Architecture (JCA).

Desenvolvemos nossas especificações através da tradução manual de 22 especificações
presentes em CrySL - o estado da arte em detecção estática - para nosso contexto MOP.
Após conduzir um estudo comparativo de RVsec com o estado da arte em análise estática,
nos calculamos métricas de acurácia - precision, recall e F-measure - bem como custos de
execução e correlação com cobertura de testes. Nossos resultados suportam RV como um
complemento efetivo para analisadores estáticos, uma vez que os métodos aqui propostos
apresentam precisão comparável, quando não superior, sem incorrer em custos de execução
proibitivos.

Palavras-chave: Segurança, Criptografia, Verificação em Tempo de Execução, Análise
de Programas, Engenharia de Software

iii

Abstract

Incorrect usage of cryptographic (crypto) APIs can cause software security vulnerabili-
ties, but developers often find it difficult to reason about those APIs. To automate the
detection of misuse, static-analysis based crypto API tools have been proposed. These de-
tectors find many misuses, but they differ in strengths and weaknesses, and miss bugs. We
investigate runtime verification (RV) as a dynamic-analysis based alternative for crypto
API misuse detection. RV monitors program runs against formal specifications and was
shown to be effective and efficient for amplifying the bug-finding ability of software tests.

In this empirical study on the efficacy and efficiency of applying dynamic analysis to
detect such misuses, we propose a prototype based on JavaMOP - a Java implementation
of Monitoring-Oriented Programming - to perform Runtime Verification of 22 classes of
the Java Cryptography Architecture (JCA).

We developed our specifications by manually translating 22 specifications from CrySL -
a state-of-the-art static detector - into our MOP context. Upon conducting a comparative
assessment of the methods using three benchmarks provided in the literature, we evaluated
accuracy metrics - precision, recall and F-measure - as well as runtime overhead cost and
correlation to coverage. Our results support RV as an effective complement to static
analysers, as the methods herein proposed presented competitive, when not superior,
accuracy metrics, without incurring in prohibitive runtime overhead.

Keywords: Security, Cryptography, Runtime Verification, Program Analysis, Software
Engineering

iv

Contents

1 Introduction 1
1.1 Research hypotheses . 3
1.2 Research objectives . 3
1.3 Research Method . 4

2 Background and Related Work 5
2.1 Current State of the Art for Detecting API Misuse 5

2.1.1 Static Analysis Overview . 6
2.1.2 Static Detection of Crypto API Misuses 7

2.2 Limitations of Static Analysis . 11

3 Scalable Runtime Verification 13
3.1 A Dynamic Analysis Approach . 13

3.1.1 Aspect Oriented Programming . 14
3.1.2 Monitoring-Oriented Programming . 15

3.2 Runtime Verification . 17
3.2.1 JavaMOP: Scalable RV in Practice . 18
3.2.2 Concluding Remarks . 19

4 Research Outline and Method 20
4.1 Test-Driven Translation of Specifications From CRySL to JavaMOP 20

4.1.1 Translating CrySL Specifications into JavaMOP 21
4.2 Architecture Overview . 31

5 Empirical Assessment 33
5.1 Evaluation of Empirical Data . 33
5.2 Experiment Outline . 33

5.2.1 Experiment Objectives and Research Questions 34
5.2.2 Study Setting . 35
5.2.3 Experiment Procedure . 38

v

5.2.4 RQ1: Accuracy . 39
5.2.5 RQ2: RV Overhead . 45
5.2.6 RQ3: Correlation of Coverage with RV Accuracy 47

5.3 Qualitative Analysis . 48
5.3.1 False Negatives in MASCBench . 49
5.3.2 Analyzing SmallCryptoAPIBench results 50
5.3.3 Comparison using ApacheCryptoAPIBench 53

5.4 Discussion . 54
5.4.1 Lessons Learned . 54
5.4.2 Threats to Validity . 55

6 Concluding Remarks 57
6.1 Contributions . 58
6.2 Limitations and Future Work . 58

Reference 61

vi

List of Figures

4.1 RVSec’s pipeline . 32

5.1 Example of using a hard-coded password for loading a key store (which is
considered insecure). RVSec does not detect this type of issue, while both
CogniCrypt and CryptoGuard do detect. 41

5.2 Code snippet from the Tika project. In this case, a Cipher is being just
prepared to future usage. 43

5.3 Venn Diagram summarizing the crypto API misuse each tool reports . . . 44
5.4 Correlation matrix between the Overhead for building the projects intro-

duced by RV and other properties of the projects 47
5.5 Correlation matrix between the test suite metrics and F-measure 48
5.6 Program in MASCBench that yields false-negatives in CogniCrypt and

CryptoGuard . 49
5.7 Example of CryptoGuard false negative for MASCBench 50
5.8 Example of a false-negative from RVSec . 51
5.9 Pattern for reducing false positives in algorithm instantiation 52
5.10 Path sensitive example that leads to false positives in both CogniCrypt and

CryptoGuard . 53
5.11 Code fragment for which CryptoGuard generates 24 warnings in Meecrowave 53

vii

List of Tables

5.1 Information about ApacheCryptoAPIBench artifacts used in our analysis,
including the number of crypto API misuses according to the original ground
truth . 36

5.2 Accuracy results for MASCBench . 40
5.3 Accuracy results for SmallCryptoAPIBench 40
5.4 Summary of the warnings CogniCrypt, CryptoGuard, RVSec report for the

ApacheCryptoAPIBench . 41
5.5 Accuracy results for ApacheCryptoAPIBench 42
5.6 Overhead results for ApacheCryptoAPIBench, considering the average time

of 10 executions of the test suites for each project and configuration (with
and without RV). 46

5.7 Summary of the test suite metrics . 48

viii

Acronyms

AOP Aspect Oriented Programming.

API Application Programming Interface.

CFG Context-Free Grammar.

ERE Extended Regular Expression.

FSM Finite State Machine.

IDE Integrated Development Environment.

JCA Java Cryptography Architecture.

LTL Linear Temporal Logic.

MOP Monitoring Oriented Programming.

PTCaRet Past Time Linear Temporal Logic With Calls and Returns.

ptLTL Past Time Linear Temporal Logic.

RV Runtime Verification.

ix

Chapter 1

Introduction

When storing and manipulating data that needs protection, developers often resort to
some form of encryption. This is usually performed by integrating cryptography libraries
into source code, which brings forth a new level of concern about security: making sure
that developers make secure use of the APIs provided by such libraries. Previous studies
suggest that the opposite is frequently the case, as misuses of such APIs by developers
often introduce vulnerabilities into source code [1], [2], [3].

Cryptography systems are reportedly regarded as hard to engineer. When designing
them, not only does one have to possess knowledge about several disciplines of Mathe-
matics and Computer Science, but one also faces the engineering trade-offs involved in
the creation of abstractions that are easy enough for developers to use, but that also
implement techniques that are hard to break [4]. Even though there has been criticism to
the fact that cryptography is often treated as “just another component” [5] to be plugged
in during the software development lifecycle, many of the main programming platforms
have developed cryptography APIs, and these often become widely used by developers
[6].

Since previous research reports that the presence of low-level abstractions and lack of
tooling to foster the correct use of crypto APIs are among the main reasons why developers
struggle to make proper use of them [7] [8] [6], several static analysis methods have been
developed to detect whether certain assumptions and preconditions are met by the code
being analysed [9] [10].

In this empirical study, we propose an alternative approach to static methods for
performing the detection of cryptography API misuses. Since the implications of applying
a dynamic analysis approach for this domain have not been reported in the literature,
we are motivated by the fact that Runtime Verification attempts to introduce a layer
of formalism to the specifications against which the code under inspection is checked,
without introducing all the complexity and overhead of purely formal approaches, such

1

as model checking and theorem proving. As an example, let us mention that in RV it
is possible to define a finite state machine to specify the entire computation automaton,
with all its states and transitions1.

By leveraging open source implementations of Monitoring-Oriented Programming (MOP)
[11] that allow for scalable Runtime Verification (RV) [12], [13], the methods and artefact
herein proposed aim to detect crypto API misuses by actually executing the code and
checking if specified assumptions about how the respective APIs is expected to be used
are actually met by consumer code.

The objective of this research is thus to investigate the efficacy and effiency of the
application of dynamic analysis methods, i.e., methods wherein the program under in-
spection is actually executed and monitored, and apply available RV technology as an
alternative to the state-of-the-art literature and tooling, which base themselves on allow-
list methods [9] for crypto API misuse detection, and whose core modules are based on
static analysis. [14]. As we shall see throughout the text, even if it is possible to apply
advanced methods and techniques [10] to arbitrarily enhance precision of static analy-
sers, the engineering and runtime costs involved can make it difficult, if not impractical,
to create scalable and extensible tools that enforce the underlying security assumptions
behind the implementation of widely available cryptography APIs.

The main contributions we aim with this work are:

• A prototype tool that allows for an expressive way to define complex relationships
between different components of a given cryptography architecture, which can be
easily integrated into a project’s code base to perform verification;

• An empirical assessment of the efficiency and efficacy of our RV methods for
detecting misuses of crypto APIs. In our assessment, we are going to conduct
a comparative study between of our artefact’s (which we will call RVSec) accu-
racy metrics, namely precision and recall, between our results and those produced
by state-of-the-art-static analysis methods, when all the tools are run against test
benchmarks available in the literature. We also expect to be able to gather insight
about complex scenarios that arise when such libraries are consumed, and establish
guidelines for what kinds of relationships are better expressed/detected in static
analysis, and vice-versa;

• Strategies for the development of specification files that leverage MOP concepts
to verify code behaviour. We also provide a Test-Driven Development process for

1Another potential upside of applying RV, which shall not be explored in this work, is the possibility
of altering program behaviour at runtime. If, for example, an RV analysis tool detects that a key has
not been properly randomised prior to being used for encryption, such tool could, in principle, generate
a proper key and perform secure ciphering instead.

2

translating specifications from CrySL, a definition language developed as part of the
state of the art in static detection [9], into our MOP framework;

If feasible at scale, our approach can serve as the groundwork for the creation of
software and tooling for specifying and validating the usage of crypto APIs, public or pri-
vate. Although in this work we restrict outselves to the context of the Java Cryptography
Architecture (JCA), the approach can be extended to other cryptography frameworks.
Moreover, the methods herein applied make no restriction to the kind of code to be anal-
ysed, which means we can apply our methods to specify behaviour of non-cryptographic
APIs as well.

Another potential implication of a dynamic analysis-based approach lies in the creation
of safety net tools that prevent unsafe code from executing at all. As we shall see, one of
the upsides of MOP-based Runtime Verification is that we can alter program behaviour
at runtime, therefore avoiding the execution of identified API misues. Even though this
is not going to be explored in our work, this is a potential upside of RVSec, as the actual
program trace is available for manipulation during execution.

1.1 Research hypotheses

In this section, we present the major hypotheses to be investigated in this work. In their
most general sense, they can be stated as:

• R.H. 1: Given the current advances in Runtime Verification literature and tech-
nology, it is possible to leverage Runtime Verification tooling to perform efficient
Runtime Verification of cryptography API misuses at scale.

• R.H. 2: Provided that there is a positive answer to the aforementioned hypothesis,
our second hypothesis is that the dynamic analysis approach can yield accuracy
metrics that are comparable, if not superior, to those of the state of the art in
crypto API misuse detection, which base themselves in static analysis.

1.2 Research objectives

The overarching problem we aim to solve in this research can be stated as that of in-
vestigating the possibility of creating a dynamic analysis framework whose metrics for
accuracy and performance are comparable to the current state-of-the-art static analysis
approaches for specifying correct usage of cryptography APIs. The following are some of
the questions that will guide the researcher:

3

• Is it possible to express syntactic and semantic concepts used by static analysers for
specifying the correct usage of crypto APIs in an MOP context?

• Can such approach efficiently detect misuse? In other words, how does the precision
and recall of an RV-based detection approach compare to the state of the art?

• Do there exist correlations between test coverage and number of warnings reported?
Does the number of monitors generated correlate to misuses detected?

1.3 Research Method

In order to to address these questions and validate or refute our hypotheses, we first
present a brief overview of static analysis, the method at the core of most of the current
state-of-the-art tooling to detect misuses of the Java Cryptography Architecture (JCA)
as well as violations of other kinds of security rules, which we found during our literature
review. Our review also includes an introduction to methods and tooling that form the
basis of an integrated framework based on available open source projects that performs
scalable Runtime Verification to decide on whether the code under inspection behaves as
expected. This should lay the groundwork for the construction of our artefact.

Initially, we are going to investigate how one can apply dynamic analysis to detect
misuses of a subset of the JCA APIs. This shall be done by creating specification files
that leverage MOP concepts. The main framework we are going to use is JavaMOP
[15], which synthethises monitors that allow us to react to method calls, thus allowing
us to observe properties of the objects being manipulated. If, for instance, there is a
call to the one-way hashing functionality provided by the MessageDigest class, i.e., if
MessageDigest.update() is invoked, we can capture such an event and make assertions
about its input types/values, whilst imposing constraints and relationships between the
different objects that are used during a complete MessageDigest call sequence. In practice,
we are going to consider CrySL [9], a domain-specific language created for the exact
purpose of specifying the behavior of several classes of the JCA, as the starting point for
the creation of the JavaMOP specs.

Upon completion of the aforementioned investigation, we are going to perform the
empirical validation of our artefact by comparing its misuse detection capabilities, as
well as performance overhead and costs, with its static analysis counterparts, so we can
then see how our approach compares to static methods when the tools are run against
benchmark test sets that were selected during our literature review.

4

Chapter 2

Background and Related Work

In this chapter, we discuss some of the literature on the current methods that are the
most efficient at crypto API misuse detection. The artefacts produced by the works
referenced in this chapter are the ones we are going to compare our framework to during
our empirical assessment. We start with a brief introduction to static analysis, and then
proceed to introducing CrySL [9] and CryptoGuard [10], two of the foremost tools that
apply it to detect crypto API misuse.

Our literature review of the tooling and technology available for detecting crypto API
misuse showed that the underlying paradigm upon which most of them operate is static
analysis [14]. Our review on static detection started with [9] and [10], followed by the
other works of the authors. For RV techniques, we started with [16]. Then we read, in
chronological order, a series of RV papers, all published by the same group as the original
one. This series of papers resulted in the creation of JavaMOP [15], the infrastructure
upon which our tool is built.

2.1 Current State of the Art for Detecting API Mis-
use

In this section, we present a brief overview of what static analyis entails. We then ex-
plore in further detail how current state-of-the-art tooling and methods [9], [10] work.
We conclude by describing some of the theoretical limitations of static analysis, as well
as engineering challenges associated with creating accurate approximations of program
behaviour statically.

5

2.1.1 Static Analysis Overview

Static analysis is a field of Computer Science wherein a program’s behaviour is inferred
and inspected without the program under consideration being executed. Software that
performs static analysis usually require two types of input:

• Input code: a representation of the program we want to analyse [14];

• Specifications: sets of rules about the expected behaviour of certain parts of the
program, such as function invocations, types, values and other properties of the
parameters being passed, as well as sequences of calls. In general, any constraint
that can be applied to the form of the input code can become a specification.

The output of such tools can also be of two general kinds:

• Code: Upon processing the input code against the specifications, static analysis tools
can produce code that has been adapted to meet the specifications. One of the main
examples of this is the refactoring functionality that is found in code editors. These
take textual language (code) as input, matches it against that language’s grammar
rules (specifications), and produces suggestions that conform with the grammar;

• Textual or tabular data, such as warnings or violation reports, about the places
where the specifications are not met. These can also be source code locations, line
number, class names and so on.

Due to not executing the code under consideration, static analysis tools have to inspect
input code against a predefined set of expected conditions. When a condition is not met,
we say that a violation has occurred [17]. Therefore, it is fair to state that the overall
objective of static analaysis tools is to process code against a specification set and search
for violations, producing either reports for subsequent human action, or suggestions of
versions of the code that are compliant.

In order to generate approximations of how the program would behave at runtime,
static methods employ several different strategies. Customary approaches are1:

• Data Flow Analysis: Information about the program is derived and transmitted by
representing the program as a graph whose nodes are elementary blocks, and whose
edges represent how control and data might pass from one black to another. This
is usually performed by extracting equations out of a program. Such method can
also be expressed as a Constraint Based Analysis, in which certain conditions or
inequations are derived out of the program, and then imposed onto its behaviour;

1This is by no means a formal introduction to the elements of static analysis. For an in-depth
discussion, plese refer to [18]

6

• In Abstract Interpretation, traces that record information about events that take
place during the computation are maintained. As such traces “contain sufficient
information that we can extract a set of semantically reaching definitions" [18],
Abstract Interpretation provides a more general theorical method for calculating
analyses, and is not dependant on any given specification style;

• Type and Effect Systems are formalisms that describe properties - or states - of a
program, as well as the effect of executing statements - or its transitions. Anno-
tated Type Systems concerns itself with the states, whereas Effect Systems handles
transitions;

Some examples of programs that perform static analysis and are frequently used by
software engineers are:

• Integrated Development Environments, or IDEs, can analyse code as it is written,
producing real time warnings about potential issues with the code. They can also
suggest automated refactorings, such as method extraction, variable inlining, or any
other transformation that can be applied to the program’s internal representation;

• Compilers usually employ static analysis in more than one phase of the compilation
process. During parsing, static analysis is employed to make sure the program’s
syntax is unanbiguous. This is usually performed by the creation and analysis of
data structures that result from analysing source code, such as Abstract Syntax
Trees - ASTs - and Control Flow Graphs, or CFGs. Static methods also take place
during semantic analysis, such as when type checking is performed [19].

Further elaboration on static analysis is outside the scope of this text. The reader
should refer to [19], [20] and [18] for more detailed discussions on static analysis and its
applications in cryptography.

2.1.2 Static Detection of Crypto API Misuses

This section uses an example to describe the syntax and semantics of CrySL, a domain-
specific Cryptography Specification Language. Although it is not exhaustive, our exam-
ple describes most of the concepts needed for understanding its specification files. For a
complete formalization of the language, the reader should refer to [9].

CrySL - A DSL For Crypto API Specification

Krüger et al. proposed a definition language called CrySL [9] , which can serve as a
building block for documentation, code generation, and program analysis. It provides

7

a lightweight syntax for specifying the correct usage of crypto APIs. The authors also
introduced CogniCryptSAST , a CrySL compiler that generates the static analysis and
allows us to check applications for compliance with CrySL’s encoded rules. At the time
of this writing, CrySL and its compiler are the most comprehensive and precise tools for
detecting misuses of the JCA.

In the following listing, we provide an example of a simplified, yet functional, CrySL
specification for Cipher, one of the core classes of the JCA. It is important to notice that
writing a CrySL specification is not a trivial task, because it requires one to possess ad-
vanced knowledge of cryptography. Ultimately, writing a such a specification requires one
to have command over not only about the JCA itself; one is also required to understand
the underlying mathematical and computational concepts behind encryption, ciphering,
randomisation, and the other techniques involved in cryptography [5]. For our purposes,
CrySL’s specifications serve as a paramount starting point, as they allow us to concen-
trate effort on expressing the relationships, constraints, requirements and guarantees in
our dynamic analysis context, rather than devising and validating those in the first place.

1SPEC java.security.Cipher

2

3OBJECTS

4java.lang.String transformation;

5int encryptionMode;

6java.security.Key key;

7byte[] wrappedKeyBytes;

8java.security.Key wrappedKey;

9

10EVENTS

11instantiateWithoutProvider: getInstance(transformation);

12instantiateWithProvideR: getInstance(transformation, _);

13Instantiate := instantiateWithoutProvider | instantiateWithProvideR;

14initialize: init(encryptionMode, key);

15wrap: wrappedKeyBytes = wrap(wrappedKey);

16

17ORDER

18Instantiate+, initialize+, wrap

19

20CONSTRAINTS

21encryptionMode in {1,2,3,4};

22alg(transformation) in {"AES"} => mode(transformation) in {"CBC", "GCM", "PCBC", "CTR"

↪→ , "CTS", "CFB", "OFB"};

23

24REQUIRES

25generatedKey[key, alg(transformation)];

8

26mode(transformation) in {"OAEPWithMD5AndMGF1Padding", "OAEPWithSHA-224AndMGF1Padding",

↪→ ...} => preparedOAEP[paramSpec];

27

28ENSURES

29generatedCipher[this] after initialize;

30wrappedKey[wrappedKeyBytes, wrappedKey];

Each section is defined by an uppercase word. The code listing above contains all of
CrySL’s mandatory sections, namely:

• The SPEC section, in which we indicate the class whose behaviour we want to specify;

• The OBJECTS is the place where we can declare the objects that will get manipulated
at runtime, if the program is actually executed. As we will see below, we can also
declare objects upon which we want to define preconditions and postconditions;

• EVENTS is where we bind names to method calls. In our example, initialize is bound
to the Cipher.init() method. Notice that, since methods can be polymorphic,
CrySL allows us to define conjunctions of events, like in the Instantiate event in
our example file;

• The ORDER section is where we define an Extended Regular Expression (ERE), which
defines sequences of events. The standard operators for regular expressions, such as
the Kleene operators + and ∗, also apply to this context;

• The CONSTRAINTS section is used to set preconditions to be met by some of the
OBJECTS involved in the computations. In our case, for instance, we are restricting
the values encryptionMode can assume, and we are also defining a mapping between
the values of alg(transformation) and mode(transformation)2. In other words, we
are stating that, if the algorithm to be used for ciphering is AES, then the respective
mode must be one of the seven values defined in the constraint.

• The REQUIRES clause is used when one wants to specify inter-class dependencies. In
our example above, from the Cipher specification file, we want to be able to make
assertions about the key that we are going to use during the initialisation step. This
means that this section is where we assert the behaviour of the other classes that are
referenced by our Cipher spec, provided that those classes are being used correctly
[9].

2alg(transformation) and alg(transformation) are auxiliary functions that extract the algorithm and
the mode of the given transformation. For example, in Cipher.getInstance("AES/CBC/PKCS5Padding"),
the transformation is "AES/CBC/PKCS5Padding", so the functions alg and alg return, respectively,
"AES" and "CBC", which would configure a valid transformation in our case.

9

• Similarly to the above, in the ENSURES section, we specify the outcomes of the class
under specification being used properly. In our example, we want to be able to
ensure that a cipher object is available upon initialisation, as well to assert that the
key that was provived has changed into a specific state.

Note that CrySL is a step toward a more declarative way of specifying the behaviour
of cryptography libraries. Sets of specification files like the one above serve as input to
CogniCryptSAST , which carries out the actual analysis, as well as the other tasks it can
perform. However, the user is still required to understand Extended Regular Expressions
(EREs). Also, as has been mentioned above, if users want to extend an existing specifica-
tion, or create a new one, they must understand lower-level cryptography concepts. This
emphasises our argument that the expertise provided by CrySL’s authors is paramout to
our research.

Upon running CogniCryptSAST on 10001 Java projects, the authors reported that
about 95% of the projects showed at least one misuse of the JCA APIs. Their results
support CogniCryptSAST as an effective tool for identifying JCA misuses. For a more
detailed discusson on CrySL, its applications and results, please refer to [9].

CryptoGuard: Advanced Static Methods for False Positive Reduction

Trying to devise methods to address static analysis’ inherent tendency to generate false
positives, Rahaman et al. proposed CryptoGuard, a set of specialized program slicing
algorithms whose common goal is to increase static analysis precision [10]. In essence,
program slicing attempts to extract the minimal information that is necessary to specify
a given behaviour, effectively reducing the cost of analysis [21].

By creating mappings between 16 security abstractions and concrete Java constructs,
the authors were able to devise a set of slicing algorithms that significantly reduce the
prevalence of false positives in the analysis. Based on empirical observations, the authors
also performed several forms of systematic removal of irrelevant information, further in-
creasing the perfomance and accuracy of CryptoGuard [10]. Another relevant contribu-
tion of this work was a benchmark test set, which shall be referenced during the empirical
assessment of our artefact.

Because the process of creating the mapping and the respective algorithm for a given
security rule involves expertise in advanced static analysis methods, the initial 16 rules are
rather specific, attaining themselves mostly to the detection of predictable and/or constant
values - such as keys, passwords, salts and seeds - as well as improperly randomised values.
Nonetheless, the artifact performed very well, reducing false positive alerts by up to 80%3

[10].
3The authors make no mention about CryptoGuard’s recall in the original paper [10]

10

2.2 Limitations of Static Analysis

As mentioned above, since static analysis does not execute the code under inspection,
it produces conservative approximations, hence producing an answer set that contains
values which may not be correct. This is not an arbitrary design decision. It is, in fact,
a constraint imposed to static analysis itself. Let us see why this is the case with an
example. Consider the following piece of code:

1isValid = validateInput(data);

2if (isValid == true) {

3output = "success";

4} else {

5output = "failure";

6handleFailure(data);

7}

8response = output;

By just reading the code without executing it, one can expect that, by the time we
reach the last assignment statement, output can equal either "success" or "failure".
However, if the call to handleFailure(data) invokes code that never terminates, then it
is also correct to state that the only value output can assume by the time we reach
the last statement is "success". However, one cannot, statically decide on whether
handleFailure(data) terminates. Moreover, it has been shown that two poblems that
are fundamental to static analysis are undecidable/uncomputable4, “even when all paths
are executable in the program being analyzed for languages with if statements, loops,
dynamic storage, and recursive data structures.” [22].

As such, both by constraint and design, static analysis is bound to produce a larger
set of possibilities than the values that will ultimately be produced when the program
executes. It is still important to stress, though, that static analysis is still a very effective
way to investigate and assert properties about programs without running them, therefore
avoiding most (if not all) of the costs associated with inspecting the program at runtime.
From a software engineering perspective, static analysis is extremely useful in several steps
of the development lifecycle, from the moment the engineer is writing the code and getting
instant visual assistance, up until compilation and pre-deployment checks performed by
continuous intgration pipelines.

Although the refinements proposed by CryptoGuard [10] are very efficient, they are
also very specific and non-trivial to produce: not only does one have to carefully map
a security specification to language-specific constructs, but one also needs to manipulate

4The two problems are, respectively, may-alias and must-alias, which are, in essence, problems that
arise when one attempts to make guarantees about whether there exists aliasing between two memory
references. For a thorough discussion on the topic, as well as proofs, please refer to [22]

11

slicing algorithms to enforce the specification. To make such an artefact reusable and
extensible, it would be necessary to automate the production of slicing algorithms from
input cryptographic specifications, which should take considerable effort. The authors
even conclude their text by calling for such a tool, which would be “similar to what
CrySL partially provides, but with much higher expressiveness, precision, and recall" [10].

In the next section, we introduce static analysis’ counterpart, in which the program is
actually executed, and properties or events are monitored at runtime. We also introduce
two different programming paradigms, which form the core of the prototype proposed in
this research.

12

Chapter 3

Scalable Runtime Verification

In this chapter we present two programming paradigms which are foundational to our
work, namely: Aspect Oriented Programming (AOP) and Monitoring-Oriented Program-
ming (MOP). Our systematic literature review on parametric Runtime Verification sug-
gests that, from a performance standpoint, scalable Runtime Verification is approaching
feasibility, which motivates our proposal of a framework for detecting crypto API misuse
at runtime. In particular, we will see that the JavaMOP [13] implementation allows us
to check code against specifications without incurring in prohibitive runtime costs, whilst
keeping specification and error handling decoupled from the target code.

3.1 A Dynamic Analysis Approach

In contrast to static analysis, when inspecting programs dynamically, the program’s code
gets actually compiled and executed. When approached from this standpoint, analysis
can be performed just as the execution stack is generated, and the execution is monitored
via some kind of instrumentation [23]. In this section, we introduce some of the building
blocks that allow the creation of a framework whose goal is to verify whether cryptography
APIs are being used correctly.

Potential Downfalls of RV

Let us take a moment to discuss some potential drawbacks of a Runtime Verification
approach. The foremost concern that arises when instrumenting code for observability
is overhead, which can manifest itself in a few different ways, such as memory and CPU
consumption, and execution time. A program that has its properties monitored at runtime
is likely to consume extra resources. Therefore, careful consideration and experimentation
must be given when assessing whether an RV approach is viable.

13

Another important aspect to be observed is tool and ecosystem maturity. For prac-
tical purposes, Runtime Verification is a relatively recent technique, dating to not much
more than a decade from the time of this writing1. As such, the user of available tool-
ing might face difficulties known to software in early stages, such as poor/nonexistent
documentation, and bugs - both known and unknown - that are hard to understand and
fix. To provide some examples, during our empirical assessment we came across several
crashes caused by overflow issues when we started extending our specification files to
contemplate entire event chains. This required us to inspect the internals of the monitor
synthesiser - rv-monitor - to realise we needed to increase the virtual machine’s stack
size. We also came across other issues of the sort, and had to consult directly with the
authors of JavaMOP to understand certain behaviours observed during the engineering
of our prototype.

Let us now discuss two paradigms that, when properly combined, can produce an
elegant way of generating monitors from event declarations.

3.1.1 Aspect Oriented Programming

Aspect Oriented Programming - AOP - is a programming paradigm whose primary con-
cern is to modularize cross-cutting concerns, i.e., functionality exported from a module
that often gets invoked accross several other modules of the application [27]. For an
intuiton on what cross-cutting concerns are, consider the following scenarios:

• Event persistence: Logging is an example of functionality that can get invoked from
virtually all other modules of an application. The use of logging applications usually
involve coupling it to application logic, by inserting calls to the logger whenever we
want to persist an event;

• Authentication: certain functionality of the application should only be carried out
by authenticated/authorised users. Similarly to the case of the logger above, au-
thentication on its own does not provide much use, and its applications usually take
place by invoking it from many different parts of the software.

Both examples above should provide enough intuition into the problem that AOP is
trying to solve: the fact that invoking code for cross-cutting functionality by traditional
approaches inexorably introduces coupling between the module wherein calls to cross-
cutting concern utilities take place, such as loggers and authenticators, and the consuming
modules themselves.

1A quick Google scholar search on the string "Runtime Verification" yields its earlier relevant results
at about 2001. When conducting our systematic literature review, we confirmed that its first practical
developments happened at around this year [24, 25, 26]

14

AOP introduces a technique for expressing such cross-cutting concerns in a modular
manner, consequently providing a way to separate components from aspects [27]. The
elements of an AOP implementation are [28]:

• Identifiable points in the execution of the program - ways to inspect method calls,
object manipulation, and exepction handling. These are usually called join points;

• Syntax for selecting join points. Having the aforementioned authentication example
in mind, we want to be able to identify all the join points before which we want to
ensure proper authentication has occured;

• Syntax for executing code whenever a join point code is run. Once we have identified
all the join points that require authentication, we must be able to express that we
want to perform authentication, or execute any block of code in general, before or
after all such join points. These are commonly called the advices;

• Constructs to alter the static structure of the program. There are complex scenarios
in which aspect oriented applications need to be able to alter the static structure
of the system. For instance, introducing cross-cutting logging into several different
classes is a kind of inter-type declaration, which needs access to the program’s
static structure. There are also cases where one wants to be able to detect or
ascertain conditions or requirements to be met before or after the execution of
certain methods. Such weave-time declarations constructs perform this task [28];

• Syntax for expressing cross-cutting concerns: It must be possible to express a cross-
cutting concern in a self-contained, decoupled, and reusable way. Following our
analogy, it must be possible to define a module where logging functionaliy happens,
and to express that logging happens before/after a certain set of join points, instead
of inserting a call to the logger module whenever we need it.

For the practical purposes of our project, we are going to use AspectJ [28], an AOP
implementation available for Java. Please refer to the book for an extensive discussion.

3.1.2 Monitoring-Oriented Programming

In 2003, Chen and Ruso proposed a programming paradigm for checking conformance
against specifications at runtime [11]. Their approach, which is language and formalism
independent, paves the way for interesting applications, such as:

• Ways to increase program dependability and reliability by comparing program be-
haviour versus specified behaviour, and avoiding the execution of code that violates
the specification;

15

• Extensions of programming languages that allow us to execute code when certain
monitored events occur;

• A formal method which, relative to theorem proving and model checking, is light-
weight, and whose primary concern, instead of performing static checks, is to not
let the program misbehave at runtime;

In MOP, properties are specified using using specification formalisms, such as Regular
Expressions and Finite State Machines, alongside code to be executed when such specifi-
cations are met or violated. [29] The way this is performed in an MOP framework is via
the automatic generation of monitors from user-defined specifications, which can also be
expressed in different formalisms.

Notice that, if we are able to express formal specifications as cross-cutting concerns
to be enforced throughout an application, one can view MOP as an instance of AOP. Let
us briefly examine an example to see why this is the case.

1event invalidTransformation after(String transformation) returning(Cipher c):

2call(public static Cipher Cipher.getInstance(String)) &&

3args(transformation) &&

4condition(!isValid(transformation)) {

5System.out.println("Invalid transformation");

6}

7

8event validTransformation after(...)

9

10ere: validTransformation

The event definitions above use AspectJ syntax to express that, if the transformation
string that is passed in to the method is not valid, then the specification has been violated
and a warning must be raised. As shall be seen in the next sections, the fact that we are
able to synthesise monitors from such aspects, therefore automatically generating agents
that allow us to observe the program at runtime, is what motivates the interpretation of
MOP as AOP.

The two paradigms also have in common the fact that code that happens to be gen-
erated by these methods needs to be integrated into the code under inspection. In fact,
both predict such need [27], [11]. Thefore, if feasible, such a system can yield a productive
combination of testing and formal methods [30].

From a software engineering perspective, MOP implementations are expected to pro-
vide abstractions for several different logic engines, so as to spare the developer from
having to know how to translate a chosen formalism into a finite state machine, there-
fore abstracting away a relatively hard problem. This means that, so long as they know

16

how to express program state and behaviour using the target logic [11] [31], MOP im-
plementations will handle monitor synthetization. They do so by having several different
code generators, one for each of the the different logics that are supported by the actual
implementation. The generators themselves take as input the specified behavior. In a
subsequent step, the monitors are automatically synthesised and integrated.

3.2 Runtime Verification

The main contributions of [11] are the overall architecture of an MOP framework, as well
algorithms that implement engines for past time and future time linear temporal logics
(ptLTL) and for extended regular expressions ERE.

Let us recall that, in Runtime Verification, the program is checked at runtime against
its specified behaviour. This, combined with the fact that MOP frameworks abstract away
the internals of the formalisms used, can have important implications for the software
engineering practitioner, some of which being:

• It allows developers who know how a given API works to focus on the easier task
of creating and validating specifications, relative to that of translating the specifi-
cations into state machines and monitors;

• Once a specification is validated, developers should have a high confidence that the
property/behaviour that has been specified is being enforced throughout the several
parts of the software wherein that property or behaviour can be manipulated/trig-
gered, irrespective of the complexity of the system [30]. This is because, when the
RV tool is run, we will know that the code is being executed, and that properties
will not go unnoticed by the program, unless the specification itself is not currently
designed to detect a known issue. This is because, in contrast to the static methods
outlined in Chapter 2, in RV, the program is actually run against the specification.

In contrast with what we have observed about static analysis [18], in a runtime veri-
fication scenario, false positives are not necessarily inherent to the design. This is, again,
because we are sure that the program is being executed, instead of approximations being
generated and analysed. For that, false positives do not necessarily have to be present in
RV.

In static analysis, thus, the presence of a positive can mean one of three things:

• The violation is a true positive;

• The violation is a false positive, because the approximation generated for the pro-
gram, when analysed, raised a warning where there should not be one;

17

• The violation is a false positive, because the specification is incorrect.

In contrast, in RV, the presence of false positives must necesarily mean the specification
is incorrect, because no approximation is generated, and the program is actually executed
and monitored, leaving fewer room for doubt.

As we have seen, refining static analysis tools to reduce false positives introduces
considerable technical overhead, and it can yield refniments that are too context-sensitive
for practical purposes [10], which reinforces the need for an expressive and extensive means
for specifying behaviour.

3.2.1 JavaMOP: Scalable RV in Practice

Following the conceptualisation of an MOP framework proposed by Chen and Ruso [11],
JavaMOP was introduced for efficient runtime verification [30]. JavaMOP implements all
three formalisms present in [11], as well as the following [13]:

• Finite State Machines - FSM

• Context-Free Grammars - CFG

• Simultaneous support for past and future operators for LTL

• Past Time Linear Temporal Logic With Calls and Returns - PTCaRet

Let us take a look at an adapted specification file to develop a high level understanding
of what JavaMOP does under the hood.

1package mop;

2

3RandomStringPasswordSpec(String str) {

4event vo after(Object obj) returning(String s):

5call(public static String String.valueOf(Object)) &&

6args(obj) &&

7condition(RANDOMIZED_STRING === true) {

8// tell consumers the string is properly randomised

9}

10

11event gb after(String s) returning(char[] chars):

12call(public char[] String.toCharArray()) &&

13target(s) &&

14condition(RANDOMIZED_STRING === true) {

15// tell consumers the string is properly randomised

16}

17

18ere : vo gb

18

19@match {}

20}

As can be seen, JavaMOP, specification files are created with the .mop extension, and
we have to include the mop package. We use a class-like syntax to declare a specification,
by assigning it a name, and defining parameter types. The events are declared using stan-
dard AspectJ syntax. Internally, JavaMOP combines such events into a multi-threaded
monitoring system. The generated code is responsible for creating the final state machine
which will specify the call sequence, and the monitor manager also handles concurrency
internally. In this process, JavaMOP creates an intermediate .java file, which is ulti-
mately converted into an AspectJ (.aj) file. As a final - and optional - step, JavaMOP
allows us to create an agent from the AspectJ file. This .jar file can be set via the
command line when executing a test suite, basically informing the Java Virtual Machine
that the generated agent is going to be used.

The ere section works exactly as it does in CrySL: it is an Extended Regular Expression
that allows us to define sequences of events. In contrast to CrySL, though, JavaMOP also
provides plugins for other formalisms, such as Finite State Machines (FSM) and Control
Flow Graphs (CFG) [13].

For some of the supported formalisms, we are allowed to use the @match and @fail

clauses, which allow us to execute code, or to communicate whether the execution con-
formed to the specification.

Leveraging the aforementioned parallel between formal specifications and aspects, the
creators of JavaMOP implemented the automatic synthetisation of monitors, effectively
enabling the possibility of creating “raw MOP specifications" [30], thereby leveraging As-
pectJ’s native compiler and weaver to generate code that represents the monitors. Exten-
sive validation of its effectiveness showed that JavaMOP frequently incurs in acceptable
runtime overhead that is no greater than 10%, therefore making it a potential candidate
for runtime verification at scale [13].

3.2.2 Concluding Remarks

The literature review of the theory, methods and tooling available for efficient Runtime
Verification [13] [11] [12], [30], [25], [24], [26] suggests that it is in fact possible to construct
an artefact for runtime verification of cryptography API specificactions. In the next
chapter, we outline the main construction steps, as well as the experimental setting we
designed in order to conduct the empirical assessement of our method.

19

Chapter 4

Research Outline and Method

This chapter outlines the process employed in the creation of the MOP specifications that
will serve as input to our crypto API Runtime Verification tool. Having CrySL specifi-
cations as a starting point, we are going to see how the respective JavaMOP specs are
created. We also informally discuss mappings between CrySL and JavaMOP constructs,
and leave the automation of the translation process as future work. The chapter concludes
with a workflow view of the architecture or our tool, alongside a brief discussion of the
abstractions we introduced that allowed us to express the proper expected behaviour of
JCA classes.

4.1 Test-Driven Translation of Specifications From
CRySL to JavaMOP

CrySL [9] provided a set of 49 specifications for how JCA APIs should be used. As an
initial step in the development of our specifications, we are going to translate a subset of
the specifications provided by CrySL. Our decision on which ones to translate was pri-
marily based on how frequently the respective JCA class was used. A secondary criterion
was the prevalence of violations, as reported by CrySL and CryptoGuard.

Note that, even though we are opting to translate specifications generated by CrySL
due to its authors’ expertise in cryptography and, specifically, in the JCA, we are not
strictly required to do so. This is a design decision that was made in order to attain
ourselves to the overall question of determining whether Runtime Verification is an efficient
method for detecting crypto API misuses, whilst still having a trustworthy source of rules
for the correct usage of JCA’s classes. So long as one knows how the APIs are expected
to be used, one could perform the test-driven process outlined below without referring to
external sources. Provided that we have test sets to serve as ground truth, we can apply

20

TDDD to create our own specifications. In addition, our approach should be flexible
enough to allow us to adapt our specifications in the (unlikely) case where we disagree
with some of CrySL’s guidelines.

4.1.1 Translating CrySL Specifications into JavaMOP

In this section, we present CrySL’s entire specification for the MessageDigest class, which
shall be used to illustrate the incremental, test-driven development process we applied
for the creation its equivalent JavaMOP spec. Our process consisted in the standard
red-green-refactor iterative approach to writing software [32], which basically consists of
three phases:

• Create a test case and run the program. Since there is no implementation to be
tested, the test will fail;

• Implement code that meets the behaviour expected by the test. This means writing
code that either throws an expected error, or that represents a valid execution;

• Refactor the code as necessary;

This process is repeated with each of the test cases available in the test suite. In our
case, the initial development of our specifications was made possible by test sets provided
by Bodden et al [9]. This enabled us to gradually increase the complexity of our specifi-
cations, whilst ensuring that we would not introduce bugs into them. Let us now turn to
our example.

1SPEC java.security.MessageDigest

2

3OBJECTS

4java.lang.String algorithm;

5byte preInputByte;

6byte[] preInput;

7int preOffset;

8int preLen;

9java.nio.ByteBuffer preInputByteBuffer;

10byte[] input;

11int offset;

12int len;

13byte[] output;

14

15EVENTS

16g1: getInstance(algorithm);

17g2: getInstance(algorithm, _);

21

18Get := g1 | g2;

19

20u1: update(preInputByte);

21u2: update(preInput);

22u3: update(preInput, preOffset, preLen);

23u4: update(preInputByteBuffer);

24Update := u1 | u2 | u3 | u4;

25

26d1: output = digest();

27d2: output = digest(input);

28d3: digest(output, offset, len);

29DWOU := d2;

30DWU := d1 | d3;

31Digest := DWU | DWOU;

32

33ORDER

34Get, (DWOU | (Update+, Digest))+

35

36CONSTRAINTS

37algorithm in {"SHA-256", "SHA-384", "SHA-512"};

38length[preInput] >= preLen + preOffset;

39preOffset >= 0;

40preLen > 0;

41length[output] >= len + offset;

42offset >= 0;

43len > 0;

44

45ENSURES

46generatedMessageDigest[this] after Get;

47digested[output, _];

48digested[output, input];

Expressing CrySL’s constructs in JavaMOP

In order to express that we want to specify the behaviour of the MessageDigest class, we
use a constructor-like syntax in JavaMOP:

1package mop;

2import java.security.MessageDigest;

3MessageDigestSpec(MessageDigest digest) {

4//events, objects, call sequence, @match/@fail handlers

5}

In JavaMOP, the class declaration defines which JCA class is to be specified, thereby
having the same meaning as CRySL’s SPEC section. In our case, the type of the ar-

22

gument that is passed to the specification file defines that the digest object from the
MessageDigest class is going to be monitored. This is why JavaMOP is considered a
parametric runtime verification framework. Now let us proceed to incrementally creating
our MOP spec.

Notice that, in its EVENTS section, CrySL allows us to specify conjunctions of events,
such as Get := g1 | g2;, Update := u1 | u2 | u3 | u4; and Digest := DWU | DWOU. This
allows for a relatively clean way of defining the extended regular expression in the ORDER

section1.
Since CrySL provides this neat way of expressing conjunctions, even though its ORDER

section reads relatively simple, it does in fact generate several possible different call se-
quences. When developing its JavaMOP couterpart, for each possible path, one is required
to create test cases that exert that path. Here are a few examples of sequences of method
calls that conform with CrySL’s specification for MessageDigest:

• g1→ d2;

• g1→ u1→ d1

• g2→ u2→ u2→ d1;

• g2→ u3→ d3

Let us pick the first example sequence above of a valid call sequence, in which only two
events are involved, build a partial specification, and apply TDD to give us confidence
that this partial specification works properly.

The simplified JavaMOP spec for MessageDigest that should check whether g1→ d2
works as specified is the following:

1package mop;

2import java.security.MessageDigest;

3import java.util.List;

4import br.unb.cic.mop.eh.*;

5import br.unb.cic.mop.ExecutionContext;

6import br.unb.cic.mop.ExecutionContext.Property;

7

8MessageDigestSpec(MessageDigest digest) {

9

10List<String> algorithms = Arrays.asList("SHA-256", "SHA-384", "SHA-512");

11MessageDigest md = null;

12String currentAlgorithmInstance = "";

1Relative to the JavaMOP framework, this was an advantage we observed in expressiveness, as trying
to create such conjunctions from outside the ERE itself in JavaMOP would cause errors whose trace made
it difficult to replicate these conjunctions as present in CrySL. For that reason, our JavaMOP EREs ended
up more explicit, handling the conjunctions inside the ERE itself, and looking more complicated.

23

13

14event g1 after(String alg) returning(MessageDigest digest):

15call(public static MessageDigest MessageDigest.getInstance(String))

16&& args(alg) && condition(algorithms.contains(alg.toUpperCase())) {

17md = digest;

18currentAlgorithmInstance = alg;

19}

20

21event d2 after(MessageDigest digest) returning(byte[] out):

22call(public byte[] MessageDigest.digest(byte[])) &&

23target(digest) {

24if (!algorithms.contains(currentAlgorithmInstance.toUpperCase())) {

25ErrorCollector.instance().addError(new ErrorDescription(ErrorType.

↪→ UnsafeAlgorithm, "MessageDigestSpec", "" +

26__LOC,"expecting one of {SHA-256, SHA-384, SHA-512} but found " +

↪→ currentAlgorithmInstance + "."));

27}

28ExecutionContext.instance().setProperty(Property.DIGESTED, out);

29}

30

31ere : g1 d2

32

33@fail {

34ErrorCollector.instance().addError(new ErrorDescription(ErrorType.

↪→ InvalidSequenceOfMethodCalls, "MessageDigestSpec", "" + __LOC));

35ExecutionContext.instance().unsetObjectAsInAcceptingState(md);

36__RESET;

37}

38

39@match {

40ExecutionContext.instance().setObjectAsInAcceptingState(md);

41}

42}

The args() function binds the String alg object, therefore allowing us to establish
conditions about it, which, when met, allow us to execute custom blocks of code. Notice
also that AspectJ’s syntax provides us with the returning directive, basically meaning
that a successful call to the method in question ought to return the expected type. This
is also in alignment with the first statement of the ENSURES section in the CrySL spec,
which expects a call to MessageDigest.getInstance() to actually return a digest object.

The simplest test cases that test whether the call sequence is valid are shown below.
Please note that this is by no means an extensive test set. We could, for instance, change
the type of the input to be digested, or use a different (potentially invalid or unsafe)

24

algorithm - such as SHA-1 - when instantiating the digest object. Moreover, since our
ERE specifies that exactly one call to each method should happen, inserting redundant
calls should also raise errors.

1@Test

2public void messageDigestSimplesPathSuccess() throws NoSuchAlgorithmException {

3// proper g1 -> d2 sequence

4byte[] input = "StringToBeEncrypted".getBytes();

5MessageDigest md = MessageDigest.getInstance("SHA-256");

6byte[] out = md.digest(input);

7Assertions.hasEnsuredPredicate(out);

8Assertions.mustBeInAcceptingState(md);

9}

10

11@Test

12public void messageDigestSimplesPathFailure() throws NoSuchAlgorithmException {

13// improper g1 -> d2 sequence: missing call to d2

14byte[] input = "StringToBeEncrypted".getBytes();

15MessageDigest md = MessageDigest.getInstance("SHA-256");

16Assertions.hasEnsuredPredicate(out);

17Assertions.mustBeInAcceptingState(md);

18}

In order to validate whether all the predicates involved in the encryption are valid, we
introduced another validation class called Assertions, which extends the org.junit.Assert
class. As its name suggests, we use it to ensure that properties we expect to be met by
the end of the computation do in fact hold. The first type seen in the test cases above -
hasEnsurePredicate - serves the function of making sure that CrySL’s equivalent ENSURES
clauses are met, while mustBeInAcceptingState refers to whether the call sequence was
valid or not. In the two aforementioned examples, the first test would finish gracefully,
whilst the second would fail, since the md object is not going to be in an accepting state,
since the call sequence was invalid.

The ORDER section maps one to one to our ere2. Let us examine the entire event
definitions for the two events from the specification above to introduce the abstractions
we implemented to provide equivalent meaning for the rest of CrySL’s constructs.

Note that, in order to express the guarantees - CrySL ENSURES clause - provided by
the class being specified, we introduced the ExecutionContext class, a singleton oject
which alllows us to set and remove properties about the objects, as well as to keep track

2Note that, since JavaMOP implements several different formalisms, which all translate to an internal
state machine, it allows us to express event orders in ways other than EREs. For example, we could have
used fsm for Finite State Machine, cfg for Control Flow Graph, or any of the formalisms supported by
JavaMOP [13]

25

of and communicate such properties throughout the execution. We explain its purpose
and functionality further in the architecture section.

After we define the events, we bind names to them: g1 and d1 in our example. We
are able to specify whether we want to perform checks before or after a MessageDitest

object is successfully returned. The arguments passed in are the objects we want to
monitor, which means that, in this event, we are interested in monitoring the String alg

that is passed in to MessageDigest.getInstance(). The args() construct performs such
binding for us. The condition() construct allows us to insert Java statements, which
provides the ability to express requirements, properties or states, thus carrying the same
meaning as CrySL’s REQUIRES. The curly braces following the condition define a block of
code in which we can execute custom code, allowing us to collect, save and propagate
context information, and potententially (though not explored in this work) alter program
behaviour at runtime.

In the case of EREs, JavaMOP supports both the @match and @fail clauses, which
are used, respectively, to execute code whenever there is a complete match, or as soon
as an unexpected event occurs3. Notice also that, when @fail is reached, we use another
abstraction of our own creation, called the ErrorCollector, which allows us to not only
catch method calls that do not conform with the ERE that defines the call sequence, but
also to raise errors when incorrect types and values are used.

Enhancing the MOP specifications

Even though we described a translation of a relatively simple call sequence, the overall
process of enhancing the specs to encompass more paths follows the same systematic
process:

1. Break the ERE down into all4 the reasonable call sequences it can produce;

2. For each call sequence to be specified, we write test cases that are expected to pass
and fail;

3. Run the tool against the tests, and make any necessary adjustments exposed during
the execution;

3Note the __RESET statement here, which is a low-level operation to reset Java-
MOP’s rv-monitor to its initial state. For further discussions on JavaMOP’s special vari-
ables, as well as for reference on which formalisms support which clauses, please refer to
https://web.archive.org/web/20171214085644/http://fsl.cs.illinois.edu/index.php/JavaMOP4Syntax.

4Strictly speaking, this would not be possible when the + and * operators are present, as the number
of calls to the same method can be arbitrarily large. We simplify in this case, and do not repeat method
calls in our tests more than two times.

26

4. Once confident that a path has been properly tested, enhance the ERE to contain a
new path. Repeat until all the paths defined by the ORDER ERE have been covered.

Automating the Translation - An Informal Discussion

The systematic process outlined above raises an important question, which shall only be
informally addressed in this text, but which we believe to be an important topic for future
work:

• Is it possible to automate the translation of CrySL specifications into JavaMOP?

Our experience developing the 22 MOP specifications that we have at the time of this
writing suggests that, without any adaptations, it would be difficult to perform automatic
translations. However, the set of auxiliary modules, internal functionality, data structures
and abstractions that we developed to augment the JavaMOP framework allowed us to
express most CrySL’s directives in our MOP context. The most relevant ones for this
discussion are:

• ExecutionContext: Originally created to provide means to express CrySL’s ENSURES
and REQUIRES clauses, this data structure allows us to store and propagate informa-
tion throughout the execution. This module allows us to set and remove properties
of the objects used at runtime. It is via ExecutionContext, for example, that we
record and communicate about the state of a key, thus allowing us to know whether
it has been properly randomised or not. In conjunction with the JavaMOP agent
that is generated, this class also assists us in deciding if the execution sequence
is valid. At each stage of the computation, if the agent observes a violation of
the expected order of method calls, ExectionContext is requested to register such
violation5;

• ErrorCollector: As execution unfolds, one or more violations may occur. This
singleton object is frequently used inside the bodies of the blocks of code that are
executed when events are captured, allowing us to report errors exactly as they
occur;

• CipherTransformationUtil: Since the instantiation methods in the Cipher class
usually accept a transformation string - as opposed to simple algorithm strings, for
most other classes - we had to introduce this utility module so as to have a way to

5The need for ExecutionContext in this case is due to the internals of rv-monitor, the engine used
by JavaMOP to synthethise monitors. Since we want to be able to know all the errors during the entire
flow of execution of a given class being specified, we need to __RESET rv-monitor whenever we find an
invalid call sequence. In this case, ExecutionContext makes sure this information is not lost during the
resets.

27

express the functions alg(), mode() and pad(), which are extensively used in the
CONSTRAINTS and ENSURES sections of CrySL’s specification for Cipher.

• Assertions: This module, which inherits from JUnit’s Assert class, contains func-
tions that decides on whether a call sequence is valid, whether predicates defined
in CrySL’s REQUIRES sections hold, and whether errors have been raised throughout
the execution.

• A Logger that reports the results into tabular form. The outputs produced by the
Logger module are .csv files that contains information about which specification
was violated, the kind of violation, and information about the location of the viola-
tion. Such data will be paramount for the empirical assessment of our framework.

Although we have not engaged in automating the translation, we applied the sys-
tematic process outlined above, together with our helper modules, and we successfully
developed our 22 specifications. Nonetheless, it is important to mention that we only
translated about half of all the CrySL specifications available. Therefore, even though
our visual inspection of the files we did not translate seem to pose no threat to our current
method, it would be irresponsible to affirm that such translations can be automated before
we provide strong evidence that they are in fact possible. Moreover, due to the inherent
challenges involved in the development of compilers and translators [33] we are unable to
make statements about the difficulty of developing such transpiler. Below are code snip-
pets that provide mappings between constructs in the two languages/frameworks. Again,
these should not be treated as exact one-to-one relationships between them; instead, the
reader should use them as a starting point, and we encourage a more thorough analysis
before proceeding to creating an automatic translator.

Defining the class under specification is straightforward in both contexts:
1//CrySL

2SPEC java.security.MessageDigest

3

4//JavaMOP

5package mop;

6import java.security.MessageDigest;

7MessageDigestSpec(MessageDigest digest) { ... }

The CONSTRAINTS section is handled in JavaMOP by leveraging AspectJ’s condition(),
inside an event declaration:

1//CrySL

2CONSTRAINTS

3algorithm in {"SHA-256", "SHA-384", "SHA-512"};

4

28

5EVENTS

6g1: getInstance(algorithm);

7

8//JavaMOP

9package mop;

10import java.security.MessageDigest;

11MessageDigestSpec(MessageDigest digest) {

12List<String> validAlgorithms = Arrays.asList("SHA-256", "SHA-384", "SHA-512");

13MessageDigest md = null;

14String currentAlgorithmInstance = "";

15

16event g1 after(String alg) returning(MessageDigest digest):

17call(public static MessageDigest MessageDigest.getInstance(String))

18&& args(alg) && condition(validAlgorithms.contains(alg.toUpperCase())) {

19...

20}

21}

Even though CrySL provides an explicit separation between the OBJECTS and the
EVENTS, in JavaMOP, we have to combine the ideas, and so we have to express both
combined insided an event declaration, as per AspectJ syntax. Let us take a look at an
example.

1//CrySL

2OBJECTS

3byte[] preInput;

4int preOffset;

5int preLen;

6...

7

8EVENTS

9u3: update(preInput, preOffset, preLen);

10...

11

12//JavaMOP event

13event u3 after(byte[] preInput, int preOffset, int preLen, MessageDigest digest):

14call(public int MessageDigest.digest(byte[], int, int)) &&

15args(preInput, preOffset, preLen) &&

16target(digest) {

17ExecutionContext.instance().setProperty(Property.DIGESTED, preInput);

18}

As can be seen, the objects that are used by the method under specification are
declared inside the after() directive. The call() construct specifies what is the method
to be monitored. The arguments of the method - MessageDigest.digest in our case -

29

take only the types, and the binding is handled by args(). Here, the necessity of the
ExecutionContext singleton becomes more evident, as we would have no native way in
JavaMOP to ENSURE that the input byte array has been properly digested. Let us know use
a fictitious event declaration to examine how to communicate when a CrySL constraint
is not met.

1//CrySL

2OBJECTS

3java.lang.String alg;

4...

5

6EVENTS

7// Since this is an invalid event, it is not listed in CrySL

8

9CONSTRAINTS

10alg in {"SHA-256", "SHA-384", "SHA-512"};

11

12//JavaMOP event

13event g3 after(String alg) returning(MessageDigest digest):

14call(public static MessageDigest MessageDigest.getInstance(String))

15&& args(alg) && condition(!validAlgorithms.contains(alg.toUpperCase())) {

16ErrorCollector.instance().addError(new ErrorDescription(ErrorType.UnsafeAlgorithm,

↪→ "MessageDigestSpec", "" + __LOC,

17"expecting one of {SHA-256, SHA-384, SHA-512} but found " + alg + "."));

18currentAlgorithmInstance = alg;

19}

20...

21@fail {

22ErrorCollector.instance().addError(new ErrorDescription(ErrorType.

↪→ InvalidSequenceOfMethodCalls, "MessageDigestSpec", "" + __LOC));

23ExecutionContext.instance().unsetObjectAsInAcceptingState(md);

24__RESET;

25}

26

27@match {

28ExecutionContext.instance().setObjectAsInAcceptingState(md);

29}

The g3 event represents the instatiation of an invalid, or unsafe, algorithm. For exam-
ple, if we call MessageDigest.getInstance("SHA-1"), this event will be triggered, which
will, in turn, cause our ErrorCollector to report that a violation has occurred. Since
this event is technically invalid - due to the use of an unsafe algorithm - it is not present
in CrySL’s ORDER section. This is where the match and fail handlers come in handy, as

30

they allow us to either report an InvalidSequenceOfMethodCalls, or to in fact accept the
computation, in the case of a match.

This concludes our informal discussion on how to establish mappings between the
constructs in CrySL’s main directives into JavaMOP. We would like to emphasise that
these are only guidelines used by our group of researchers in the development of our MOP
specs. It is also important to stress that The topic of formally mapping the constructs
and creating an automatic translator is subject to a research endeavour of its own, and is
left as future work.

4.2 Architecture Overview

Figure 4.1 depicts the major components, as well as the overall flow of information for
RVSec. Let us briefly describe each component.

• As observed in the previous section, the input to our program is a set of MOP
specification files using JavaMOP, which leverages AspectJ syntax for pointcuts
and advices;

• The mop−maven− plugin is a set of utility functions that abstracts away some of
the low level, intermediate steps required by JavaMOP, such as the creation of the
monitor files and their subsequent merging, the creation of the monitor libraries, and
the creation of a JavaMOP agent. As shown by the picture, Runtime Verification
Monitor files serve as input to generate a single AspectJ file, wherein each monitor
is translated to an AspectJ advice and body. Finally, its last step consists in the
generation of the JavaMOPAgent, a .jar file;

• The aforementioned agent is then supplied to maven− surefire− plugin, an open
source plugin that offers utilities for assisting during the testing lifecycle. In par-
ticular, this plugin allows us to easily customise some of the Java Virtual Machine
settings, and it also permits us to specify agents to be using throughout the execu-
tion;

It shall be noted that, since the generation of the agent is decoupled from the programs
represented by the green box in the picture, the agent can be reused arbitrarily, only
needing update when the MOP specifications are updated. This means that, once we
are confident that the specifications are correct, we are able to run the test cases against
them before production code is deployed, thus introducing one more layer of validation
into the integration and deployment pipeline.

31

Figure 4.1: RVSec’s pipeline

The output produced by the Logger module is a csv that contains information about
which specification was violated, the kind of violation, and information about the loca-
tion of the violation. Such data will be paramount for the empirical assessment of our
framework, which is outlined next.

32

Chapter 5

Empirical Assessment

5.1 Evaluation of Empirical Data

This chapter presents both quantitative and qualitative discussions regarding the data
that was collected during our empirical assessment. We seek to provide answers to four
research questions, which shall be outlined throughout the chapter. We also provide
examples of cases where the different tools produced different results, along with design
decisions that we employed in order to increase the accuracy metrics of RVSec. We discuss
some hypotheses as to why discrepancies in the results arise, and conclude by summarizing
our findings, as well as some potential threats to the validity of our approach.

5.2 Experiment Outline

This section introduces the questions that will guide the researchers in the evaluation
of the empirical study herein proposed. After eliciting the research questions that are
relevant to our discussion, we will describe the expriment setting, as well as the methods
we will employ in order to validate or refute our hypotheses.

Since our experiment entails a comparative study between RVSec and the state-of-
the-art static analysis methods available for crypto API detection, we provide the data
generated by our experiments, and we also discuss the limitations, advantages and draw-
backs of each of the frameworks analysed during the experiments. Throuhgouht the
discussion, we provide examples where some tools fail whilst others thrive, and, when
possible, provide insights as to why this is the case.

33

5.2.1 Experiment Objectives and Research Questions

Our empirical study aims to assess both the accuracy metrics of RVSec when compared
to CogniCrypt and CryptoGuard, as well as the potential implications of applying run-
time verification methods to the detection of cryptography APIs misuse. We are also
interested in measuring the costs of our approach. The next few paragraphs describe
the specific questions we are going to investigate during our experiment. The following
sections describe the procedures and methods applied to collect data to generate insights
about the questions.

The overarching questions we seek to answer in our empirical assessment are:

• R.Q.1 - Accuracy Metrics: How does RVSec compare to state-of-the-art tools for
static detection of crypto API misuse in terms of accuracy metrics? In particu-
lar, how does the recall and precision of RVSec compares to those of CrySL and
CryptoGuard, when the three tools are run on the same input code?

• R.Q.2 - Performance: Is there any significant increase in execution time or memory
consumption when running test suite code that has been instrumented with our
JavaMOPAgent?

• R.Q.3 - Correlation to coverage: Is there a statistically significant correlation be-
tween the coverage of test cases and the number of violations reported by the analysis
tools?

• R.Q.4 - Comparison: What are the relative strengths and weaknesses of RV, com-
pared to static crypto API misuse detectors?

In order to produce answers to the first three research questions, we are going to per-
form quantitative assessments, whereas we are going to follow a more qualitative approach
when trying to answer RQ4.

A legitimate concern that is always present in dynamic analysis is that RV techniques
may incur in high overhead costs, especially when compared to static approaches. So
answering RQ2 provides a sense of the cost of using RV for crypto API misuse detection.
Moreover, since RV can only detect violations parts of code that are actually executed,
answering RQ3 allows us to see the impact of code coverage on the accuracy of RVSec
for detecting crypto API misuses. Finally, answering RQ4 helps us to see ways to further
improve RVSec for use in crypto API misuse detection, and to investigate the potential
synergy that could result from combining static and dynamic detection of crypto API mis-
uses in the future. We conclude our qualitative assessment with some example techniques
we used to increase RVSec’s precision and recall.

34

5.2.2 Study Setting

Upon completion of the test-driven development of our MOP specifications, we are going
to execute RVSec, CrySL, and CryptoGuard against three benchmark test sets, whilst
collecting data and metrics that we expect to help answer the research questions outlined
above.

Experiment Design and Preliminary Threats to Validity

Since benchmarks serve as ground truth for validating observations and measurements,
we also reviewed the literature available searching for benchmarks provided by different
research groups. The three benchmarks to be used in our experiments are:

• MASCBench is a collection of 30 small Java programs that isolate crypto API
misuses introduced via domain-specific mutation operators [34]. The benchmark
comprises minimal versions of programs with crypto API misues coming from 13
mutated open source Android apps and four sub-systems of Apache Qpid Brokerj.
These minimal versions contain only 512 lines of Java code.

• SmallCryptoAPIBench consists of 187 test cases (3735 source lines of code in to-
tal) that cover simple and complex scenarios of crypto API uses and misuses. Small-
CryptoAPIBench is a smaller version of CryptoAPIBench, a handcrafted benchmark
that Afrose et al. designed to compare the performance of static analysis tools in
detecting crypto API misuses [35]. We removed from CryptoAPIBench 16 test cases
not related to the JCA library—hence the name SmallCryptoAPIBench.

• ApacheCryptoAPIBench is a dataset of real crypto API misuses collected from
Apache project modules [35] (Table 5.1 presents more detailed information about
them). According to the available ground truth for this benchmark, there are a
total of 74 crypto API misuses in the Apache modules of Table 5.1. Table 5.1 also
highlights the specific revision of each project we used in our assessment, as well as
the number of test cases available, the size of the projects (in terms of source lines
of code), the number of RVSec monitors generated and the number of events the
monitors capture during the execution of the projects’ test suites.

We use all three benchmarks in search for answers to RQ1 and RQ4. To do so, we
integrate RV into the build process of the small Java programs in MASCBench and
SmallCryptoAPIBench. Our integration uses reflection to invoke the programs while also
using a JavaMOP Java agent to monitor the executions for crypto API misuses. The
output from our pipeline is a set of violations that signal the detection of crypto API
misuses. We also export MASCBench and SmallCryptoAPIBench as .jar files that can

35

be analyzed by CogniCrypt and CryptoGuard, and then computed precision and recall
using ground truth data that are available from MASCBench and SmallCryptoAPIBench.
We discarded from ou analysis programs in these benchmarks whose vulnerabilities are
not due to the incorrect use of the JCA API (e.g., programs that use the HTTP protocol
instead of HTTPS when instantiating URIs) or those that do not contain an explicit main
method. Also, we fixed several test cases in MASCBench and SmallCryptoAPIBench that
raised runtime exceptions—for instance, when a test case refers to an invalid key store,
we had to replace it with a reference to a valid one.

We used the developer-provided build configurations in the 10 original Apache projects
of ApacheCryptoAPIBench, which we used to answer all four research questions. Unfor-
tunately, ApacheCryptoAPIBench only describes the Maven artifact’s non-stable version
of the programs (i.e., SNAPSHOT versions). Since there can be different revisions (e.g., a Git
commit ID) of a non-stable version, we checked out and built the most recent revision for
a given non-stable version, and we display our results in the second column of Table 5.1.
We needed to implement small fixes to some projects to make the build succeed. These
changes involved either commenting out pieces of code that did not compile, or repairing
some library dependencies. We will make these fixes available as supplementary material.
Once all the issues listed above were fixed, we ran the entire test suites of these projects
10 times each in two configurations: (a) without RVSec, and (b) with RVSec. For each
test-suite execution, we recorded the total execution time, the test case coverage, and (for
the second configuration) the crypto API misuses detected. We also ran CogniCrypt and
CryptoGuard on the .jar files from these projects to collect statically detected crypto
API misuses. We could not fix the build process of two (Taverna Workbench and TomEE
Container) out of the 10 Apache modules in the original ApacheCryptoAPIBench. For
this reason, we discarded these two modules from our analysis.

Project Module Revision TCs SLOC RVSec Monitors Events Misuses

ActiveMQ Artemis artemis-commons 5ab187b 110 11 737 14 73 15
Directory Server apacheds-kerberos-codec 155bd94 376 42 185 135 2379 19

ManifoldCF mcf-core 9573dc4 5 21 281 39 744 3
DeltaSpike deltaspike-core-impl d95abe8 155 13 515 31 3954 2

Meecrowave meecrowave-core 3780f1c 19 6788 23 8998 3
Spark spark-core_2.11 9ff1d96 2045 164 335 123 181548 27
Tika tika-core 6f33bae 222 23 207 6 294 0

Wicket wicket-util dbd86d9 237 20 220 52 405 5

Table 5.1: Information about ApacheCryptoAPIBench artifacts used in our analysis, in-
cluding the number of crypto API misuses according to the original ground truth

36

Notes on Limitation of Benchmarks

Before we continue the analysis of the data generated by the experiments we conducted,
it is important to be transparent about the potential threats the researcher faces when
using benchmarks as ground truth data to validate or refuse hypotheses. Below is a non-
exhaustive list of factors that can hinder our ability to produce consistent and trustworthy
results:

• Bias: Although we, as scientists, strive to be objective in our assessments, as hu-
mans, we are prone to bias [36]. As Nobel Prize Laureate Daniel Kahneman States,
“When people believe a conclusion is true, they are also very likely to believe ar-
guments that appear to support it, even when these arguments are unsound.” [37].
When designing benchmarks to serve as ground truth for crypto API detection, re-
searchers will naturally carry their biases into the projects. In practice, this means
that, not only are researchers prone to inserting bias into the creation of the detec-
tion tools, but they are also - consciously or not - likely to create test benchmarks
that are in accordance with such biases, therefore increasing the chance that confir-
mation bias is present in the test sets.

• Disagreements on specifications: Although in many cases the JCA defines the
proper use of the classes and interfaces it makes available to engineers, its docu-
mentation is not always explicit about certain rules, leading researchers to establish
their own rules for how a certain API is expected to be use. A notorious example
that was exposed by our research is exposed by the specification of the PBEKeySpec

class. Whereas the researchers behind the CrySL project define that its construc-
tor must take 10000 as the minimum value of the IterationCount parameter, the
authors of CryptoGuard consider 1000 enough. As such, when all the tools are run
against the different benchmarks, there can arise discrepancies in the reports. This
is also compounded by the aforementioned biases that may be introduced into the
benchmarks;

• Human Error: Since we do not yet have reliable ways to automate the process of
creating benchmarks, researchers must engage in the laborious process of defining
and validating benchmark data. Therefore, even with processes like coss-validation
and repeated reviews, errors can be present in ground truth data, especially as the
data sets get larger.

37

5.2.3 Experiment Procedure

In this section, we describe the methods to be employed during our experiment, with the
goal of generating data and insight about our research questions.

To answer RQ1, we compute the Precision, Recall, and F-measure of RVSec, Cog-
niCrypt, and CryptoGuard on MASCBench, SmallCryptoAPIBench, and ApacheCryp-
toAPIBench. Prior work used these metrics to compare static detectors of crypto API
misuses [9, 10]. Given the number of true positives (TP) and false negatives (FN) in our
assessments, these metrics are given by the following equations.

Precision = TP

TP + FP
(5.1)

Recall = TP

TP + FN
(5.2)

F −Measure = 2× Precision×Recall

Precision + Recall
(5.3)

To measure RV overhead (and to answer RQ2), we ran the test suites 20 times for each
project in ApacheCryptoAPIBench (10 repetitions for each configuration). That is, we
computed the average time of 10 executions using the with RVSec configuration, but we
also performed 10 executions using the without RVSec configuration, for every project
in ApacheCryptoAPIBench. Considering TRV and TBase the average time to run the
test cases with and without RVSec, we estimate the overhead using the Eq(5.4):

Overhead = 100× TRV − TBase

TBase
(5.4)

Notes on limitations of our approach for answering R.Q.2: We opted to only
conduct overhead analysis for the real-world projects that we analysed from ApacheCryp-
toAPIBench. This was mainly due to the following reasons:

• Running the suite on the small set of cases provided by MASCBench took almost
no time. Therefore, the measurements would be too noisy and unrealistic, thus
providing no real insight;

• Although SmallCryptoAPIBench contained a lot more test cases, the intricacies of
rv-monitor - a low level library used by JavaMOP to synthetise monitors - was very
sensitve to the environment (operating system and Java Virtual Machine) upon
which it was running, which, after some point in the development of our work,
prevented the author from running RVSec against the benchmark. This forced us
to resort to the assistance of other contributors in our research group;

38

• Each round of execution on the 8 projects from ApacheCryptoAPIBench that built
succesfully would take several hours to produce its output. The 20 runs executed
in total - 10 with RVSec’s agent enabled and the other 10 regular runs - took more
than 14 hours to run. In order to spare the efforts of the contributor who was able to
run the tools against all benchmarks, we opted to prioritise the real world projects;

• Our tool was run on a regular user’s computer, which was running several other
processes which might have introduced variance into the measurements of the 10
runs performed with instrumentation. Since the runs would take several hours to
complete, we had to restrict ourselves to a shorter number of runs, which made it
difficult to migitate the noise we observed during the experiment;

Finally, to answer RQ3, we measured statement coverage, branch coverage, and method
coverage in the ApacheCryptoAPIBench projects using the JaCoCo tool. We combined
these coverage metrics with Precision and Recall to carry out the Spearman Correlation
test [38]. Our goal is to investigate how code coverage impacts the accuracy of RV for
detecting crypto API misuses.

Upon collection of the aforementioned metrics, as well as the cross-validation and
analysis of the results, we will then be in a position to examine the shortcomings of our
approach. As explained in previous sections, we are particularly interested in finding
situations which would be difficult to express using our framework.

Finally, the knowledge, data and insights generated during the research and develop-
ment of RVSec will provide information about useful heuristics and strategies for speci-
fying crypto API behaviour via runtime verification.

5.2.4 RQ1: Accuracy

Accuracy results for MASCBench. Table 5.2 shows that RVSec achieves higher
Precision, Recall, and F-measure than CogniCrypt and CryptoGuard on MASCBench.
As shown in the “FP” column, none of the three tools reports a false-positive. So, they all
have 100% Precision. However, RVSec produces a smaller number of false-negatives for
MASCBench—two false negatives—while CogniCrypt and CryptoGuard reported eight
and nine false negatives respectively. The two false negatives that RVSec reports were
due to an issue in our specification, which was not correctly capturing an event in the
RVSec version used in the experiments. Differently, false-negatives in CogniCrypt and
CryptoGuard seems more related to limitations in their static analysis components, as
shall be seen in Section 5.3.1.

39

Tool TP FP FN Precision Recall F-measure

RVSec 26 0 2 1 0.92 0.96
CogniCrypt 20 0 8 1 0.71 0.83
CryptoGuard 19 0 9 1 0.67 0.80

Table 5.2: Accuracy results for MASCBench

Accuracy results for SmallCryptoAPIBench. Table 5.3 shows that RVSec also
achieves higher Precision, Recall, and F-measure than CogniCrypt and CryptoGuard on
SmallCryptoAPIBench. Seven (out of eight) false negatives that RVSec missed relate to
the use of hard-coded passwords for loading key stores (see lines 3 and 6). Failure to
handle hard-coded strings is a limitation of our approach—we cannot check at runtime
whether a variable has been initialized using a hard-coded string constant. An inspection
of the CrySL specifications shows they use two types of check to detect hard-coded, or
string values, as in the following examples:

• neverTypeOf[password, java.lang.String];

• notHardCoded[password];

Even though the first check is trivial to perform in JavaMOP, the second one leverages
static analysis to decide on whether the password is in fact hard coded. The latter has
yet to be reproduced in RVSec. The investigation of the possitility of expressing this in
RV is left for future work.

We exemplify and qualitatively analyse the false positives and false negatives from all
three tools in Section 5.3.2.

Tool TP FP FN Precision Recall F-measure

RVSec 122 7 8 0.94 0.94 0.93
CogniCrypt 110 29 20 0.79 0.84 0.81
CryptoGuard 114 18 17 0.86 0.87 0.86

Table 5.3: Accuracy results for SmallCryptoAPIBench

Accuracy results for ApacheCryptoAPIBench. We identified some threats while
conducting the precision and recall comparison of RVSec and the static detectors for
ApacheCryptoAPIBench [35]. First, we could not find the specific commits that were
used to curate ApacheCryptoAPIBench, since only unstable versions—SNAPSHOT versions
in Maven lingo—are specified. Many commits can map to a SNAPSHOT, so it is hard to find
the specific commit that matches the one that the ApacheCryptoAPIBench authors use.
Second, the provided ground truth misses essential information that we need for comput-

40

1public class ProgramExample {

2public static void main(String args[]) throws Exception {

3String key = "password";

4KeyStore ks = KeyStore.getInstance("JKS");

5URL cacerts = new File("testInput-ks").toURI().toURL();

6ks.load(cacerts.openStream(), key.toCharArray());

7}

8}

Figure 5.1: Example of using a hard-coded password for loading a key store (which is
considered insecure). RVSec does not detect this type of issue, while both CogniCrypt
and CryptoGuard do detect.

ing Precision and Recall. For example, many true positives in ApacheCryptoAPIBench
do not specify the Java class in which a crypto API misuse occurred.

Despite these threats, the ApacheCryptoAPIBench benchmark can still be a valuable
source of data about how RVSec compares with the static detectors on real-world open-
source projects where the static detectors were previously evaluated. So, our decision was
to manually inspect all warnings the three tools generate for ApacheCryptoAPIBench. We
consolidate the observations counting multiple warnings for the same object in a given
class/method as a unique occurrence. This decision is necessary because RVSec, Crypto-
Guard, and CogniCrypt report warnings with different granularity. This procedure leads
to a total of 192 warnings in our dataset, which were taken into account in our decision to
create our own ground truth for this benchmark. Although creating a new ground truth
might have introduced additional threats into our research, we are confident that this
decision avoids several inconsistences we found in the previous ApacheCryptoAPIBench
ground truth.

Note that, among the 192 warnings in our dataset, 44 warnings come from code in
external dependencies. We excluded these warnings from our analysis because it is not
trivial to validate these cases manually. RVSec also reports 14 warnings from unit tests.
Since neither CogniCrypt nor CryptoGuard evaluate the artifact packages of the programs
(.jar files) containing unit tests, we also removed these 14 warnings from our analysis.
In the end, our curated dataset contains 134 warnings, as we summarize in Table 5.4.

Tool Full Data Set Curated Data Set
RVSec 64 40
CogniCrypt 72 58
CryptoGuard 56 36

Table 5.4: Summary of the warnings CogniCrypt, CryptoGuard, RVSec report for the
ApacheCryptoAPIBench

41

After curating our dataset and ground truth, we compute the metrics Precision, Recall,
and F-measure. Table 5.5 presents the results, which reveals that RVSec presents again a
superior Precision. Nonetheless, when we consider both Precision and Recall, CogniCrypt
presents the better performance (according to the F-measure estimate).

Tool TP FP FN Precision Recall F-Measure

RVSec 39 1 12 0.97 0.76 0.85
CogniCrypt 48 10 3 0.82 0.94 0.88
CryptoGuard 20 14 31 0.58 0.39 0.47

Table 5.5: Accuracy results for ApacheCryptoAPIBench

The Venn Diagram of Figure 5.3 helps to explain these results. First, since we built
the ground truth from the set of warnings that at least one tool (RVSec, CogniCrypt,
or CryptoGuard) generates, the true positive set (TP) with 51 warnings has intersection
with at least one tool. The set of TP warnings all three tools identify contains 17 elements
(33.33% of the elements in TP); while, the sets of TP warnings that at least two tools
report contains 39 elements (76.47% of the elements in TP).

Note that, even though CryptoGuard implements a smaller number of rules, even
in comparison with RVSec, it finds 58% of the true crypto misuses. Nonetheless, the
smaller number of rules reflects into the CryptoGuard Recall (0.39). Besides that, even
without improving the test suite of the projects, RVSec missed only 12 out of the 48 true
positives that CogniCrypt report. Our manual analysis reveal that these false negatives
are due to (a) the lack of test cases necessary to reveal the issues and (b) the lack of
RVSec specifications for JCA classes that are not frequently used (SecretKeyFactory and
TrustManagerFactory). This result suggests that RVSec is an alternative to static crypto
API misuse detectors, even without the need to improve the test suite of real programs.

Conversely, RVSec reports one false positive, while CogniCrypt and CryptoGuard
reports 10 and 14 false positives respectivelly. There is no intersection among the sets
of false positives the tools report. Thirteen false positives from CryptoGuard come from
a rule that considers the java.util.Random class insecure. Nonetheless, instances of this
Java class are often used in non-cryptographic contexts. In fact, after a careful analysis, we
identified that no instance of the java.util.Random class in the ApacheCryptoAPIBench
leads to a software vulnerability. We marked these examples as false positives. Had
we discarded these warnings from our analysis, the Precision of CryptoGuard for this
benchmark would be significantly higher (0.95). We keep these warnings here because
previous research incorrectly regards usage of the java.util.Random as true positives,
which have misled previous results already published [39, 35].

42

1public void parse(

2InputStream stream, ContentHandler handler,

3Metadata metadata, ParseContext context)

4throws IOException, SAXException, TikaException {

5Cipher cipher = Cipher.getInstance(transformation);

6

7Key key = context.get(Key.class);

8

9AlgorithmParameters params = context.get(AlgorithmParameters.class);

10SecureRandom random = context.get(SecureRandom.class);

11

12if (params != null && random != null) {

13cipher.init(Cipher.DECRYPT_MODE, key, params, random);

14} else if (params != null) {

15cipher.init(Cipher.DECRYPT_MODE, key, params);

16} else {

17cipher.init(Cipher.DECRYPT_MODE, key);

18}

19super.parse(

20new CipherInputStream(stream, cipher),

21handler, metadata, context);

22}

Figure 5.2: Code snippet from the Tika project. In this case, a Cipher is being just
prepared to future usage.

The 10 false positives CogniCrypt report involves tricky situations, which required
significant amount of time to inspect and confirm. Our conclusion is that, in general,
they appear not due to a bug in a CrySL rule or CogniCrypt implementation, but instead
due to contextual information. For instance, we found in the Tika project pieces of code
that just prepare a Java Cipher class for use by extensions of the project, not making
explicit calls to methods such as update or doFinal. See an example in Figure 5.2.
Currently, CogniCrypt reports an error in such a situation, even though we understand
that deferring such calls is the intention of the developer. We mark these situations as
false positives in our ground truth.

The results so far bring several findings, which we summarize bellow.

Finding 1

RVSec leads to a higher accuracy values when considering MASCBench and
SmallCryptoAPIBench—two handcrafted benchmarks. RVSec also leads to the
higher Precision in ApacheCryptoAPIBench, though with a lower Recall than
CogniCrypt.

43

TP

RV CogniCrypt

CryptoGuard

0
(0.0%)

1
(1.3%)

10
(13.2%)

14
(18.4%)

3
(3.9%)

0
(0.0%) 0

(0.0%)

9
(11.8%)

0
(0.0%)

0
(0.0%)

19
(25.0%)

0
(0.0%)

3
(3.9%)

0
(0.0%)

17
(22.4%)

Figure 5.3: Venn Diagram summarizing the crypto API misuse each tool reports

Finding 2

RVSec and CogniCrypt report 36 true positive warnings in common inApacheCryp-
toAPIBench (70% of the true positives in the benchmark), even though they use
distinct techniques for detecting crypto API misuses.

Finding 3

Seven out 12 RVSec missed warnings (false negatives) in ApacheCryptoAPIBench
are due the lack of test cases that would be necessary to reveal the misuse using
RVSec. The remaining ones are due to specifications that we did not translate

44

from CrySL.

When we compare the results of our analysis with what had been presented in recent
papers [39, 35], which also use ApacheCryptoAPIBench, we found a discrepancy with
respect to the performance of CryptoGuard. This difference might be partially explained
considering that:

• We removed from our analysis two projects from ApacheCryptoAPIBench that we
were not able to build: Taverna Workbench and TomEE Container—the aforemen-
tioned research work take these projects into account during their analysis.

• We removed from our analysis warnings reporting crypto API misuses that occurr
in external dependencies, since we were not able to manually validate these warn-
ings. It is unclear in the specifications how the authors of ApacheCryptoAPIBench
confirmed these misuses. We could not validate that using the original ground truth
because several misuses there do not specify the class that originate the issue.

• CryptoGuard reports a specific misuse for every call to the java.util.Random()

constructor, regardless the respective random instance being used in a cryptographic
context or not. The authors of ApacheCryptoAPIBench consider all these warnings
true positives originally. After our manual analyis, we conclude that none of these
instances are being used for cryptography and then we mark these warnings as false
positives. This leads to a higher number of false positives related to CryptoGuard.

• We build our ApacheCryptoAPIBench ground truth from the after a manual analysis
of the warnings all tools generate. As such, our set of true positives include cases
that are not present original ground truth dataset. This might also lead to a higher
number of false negatives than reported before.

• Moreover, we could run CogniCrypt in all artifacts of ApacheCryptoAPIBench, dif-
ferently from what had been originally reported in a preprint version of Zhang et al.
work [39]. We contacted the authors of the paper, and they confirmed our findings
for CogniCrypt and (hopfully) they have fixed part of their findings in the camera
version of their paper.

5.2.5 RQ2: RV Overhead

Comparing a dynamic analysis like Runtime Verification with static methods brings forth
the discussion the overhead of RV for crypto API misuse detection. Furthermore, using
RV to simultaneously monitor many specifications like we do is known to be more costly
than monitoring a single one specification [40, 41, 42]. Table 5.6 shows the times for

45

building the the ApacheCryptoAPIBench projects without (the “TBase (s)” column) and
with (the “TRV (s)” column) RV. It also shows the RV overhead (the “Overhead (%)”
column), computed as discussed in Section 5.2.2. Time units are measured in seconds.
Note that we ran the buid process in each project 10 times each, with and without RV,
and computed the average times TRV and TBase.

Project TRV (s) TBase (s) Overhead (%)

Directory Server 21.30 15.00 42.00
ActiveMQ Artemis 39.80 35.90 10.86
ManifoldCF 23.90 22.00 8.64
DeltaSpike 47.10 39.80 18.34
Meecrowave 48.40 34.40 40.70
Spark 1319.70 1115.40 18.32
Tika 28.00 25.10 11.55
Wicket 24.00 15.30 56.86

Table 5.6: Overhead results for ApacheCryptoAPIBench, considering the average time of
10 executions of the test suites for each project and configuration (with and without RV).

In summary, RV overhead on these projects ranges from 8.64% (ManifoldCF) to
56.86% (Wicket), with an average overhead of 25.90% and median overhead of 18.32%.
Considering Spark, which has the highest original execution time among all the projects,
the overhead is 18.30%—roughly 22 minutes with RV and roughly 18 minutes without
RVSec. We think that RV overhead on these projects might be acceptable. Further,
we only measured RV overhead on one revision for each project because our focus is on
comparing with static analysis based approaches. Still, recent evolution-aware techniques
were proposed that reduce RV runtime overhead by up to 10x - averaging 5x - when RV
is utilized across several stages of a project, e.g., during continuous integration or regres-
sion testing [43, 44]. Therefore, it is withing reason to think that using evolution-aware
RV to detect crypto API misuses as software evolves could produce even lower runtime
overheads than the ones shown in Table 5.6.

Figure 5.4 shows a correlation matrix between six metrics: number of test cases (TCs),
source lines of code (SLOC), number of RVSec monitors generated (Monitors) and events
captured (Events) while running the test cases, crypto API misuses (Misuses), and Over-
head. Note that there is a small, negative correlation between the Overhead and the
TCs (-0.09), SLOC (-0.12), and Events (-0.16) metrics. There is also a moderate positive
correlation between the Overhead and the number of RVSec generated monitors (0.32).
Since the number of RVSec specifications is the same across all projects, we were actually
expecting that the total number of test cases (TCs), Monitors or Events could explain
the RVSec overhead. Our correlation matrix suggests the contrary.

46

 1.00

 0.99

 0.78

 0.67

−0.09

 1.00

 0.79

 0.70

−0.12

 1.00

 0.79

 0.01

 1.00

 0.32 1.00

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
T

C
s

S
LO

C

M
is

us
es

M
on

ito
rs

O
ve

rh
ea

d

TCs

SLOC

Misuses

Monitors

Overhead

Figure 5.4: Correlation matrix between the Overhead for building the projects introduced
by RV and other properties of the projects

Finding 4

There is a small correlation between the overhead RVSec introduces in the time
to execute the test cases of the projects and metrics such as number of test
cases, SLOC, Misuses and Events, and a small-to-moderate correlation between
overhead and the number of Monitors.

5.2.6 RQ3: Correlation of Coverage with RV Accuracy

We compute four metrics related to the test suites of the ApacheCryptoAPIBench
projects: Total Number of Test Cases (TCs), average Instruction Coverage (IC), average
Branch Coverage (BC), and average Method Coverage (MC)—the last three coverage
metrics using the Java Code Coverage Library (JaCoCo), which we integrated into the
build process of the ApacheCryptoAPIBench projects. After running the test suites,
JaCoCo exports test coverage measurements for each class of a project and we then
compute the average coverages (i.e., instruction, branch, and method level coverage) as
we present in Table 5.7.

We then explore the correlation between the test suite metrics and the F-measure
metric. Our idea is to identify if there is any correlation between test coverage and
accuracy. The correlation matrix in Figure 5.5 summarizes the result, showing that there
is a small and negative correlation between the number of test cases and instruction
coverage with the accuracy metric (F-measure). This lack of correlation might be due to
the fact that crypto API misuses concentrate in a small number of classes. That is, the

47

Apache Module TCs IC BC MC
Directory Server 376 47.54 2.29 66.60
ActiveMQ Artemis 110 11.22 6.76 14.29
ManifoldCF 5 3.62 0.00 5.07
DeltaSpike 155 33.33 6.78 69.79
Spark 2045 8.64 1.06 17.46
Tika 222 23.42 12.34 29.74
Wicket 237 16.88 12.16 24.47

Table 5.7: Summary of the test suite metrics

JaCoCo outputs report that the test suite of all projects covers 5706 classes. Nonetheless,
the crypto API misuses in all projects are present in only 20 classes (0.35% of the total
classes covered in the test suites).

Finding 5

Since crypto API misuses concentrate in a small number of classes of projects,
there is no correlation between test coverage and the RVSec accuracy.

 1.00

−0.42

−0.64

−0.37

−0.24

 1.00

−0.20

 0.93

−0.26

 1.00

−0.17

 0.06

 1.00

−0.03 1.00

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

T
C

s

IC

B
C

M
C

A
cc

ur
ac

y

TCs

IC

BC

MC

Accuracy

Figure 5.5: Correlation matrix between the test suite metrics and F-measure

5.3 Qualitative Analysis

We discuss the reasons for false positives and false negatives reported by RV, CogniCrypt,
and CryptoGuard, based on the quantitative results obtained from our experimens. We
also discuss some limitations of RV for crypto API misuse detection, and identify problems

48

that future work should solve for RV to become better at detecting crypto API misuses.
We also describe a scenario that is common within the JCA, which our RV approach was
able to handle, but that static analysers struggled with.

5.3.1 False Negatives in MASCBench

Figure 5.6 shows an example crypto API misuse that neither CogniCrypt nor Crypto-
Guard detected, but which RVSec detected. There, Cipher is instantiated by calling the
getAlgorithm method of class KeyGenerator. In the example, getAlgorithm returns the
String "AES"— since keygen is instantiated using a call to KeyGenerator.getInstance("AES").
But, instantiating the Cipher c in this way is similar to calling Cipher.getInstance("AES"),
which specifies just the cipher algorithm, and not its operation mode and padding.
The vulnerability occurs because the default mode and padding configuration for AES

is ECB/PKCS5Padding, which might result in disclosing of sensitive information [?]. So,
creating a Cipher as shown is insecure, but CogniCrypt and CryptoGuard do not detect
this misuse. Differently, if one passes the "AES" string to the Cipher.getInstance method
directly, instead of calling KeyGenerator.getAlgorithm(), both tools detect the misuse.

1public class CipherExample09 {

2public static void main(String[] args) {

3try{

4KeyGenerator keygen = KeyGenerator.getInstance("AES");

5SecretKey key = keygen.generateKey();

6Cipher c = Cipher.getInstance(keygen.getAlgorithm()); /* error */

7/* possible patch:

8* Cipher c = Cipher.getInstance("AES/CBC/PKCS5Padding");

9*/

10c.init(Cipher.ENCRYPT_MODE, key);

11c.doFinal("something".getBytes());

12}catch(Exception e){

13e.printStackTrace();

14}

15}

16}

Figure 5.6: Program in MASCBench that yields false-negatives in CogniCrypt and Cryp-
toGuard

The remaining false-negatives in CogniCrypt are due to its inability to detect (a) us-
ages of insecure message digest algorithms whose names are mutated in the calling pro-
gram (e.g., "md5".toUpperCase()); and (b) initializing a SecureRandom class with hard-
coded values (instead of random values). Together, these cases account to four and three
CogniCrypt false negatives, respectively—out of eight false negatives.

49

1public class CipherExample05 {

2private String cipherName = "AES/GCM/NoPadding";

3

4public CipherExample05 methodA() {

5cipherName = "AES/GCM/NoPadding";

6return this;

7}

8

9public CipherExample05 methodB() {

10cipherName = "DES";

11return this;

12}

13

14public String getCipherName(){

15return cipherName;

16}

17

18public static void main(String[] args) throws Exception {

19String name = new CipherExample05().methodA().methodB().getCipherName();

20/* error: DES is not secure */

21Cipher c = Cipher.getInstance(name);

22runCipher(c);

23}

24

25public static void runCipher(Cipher c) throws Exception {

26/* error: DES is not secure */

27Key key = KeyGenerator.getInstance("DES").generateKey();

28c.init(Cipher.ENCRYPT_MODE, key);

29byte[] cipherText = c.doFinal("password".getBytes());

30}

31}

Figure 5.7: Example of CryptoGuard false negative for MASCBench

Five false-negatives in CryptoGuard occur in the scenarios that use multiple method
calls to initialize a Cipher class. Figure 5.7 presents an example, where the Cipher c

instance is initialized using insecure "DES" algorithm. Note that CryptoGuard does not
report any issue with the test case of Figure 5.7. Although CogniCrypt also misses the first
error in this test case (Line 21), it correctly detects the second one (Line 27). Extending
CryptoGuard and CogniCrypt with a more advanced interprocedural data flow analysis
might reduce these interprocedural false-negative scenarios in both tools. For instance,
FlowDroid is able to detect source-sink flows using different method calls and string
manipulations [45].

5.3.2 Analyzing SmallCryptoAPIBench results

RV’s False Negatives and False Positives. Seven (out of eight) RVSec’s false
negatives in SmallCryptoAPIBench are due to the use of hard-coded passwords for loading

50

key stores. According to CWE-798, this is a severe threat since “hard-coded credentials
typically create a significant hole that allows an attacker to bypass the authentication that
has been configured by the software administrator” [46]. Specifically, it is very difficult to
write a specification that allows RVSec to check at runtime if the string being used as
a password was hard-coded at initialization or not (see Lines 14 and 16 in Figure 5.8).
The recommended best-practice is to retrieve the passwords from a external and private
database . Additional techniques, such as taint analysis or string analysis may need to be
used together with RVSec to detect whether passwords have been hard-coded. Four out of
seven RVSec’s false positives are due to a NIST that requires a number of 10 000 iterations
to securely use password based encryption (via PBEParameterSpec objects). However, the
SmallCryptoAPIBench ground truth considers the use of at least 1000 iterations to be safe.
So, these false positives are due to a mismatching between a recent NIST specification
and choices made in curating the ground truth data set that we used.

1public class PredictableKeyStorePassword {

2

3URL cacerts;

4PredictableKeyStorePassword pksp = new PredictableKeyStorePassword();

5

6public static void main(String args[]) throws Exception {

7pksp.go();

8}

9

10public void go() throws Exception {

11String type = "JKS";

12KeyStore ks = KeyStore.getInstance(type);

13cacerts = new File("input-ks").toURI().toURL();

14String defaultKey = "password";

15/* error: defaultKey is hard-coded */

16ks.load(cacerts.openStream(), defaultKey.toCharArray());

17}

18}

Figure 5.8: Example of a false-negative from RVSec

False Positives in CogniCrypt and CryptoGuard. Eighteen CogniCrypt false posi-
tives (out of 29) and all CryptoGuard false positives happen in the SmallCryptoAPIBench
path-sensitive programs and are due to the over-approximations both tools employ. Fig-
ure 5.10 shows an example. There, choice is initialized to 2, so the condition in line 6
is always true and the secure SHA-256 algorithm is always used on line 10, as expected.
But the over-approximations that CogniCrypt and CryptoGuard employ make them flag
lines 8 as insecure, and raise a warning.

This raises an interesting observation regarding a potential advantage of RV in the
context of crypto API misuse: when there exists this two-step process of instantiation and

51

1// g1 and g2 instatiate valid algorithms, but g3 is not

2// Don’t raise a warning immediately when an invalid algorithm is instantiated

3String currentAlgorithmInstance = "";

4event g3 after(String alg) returning(MessageDigest digest):

5call(public static MessageDigest MessageDigest.getInstance(String))

6&& args(alg) && condition(!algorithms.contains(currentAlgorithmInstance.toUpperCase())) {

7currentAlgorithmInstance = alg;

8}

9

10//It’s inside the events that actually consume the algorithm that we catch UnsafeAlgorithm

11event update after(MessageDigest digest):

12call(void MessageDigest.update(..)) && target(digest) {

13if (!algorithms.contains(currentAlgorithmInstance.toUpperCase())) {

14ErrorCollector.instance().addError(new ErrorDescription(ErrorType.

↪→ UnsafeAlgorithm, "MessageDigestSpec", "" +

15__LOC,"expecting one of {SHA-256, SHA-384, SHA-512} but found " +

↪→ currentAlgorithmInstance + "."));

16}

17}

18

19// Allow an invalid instatiation to occur, so long as it is followed by a valid one

20ere : (g3* g1 | g3* g2) (d2 | (update+ (d1 | d2 | d3)))+

Figure 5.9: Pattern for reducing false positives in algorithm instantiation

then actual use of an algorithm - as exemplified in MessageDigest’s getInstance(...) →
update(...) - static analysers might raise a warning just as it sees the instantiation of an
unsafe/invalid algorithm, even if a proper instatiation takes place afterwards. Since the
instantiation of the algorithm itself its not a problem; it is only when the method that
actually applies the instantiated algorithm is called that a warning should be raised.

Since this was common throughout many of the JCA classes (7 out of the 22 spec-
ifications we created), we developed a pattern that allowed us to properly address this
condition. Figure 5.9

False Negatives in CogniCrypt and CryptoGuard. CogniCrypt reported (a) four
false negatives related to the SmallCryptoAPIBench’s MessageDigest inter-procedural ex-
amples of SmallCryptoAPIBench that use algorithms that are not recommended anymore
(i.e., MD5 or SHA1) and (b) thirteen false negatives related to the use of predictable seeds
used for generating random numbers. These are the main sources of CogniCrypt false neg-
atives for the SmallCryptoAPIBench. Differently, the use of the type string in credentials
and predictable keys are the main source of false negatives for CogniCrypt. The use of
strings credentials is not recommended because strings are immutable values that reside
in the heap until garbage collection. This amplifies that attack surface.

52

1import java.security.MessageDigest;

2import java.security.NoSuchAlgorithmException;

3

4public class BrokenHashABPSCase1 {

5public static void main (String [] args) throws Exception {

6String name = "abcdef";

7int choice = 2;

8MessageDigest md = MessageDigest.getInstance("SHA1");

9if(choice>1)

10md = MessageDigest.getInstance("SHA-256"); @\label{ps-example-create-instance}@

11md.update(name.getBytes());

12System.out.println(md.digest());

13}

14}

Figure 5.10: Path sensitive example that leads to false positives in both CogniCrypt and
CryptoGuard

5.3.3 Comparison using ApacheCryptoAPIBench

In general, over-approximation by static analysis can lead to false positives, and low-
quality test suites in RV can lead to false negatives. Since we do not augment the test
suites in ApacheCryptoAPIBench, we expect that RVSec may not find as many warnings
as CogniCrypt and CryptoGuard. Our manual analysis in the ApacheCryptoAPIBench
results leads to some interesting findings. We discuss some of them here.

CryptoGuard reports a many more issues in Meecrowave than RVSec and CogniCrypt.
We manually inspected these warnings and found that raw24 out of 25 warnings that
CryptoGuard reports in Meecrowave are from one statement, shown in Figure 5.11. In
that statement, CryptoGuard reports a warning for each byte in the byte array parameter
of SecretKeySpec’s constructor. RVSec and CogniCrypt report just one warning for the
byte array. The reason for the warning form all three tools is that the byte array argument
is required to be generated using a random number generator. Failure to use a random
number generator allows reverse engineering attacks.

1private final SecretKeySpec key = new SecretKeySpec(new byte[]{

2(byte) 0x76, (byte) 0x6F, (byte) 0xBA, (byte) 0x39, (byte) 0x31,

3(byte) 0x2F, (byte) 0x0D, (byte) 0x4A, (byte) 0xA3, (byte) 0x90,

4(byte) 0x55, (byte) 0xFE, (byte) 0x55, (byte) 0x65, (byte) 0x61,

5(byte) 0x13, (byte) 0x34, (byte) 0x82, (byte) 0x12, (byte) 0x17,

6(byte) 0xAC, (byte) 0x77, (byte) 0x39, (byte) 0x19}, "DESede");

Figure 5.11: Code fragment for which CryptoGuard generates 24 warnings in Meecrowave

Other interesting cases appear in ActiveMQ Artemis, ManifoldCF, and Tika, for which
CogniCrypt generates a higher number of warnings. In ActiveMQ Artemis, we manually
confirmed that all tools found issues in the same regions of code, though CogniCrypt

53

generates more warnings than RVSec and CryptoGuard. An additional warning from
CogniCrypt relates to the use of the class SecretKeyFactory, for which we do not have
a corresponding RVSec specification. In ManifoldCF, CogniCrypt reports three warnings
related to the Cipher class that RVSec does not report due to a lack of test coverage.
Additionally, CogniCrypt also reports warnings related to the SecretKeyFactory class.
Finally, a manual analysis of Tika and ManifoldCF reveals that RVSec did not find any
misuse due to low test coverage. These findings about the impact of coverage on RV
validate our results on coverage and RV effectiveness in Section 5.2.6.

We explored the use of the Randoop [47] tool to generate tests for these two projects.
In the case of ManifoldCF, RVSec identified 14 warnings after enriching its test suite with
Randoop-generated test cases. Since the vulnerable Tika code using JCA primitives are
implemented in abstract Java classes, the test cases Randoop generate did not covers the
vulnerable code. As such, RVSec did not report any issue in Tika, even after generating
additional test cases using Randoop. These results using Randoop suggest that we can
reduce false negatives in RVSec using test case generator tools.

5.4 Discussion

5.4.1 Lessons Learned

In a previous work, Owolabi et al. explored the use of runtime verification for bug-
finding [48]. Their results suggest that runtime verification leads to a large number of
false positives, mainly due to the low quality of available abstract specifications. Here
we learned from evidence that, starting from a previously validated set of specifications
in CrySL, RVSec is effective to identify crypto API misuses with a high precision—97%
when considering the more realistic ApacheCryptoAPIBench. We also learned that whole
project code coverage is not a requirement for using RVSec to detect crypto API misuses.
Since the code using cryptographic primitives concentrates in a few classes, we can benefit
from (automatically) generating test cases for a relatively small subset of system’s com-
ponents. Even without enriching the test suite, RVSec missed only 12 crypto API misuses
from ApacheCryptoAPIBench (out of 51 misuses in total). This is a promising result, in
particular when we consider that existing research suggests that dynamic analysis might
generate many false negatives due to a possible lack of test cases. Our preliminary study
using Randoop to generate test cases for ApacheCryptoAPIBench seems also promising,
since we found a reduction in false negatives. In a future work, we want to explore
extensions to test cases generation tools that might benefit from RVSec specifications.

54

The costs of our approach

As has been discussed throughout the chapter, an outstanding concern of dynamic analysis
methods is the overhead that gets introduced into the process. However, other factors play
into the overall cost of the construction and evaluation of our tool. Here is a summary of
other factors we observed that also play into the costs of developing and executing RVSec:

• Developing specifications is hard. Even though we derived most of the knowl-
edge about the expected behaviour of the JCA classes from CrYSL CrySL, the task
of writing and valitaing specs if far from trivial. We had to perform extensive iter-
ation, manual inspection and testing to ensure our JavaMOP extension worked as
intened;

• Writing AspectJ code is also not an easy task. Not only does the language have
peculiar syntax and semantics, but it also lacks static analysis tools to assist in
their development. Furthermore, the error messages produced by its engine are not
always easy to interpret and correct. This slowed down the development of our
specs, and allowed some bugs to creep into them during the empirical assessment;

• rv-monitor’s internals presented challenges to our project. Alongside the afore-
mentioned environment sensitivity, we had to perform tweaks in its settings as the
number of events observed, and therefore monitors created, increase. We had to in-
crease the Java Virtual Machine stack size to accommodate for this. We also had to
remove one of the projects from ApacheCryptoAPIBench from our experiment, be-
cause the instrumented code would not finish its execution, even when left running
for over ten hours.

5.4.2 Threats to Validity

Our study only considers violations for the correct usage of the JCA library. Therefore, a
limitation of our work is that we did not explore whether or not RVSec would be effective
in detecting crypto API misuses of non-JCA libraries. Nonetheless, previous studies have
used RVSec (and in particular the JavaMOP implementation of RVSec) to find violations
in APIs that go beyond crypto libraries. For this reason, we believe that the approach we
detail here could also be used to check incorrect usage of crypto APIs other than JCA.

We use three distinct benchmarks in our research: MASCBench, SmallCryptoAPIBench,
and ApacheCryptoAPIBench. The programs in the first two benchmarks have been de-
signed with the sole goal of comparing static analysis tools that detect crypto API misuses.
We reused these benchmarks almost as is, even though we had to fix several bugs that do
not allow us to execute the programs—something necessary to explore the capabilities of

55

the RVSec approach. Although, these benchmarks are useful to understand the limits of
the tools on detecting crypto API misuses, we found several fictitious cases that would
hardly appear in real systems. We are still confident that MASCBench and SmallCryp-
toAPIBench are useful for better understand where the tools might fail, but we cannot
generalize the results related to these benchmarks for real systems.

Instead, ApacheCryptoAPIBench contains several crypto API misuses from real sys-
tems. These misuses violate recommendations from organizations such as National Insti-
tute of Standards and Technology (NIST), German Federal Office for Information Security
(BSI), and Open Web Application Security Project (OWASP). Although those violations
have also originated critical CVE/CWE security warnings, we did not investigate how
the developers of these systems perceive the warnings reported by RVSec, CogniCrypt,
and CryptoGuard. This is a limitation of our study, but we understand that this kind of
validation involves a different research that we plan to conduct in a near future.

We found some issues in the ground truth ofMASCBench andApacheCryptoAPIBench.
We decided to remove some program examples for MASCBench and keep its ground
truth definitions. Differently, we generated a new ground truth after manually checking
all warnings RVSec, CogniCrypt, and CryptoGuard report for ApacheCryptoAPIBench.
We believe that our ground truth for ApacheCryptoAPIBench is more reliable and al-
low a fair comparison between the RVSec, CogniCrypt, and CryptoGuard—which report
crypto API misuses using different granularity. We have already contacted the authors of
ApacheCryptoAPIBench explaining our concerns, and we will share all assets we develop
during our research for further validation.

56

Chapter 6

Concluding Remarks

Our primary motivation for this research is the fact that, not only are cryptographic
systems hard to engineer, but they are also hard to use properly [5], and yet they are
essential for data security and integrity. In a scenario where we expect an increasing
demand for software developers - coupled with increasing demands for security and privacy
- there is an increased likelihood that not all engineers are going to be educated on the
mathematical underpinnings and assumptions behind crypto APIs, therefore calling for
the need to provide tooling that supports them to secure data correctly.

Although we are proposing an alternative method to already effective static analysers
available in the literature, by no means are we proposing a replacement; instead, we are
looking to combining them, such that each approach compensates for defficiencies in the
other.

In this study, we leveraged the JavaMOP implementation, as well as CrySL’s validated
specification files to create our own specs, which we then used to check at runtime if the
APIs of the Java Cryptography Architecture were being used properly. Our tool used the
Maven build system to integrate with the projects’ test suites, and we streamlined the
process of using a JavaMOP agent to monitor target code.

The empirical assesment we conducted consisted of running CrySL, CryptoGuard,
and RVSec against benchmark test sets, as well real as in real projects, whilst measuring
both accuracy metrics and runtime costs. We also conducted correlation studies between
test coverage and number of monitors. Our results support RV as an effective tool for
crypto API misuse detection. Overall, RV displayed better accuracy than CrySL and
CryptoGuard: 8–16, 6–25, and 7-1 percentage points higher precision, recall, and F-
measure, respectively. The overhead we observed for the 10 open source projects we
monitored is between 9.9% and 54%.

57

6.1 Contributions

The following is a summary of the main contributions of our work:

• Development of abstractions that build upon the JavaMOP framework that allowed
us to express the expected behaviour of crypto APIs;

• Automation of the process of generating monitors and the JavaMOP agent;

• Seamless integration between Maven testing infrastructure and RVSec verification
runs;

• Translations of 22 CrySL specification files into our MOP context;

• Guidelines on how to express CrySL’s constructs in RVSec;

• Data that supports RVSec as a potentially useful tool for detecting misuse of JCA
classes;

• Discussions with the authors of the static analysers which resulted in the review
and improvement of ground truth data present in a benchmark test proposed by the
tool’s authors.

6.2 Limitations and Future Work

Since this was primarily an exploratory study of the implications of applying dynamic
analysis towards crypto API misuse detection, as we developed our prototype, we came
across a few potential useful consequences that may stem from it. Our empirical assess-
ment also exposed some flaws and limitations of our approach. In this section we mention
practical improvements that can applied to RVsec, as well as ideas that arose during its
construction.

Improvement of the Current Specs: Our empirical assessment exposed some flaws
in some of the 22 specs we developed. For example, our CipherInputStream spec had its
events referring to CipherOutputStream class instead. This prevented us from properly
capturing misuses of the former, in case they were present in the programs we tested.
Morevore, a careful inspection of the pattern outlined in figure 5.9 shows that, regardless
of an invalid algorithm being instatiated or not, our EREs are written in such a way that
we always reach the event where we capture an invalid instantation, due to a null check
that will always be matched in line 6 of figure 5.9, therefore increasing the path to be
traversed by at least one step every time. This is a one-line correction that can be applied
to all the specs in which the pattern was applied. One could also devote a more careful

58

examination to the problem of expressing the fact that a string has not been hardcoded
in RVSec, since this was a remarkable case where static analysers showed an advantage.

Translation of the entire set of CrySL specs: We only translated about half
of the specifications that CrySL provided for the JCA, therefore leaving a lot of them
out. As our empirical assessment showed, there was at least one class that was present
in the benchmark sets that was not present in RVSec. This caused a reduction in the
accuracy metrics of our tool. If we aim for a more thorough comparison between the two
approaches, it would be desirable to have a complete set of specification files in RVSec.
This can be accomplished in two ways:

• Reproducing the procedures and patterns we applied for the development of the 22
RVSec specs used in this research, and performing manual translations;

• Automating the translation from CrySL to RVSec. Though more laborious, this pro-
cess could yield several benefits. For instance, if we have an automatic translator,
one could translate several revisions of CrySL’s codebase, and make more trust-
worthy comparisons. Automation would also make it easier to update our specs as
CrySL’s ones change, or when new ones are added.

Enhancement of benchmark data: Our empirical assessment exposed flaws in the
benchmark test programs that we used. There were cases where the tests did not look
realistic, as well as cases where ground truth data was incorrectly labeled. Not only does
this present a threat to the validity of RVsec, but it also threatens the results of any tool
that is run using such benchmarks. We believe the reduction of bias during the creation
of the test cases is paramount, and believe automatic generation of test cases can assist
in this regard.

Application of Recent Advancements in RV: Recent evolution-aware techniques
proposed by Owalabi et al. were proposed that can reduce RV runtime overhead by an
average factor of 5 - and by 10 in the most favorable cases - when RV is utilized across
several stages of a project, e.g., during continuous integration or regression testing [43, 44].
Therefore, using evolution-aware RV to detect crypto API misuses as software evolves
could incur in even lower runtime overheads than the values shown in Table 5.6.

Real World Verification at Scale: As mentioned throughout the text, one of the
phases of our empirical assessment consisted in running RVSec successfully on 8 out of
10 Apache projects we selected , so as to assess runtime overhead. Extending this to a
larger scale, whilst also applying stricter procedures for measuring the overhead, as well as
collecting other metrics, such as memory consumption. Although we ran RVSec 10 times
for each project, we did so in a machine running several other background processes,
which could create noise in the measurements. Thus, extending the number of runs to a

59

larger number could reduce the variance observed, and give a better grasp of the actual
overhead.

Our results ultimately lead us to conclude our work with the belief that, since there
are cases where static analysers detect that RV does not, and vice-versa, combining both
approaches into a testing pipeline could yield a productive synergy, simultaneously creat-
ing the potential for preventing more bugs from reaching production, as well as providing
developers with greater knowledge about how crypto APIs should be used.

60

Reference

[1] Lazar, David, Haogang Chen, Xi Wang, and Nickolai Zeldovich: Why does cryp-
tographic software fail? a case study and open problems. In Proceedings of 5th
Asia-Pacific Workshop on Systems, APSys ’14, New York, NY, USA, 2014. Asso-
ciation for Computing Machinery, ISBN 9781450330244. https://doi.org/10.1145/
2637166.2637237. 1

[2] Chatzikonstantinou, Alexia, Christoforos Ntantogian, Georgios Karopoulos, and
Christos Xenakis: Evaluation of cryptography usage in android applications. In
Proceedings of the 9th EAI International Conference on Bio-Inspired Information
and Communications Technologies (Formerly BIONETICS), BICT’15, page 83–90,
Brussels, BEL, 2016. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ISBN 9781631901003. https://doi.org/10.

4108/eai.3-12-2015.2262471. 1

[3] Egele, Manuel, David Brumley, Yanick Fratantonio, and Christopher Kruegel: An
empirical study of cryptographic misuse in android applications. In Proceedings of the
2013 ACM SIGSAC Conference on Computer amp; Communications Security, CCS
’13, page 73–84, New York, NY, USA, 2013. Association for Computing Machinery,
ISBN 9781450324779. https://doi.org/10.1145/2508859.2516693. 1

[4] Ferguson, Niels, Bruce Schneier, and Tadayoshi Kohno: Cryptography Engineer-
ing: Design Principles and Practical Applications. Wiley Publishing, 2010,
ISBN 0470474246. 1

[5] Schneier, Bruce: Cryptography is harder than it looks. IEEE Security Privacy,
14(1):87–88, 2016. 1, 8, 57

[6] Nadi, Sarah, Stefan Krüger, Mira Mezini, and Eric Bodden: "jumping through hoops":
Why do java developers struggle with cryptography apis? In 2016 IEEE/ACM 38th
International Conference on Software Engineering (ICSE), pages 935–946, 2016. 1

[7] Acar, Yasemin, Michael Backes, Sascha Fahl, Simson Garfinkel, Doowon Kim,
Michelle L. Mazurek, and Christian Stransky: Comparing the usability of crypto-
graphic apis. In 2017 IEEE Symposium on Security and Privacy (SP), pages 154–171,
2017. 1

[8] Fischer, Felix, Konstantin Böttinger, Huang Xiao, Christian Stransky, Yasemin Acar,
Michael Backes, and Sascha Fahl: Stack overflow considered harmful? the impact of
copy amp;paste on android application security. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 121–136, 2017. 1

61

https://doi.org/10.1145/2637166.2637237
https://doi.org/10.1145/2637166.2637237
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.4108/eai.3-12-2015.2262471
https://doi.org/10.1145/2508859.2516693

[9] Kruger, S., J. Spath, K. Ali, E. Bodden, and M. Mezini: Crysl: An extensible approach
to validating the correct usage of cryptographic apis. IEEE Transactions on Software
Engineering, 47(11):2382–2400, nov 2021, ISSN 1939-3520. 1, 2, 3, 4, 5, 7, 9, 10, 20,
21, 38

[10] Rahaman, Sazzadur, Ya Xiao, Ke Tian, Fahad Shaon, Murat Kantarcioglu, and
Danfeng Yao: CHIRON: deployment-quality detection of java cryptographic vulnera-
bilities. CoRR, abs/1806.06881, 2018. http://arxiv.org/abs/1806.06881. 1, 2, 5,
10, 11, 12, 18, 38

[11] Chen, Feng and Grigore Roşu: Towards monitoring-oriented programming: A
paradigm combining specification and implementation. Electronic Notes in The-
oretical Computer Science, 89(2):108–127, 2003, ISSN 1571-0661. https://www.

sciencedirect.com/science/article/pii/S1571066104810454, RV ’2003, Run-time
Verification (Satellite Workshop of CAV ’03). 2, 15, 16, 17, 18, 19

[12] Luo, Qingzhou, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Serbanuta, and Grigore Rosu: Rv-monitor: Efficient parametric
runtime verification with simultaneous properties. In Proceedings of the 14th Inter-
national Conference on Runtime Verification (RV’14), volume 8734 of LNCS, pages
285–300. Springer, September 2014. 2, 19

[13] Jin, Dongyun, Patrick O’Neil Meredith, Choonghwan Lee, and Grigore Roşu: Java-
mop: Efficient parametric runtime monitoring framework. In 2012 34th International
Conference on Software Engineering (ICSE), pages 1427–1430, 2012. 2, 13, 18, 19,
25

[14] Chess, B. and G. McGraw: Static analysis for security. IEEE Security Privacy,
2(6):76–79, 2004. 2, 5, 6

[15] Chen, Feng and Grigore Roşu: Java-mop: A monitoring oriented programming en-
vironment for java. In Halbwachs, Nicolas and Lenore D. Zuck (editors): Tools and
Algorithms for the Construction and Analysis of Systems, pages 546–550, Berlin,
Heidelberg, 2005. Springer Berlin Heidelberg, ISBN 978-3-540-31980-1. 4, 5

[16] Meredith, Patrick and Grigore Roşu: Runtime verification with the rv system. Volume
6418, pages 136–152, January 1970. 5

[17] Marcilio, Diego, Rodrigo Bonifácio, Eduardo Monteiro, Edna Canedo, Welder Luz,
and Gustavo Pinto: Are static analysis violations really fixed? a closer look at realistic
usage of sonarqube. In 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC), pages 209–219, 2019. 6

[18] Nielson, Flemming, Hanne R. Nielson, and Chris Hankin: Principles of Program
Analysis. Springer Publishing Company, Incorporated, 2010, ISBN 3642084745. 6,
7, 17

[19] Aho, Alfred V., Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman: Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing
Co., Inc., USA, 2006, ISBN 0321486811. 7

62

http://arxiv.org/abs/1806.06881
https://www.sciencedirect.com/science/article/pii/S1571066104810454
https://www.sciencedirect.com/science/article/pii/S1571066104810454

[20] Rival, Xavier and Kwangkeun Yi: Introduction to static analysis: an abstract inter-
pretation perspective. Mit Press, 2020. 7

[21] Weiser, Mark: Program slicing. IEEE Transactions on Software Engineering, SE-
10(4):352–357, 1984. 10

[22] Landi, William: Undecidability of static analysis. ACM Lett. Program. Lang. Syst.,
1(4):323–337, dec 1992, ISSN 1057-4514. https://doi.org/10.1145/161494.161501.
11

[23] Meredith, Patrick and Grigore Roşu: Runtime verification with the rv system. Volume
6418, pages 136–152, January 1970. 13

[24] Havelund, Klaus, Grigore Rosu, and Daniel Clancy: Java pathexplorer: A runtime
verification tool. In International Space Conference, 2001. 14, 19

[25] Barnett, Mike and Wolfram Schulte: Spying on components: A runtime verification
technique. In Workshop on Specification and Verification of Component-Based Sys-
tems. Citeseer, 2001. 14, 19

[26] Barnett, Mike and Wolfram Schulte: Runtime verification of. net contracts. Journal
of Systems and Software, 65(3):199–208, 2003. 14, 19

[27] Kiczales, Gregor, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean Marc Loingtier, and John Irwin: Aspect-oriented programming. In European
conference on object-oriented programming, pages 220–242. Springer, 1997. 14, 15,
16

[28] Laddad, Ramnivas: AspectJ in Action: Practical Aspect-Oriented Programming.
Manning, July 2003. ISBN-10: 1930110936 ISBN-13: 978-1930110939. 15

[29] Meredith, Patrick O’Neil: Efficient, expressive, and effective runtime verification.
University of Illinois at Urbana-Champaign, 2012. 16

[30] Chen, Feng and Grigore Roşu: Mop: An efficient and generic runtime verification
framework. SIGPLAN Not., 42(10):569–588, oct 2007, ISSN 0362-1340. https://

doi.org/10.1145/1297105.1297069. 16, 17, 18, 19

[31] Meredith, Patrick O’Neil, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore
Roşu: An overview of the MOP runtime verification framework. International Journal
on Software Techniques for Technology Transfer, 14(3):249–289, June 2011. 17

[32] Fox, A. and D.A. Patterson: Engineering Software as a Service: An Agile Approach
Using Cloud Computing. Strawberry Canyon LLC, 2013, ISBN 9780984881246.
https://books.google.com.au/books?id=3kqjmwEACAAJ. 21

[33] Brooks, Frederick P.: The Mythical Man-Month: Essays on Softw. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 1978, ISBN 0201006502. 28

[34] Ami, Amit Seal, Nathan Cooper, Kaushal Kafle, Kevin Moran, Denys Poshyvanyk,
and Adwait Nadkarni: Why Crypto-detectors Fail: A Systematic Evaluation of Cryp-
tographic Misuse Detection Techniques. pages 397–414, 2022. 35

63

https://doi.org/10.1145/161494.161501
https://doi.org/10.1145/1297105.1297069
https://doi.org/10.1145/1297105.1297069
https://books.google.com.au/books?id=3kqjmwEACAAJ

[35] Afrose, Sharmin, Ya Xiao, Sazzadur Rahaman, Barton P. Miller, and Danfeng Yao:
Evaluation of static vulnerability detection tools with java cryptographic API bench-
marks. CoRR, abs/2112.04037, 2021. https://arxiv.org/abs/2112.04037. 35, 40,
42, 45

[36] Kahneman, D., O. Sibony, and C.R. Sunstein: Noise: A Flaw in Human Judgment.
Little, Brown, 2021, ISBN 9780316451383. https://books.google.com.au/books?

id=g2MBEAAAQBAJ. 37

[37] Kahneman, D.: Thinking, Fast and Slow. Farrar, Straus and Giroux, 2011,
ISBN 9781429969352. https://books.google.com.au/books?id=ZuKTvERuPG8C. 37

[38] Spearman, Charles: The proof and measurement of association between two things.
1961. 39

[39] Zhang, Ying, Ya Xiao, Md Mahir Asef Kabir, Yao Danfeng, and Na Meng: Example-
based vulnerability detection and repair in java code. pages to–appear, 2022. 42,
45

[40] Jin, Dongyun, Patrick O’Neil Meredith, and Grigore Roşu: Scalable parametric run-
time monitoring. Technical report, UIUC, 2012. 45

[41] Meredith, Patrick and Grigore Roşu: Efficient parametric runtime verification with
deterministic string rewriting. pages 70–80, 2013. 45

[42] Luo, Qingzhou, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Mered-
ith, Traian Florin Serbanuta, and Grigore Roşu: Rv-monitor: Efficient parametric
runtime verification with simultaneous properties. pages 285–300, 2014. 45

[43] Legunsen, O., Y. Zhang, M. Hadzi-Tanovic, G. Roşu, and D. Marinov: Techniques
for evolution-aware runtime verification. pages 300–311, 2019. 46, 59

[44] Legunsen, O., D. Marinov, and G. Roşu: Evolution-aware monitoring-oriented pro-
gramming. pages 615–618, 2015. 46, 59

[45] Arzt, Steven, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick D. McDaniel: Flow-
droid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps. In O’Boyle, Michael F. P. and Keshav Pingali (editors): ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, Edinburgh, United Kingdom - June 09 - 11, 2014, pages 259–269. ACM, 2014.
https://doi.org/10.1145/2594291.2594299. 50

[46] Use of hard-coded credentials. Available from MITRE, CWE-ID CWE-798. https:

//cwe.mitre.org/data/definitions/798.html, visited on 2022-04-23. 51

[47] Pacheco, Carlos, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball: Feedback-
directed random test generation. In ICSE 2007, Proceedings of the 29th International
Conference on Software Engineering, pages 75–84, Minneapolis, MN, USA, May 2007.
54

64

https://arxiv.org/abs/2112.04037
https://books.google.com.au/books?id=g2MBEAAAQBAJ
https://books.google.com.au/books?id=g2MBEAAAQBAJ
https://books.google.com.au/books?id=ZuKTvERuPG8C
https://doi.org/10.1145/2594291.2594299
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/798.html

[48] Legunsen, Owolabi, Wajih Ul Hassan, Xinyue Xu, Grigore Roşu, and Darko Marinov:
How good are the specs? A study of the bug-finding effectiveness of existing Java API
specifications. pages 602–613, 2016. 54

65

	Resumo
	Abstract
	Introduction
	Research hypotheses
	Research objectives
	Research Method

	Background and Related Work
	Current State of the Art for Detecting API Misuse
	Static Analysis Overview
	Static Detection of Crypto API Misuses

	Limitations of Static Analysis

	Scalable Runtime Verification
	A Dynamic Analysis Approach
	Aspect Oriented Programming
	Monitoring-Oriented Programming

	Runtime Verification
	JavaMOP: Scalable RV in Practice
	Concluding Remarks

	Research Outline and Method
	Test-Driven Translation of Specifications From CRySL to JavaMOP
	Translating CrySL Specifications into JavaMOP

	Architecture Overview

	Empirical Assessment
	Evaluation of Empirical Data
	Experiment Outline
	Experiment Objectives and Research Questions
	Study Setting
	Experiment Procedure
	RQ1: Accuracy
	RQ2: RV Overhead
	RQ3: Correlation of Coverage with RV Accuracy

	Qualitative Analysis
	False Negatives in MASCBench
	Analyzing SmallCryptoAPIBench results
	Comparison using ApacheCryptoAPIBench

	Discussion
	Lessons Learned
	Threats to Validity

	Concluding Remarks
	Contributions
	Limitations and Future Work

	Reference

