
University of Brasília
Institute of Exact Sciences

Department of Computer Science

A Multi-agent Architecture Applying Trust and
Reputation Over Unknown Partners for Live Video

Distributed Transcoding in Open Environments

Charles Antônio Nascimento Costa

Thesis presented in partial fulfillment of the requirements for the degree of
Master of Science in Informatics

Supervisor
Prof. Dr. Célia Ghedini Ralha

Brasília
2022

University of Brasília
Institute of Exact Sciences

Department of Computer Science

A Multi-agent Architecture Applying Trust and
Reputation Over Unknown Partners for Live Video

Distributed Transcoding in Open Environments

Charles Antônio Nascimento Costa

Thesis presented in partial fulfillment of the requirements for the degree of
Master of Science in Informatics

Prof. Dr. Célia Ghedini Ralha (Supervisor)
CIC/UnB

Prof. Dr. Jaime Simão Sichman Prof. Dr. Mylène C. Q. Farias
Poli/USP CIC/UnB

Prof. Dr. Ricardo Pezzuol Jacobi
Coordinator do Post Graduation Program in Informatics

Brasília, February 16, 2022

Dedication

I dedicate this thesis to my wife Elaine and my daughters Érica and Helena.

iii

Acknowledgements

I thank my family for the support, encouragement, and unconditional love throughout
my life, particularly during the time I was dedicated to this work.

I would also like to thank my co-workers in The Chamber of Deputies, who never
refused to help me when I needed it.

In particular, I thank Prof. Dr. Célia Ghedini Ralha, who believed in me and accepted
me as a master’s student, even though being 14 years apart from the university. I am also
grateful for her availability and dedication with which she always attends to her advisees,
even during weekends, holidays, and the troubled times we are experiencing.

I thank the University of Brasília, this special place, which will always be part of my
life.

iv

Resumo expandido

Projetistas de sistemas tem sido confrontados com aplicações e sistemas do mundo
real que são inerentemente distribuídas e abertas. Um sistema inerentemente aberto é
um no qual é impossível estabelecer controle global ou, também dizendo, aquele no qual
uma única entidade não é capaz de possuir uma descrição completa do estado do sistema.
Sistemas que atendem a essa descrição são complexos, e projetá-los é desafiante. Uma
forma de lidar com esses desafios é abordar o problema como o projeto de um sistema
multiagente. Um agente é um sistema computadorizado dotado de autonomia para agir
em nome de seu proprietário. Um sistema multiagente é uma sociedade de agentes que
interagem sob determinadas regras para alcançar metas comuns ou individuais. Um exem-
plo de problema complexo que poderia se beneficiar de uma abordagem multiagente é a
distribuição de vídeo através da Internet.

Uma das razões para o crescimento rápido do consumo de dados na Internet é a
crescente demanda por conteúdo em vídeo. Entre os provedores de streaming de vídeo
ao vivo, a técnica Streaming de Vídeo Adaptativo (Adaptive Bitrate Streaming - ABR)
se tornou o padrão de fato da indústria. ABR é uma forma conveniente de distribuir
vídeo pela Internet para muitos usuários simultaneamente. Para descrever a técnica ABR
brevemente, um streaming de vídeo é divido em segmentos que são transcodificados em
diferentes taxas de bits, assim os usuários podem se adaptar, consumindo a representação
que melhor se conforma com a sua largura de banda. Os recursos computacionais que a
transcodificação demanda não são negligenciáveis. De fato, a transcodificação de vídeo
representa custos relevantes para os provedores de vídeo ao vivo.

A bufferização empregada pelos players de vídeo compatíveis com a ABR é uma ca-
racterística chave para determinar a previsibilidade das requisições de segmento de vídeo.
Experimentos indicam que a audiência de vídeos pela Internet prefere representações com
altas taxas de bits, sendo que constantes interrupções prejudicam a qualidade da expe-
riência. Uma função de utilidade básica de uma sessão de vídeo pode ser definida como
a razão entre a taxa de bits média, contrabalançada pela suavidade da reprodução. Su-
avidade da reprodução é a razão entre o tempo gasto esperando o buffer de vídeo ser

v

preenchido e o tempo total de exibição.
Em uma arquitetura baseada em nuvem, a periferia onde ficam os dispositivos dos

usuários finais é chamada de Borda (Edge) ou Neblina (Fog). Desta forma, tirar vantagem
desses recursos que estão geograficamente distribuídos é referenciado como Computação
na Neblina (Fog-Edge Computing - FEC). O ambiente da FEC é definido como um com-
plemento da núvem que emprega dispositivos na borda da rede para melhorar a qualidade
de serviço através de um contínuo. Como um complemento da infraestrutura da Internet,
o FEC herda algumas de suas características. O FEC tem muitos recursos computaci-
onais ociosos, que estariam, teoricamente, disponíveis para serem utilizados entregando
uma baixa latência. Usar esses dispositivos do FEC pode ser útil para a transcodificação
distribuída de vídeo ao vivo. No entanto, a colaboração com dispositivos desconhecidos
pode ser arriscada, pois não estão sob controle dos provedores ou dos usuários. Já que
alguns dos nós do FEC tem autonomia deliberativa visando melhorar seu desempenho,
nós podemos descrevê-los como agentes.

Uma sociedade composta de entidades autônomas, como um sistema multiagente,
leva a possibilidade de uma parte destas entidades serem egoístas. Em outras palavras, é
necessário saber em quem confiar. A aplicação de modelos de confiança e reputação é uma
característica chave quando queremos lidar com o risco de delegar tarefas em ambientes
abertos e semi-competitivos, tal como o FEC.

Para enfrentar a incerteza de colaborar com dispositivos no FEC, um agente racional
A, antes de delegar uma tarefa da qual seu bem-estar depende para um agente B, precisa
de alguma forma calcular a probabilidade de B completar a tarefa satisfatoriamente. Esta
probabilidade representa o quanto o agente A avalia que B é digno de confiança quanto
a tarefa em questão. De qualquer forma, um agente talvez não seja capaz de avaliar
a confiabilidade de uma contraparte se eles nunca se encontraram antes. Uma solução
recorrente para a falta de informação advinda de interação direta é perguntar a outros
sobre a opinião que eles têm de um possível parceiro. A ponderação da confiança que
uma comunidade deposita em um agente é chamada de reputação. Na literatura, há
vários modelos de interação entre agentes baseados em confiança e reputação (Trust and
Reputation Models - T&RM). Um dos aspectos que diferencia esses modelos são as fontes
de informação que eles podem utilizar como insumo. No entanto, todos eles consideram
a interação direta e/ou a opinião de testemunhas em seus cálculos.

Os algoritmos chamados de Multi-Armed Bandits (MAB) são aplicados quando um
agente precisa escolher entre alternativas incertas. Agentes não sabem a priori qual é a
distribuição de recompensas das escolhas postas à sua frente, mas têm certa confiança que
existem escolhas melhores que outras. Os algoritmos MAB possuem duas fases, a fase
de exploração e a fase de aproveitamento. Na fase de exploração são feitas escolhas para

vi

tentar estimar a distribuição de recompensas de cada uma das opções testadas. Depois
disso, o agente pode utilizar o conhecimento que adquiriu para escolher a melhor opção
dentre as que passou a conhecer na fase de aproveitamento. Ao passar para a fase de
aproveitamento, não queremos dizer que o agente sabe de forma incontestável qual é a
melhor opção, já que a distribuição de recompensas verdadeira é ainda desconhecida e
pode haver uma opção melhor dentre as que não foram escolhidas. Muitos algoritmos
implementam diferentes estratégias para balancear exploração e aproveitamento. Para
exemplificar, citamos e-Greedy, e-First, e-Decreasing e a família de algoritmos chamada
Limites de Confiança Elevados (Upper Confidence Bounds - UCB).

Foram selecionados alguns trabalhos prévios que abordaram o problema de habilitar
a transcodificação de vídeo ao vivo para dispositivos heterogêneos em ambientes distri-
buídos. Cada trabalho empregou um método específico, onde os autores validaram as
abordagens em cenários distintos dificultando a comparação de desempenho dos mes-
mos. Assim, as soluções propostas foram analisadas procurando brechas onde modelos
de confiança e reputação pudessem ser aplicados para trazer vantagens, tanto para os
provedores quanto para os usuários finais. Destaca-se que os trabalhos pesquisados na
literatura falham ao abordar ambientes abertos. No entanto, o problema da colaboração
com agentes potencialmente maliciosos é proeminente quando se pretende empregar os
dispositivos do usuário final. Seria interessante que as tarefas de transcodificação fossem
designadas aos nós de forma dinâmica de acordo com o desempenho observado a cada
turno de execução. Neste caso, o uso de uma métrica de confiança e reputação que repre-
sente uma avaliação geral da contribuição para a utilidade dos visualizadores, não apenas
incluindo a estabilidade do nó, mas a competência em desempenhar a tarefa designada
seria útil. Assim, uma proposta mais adequada ao problema poderia abordar três frentes:
definir uma arquitetura baseada em agentes autônomos, capacitar a arquitetura a selecio-
nar os nós apropriados para fazer a transcodificação em ambiente aberto e, ainda, avaliar
a credibilidade de testemunhas evitando a influência de agentes não-confiáveis.

Como solução para o problema descrito, foram analisados os requisitos do sistema
multiagente com a metodologia Tropos. Tropos é uma metodologia de desenvolvimento de
software para programação orientada a agentes. Essa metodologia permite a representação
de estados mentais como metas e qualidades. O aspecto que mais diferencia a metodologia
Tropos de outras metodologias de desenvolvimento de software é a natureza centrada
em agentes. A metodologia Tropos guia o desenvolvimento de soluções orientadas a
agentes através de um conjunto de fases, pelas quais o desenvolvedor gradativamente vai
refinando a representação do sistema. Da análise com a metodologia Tropos surgiu a
proposta de uma arquitetura para transcodificação distribuída composto de agentes que
desempenham três papéis: o Corretor (Broker), o Proxy do visualizador (Viewer’s proxy)

vii

e o Transcodificador (Transcoder). O Proxy do visualizador é o papel para os agentes que
representam a audiência do stream de vídeo ao vivo. Esse papel é destinado aos agentes
que requerem ao Corretor a adaptação do stream em ABR e interage com ele para avaliar
o desempenho dos transcodificadores. O Transcodificador é o papel a ser desempenhado
pelos agentes interessados em receber tarefas de transcodificação e serem recompensados
por elas. A responsabilidade dos corretores é gerenciar a associação entre os proxies dos
visualizadores e os transcodificadores para o benefício de ambos.

Pensando sobre o trabalho que os corretores desempenham no modelo proposto, em
certo ponto eles irão formar um conjunto de transcodificadores dentre os quais alguns
são bem conhecidos, enquanto outros não terão sido testados. Então, corretores devem
balancear suas estratégias entre aproveitar os mais bem conhecidos ou explorar os desco-
nhecidos para aprender sobre o desempenho deles. Aprender sobre os transcodificadores
disponíveis, nós queremos dizer que os corretores devem formar uma crença sobre o quão
bom transcodificador é um nó específico, com a ajuda da avaliação de um determinado
grupo de visualizadores. Esta crença externa (relação não reflexiva) é uma medida da
reputação do transcodificador na comunicade de visualizadores. Para o corretor, a repu-
tação de uma transcodificador é representado por um par de valores: a confiabilidade do
transcodificador e uma medida da confiança que se tem no primeiro valor, a credibilidade
da confiança.

Para que o corretor tenha a capacidade de selecionar os nós de acordo com as regras
estabelecidas foi introduzido o algoritmo ReNoS - Reputation Node Selection. O algo-
ritmo foi projetado para balancear exploração e aproveitamento de forma que o nó mais
confiável não seja sobrecarregado. Quando um novo transcodificador é registrado, recebe
uma avaliação de confiança acima do limiar de cooperação e um pouco abaixo da maior
avaliação possível, assim aumentando as chances de ser selecionado na próxima iteração.
Um problema detectado com o uso do ReNoS é que ele requer que o valor de confiança
inicial seja alto. Isto significa que, para usar o algoritmo, o agente que usa a confiança
deve acreditar que um nó novo e desconhecido é tão bom quanto um muito conhecido e
bem avaliado. De outra forma, a exploração não irá funcionar adequadamente. Esta polí-
tica é semelhante a utilizada no algoritmo UCB1, onde as opções menos selecionadas até
o momento são aquelas com as maiores chances de serem selecionadas no próximo turno.
Para contornar esse problema, foi elaborada uma nova versão do algoritmo denominado
ReNoS-II. O ReNoS-II é baseado na ideia do algoritmo conhecido como Thompson Sam-
pling. Quando um novo transcodificador se registra recebe um valor de reputação com
baixa confiança e credibilidade. Desta forma, a expectativa para a curva de desempenho
é achatada e larga, semelhante a uma distribuição uniforme. Mas a medida que o trans-
codificador é testado e mais conhecimento se acumula sobre ele a credibilidade cresce e a

viii

curva se estreita em torno do valor da confiança.
Para validação da arquitetura proposta foi realizado um experimento com o objetivo

de verificar se a abordagem trata adequadamente o problema da transcodificação distri-
buída com nós do FEC. Foi utilizado um protótipo implementado seguindo estritamente
as diretrizes da arquitetura, capaz de desempenhar as tarefas necessárias para distribuir a
transcodificação em tempo real. Validar o modelo proposto que combina MAB e T&RM
para selecionar nós no FEC envolve identificar as condições nas quais as características do
ambiente FEC poderiam prejudicar as garantias dos algoritmos MAB. Uma dessas condi-
ções é quando os agentes não são verdadeiros em seus relatórios. Já que transcodificadores
estão interessados em receber o maior número de tarefas de transcodificação possível, os
nós não-confiáveis podem formar uma coalisão com visualizadores para tentar manipular
as escolhas do corretor. Desta forma, o experimento inclui dois cenários distintos. No Ce-
nário 01, o objetivo é obter uma linha base de comparação onde os agentes envolvidos não
recusam interações sendo sempre verdadeiros nas trocas de informação. No cenário 02, o
objetivo é observar o que acontece quando um transcodificador tenta manipular a trans-
codificação distribuída com ataques de relatórios falsos. Nesse experimento, a métrica
utilizada para comparação foi o valor da recompensa acumulada pelo corretor ao longo
de uma sessão de transcodificação. O experimento revelou que quando o algoritmo UCB1
foi empregado houve um decréscimo significativo do Cenário 01 para o Cenário 02. No
entanto, não foi observado o mesmo decréscimo quando os algoritmos empregados foram
ReNoS e ReNoS-II associados ao modelo FIRE. UCB1 e ReNoS produziram resultados
semelhantes em termos de recompensa acumulada. Por outro lado, os resultados obtidos
com o algoritmo ReNoS-II foram significativamente maiores do que os obtidos com UCB1
e ReNoS nos dois cenários, apesar da variância ter sido maior.

Pelos resultados dos experimentos realizados, conclui-se que o modelo proposto com-
binando MAB e T&RM para selecionar nós no FEC é promissor para aplicação no mundo
real. Os resultados experimentais do algoritmo ReNoS se apresenta tão performativo
quanto UCB1. O algoritmo ReNoS-II apresenta um desempenho melhor que o ReNos e
UCB1 nos dois cenários testados. Enfim, os experimentos mostraram que ponderando e
filtrando informação dos relatórios baseando-se na credibilidade das testemunhas é possí-
vel proteger o sistema de transcodificação distribuída no FEC de agentes não-confiáveis,
evitando danos causados pela formação de coalisões.

Palavras-chave: Sistemas multiagentes, transcodificação distribuída, modelos de confi-
ança e reputação

ix

Abstract

Adaptive Bitrate Streaming (ABR) is a popular technique for providing video media
over the Internet. In ABR, the streaming provider splits the video stream into small seg-
ments then transcodes them in many different bitrates. So, players can adapt to unstable
network parameters minimizing interruptions on playback. However, the computational
cost of transcoding a video in many formats can limit its application on live video stream-
ing. Besides, the network overhead of transmitting simultaneously many versions of the
same content is a problem. Offloading the transcoding burden to the edge of the net-
work, near the end-users, should alleviate the data traffic burden on the backbone while
diluting the computational cost. Users and providers of live video could benefit from a
joint scheme that allowed end-user devices to do the transcoding with tolerable latency
and delay. We applied Tropos, the agent-oriented software development methodology,
to analyze the described scenario and design a multi-agent architecture to deal with the
problem of distributed transcoding on Fog-Edge Computing (FEC). The presented ar-
chitecture consists of three well-defined roles. The transcoder role is intended for those
agents on FEC interested in receiving transcoding tasks. The viewer proxy role should
be performed by those software agents who will act for the sake of the viewers. The
broker role is performed by the agents who will coordinate the tasks for the benefit of
the other two. Since FEC is an open environment, distributing transcoding tasks over
unknown partners is risky. One of the threats is the risk of untrustworthy partners try-
ing to manipulate the broker by sending it fake information. Literature refers to this
kind of manipulation as fake feedback attacks. In this master thesis, we propose combing
reward evaluation functions that account for Quality of Service (QoS) with Trust and
Reputation Models (TRM) and Multi-armed bandits algorithms (MAB). We present two
algorithms, Reputation-based Node Selection (ReNoS) and ReNoS-II, designed to on-
line select the best edge nodes to perform the transcoding tasks. We experimented with
ReNoS, ReNoS-II, and the other three selecting algorithms in two scenarios to compare
them regarding accumulated reward, exploration of available partners, and vulnerability
to fake feedback attacks. The outcomes indicate that our proposal can afford rewards gain
keeping good QoS as perceived by viewers, besides offering protection against fake feed-

x

back attacks delivered by untrustworthy transcoders and viewers. Our main contribution
is a multi-agent architecture that combines the robustness of T&RM and stochastic MAB
algorithms to mitigate the risk of fake feedback attacks, which enabled the employment of
unknown partners in open environments. This achievement is in the interest of distributed
transcoding applications since it mitigates the risk of employing end-user devices.

Keywords: Multi-agent systems, distributed transcoding, trust and reputation models

xi

Contents

1 Introduction 1
1.1 Problem and Hypothesis . 3
1.2 Objectives . 5
1.3 Thesis organization . 5

2 Background 6
2.1 Multi-agent overview . 6

2.1.1 Types of interaction . 8
2.1.2 Tropos methodology . 9

2.2 Trust and reputation models . 11
2.2.1 Marsh . 12
2.2.2 Sporas . 13
2.2.3 FIRE . 14

2.3 Fake feedback . 17
2.4 Multi-armed bandits algorithms . 18

2.4.1 ε-Greedy . 18
2.4.2 ε-First . 19
2.4.3 ε-Decreasing . 19
2.4.4 UCB family and UCB1 . 20
2.4.5 Other MAB policy classes . 20
2.4.6 MAB and T&RM . 20

2.5 Fog-edge computing environment . 21
2.6 Adaptive bitrate streaming . 23
2.7 Statistical evaluation . 24

3 Related work 26
3.1 End-assisted approaches . 27
3.2 Edge-assisted approaches . 29
3.3 Final Considerations . 32

xii

4 Multi-agent architecture 35
4.1 Requirements . 35

4.1.1 Early requirements . 36
4.1.2 Late requirements . 37
4.1.3 Architectural design . 37
4.1.4 Capabilities . 38

4.2 Architecture . 40
4.2.1 FEC network architecture . 41
4.2.2 Agent roles architecture . 41

4.3 Communication and interaction protocols . 44
4.3.1 Transcoding phase . 47
4.3.2 Negotiation phase . 47

4.4 Model design . 50
4.4.1 Contract conditions . 50
4.4.2 Performance measures . 51
4.4.3 Ratings normalization . 54

4.5 T&R for transcoder selection . 54

5 Experimental validation 59
5.1 Simulation prototype . 60
5.2 Experimental setup . 61
5.3 Measurements . 63
5.4 Outcomes . 65
5.5 Discussion . 65

5.5.1 Analysing ReNoS-II . 70
5.5.2 Considerations about the exploration factor 71

5.6 Final considerations . 72

6 Conclusion 73
6.1 Publications . 74
6.2 Future work . 75

References 76

xiii

List of Figures

1.1 The related concepts in this work. 4

2.1 Example of a Tropos diagram. 10
2.2 Components of a tropos diagram. 10
2.3 The FEC layer architecture [1]. 22
2.4 ABR components in live video broadcast. Adapted from [2]. 23
2.5 Distributed transcoding through FEC layers. 24

3.1 Storm-based video transcoding topology [3]. 27
3.2 Fog based transcoding framework [4]. 28
3.3 System model showing stream flow in the Fog [5]. 29
3.4 Caching and transcoding in middle-edge [6]. 30
3.5 Transcoding in vehicular Fog Computing [7]. 31
3.6 DRL, Actor-critic, cloud and edge nodes interaction [8]. 32
3.7 DRL, Actor-critic,cloud and edge nodes interaction [9]. 33

4.1 The streaming environment early requirements. 36
4.2 The streaming environment late requirements. 37
4.3 The DTS architectural design. 38
4.4 The agent-based architecture with the FEC layers. 41
4.5 The detailed Broker’s layered architecture. 42
4.6 The detailed Transcoder’s layered architecture. 43
4.7 The detailed Viewer Proxy’s layered architecture. 44
4.8 Roles interaction overview. 46
4.9 The UML sequence diagram representing agents’ interaction. 48
4.10 Sequence diagram of negotiation phase. 50
4.11 Accumulated PA value for different β values. 53
4.12 Proposed model for transcoders performance based on reputation. 55
4.13 Schematizing conventional MAB and T&R with MAB algorithms. 56

5.1 The simulation prototype class diagram. 61

xiv

5.2 QQ-Plot of outcomes over algorithms and scenarios. 67
5.3 Broker’s cumulative reward overlaid by exploration factor. 68
5.4 Transcoding assignments over algorithms and Scenarios 1 and 2. 70
5.5 Evolution of trust and reliability over time with ReNoS-II. 71

xv

List of Tables

3.1 Related work comparison overview. 34

4.1 List of agents’ capabilities. 39
4.2 Broker role – mapping layers and capabilities. 43
4.3 Transcoder role – mapping layers and capabilities. 43
4.4 Viewer Proxy role – mapping layers and capabilities. 44
4.5 A sample of messages exchanged among agents. 45
4.6 Summary of notations. 51

5.1 Transcoder profiles. 61
5.2 General experimental parameters. 63
5.3 Example of a viewer’s proxy believes’ database. 64
5.4 Experimental outcomes over algorithm and scenario. 66
5.5 Results of K-S test for normality in data from Table 5.4. 66
5.6 Confidence interval for cumulative reward in Table 5.4. 66
5.7 Cumulative reward comparison using t-Test at 95% confidence. 68

xvi

Acronyms

ABR Adaptive Bitrate Streaming.

ACM Association for Computing Machinery.

AIR Antenna Integrated Radios.

CDN Content Delivery Networks.

CGC Complementary Geometric Programming.

CLD Crowdsourced Live Delivery.

CR Certified reputation.

DRL Deep-reinforcement Learning.

DTS Distributed Transcoding System.

FEC Fog-Edge Computing.

FIPA Foundation for Intelligent Physical Agents.

HLS HTTP Live Streaming.

IEEE Institute of Electrical and Electronics Engineers.

IR Interaction Trust.

iStar Intentional Strategic Actor Relationships Modelling.

JADE Java Agent Development Framework.

K-S Kolmogorov-Smirnov.

MAB Multi-armed Bandits.

xvii

MAS Multi-agent System.

MEC Mobile Edge Computing.

QoE Quality of Experience.

QoS Quality of Service.

ReNoS Reputation-base Node Selection.

ReNoS-II Reputation-base Node Selection II.

RSU Road-side Units.

RT Role-based Trust.

S-W Shapiro-Wilk.

T&RM Trust and Reputation Models.

UCB Upper-confidence Bounds.

UML Unified Modeling Language.

WAN Wide Area Networks.

WR Witness Reputation.

xviii

Chapter 1

Introduction

System designers have faced some real-world applications and systems that are in-
herently distributed and open. An inherently distributed system is one in which it is
impossible to establish a global control or that a simple entity would not pursue full
knowledge of the current application status. Open systems are those where participants
can leave at any moment, and new participants, often unknown, can enter or be created
during normal execution. Such systems are complex and challenging to designers. A
way to cope with them is the Multi-agent System (MAS) approach, formed with software
agents endowed with autonomy to act on behalf of its owner. A MAS is a society of agents
which interact upon specific rules to achieve common or individual goals [10]. Among the
advantages attributed to MAS are the following: addressing problems too large to a sin-
gle entity, providing solutions where expertise is distributed, and providing solutions to
inherently distributed problems. Classically, some applications that present those char-
acteristics are decision support systems, networked and distributed control systems, and
air traffic control [11].

We argue that providing video over the Internet is one of those complex problems,
with technical and human importance. According to [12], one of the reasons for the fast-
growing Internet data consumption is the rising demand for video content. The report
forecasts that video content will correspond to 80% of all Internet data traffic by 2022. It
is also notable that live video streaming is gaining momentum, and the prediction is that
live video content over the Internet claims a bandwidth slice from 5% in 2017 to 15% in
2022.

Adaptive Bitrate Streaming (ABR) is a popular technique for providing video media
over the Internet. In ABR, the streaming provider splits the video stream into small seg-
ments then transcodes them in many different bitrates. So, players can adapt to unstable
network parameters minimizing interruptions on playback. However, the computational
cost of transcoding a video in many formats can limit its application on live video stream-

1

ing. Besides, the network overhead of transmitting simultaneously many versions of the
same content is a problem. Offloading the transcoding burden to the network edge can
deal with these issues.

The appeal of ABR is that experiences in subjective video quality evaluation indicate
that Quality of Experience (QoE) is better as higher is the bitrate [13], being much
penalized for interruptions [14]. ABR uses HTTP as a transport protocol to facilitate
its implementation and adoption [15]. Today, most providers have adopted it due to
its advantages. The ABR can be applied to live video distribution but yet should be
expected a delay of some seconds. In summary, ABR has become the de facto industry
pattern among the live video streaming providers. The most used implementation of
this technique is the HTTP Live Streaming (HLS) introduced by Apple INC., and then
standardized as MPEG-DASH [16].

As said, the computational resources that transcoding demand is not negligible. In-
deed, it represents relevant costs for live video providers. Despite pre-stored video trans-
coding could be postulated, for popular live video providers, to transcode every live chan-
nel is resource-consuming. The work of [17] describes two strategies used by Twitch to
select the transcoder channel to deal with the trade-off between Quality of Service (QoS)
and computational resource consumption.

Many works have tried to transfer ABR functionalities from the cloud to the periphery
of the network, seeking out improving the QoS while alleviating providers from the cost
of renting expensive cloud servers. We have identified the following motivations for this
movement: to reduce the cost of transcoding many video streams at once [3]; to alleviate
the data traffic burden off from the network core and reduce latency to end-users [6,
7, 9]; to take advantage of end-user devices’ idle resources [4, 5], and profiling end-user
preferences to offer personalized QoS [8].

In a cloud-based architecture, the periphery where end-user devices lay is called the
Edge or Fog. Taking advantage of those geographically distributed resources is referred to
as Fog-Edge Computing (FEC). Indeed, the FEC has plenty of unused computational re-
sources that might be theoretically available at a small network latency. Agents with goals
to delegate tasks to nodes in the FEC can use Multi-armed Bandits (MAB) algorithms
for selecting the partners. MAB is a simple but powerful machine learning framework for
making decisions constrained in time under uncertainty as in the FEC environment [18].

Using FEC devices can be helpful for live video transcoding. However, collaborating
with unknown devices can be risky since these devices are neither in control of providers
nor viewers. Considering a population where self-interested agents exist, the delegator
node is vulnerable to some attacks, such as fake feedback and unfair rating [19]. Un-
truthful nodes might join others to increase their evaluation artificially while decreasing

2

others. Maybe due to the probability of the delegates trying to manipulate the delegators,
approaches to distributed transcoding are not open to every available node on FEC [6, 7],
or does not consider potentially harmful behavior from partners [4, 5]. In this context, a
MAS approach must evaluate the risk of cooperation before delegating tasks to partners.
In other words, it should know whom to trust. Because of this necessity, Trust and Rep-
utation Models (T&RM) have been frequently considered in the multi-agent design, not
only for guiding cooperation but also for partnership, argumentation, negotiation, and
recommendation [20].

The work of [21] draws an analogy between reputation systems and MAB policies,
comparing some MAB algorithms from the perspective of fake feedback manipulation.
The results show that policies are easy to trick. Fortunately, evaluating witness credibility
can mitigate the harmful effects of those practices. As presented in [22], applying T&RM
is a vital issue when coping with the risk of delegating tasks in open and semi-competitive
environments as the FEC.

Thus, in this master’s thesis, we use T&RM to cope adequately with fake feedback
that should be harmful to MAB algorithms that assume options’ payoffs are stochastic.
An example of T&RM adequate to deal with the problem is the FIRE model [23]. We also
propose to employ separation of responsibilities in a multi-agent architecture to maximize
exploration opportunities.

1.1 Problem and Hypothesis

Figure 1.1 illustrates how the concepts presented inter-link to shape our problem
domain. The FEC environment is open, dynamic, and has plenty of unused computa-
tional resources. ABR depends on transcoding, which is resource-demanding. Offloading
the transcoding burden to the FEC nodes seems a good alternative for coping with the
problems that live video streaming in ABR faces in the cloud. However, distributed
transcoding of live video streaming is geographically distributed, has narrow temporal
requirements, and involves many functions and roles. A system to deal with this set of
constraints might be complex. Designing such a system would be a more treatable task
if approached as a MAS design problem. Since FEC is open, collaborating with possibly
self-interested agents might be risky. Since FEC is open, collaborating with possibly self-
interested agents might be risky. An example of harmful behavior is when untrustworthy
agents form a coalition to manipulate others by providing fake feedback. Fortunately, a
MAS can employ T&R models for safer interactions. MAB algorithms are based on a
metaphor that relates well to agents’ task of exploring and learning about partners and

3

choosing under uncertainties. However, FEC is a dynamic environment, and agents should
watch for not relying on only a partner, even if it is the best partner at the moment.

Figure 1.1: The related concepts in this work.

Applying FEC servers worldwide is known to be costly. Viewers engaged in Crowd-
sourced Live Delivery (CLD) networks frequently have control of devices powerful enough
to perform transcoding in the edge [4, 24]. However, approaches to distributed video
transcoding on the FEC do not consider the risk of delegating tasks to unknown devices
or are not open, which restrains an ample usage of available FEC resources. Consider-
ing the conducted literature review, we understand that this still is a good problem that
demands further investigation.

We hypothesize that a multi-agent architecture for live video distributed transcod-
ing that applies a T&RM in open environments with unknown partners would improve
partners’ selection making better use of available resources.

4

1.2 Objectives

Considering the cited problem and hypothesis, the main objective of this work is to
propose a multi-agent architecture that combines the robustness of T&RM and stochastic
MAB algorithms to mitigate the risk of fake feedback attacks in open environments. The
context of this proposal is the efficient use of computational resources of edge devices for
offering real-time video transcoding. We cite as secondary objectives:

• Define the roles, goals, actions, and performance measures for the agents that will
compose the architecture.

• Propose an algorithm to combine T&RM and MAB for distributing live-video
transcoding tasks to FEC nodes in a balanced way.

• Validate the proposed architecture, indicating its’ feasibility for live-video distrib-
uted transcoding in open environments.

1.3 Thesis organization

We organized the rest of this document as follows:

• Chapter 2 describes the background concepts upon which we built our proposal;

• Chapter 3 brings selected related work that approached the distributed transcoding
problem;

• Chapter 4 details the proposed multi-agent architecture;

• Chapter 5 presents the experiments to validate the architecture, as well the analyses
of the outcomes; and

• Chapter 6 presents conclusion with the publications and future work.

5

Chapter 2

Background

In this chapter, the main concepts related to the problem and the proposed multi-agent
architecture are briefly presented.

2.1 Multi-agent overview

For [25], an agent is an entity that can perceive the environment state and act accord-
ingly to modify that state through actuators. Notwithstanding, for [26] an agent is an
autonomous entity that functions in the environment inhabited by other agents and pro-
cesses, where an overview of the environment probably will reveal a multitude of entities.
In its turn, [10] defines a MAS as a system compounded of multiple elements capable of
autonomous action. Autonomy is the ability to decide by itself what to do to achieve an
objective.

A society of autonomous entities brings the probability of a portion of them being self-
interested. An agent is self-interested if it selects its actions strategically by the way to
obtain the best outcome for itself, do not taking into consideration the necessities of other
agents unless it will be beneficial for itself [10]. Commonly, the presence of self-interested
agents classify an environment as competitive or semi-competitive, or both, when cooper-
ative and competitive behavior coexist [27]. Nevertheless, being self-interested is different
from being malicious, when agents purposely take actions harmful to other agents.

Since agents act in the environment where there are inserted, we have to characterize
it during the agent project design. An environment classification based on dichotomies
are elicited by [25]:

• Single-agent vs. multi-agent: as seen by [26], single agent environment should be
rare in the real world, but it is a useful concept for non-competitive game theory.

6

• Deterministic vs. stochastic: in deterministic environments, given a state, actions
always have only one possible outcome. There is no uncertainty associated with an
action result. Otherwise, it is said non-deterministic.

• Static vs. dynamic: an environment is static if it does not change beyond agents
acting. If it changes while agents are deliberating, then it is dynamic.

• Discrete vs. continuous: this dichotomy refers to the representation of the environ-
ment state. If an agent can always describe the environment with a set of discrete or
categorical values, then the environment is discrete. Otherwise, it is continuous. For
example, an agent can perceive time as a sequence of discrete episodes or represent
it as the number of milliseconds since the system is running.

• Episodic vs. non-episodic: episodic environments are those in which interaction
is divided into atomic episodes, and what an agent does in one episode does not
influence agent performance in other ones. Otherwise, agent performance is linked
to past episodes that is why they are sometimes related as historical.

• Fully Observable vs. partially observable: if the agent can access the whole set of
variables that describe the environment state, then the environment is fully observ-
able. However, if variables are sometimes not accessible or information is outdated,
then the environment is partially observable.

Additionally, we have to distinguish between open and closed distributed systems.
In this work, we consider that a multi-agent environment is open if the agents act on
behalf of distinct owners and come from different sources. A popular open multi-agent
environment is the Internet.

A rational agent is an agent that evaluates the possible actions and then selects the
one that results in the best outcomes. Two important processes for rational agents are
deliberation and means-end reasoning. Deliberation refers to the process of choosing what
goals an agent wants to achieve, while means-end reasoning is the process of figuring out
how to achieve those selected goals [28]. Considering non-deterministic environments, the
agent chooses the ones that result in the best-expected outcome. The manner agents
embody rationality, among others, is classified by [10] as reactive, symbolic reasoning, or
hybrid, as follows:

• Rational agents can use symbolic logic to decide what to do. Symbolic means that
perceptions must be transducted into symbols, which are predicates of the agent’s
logical system. Those predicates will give form to the agent’s beliefs database. Based
on its database and a set of transformation rules, the agent can reason about what
action to do. However, there are some disadvantages. The agent’s logical system,

7

despite the sound and complete properties, might not be decidable. If decidable,
calculations may take so long that the environment can change, and hence the agent
selected an inappropriate action based upon deprecated information.

• Reactive agents are those who directly map actions to perceptions without explic-
itly reasoning about probability distributions over states, characterized by a tight
sensor-action loop. A manner to implement reactive agents is using a look-up ta-
ble. Its decision cycle is often on the order of milliseconds or faster, but a complex
environment should require a long list of associations on the table.

• Hybrid agents combine symbolic reasoning and reactive attempting to benefit from
both. A usual approach is to set up reactive rules linked to survival behavior in
higher priority and symbolic reasoning for performance-related behaviors.

2.1.1 Types of interaction

Agents must communicate if they should solve problems in a distributed manner.
Interaction protocols organize agent communication, so messages exchange be efficient
and coherent without violating agent autonomy. According to [28], some relevant aspects
that interaction protocols should consider, among others, are: determining shared goals
and common tasks, avoiding unnecessary conflicts, and pooling knowledge and evidence.

In [29], types of interaction are classified accordingly with the goals, resources, skills,
and situations. The introduction elicits the following classes of interaction: communi-
cation, coordination, planning, collaboration, cooperation, competition, and negotiation.
Communication is when agents merely pass messages to each other. When the objective of
message exchanges is managing the inter-dependency among tasks, then the interaction is
coordination. When the goal is arranging actions into sequences, the type of interaction is
planning. Collaboration is when agents communicate to enable each other to achieve their
individual goals. When agents communicate to achieve a common goal, the interaction
type is cooperation. If agents are antagonists and compete for resources, the interaction is
competition. Finally, when they communicate to reach agreements on matters of mutual
interest, then the interaction type is negotiation. As we can see, this classification clarifies
that many types of interaction can occur among the same group of agents. For example,
a planning interaction might lead to consequent negotiation or competition.

According to [28], in environments with a multitude of agents, actions needed to be co-
ordinated. Coordination is necessary since no agent has sufficient competence, resources,
or information to achieve the global objectives of the system. The decomposition and
distribution of tasks is a basic approach to coordinating a group of agents. Smaller tasks
require less powerful agents and consume fewer resources. Task decomposition can be

8

inherent to the system, guaranteed by design, or agents can perform the decomposition
executing a plan of actions. According to the author, once tasks are decomposed, the
distribution has to consider the following constraints:

• Do not overload critical resources.

• Tasks must be assigned to agents with matching capabilities.

• Only an agent with a wide view should assign tasks to other agents.

• Assign overlapping responsibilities to agents to achieve coherence.

• Highly interdependent tasks should be assigned to agents in spatial or semantic
proximity.

• Reassign tasks if necessary for completing urgent tasks.

In our proposal, interaction occurs in two distinct moments to each pair of agents.
An overseeing agent selects candidate partners that are adequate to receive a task; they
negotiate the conditions under which the work should be done and, then, after agreeing,
they cooperate to achieve the common goal of transcoding a live streaming event.

2.1.2 Tropos methodology

Tropos is a software development methodology for agent-oriented programming, which
allows the explicit representation of mentalistic notions as goals and qualities. The two
aspects that differentiate it from other software development methodologies are the early
requirements analysis and the agent-centric nature, which are present in all software
development phases [30]. The Tropos methodology guides the development of agent-
oriented solutions through a set of phases, through which the developer gradually refines
the representation of the system. In the initial phases, Tropos represents the agent model
in diagrams, as the one illustrated in Figure 2.1. Figure 2.2 presents some of the visual
components used in Figure 2.1.

The visual language is based on i* framework1. The diagrams’ visual components
represent actors, agents, roles, objectives, tasks, plans, and resources [32]. This work uses
Tropos concepts that we must define.

For the Tropos methodology, an Actor is an entity that pursuit intentionality. The
actor is a general concept from which roles and agents are specialized. Diagrams illustrate
actors by circles. By its turn, an agent is a physical manifestation of an actor, i.e., an
agent is an actor identified by a proper name. The agent graphical representation is a

1Intentional Strategic Actor Relationships Modelling (iStar) [31].

9

Figure 2.1: Example of a Tropos diagram.

circle with a straight line in its superior basis, indicating an intelligent agent. A role is
an abstraction that encapsulates some behaviors and intentions that actors can fulfill. In
diagrams, roles are circles with a curved line in its inferior part, representing an actor
with some kind of specialization in the environment in which it is included.

We also have to differentiate between hard-goals and soft-goals. A hard-goal is an
actor’s strategic goal with clear satisfiability criteria. A soft-goal is related to agents’
welfare expectations, which means how an actor desires some interest should be complete.
In the diagrams, the ellipses graphically represent the hard-goals, while elements similar
to clouds represent the soft-goals.

Figure 2.2: Components of a tropos diagram.

A capability is the ability to choose and execute a plan to fulfill a goal, constrained by
the environment status and the occurrence of specific events [30]. In diagrams, capabilities,
plans, and individual tasks are represented by the visual component task. The resource
represents a physical or informational entity that an actor or agent needs to execute a task.
Resources can be generated or used by the components involved in the tasks that enable
the agent to achieve its goals. The diagrams present tasks as hexagons and resources as
rectangles.

10

Generally, these elements relate by themselves through inter-connections. Each con-
nection represents the relationship level between two visual components, as presented in
Figure 2.1. When a AND association links two elements to a goal, the agent must execute
both before achieving the goal. Distinctly, when this is an OR type association, executing
any of the elements is enough to achieve the goal. A qualification serves to connect the
soft-goals to the elements that they qualify, like in Figure 2.1 where a qualification says
that good understanding helps the actor Student to use a modeling tool. Graphically, a
T-form arrowhead indicates the refinement AND. A solid arrowhead directed to the origin
represents a refinement OR. A traced line represents a qualification [31].

As presented in [30], the Tropos methodology specifies five main development phases
to encompass the whole software design process:

• In the early requirement phase, the system as-is is analyzed and then decomposed
into social actors along with their intentions and relations.

• In the late requirements phase, a new actor is introduced to represent the system
to be modeled.

• The objective of the architectural design phase is to produce the system specifi-
cation in terms of a detailed architecture of interconnected subsystems and data
repositories. In this phase, the system introduced in the late requirements phase is
divided into new actors representing the software agent subsystems.

• The detailed design defines the plans of actions that each agent should be able
to execute to achieve their goals. The objective is to list and specify the agents’
capabilities.

• The implementation phase is when the software agents are constructed in a specific
computational platform.

2.2 Trust and reputation models

To face the uncertainty involved in collaboration throughout FEC, a rational agent
A, before delegating a task, which its welfare depends on, to an agent B, must somehow
compute the probability of B completing the task successfully. This probability means
how much agent A trusts B relative to the delegated task’s completion. Nevertheless,
an agent may not be able to evaluate the trustworthiness of a counterpart if they have
never met. A recurrent solution to the lack of direct interaction is to ask others about
the opinion they have of the possible partner concerning the coted task. A weighting of

11

the trust that a node receives from a collective is called reputation. These definitions of
T&R are in line with the ideas presented in [33].

The base of reputation calculations is averaging the opinion of third parties that
had directly interacted with someone. However, for many factors, those witness reports
might be inaccurate. According to [34], agents tend to be self-interested inside an open
environment. Because of this, many T&RM have mechanisms to evaluate witnesses’
credibility and use this evaluation to weigh the received reports.

Bringing up the distributed transcoding problem domain, an agent that frequently fails
to complete the delegated tasks, and does not contribute to improving the delegator’s
perceived QoS should receive a low trust value. Since viewers of live video streaming
could obtain the stream directly from the stream provider at the cloud, there is no sense
to select a poor transcoder in the FEC. In this scenario, we should adopt the decision-
making process proposed by [35]. Hence, the delegator should remove the nodes not
capable of keeping themselves above a trust threshold from the pool of possible partners.
The same must occur when witness credibility decreases below a credibility threshold.

There are many models of interaction based on T&R in the literature, like Marsh [35],
REGRET [36], Sporas [37], and FIRE [23]. One of the aspects where those models differ
is information sources. All consider the direct and indirect interaction on its calculations,
but FIRE introduces certified reputation. Gathering reputation from witnesses implies
communication costs since agents must explore the social graph to acquaint the existing
evaluations. If available, an evaluation rating certified by a trusted authority can be
acquired by only one interaction.

Authors in [38, 39, 40] compared T&RM and proposed a meta-model that allows
reasoning about the parameters of the models at run time. Considering the heterogeneity
of the devices in the FEC, a rational agent could reason at the meta-level to adjust
requirements for limited resources like storage, network, and energy. But these aspects
are left as future work in this research.

2.2.1 Marsh

The Marsh model defined in [35] is a numerical T&RM that uses only the concept of
direct trust, i.e., it considers only interactions between the trustor and the trustee. The
Marsh model defines the concept of situational trust, which represents the willingness that
an agent has to delegate a task to another agent, the trustee, regarding a specific situation.
Its main objective is to aid the trustor to decide delegate or not the achievement of one
of its goals to another agent based on past interactions. In the Mash model, calculations
take Equation 2.1.

12

Tx(y, α)t = Ux(α)t · Ix(α)t · T̂x(y)t (2.1)

For explaining Equation 2.1, let us say that exists a specific situation α that interests
the agent. The value Ux(α)t represents the utility that the agent will receive if the situation
α is achieved. The value Ix(α)t is the importance of the situation α to the wellbeing of
the agent. The value Tx(y)t represents the result of the past interactions with the agent
y. The author in [35] suggests that the agent can approach the result of past interactions
in three moods, which are optimistic, pessimistic, or realistic. If the agent is pessimistic,
it will consider only the worst results. If the agent is optimistic, it will consider only the
best result. Otherwise, the realistic agent will consider the averaging of all past results.
The trust value obtained by Equation 2.1 is relative to a specific moment in time, which
is the meaning of the modifier t that accompanies all factors in the equation.

With the trust value obtained from Equation 2.1 in hand, the agent will confront
it with a cooperation threshold. The cooperation threshold must consider the risk that
represents the non-achievement of situation α to the agent and the cost of cooperating
with others. The agent will only delegate the task of achieving α to another agent if the
trust in that agent surpasses the cooperation threshold.

Since we assume that collusion between self-interested agents is a possibility in open
environments, we do not recommend using the Marsh model in this situation. For sup-
porting this, we argue that considering just direct interaction does not protect the trustor
when partners decide to manipulate it.

2.2.2 Sporas

The Sporas presented in [37] is a model designed for sparsely linked societies. Agents in
society send their ratings to a central evaluator agent that aggregates them in reputation
values. The model does not predict direct interactions between the evaluator and the other
agents. Thus, it does not produce trust values, only reputation values. Another limitation
is that an agent only interacts with one agent per time. If two agents interacted more than
once in their lives, the evaluator only considers the last sent rating. This characteristic can
be limiting depending on how an application deals with the time dimension. For example,
probably, a streaming provider is frequently interacting with many users at once. In this
scenario, it should be hard to manipulate the time dimension in a way that interaction
always involves only two agents.

The evaluator calculates the reputation values using the recursive Equation 2.2. The
notation Rn is the reputation calculated in the nth interaction. The Θ is the number of
interactions considered. The function Φ is a decaying function presented in Equation 2.4.

13

The Rother
i factor is the reputation of the agent that sent the rating Wi. The reputation

value range is between zero and D ([0, D]). Authors in [37] suggest a D value of 3.000,
although rating range is between 0.1 (terrible) and 1 (perfect). Thus, Equation 2.3 is
necessary due to the range adjustment between reputation and rating values. Initial
reputation value is zero, so an agent that switches its identity does not gain anything.

Ri = Ri−1 + 1
Θ · Φ(Ri−1) ·Rother

i · (Wi − Ei) (2.2)

Ei = Ri−1/D (2.3)

The parameter θ is the acceleration factor of the decaying function presented in Equa-
tion 2.4. As smaller is the adopted value for θ, more abrupt is the decaying of Φ.

Φ(Ri−1) = 1− 1
1 + e−

Ri−1−D
θ

(2.4)

The Sporas model also provides a reliability value that measures how confident is
the evaluator about the produced reputation values. It is called the Reliability Devia-
tion (RD). The RD value is given by Equation 2.5, which gives us the minimum of the
quadratic difference using recursion, as Equation 2.2. In Equation 2.5, RD2

n is the relia-
bility deviation value in the nth interaction, λ is the forgetting factor (range in [0, 1]), and
TO is the number of effective observations.

RD2
i = bλ ·RD2

i−1 + (Rother
i (Wi − Ei))2c/T0 (2.5)

2.2.3 FIRE

The FIRE T&R model presented in [23] can use several sources of information to calcu-
late the trustworthiness and reputation of a party. The FIRE model use four components
for trust calculation: Interaction Trust (IR), Witness Reputation (WR), Role-based Trust
(RT), and Certified reputation (CR). IR resulted from direct interaction, also known as
direct trust. WR is a weighting of trust evaluations provided by third parties. In its turn,
RT is the trust based on role-based relationships between agents, e.g., agents owned by
the same proprietary. CR is evaluations made by an authority and provided by target
agents as proof of past good performance. Among those presented in this work, the FIRE
model is the more adequate. Differently of Marsh model, it can use many information
sources, not only direct interaction. It also allows agents to interact with more than one
partner at once, which is an advantage when comparing it with the Sporas model.

In the FIRE model, trust evaluations are calculated by Equation 2.6, where:

14

• k is one of the components for trust calculation;

• Tk(a, b, c) is the trust that agent a has of agent b in relation to subject c;

• Rk(a, b, c) is the set of all ratings collected;

• ωk(ri) is the relative weight of rating ri and vi is the value of the rating.

Tk(a, b, c) =
∑
ri∈Rk(a,b,c) ωk(ri) ∗ vi∑
ri∈Rk(a,b,c) ωk(ri)

(2.6)

A different weighting function is defined for every information source. The weighting
function for IR is defined in Equation 2.7 and represents the degradation of the rating
reliability over time.

ωIR(ri) = e−
∆t
λ (2.7)

Before calculating the weighting function of the WR component, witnesses’ credibility
must be evaluated. It was proposed in [34] to compare witness’ ratings with those directly
obtained, and then the deltas were applied to the FIRE model to derive a credibility factor.
Assuming that an agent a wants to evaluate the credibility of a witness w and IR ratings
are available, the Equation 2.8 is applied, where vk is the value by the witness and va

by direct interaction. If the difference between the values is higher than an inaccuracy
threshold i, the witness is penalized with the lowest possible value (−1).

vw =
{

1− |vk − va|, if |vk − va| < i

−1, if |vk − va| ≥ i
(2.8)

The second step is to apply Equation 2.6 as if calculating the IR component. If direct
interaction values were not available, a default credibility rate is assigned to every witness.
Equation 2.9 demonstrates this reasoning, where TDWC is the default credibility value.

Twc(a, w) =
{
TIR(a, w, cWC), if RIR(a, w, cWC) 6= 0
TDWC , otherwise

(2.9)

Finally, Equation 2.10 is the weighting function for the WR component. It takes
weights calculated with Equation 2.7 since rating reliability decays with time, but it is
multiplied by the credibility factor. If Twc for a witness is less than zero, it means that
the witness is not trustful at all, so its reports should not be taken into account.

15

ωWR(ri) =
{

0, if Twc(a, w) ≤ 0
Twc(a, w) ∗ ωIR(ri), otherwise

(2.10)

Untruthful delegate nodes might plot with each other to artificially increase its eval-
uation and decrease the others. As advocated in [34], evaluating witness credibility can
mitigate the harmful effects of those practices, or, at least, it would take more time until
a delegator node was tricked into trusting an untrustworthy partner.

Another measure that the FIRE model provides which is of our interest is the reli-
ability of the reputation value. While trust and reputation can represent the expected
performance of an agent in a specific task, the reliability value tells how likely it is that
the agent delivers as expected. Using the FIRE model, we can obtain the reliability of
our reputation values by executing two steps. The first step is calculating the rating
reliability with Equation 2.11, the second one is calculating the deviation reliability with
Equation 2.12.

Rating reliability calculated with Equation 2.11 represents how reliable is the set of
ratings Rk. Since the weighting function represents the reliability of one rating consid-
ering time decay, the sum of all weightings gives us an idea of the reliability of the set,
considering the set length and the recency of the elements in the set. Intuitively, as greater
is the sum of the weights, as closer one gets the rating reliability. The factor γk is an
adjustment for the curve slope since every component has a different weighting function.

ρRK (a, b, c) = 1− e−γk·(
∑

ri∈Rk(a,b,c) ωk(ri)) (2.11)

Equation 2.12 measures the dispersal of the rating set around the trust value Tk with
the relevance adjusted to each correspondent weight. The idea is that as larger is the
deviation from the trust values, as volatile is the agent, thus, less reliable it is.

ρDK (a, b, c) = 1− 1
2 ·

∑
ri∈Rk(a,b,c) ωk(ri) · |vi − Tk(a, b, c)|∑

ri∈Rk(a,b,c) ωk(ri)
(2.12)

Finally, the reliability of the trust value Tk concerning the component k is the combi-
nation of both the rating and deviation reliability given by Equation 2.13.

ρK(a, b, c) = ρRK (a, b, c) · ρDK (a, b, c) (2.13)

An overall trust evaluation is calculated using Equation 2.14, which is a combination of
all components of the FIRE model. In that, k varies in the set of all existing components
(C = {IR,WR,RT,CR}), and ωk is the combination of the component coeficient Wk

16

with its reliabity (ωk(a, b, c) = Wk · ρk(a,b,c)). Likewise, FIRE model provides the overall
reliability of T (a, b, c) by applying Equation 2.15.

T (a, b, c) =
∑
k∈C ωk(a, b, c) · Tk(a, b, c)∑

k∈C ωk(a, b, c)
(2.14)

ρT (a, b, c) =
∑
k∈C ωk(a, b, c)∑

k∈CWk

(2.15)

2.3 Fake feedback

In this work, fake feedback is defined as the deliberate act of providing unrealistic
feedback ratings about an entity or service to misguide others’ evaluations and manipu-
late their choices. We distinguish between fake feedback and inaccurate report. There
would be many reasons for a witness providing inaccurate reports, like environmental
factors, temporary or not, or even differences in the agents’ mental state, like unmatch-
ing evaluation scales. At this point, we focused on harming a trust model or system
intentionally.

The work on [41] presents a historical about fake feedback attack generations to the
trust system of the Chinese e-commerce platform Taobao. In that work, we noted the
importance of user plotting to achieve success in the task of manipulating sellers’ ratings.
In that case, a T&R model was proposed to deal with the fake feedback problem in the
platform. The work indicates that fake feedback is a problem for many online, open, and
dynamic environments.

Following [19], T&RM are essential to collaboration where parts may not have prior
knowledge about each other. However, T&RM are not free from manipulative attacks.
The introduction in that work lists some kinds of attacks from which T&RM are vulnera-
ble, like discrimination, self-promoting, white-washing, and fake feedback, among others.
Fortunately, there are strategies that T&RM can apply to mitigate the risk these threats
bring to users. One example of such strategies is evaluating the witnesses’ credibility
before accepting the feedback [42, 43, 23]. In the works of [44] and [45], authors deal with
the problem of fake feedback attacks to the cloud environment proposing domain-specific
T&RM.

According to the cited works, the fake feedback problem would be mitigated in systems,
platforms, online, open and dynamic environments with T&RM strategies. Thus, in this
research, we adopt this understanding.

17

2.4 Multi-armed bandits algorithms

MAB algorithms are applied when an agent has to choose among uncertain alterna-
tives. Agents do not know the options reward distribution but have some confidence that
there are choices better than others. The uniform exploration phase tries randomly for
a certain number of times to estimate the reward distribution of every tried option [18].
Afterward, agents can use the built knowledge to choose the better option among the tried
ones in the exploitation phase. Exploitation does not mean that the agent undoubtedly
identified the better option since the actual reward distributions are unknown and might
be an optimal choice different from the one taken.

The difference between the option taken and the optimal one is called regret. With
limited time to play, there is the necessity to balance between the exploration and the
exploitation phases to maximize the cumulative reward or minimize the regret. According
to [18], µ(a) is the mean of the rewards obtained from the arm a ∈ A, A the set of all
available arms. Exists an a∗ for which µ(a∗) ≥ maxa∈A(µ(a)), and for simplicity, we call
µ(a∗) µ∗. Considering that there were T rounds, and at is the option selected at the round
t ≥ T , the regret at the round T is defined by Equation 2.16.

R(T) = µ∗ · T −
T∑
t=1

µ(at) (2.16)

Many algorithms implement different strategies to balance exploration and exploita-
tion phases. To exemplify, we can cite: ε-Greedy, ε-First, ε-Decreasing, and the Upper-
confidence Bounds (UCB) family.

2.4.1 ε-Greedy

The ε-Greedy algorithm uses a constant ε in the range [0,1], which is the probability
of using exploration. At each round, there is a probability of ε that the player will choose
an option by chance, and a probability of 1− ε that it will make the greedy decision, i.e.,
choose the option with the highest average reward [46]. Choosing an adequate value for
ε is left to the user. Algorithm 1 describes the pseudocode for ε-Greedy.

Algorithm 1 ε-Greedy algorithm
1: procedure ε-Greedy(ε, arms)
2: p ← Random()
3: if ε > p then
4: Select random([arm ∈ arms])
5: else
6: Select argmax([reward(arm) ∈ arms])

18

2.4.2 ε-First

The ε-First is similar to ε-Greedy with a constant ε to determine the exploration round
proportion, but the whole exploration is taken in the beginning to estimate the reward
distribution first. After that, the agent will always choose the option with the highest
reward estimated. It assumes there is a fixed number of rounds available, a maximum
number of turns, which is referred to as the Horizon (H) [46]. The number of exploration
plays at the beginning is H · ε, and the number of exploitation plays at the ending is
H · (1− ε). When the maximum number of plays is unknown, the user should repeat the
phases to keep the proportion between phases coherent with the chosen ε. In those cases,
the user should pick a discretionary H, and then split the run into episodes of H plays
each. Algorithm 2 presents the pseudocode for ε-First.

Algorithm 2 ε-First algorithm
1: procedure ε-First(ε, arms, round,H)
2: if mod(round,H) < (ε ·H) then
3: Select random([arm ∈ arms])
4: else
5: Select argmax([reward(arm) ∈ arms])

2.4.3 ε-Decreasing

The ε-Decreasing is similar to ε-Greedy, as it uses an ε which represents the probability
of exploring in each round. The difference is since the algorithm starts with a value for ε
and, as the run is played, the ε value is decreasing to the point when choosing the highest
reward options is very likely [46]. Thus, besides having to select an appropriate value
for ε, the user should select a function upon which the ε value will decrease. Authors
in [46] point that this algorithm belongs to the zero-regret class as the expected regret
tends to zero as time goes by. Algorithm 3 shows the pseudocode for ε-Decreasing, where
parameter function must be a decreasing function which domain is [0, 1].

Algorithm 3 ε-Decreasing algorithm
1: procedure ε-Decreasing(ε, arms, round, function)
2: p ← Random()
3: if (ε · function(round)) > p then
4: Select random([arm ∈ arms])
5: else
6: Select argmax([reward(arm) ∈ arms])

19

2.4.4 UCB family and UCB1

In the UCB family of adaptive bandits algorithms, they approach the uncertainty
with the optimistic assumption that options are as good as we could evaluate until the
moment [18]. In the simple UCB1, every arm is selected by the player at least once, and
then it will pick out the one with the highest observed reward [47]. Equation 2.17 is the
UCB1 algorithm core, where A is the available options set, µ is the average of option
reward, T is the number of rounds up the moment, and nt represents how many times
an option is selected. As much as an option is selected, more unlikely it is to be selected
unless its reward was higher than others.

UCB1(a) = arg max
a∈A

(
µ(a) +

√
α log T
nt(a)

)
(2.17)

2.4.5 Other MAB policy classes

The problem of contextual bandits, also known as bandits with aside information,
can be described as follows: on round 1, the context, an n-Tuple value, is announced.
The player choices the arm a1 and observes the obtained reward. After the context is
announced in subsequent rounds, the player tries to preview the best arm to pull based on
the context and the accumulated information from the previous rounds [48]. The game,
then, continues following the same structure.

On the space problem known as the adversarial MAB, a new player called the adversary
is introduced. On each round, as the player selects the arm, simultaneously the adversary
chooses the reward [49]. The aim is to eliminate any reward distribution assumptions
making the solutions more generic without leaving some guarantees aside.

2.4.6 MAB and T&RM

This work addresses a problem subtly different from contextual bandits and adversarial
MAB. The player is not sure about the rewards reported by the witness but only the pulls
made by himself. However, witnesses’ reports can be interpreted as contextual information
so that our problem might be in the contextual bandits’ problem class. But we propose
to look after the mean represented by µ(a), regardless of the ideas in the algorithms.

Authors of [50] justify their approach by setting a scenario for MAB where arms’ re-
wards are stochastic but might be corrupted by an adversary. When such a situation
occurs, rewards’ feedback will be partially stochastic and partially not. Thus, stochastic
bandits algorithms do not apply since they are easily manipulable by the information
changed by the adversary. In this case, the adversarial bandits will deliver a poor per-
formance since they cannot take advantage of stochastic assumptions. Thus, the authors

20

formalize a model and propose an algorithm that ensemble to active arm elimination
algorithm to solve the problem. Despite fake feedback attacks being an instance of the
corrupted reward scenario traced by [50], this work proposes to treat the information in
a manner that stochastic algorithms can still be applied.

An analogy between reputation systems and MAB policies is drawn by [21]. Authors
point out that reputation systems and MAB algorithms have the same objective of solving
selection problems. Authors argue that MAB policies could improve reputation systems
turning these systems more resistant to manipulation. We claim that T&R evaluation is
separated from algorithms for selection since the objectives of T&RM are broader than
just selecting among possible partners, even that this objective can be related to the
trust delegation defined by [33]. We can say that an agent who employs the T&RM
does not necessarily use reputation for selecting partners. Besides, some T&RM deal
with untrustworthy agents in their proper manner. On the other hand, MAB algorithms
are employed in scenarios where reward corruption is possible, yet trust is not usually
considered, like in [50].

2.5 Fog-edge computing environment

In [1], the authors defined FEC as a complement of cloud computing that employs
devices on the edge of the network to improve the quality of service towards a service
continuum. Figure 2.3 illustrates the FEC layer architecture. The authors divide the
FEC into three layers: Inner-edge, middle-edge, and outer-edge.

The inner-edge layer corresponds to networks where the covered area is as large as
a country. In the inner edge are placed the infrastructure for geo-distributed cache and
the processing centers of Wide Area Networks (WAN), as the Content Delivery Networks
(CDN) mentioned in [2]. The objective of the inner-edge layer is to improve QoE lowering
the network latency. The middle-edge layer corresponds to the environment where are
set-up MANs, LANs, Wireless LANs, and the cellular network. The middle-edge is the
common understanding of the fog computing layer. The outer edge is also known as the
far-edge and things layer where we find users’ devices like mobiles, sensors, and actuators.

21

Figure 2.3: The FEC layer architecture [1].

As a complement to the Internet infrastructure, the FEC inherits some of its char-
acteristics. As some FEC nodes have the autonomy to make their decisions to improve
performance, we can describe them as agents. Thus, we are interested in defining what
type of agent environment the FEC is. Adhering to the classification presented in [25]
and reported in this work in Section 2.1, we can list the FEC properties as follows:

• Multi-agent - it is expected that agents in the FEC could cooperate to improve
overall performance;

• Non-deterministic - agents would not be able to determine the next state only by
evaluating the effects of their actions;

• Dynamic - assuming that nodes can join and leave the network unexpectedly;

• Continuous - some environmental measures can be discretized but not all of them,
and not for all the purposes;

• Sequential - as long as decisions made in the present will influence performance in
the future;

• Partially observable - information about the environment and other agents would
remain outdated most of the time.

22

2.6 Adaptive bitrate streaming

The central idea of ABR is transcoding the same video input into segments of different
bitrates. Figure 2.4 presents a typical workflow to deliver a live video event using ABR
including five steps [2]: i) the video content is obtained and pushed up to a server; ii)
the video stream is decoded and then re-coded to a convenient format for transmission;
iii) the video stream is split into segments and published on HTTP servers along with
manifest files; iv) Regionally distributed CDN nodes minimize latency; v) viewer’s player
performs buffering before decode and play the stream.

Figure 2.4: ABR components in live video broadcast. Adapted from [2].

The buffering technique employed by viewers’ players is the key characteristic in de-
termining the predictability of video segment requests. There exist many algorithms that
different players should apply. Following the work in [51], there are three categories where
those algorithms can fit in: throughput-based algorithms, buffer-based adaptation, and
time-based adaptation.

Throughput-based algorithms take constant measures of network bandwidth to eval-
uate TCP throughput and then schedule video segment requests based on the current
state of a buffer. The Buffer-based adaptation class observes the buffer occupancy itself
to determine when and under what bitrate representation each video segment should be
requested. Finally, in Time-based adaptation, downloading time is considered rather than
TCP throughput and then uses a pre-computed buffer-map to select the appropriate video
representation.

As commented, the audience of online videos do prefer high bitrate versions, but
interruptions harm QoE [13, 52, 14]. The work in [14] defines the utility of an online
video session as the combination of the average bitrate counterbalanced by the playback
smoothness. Playback smoothness is a ratio between time spent rebuffering and the total
time of video exhibition. Equation 2.18 is the Joint Utility Function (JUF) defined in [14,
p. 4], where vN is the playback utility, sN is the playback smoothness, and γ > 0 is a
parameter to prioritize playback utility with playback smoothness.

23

JUF = vN + γ · sN (2.18)

Transcoding on distributed environments

The computational demand generated by transcoding in ABR led to the search for
alternatives that could alleviate stream providers from part of the costs. A natural ap-
proach is employing cloud computing processing, which is less costly than maintaining
robust private servers [53]. Netflix has been using cloud computing to make transcod-
ing [54]. However, transcoding in the core results in relatively high latency and consequent
high delay in live video streaming. Edge-servers can offer a lower delay than those in the
core on the trade of major costs. Another proposal is to use peer-to-peer sourced transcod-
ing [55], but a disadvantage of this method is the low reliability of end-user devices. Some
others, like [4, 5, 6, 8, 9], propose a combined architecture where nodes in the core, mid-
dle and outer edge could be employed in transcoding. Figure 2.5 is a representation of
how could be a combination of transcoding on core, middle-edge, and outer edge. The
original video content is acquired and transcoded to a high bitrate representation, then
distributed through the network. When required, edge devices transcode the stream to
lower bitrates, saving bandwidth at the backbone and reducing latency.

Figure 2.5: Distributed transcoding through FEC layers.

2.7 Statistical evaluation

In Chapter 5, we present a considerable amount of data delivered in tables and graphics
output from the conducted experiments to validate the proposed model. At this point,
we judge it helpful to introduce concepts of statistical analysis. The central concept we
must explain is hypothesis testing [56]. Suppose we formulated a hypothesis H and want
to validate it through an experiment. We designed and executed our experiment and

24

obtained a set of data S, and then we refine H claiming that if the mean of S, µ(S), is
inside a confidence interval [h1, h2], then H is true. Since we observed a variation in data,
we are not convinced about the validation of H, and we want to know if our data does
not mean something completely different.

What we can do is apply some statistical tests on our data under H, and one way of
doing it is using the null hypothesis significance test, the p-Value [56]. A p-Value is a
statistical test that allows us to know the probability of our data confirming the negation
of H, which we denote as the null hypothesis ¬H. The p-Value represents the probability
of the data S come to confirm ¬H, and usually, values as small as 0.05 are considered
safe enough. Sometimes we are interested in comparing the average return obtained from
two distinct methods. For doing so when the sample size is small, we apply a statistical
test referred to Student’s t-Test [57]. The Student’s t-Test is a statistical treatment that
allows us to verify if the difference between two means is significant under the Student’s
distribution. The t-Value is a measure of how big is the difference between the two metrics
relative to the variation of the data. As big is the t-Value as unlikely is the null hypothesis.
A t-Value is usually used along with the p-Value on hypothesis testing.

Assume that we want to compare the performance of two systems when subjected to
the same workload. Following the procedure explained in [56], it is possible to apply
the Student’s t-Test mean difference comparison to compare the two systems. When
comparing the systems A and B, let’s define the H hypothesis as A performs better than
B. Then we calculate the p-value and t-value in H. If the p-Value is small enough,
p-Value lesser than 0.05, we look at the magnitude and sign of the t-Value. If the t-Value
is positive, A performed better than B. If the t-Value is negative, B is better. The
greater the magnitude of the t-Value, the more relevant is the difference between the
compared systems. However, if the p-value is higher than 0.05, we cannot say that there
is a difference between the performance of the two systems.

A necessary condition to Student’s t-Test is that data follows the normal distribution.
We can assure that this assumption applies to our data performing a goodness of fit check,
i.e., a statistical treatment that will measure how far the expected distribution of our data
is from the normal distribution. Two normality tests that apply to continuous domain
data are the Kolmogorov-Smirnov (K-S) and the Shapiro-Wilk (S-W) [58]. Both K-S and
S-W tests will calculate the probability of incurring an error rejecting the null hypothesis,
i.e., if we accept that our data do not follow the normal distribution. Regarding that
[58] says that S-W is more powerful in rejecting data normality, the size of the sample
influences both tests’ precision. However, second [56], the K-S test is specifically designed
for small and continuous distributions.

25

Chapter 3

Related work

In this chapter, we present the selected related work concerning the problem of enabling
live video transcoding applying heterogeneous and distributed devices. These works were
selected over 2019 to 2021, searching using the queries “distributed transcoding”, “real-
time transcoding”, “live video transcoding”, and “crowdsourced transcoding” in Google
Scholar1 and CAPES Scientific Journal Gateway2 search engines. Only papers that pre-
sented a fully defined architecture that was distributed and could employ heterogeneous
devices were selected. As long as we know, this is the only work to propose applying a
multi-agent architecture to face the distributed transcoding in open and heterogeneous
environment problems. Both Google Scholar and CAPES can search in many scientific
databases. Papers selected came from IEEE [3, 4, 5, 9], ScienceDirect [6], and ACM [8].

We organized the approaches following the classification proposed in [8]. The authors
analyzed many distributed transcoding approaches and classified them into three classes
depending on the location of the computational resources employed in transcoding. The
three classes are cloud-based, end-assisted, and edge-assisted. In cloud-based solutions,
transcoding is made by cloud servers adequate for intensive computation. In end-assisted
approaches, end-users devices are employed to alleviate cloud servers from part of the
transcoding loading. Finally, in edge-assisted, some transcoding tasks are offloaded to
edge nodes. All selected papers in this chapter classify whether as end-assisted or edge-
assisted approaches.

Since each work has a different approach employing a specific method, and authors
validated their approach in distinct scenarios, it is hard to compare them in terms of
performance. Instead, we analyze the proposed solution searching for opportunities where
T&RM could be applied to bring advantages to providers and end-users.

1See https://scholar.google.com.
2See https://www.periodicos.capes.gov.br.

26

https://scholar.google.com
https://www.periodicos.capes.gov.br

3.1 End-assisted approaches

The work of Chang et al. (2016) [3] proposes a real-time distributed transcoding
system for reducing latency in a closed surveillance system that can employ heterogeneous
computers in a private network. Authors propose to use the Apache Storm3, an open-
source distributed system for data stream processing, to coordinate the transcoding work
in real-time. The devices responsible for transcoding are statically assigned, although
authors present a dynamic node assignment method to transcoding jobs as future work.
Figure 3.1 illustrates the proposed work topology.

Since transcoder machines belong to the same company, the authors of [3] do not deal
with open environments or untrustworthy agents. Despite this, a medium-large corporate
network should have many idle devices proper to receive transcoding jobs. The proposed
solution could benefit from applying T&RM to evaluate and select candidates to receive
transcoding jobs, forming a pool of readily available resources. Having this pool in hand
should make the system more scalable and reliable.

Figure 3.1: Storm-based video transcoding topology [3].

In He et al. (2017) [4] is investigated a FEC distributed transcoding scheme. The
goal of the work is to minimize the delay experienced by the viewers. The system selects
candidates to be transcoding nodes among the viewers of a stream section. The selecting
criteria are stability online, i.e., how likely they are to stay online until the end of the
streaming event. Then, the system organizes the selected nodes in a pool. The pool is a

3See https://storm.apache.org/ for more information about Apache Storm.

27

https://storm.apache.org/

B+tree data structure, which guarantees that inclusion and exclusion occur in O(logN)
and selecting the most preferred node for transcoding can take only O(1). Some other
heuristics for node selection are suggested, like video quality, but not further explored in
the paper. In terms of architecture, regional data centers are responsible for distributing
the transcoding task to candidate viewers. Figure 3.2 shows how the proposal defines the
architectural elements in the FEC. Middle-edge regional servers manage the pool and the
transcoding jobs assignments, while viewer’s outer-edge devices perform the transcoding
of the stream to lower bitrate representations. Although intended for the open FEC
environment, the authors do not mention how to deal with untrustworthy transcoders.
Besides, stability metrics should not suffice to characterize a viewer’s device as a good
transcoder. The device can be executing other tasks while simultaneously transcoding,
which would affect processing time and bandwidth availability.

A complete evaluation scheme for [4] could combine stability online with other QoS-
related metrics, such as transcoding time, network speed, and latency. If the system served
those metrics to a T&RM, the produced trust values would represent how confident the
system is that the selected node will contribute to overall system performance.

Figure 3.2: Fog based transcoding framework [4].

The objective of Liu et al. (2019) [5] is maximizing total network utility, pondering
end-users QoE and network costs. The model utility function considers the viewer’s
expected QoE while watching the stream from transcoder nodes, which the proposed
system selects among viewers and edge nodes previously available in a pool. The cost
part is the success rate of devices transcoding the stream, which should reflect the node

28

stability online, as in [4]. Thus, authors take constraints and model them as a non-convex
integer programming problem, which they solve by applying Complementary Geometric
Programming (CGC). After that, the authors relax the CGC solution to a more feasible
sub-optimal algorithm. Figure 3.3 shows an overview of the proposed system, showing
the pool of transcoders reinjecting the transcoded stream into the CDN layer.

Once more, despite proposing to employ nodes in the FEC, the authors do not offer a
strategy for dealing with untrustworthy agents. The assumption that all agents are trust-
worthy in an open environment is weak since the proposed incentive reward to transcoders
can lead agents to selfish behavior. Therefore, the proposed system in [5] would benefit
from adopting a trust and reputation approach to look for protection against possible
harmful behaviors, where reputation evaluation must have a determinant role.

Figure 3.3: System model showing stream flow in the Fog [5].

3.2 Edge-assisted approaches

The objective of Bilal et al. (2019) [6] work is to minimize the backhaul utilization and
the number of CDN hits per stream. The authors intend to achieve this by offloading the
caching and transcoding jobs to Mobile Edge Computing (MEC) in Antenna Integrated
Radios (AIR). Since MEC-AIR nodes are in the middle edge, closer to end-users than CDN
servers in the inner edge, video requests will hit them first. If MEC-AIR nodes do not
possess the requested bitrate version, they can obtain it from near nodes or, if necessary,
request the higher bitrate version available from CDN and transcode it themselves. The
most suitable bitrate is chosen by applying a greedy algorithm, which resulted from the

29

relaxation of an integer linear programming solution. Figure 3.4 shows how tasks are
coordinated in the proposed network architecture.

We infer that the authors of [6] chose to employ MEC-AIR nodes since they are trust-
worthy by rule. End-user devices, for their turns, are heterogeneous and not trustworthy
at prior. However, the same approach could be applied to minimize MEC-AIR hits if
end-user devices were employed. Once more, the application of T&RM to compute trust
and reputation values could devise between adequate and not-adequate end-users devices.

Figure 3.4: Caching and transcoding in middle-edge [6].

The objective of Fu et al. (2020) [7] is to cope with the problem of distributed transcod-
ing in vehicular fog computing. As shown in Figure 3.5, the proposed solution employs
stationary servers near Road-side Units (RSU) and mobile nodes installed in buses. The
authors propose jointly optimizing end-user QoE and network parameters, deciding, for
every vehicle, what bitrate representation should be provided and from what node to
obtain it. The authors applied Deep-reinforcement Learning (DRL) and Actor-critic to
solve the problem modeled as a Markov Decision Problem.

In [7], the end-users are the vehicles, but the authors considered them only as con-
sumers, not producers, unless for the buses with an edge node installed on them. Con-
sidering devices in vehicles, passengers’ smartphones and notebooks, would be helpful. A
passenger on a long bus journey in a crowded roadway could collect some reward by shar-
ing his processing power and network interfaces while entertaining himself at the same

30

time. Trust and Reputation values would indicate which of those devices to use and which
not.

Figure 3.5: Transcoding in vehicular Fog Computing [7].

The proposal in Wang et al. (2021) [8] is a framework named ELCast to delegate
the transcoding of lower bitrates to edge nodes and associate edge nodes with end-users.
Moreover, the authors propose massively profiling end-users using DRL and Actor-critic
to accommodate personalized QoE parameters in end-user to edge node assignments. The
profiling should be executed at edge nodes since they state that the new edge architecture
provides better hardware foundations for deep learning running at the edge. Figure 3.6
presents how the learning model interacts with the FEC to achieve the objectives of the
proposal.

The authors of [8] also analyze other distributed transcoding approaches and classify
them into three classes, depending on where are located the computational resources
employed in transcoding: cloud-based, end-assisted, and edge-assisted. They advocate
that edge-assisted approaches are the most advantageous. They argue that the uncertainty
associated with end-user devices should turn transcoding services unstable. However,
T&RM are adequate to mitigate the risk associated with that uncertainty, guiding the
association to the most trustworthy devices.

31

Figure 3.6: DRL, Actor-critic, cloud and edge nodes interaction [8].

Authors of Chen et al. (2021) [9] target optimize transmission resources (bandwidth)
and transcoding resources (CPU) to improve QoE measures. Their approach employs
cloud, edge, and end-user devices in transcoding tasks. They modeled the problem as two
augmented Queues, one for transmission and the other for pending transcoding tasks, then
an optimal solution is constructed using Accelerated Gradient Optimization. As shown in
Figure 3.7, from provider to the viewer, the request bitrate representation passes through
a route over the overlay network, which would involve nodes in every FEC layer.

Although employing end-user devices, nothing is said in [9] about how to deal with
untrustworthy or erratic devices. This way, we inferred that the stochastic capacity of
transcoders, like CPU processing power and bandwidth, must be somehow previously
known. The solution should be complete with the application of an exploratory algorithm
to learn about end-user device capacity available in a pool. Jointly to that, the application
of T&RM trust values should cope with the risk of association with not well-known
partners.

3.3 Final Considerations

Although it is hard to compare the presented related work employing different ap-
proaches and specific validation methods, we present Table 3.1 (increasing publication
date order) to summarize important aspects considering the architecture proposed in this
work.

Notably, related work missed approaching an open environment with its challenges,
e.g., the problem of collaborating with potentially untrustworthy agents is prominent when

32

Figure 3.7: DRL, Actor-critic,cloud and edge nodes interaction [9].

end-user devices are employed. In our work, transcoding jobs will be dynamically assigned
to nodes in every turn according to their past-observed performance. For doing so, we
propose that T&R metrics represent an overall evaluation of utility contribution, not only
including the node stability but also their competence for doing the assigned task. We also
propose that transcoding should be done in the outer edge (nearby viewers’ locations),
allowing transcoded video segments to be served within relatively low latency. Besides,
since we are applying T&R models that weighted witness credibility, our approach offers
protection against fake feedback attacks from untrustworthy agents. Thus, we addressed
the problem on three fronts: defining a multi-agent architecture, reasoning about selecting
appropriate nodes for transcoding jobs in an open environment, and evaluating witnesses’
credibility to avoid being influenced by untrustworthy agents.

In Chapter 4, we propose a multi-agent architecture that considers the questions pre-
sented in these previous works and also a scenario where many agents involved are au-
tonomous. We believe that the architecture is adequate for the applications presented in
this chapter. Additionally, the multi-agent architecture could improve these applications
enabling them to use end-user devices safely.

33

Ta
bl
e
3.
1:

R
el
at
ed

wo
rk

co
m
pa

ris
on

ov
er
vi
ew

.

R
ef
er
en

ce
C
la
ss
ifi
ca
ti
on

O
bj
ec
ti
ve

M
et
ho

d
D
yn

am
ic

as
si
gn

m
en
t

O
pe

n
en
vi
ro
n-

m
en
t

E
m
pl
oy

en
d-
us
er

de
vi
ce
s

D
ea
l
w
it
h

un
tr
us
tw

or
-

th
y
pa

rt
ne

rs

C
ha

ng
et

al
.
(2
01

6)
En

d-
as
sis

te
d

R
ed

uc
e
la
te
nc

y
St
at
ic

as
sig

nm
en
t

X

H
e
et

al
.
(2
01

7)
En

d-
as
sis

te
d

M
in
im

iz
e
de

la
y

B
+
tr
ee

so
rt
in
g

X
X

X

Li
u
et

al
.
(2
01

9)
En

d-
as
sis

te
d

M
ax

im
iz
e
to
ta
l

ne
tw

or
k
ut
ili
ty

C
om

pl
em

en
ta
ry

ge
om

et
ric

pr
og

ra
m
m
in
g

X
X

B
ila

le
t
al
.
(2
01

9)
Ed

ge
-a
ss
ist

ed
M
in
im

iz
e
C
D
N

hi
ts

In
te
ge
r

lin
ea
r

pr
og

ra
m
m
in
g

X

Fu
et

al
.
(2
02

0)
Ed

ge
-a
ss
ist

ed
Jo

in
tly

op
tim

iz
e

Q
oE

an
d
N
et
w
or
k

Pa
ra
m
et
er
s

M
ar
ko
v
D
ec
isi
on

Pr
ob

le
m
,D

R
L,

an
d
A
ct
or
-c
rit

ic
X

X
X

W
an

g
et

al
.
(2
02

1)
Ed

ge
-a
ss
ist

ed
A
cc
om

od
at
e

pe
rs
on

al
iz
ed

Q
oE

pa
ra
m
et
er
s

D
R
L
an

d
A
ct
or
-c
rit

ic
X

C
he

n
et

al
.
(2
02

1)
Ed

ge
-a
ss
ist

ed
O
pt
im

iz
e

ba
nd

w
id
th

an
d

C
PU

ut
ili
za
tio

n

A
cc
el
er
at
ed

gr
ad

ie
nt

op
tim

iz
at
io
n

X
X

X

T
hi
s
w
or
k

En
d-
as
sis

te
d

Sa
fe
ly

em
pl
oy

en
d-
us
er

de
vi
ce
s

T
&
R
M

an
d
M
A
B

X
X

X
X

34

Chapter 4

Multi-agent architecture

In this chapter, we detail the multi-agent architecture for coping with the distributed
transcoding problem. The architecture comprises three well-defined agent roles:

• The Viewer Proxy is the agent role for the audience of the live video stream. This
role is for those agents that ask brokers for the adapted ABR stream.

• The Transcoder role is for those agents interested in receiving transcoding jobs and
being rewarded for them.

• The Broker’s role responsibility is to manage the association of Viewer Proxies and
Transcoders for the benefit of both.

Concerning the network architecture, it is necessary to point out that nodes must be
geographically close to one another to keep latency inside an acceptable range. Thus, we
suggest that viewers and transcoders reside on the same layer of FEC, the outer edge.
Nodes performing the Broker role can be either end-user devices or FEC infrastructure
components. A customized selecting algorithm seems necessary, and two are presented
based on reputation, called ReNoS and ReNoS-II.

4.1 Requirements

The Tropos methodology described in Section 2.1.2 is used to elicit requirements of
the multi-agent architecture and some aspects of agents’ interactions. The sections in the
sequence present the results of applying Tropos methodology to distributed transcoding
in ABR.

35

4.1.1 Early requirements

As said in Section 2.1.2, the objective of the early requirements phase is to analyze
the system as-is. We started identifying the roles and relations found in the streaming
environment. Two actors were identified, the Viewer and the Streaming Platform, and the
Streamer agent. Figure 4.1 shows these roles and their hard and soft goals. A hard goal
of the Streamer agent is to make its content available to viewers. There must be a way for
viewers to reach the content the Streamer produces. To achieve this, the Streamer relies
on the reach of the Streaming Platform. Once the content can be located and consumed
by viewers, the Streamer needs to engage its audience providing new content within an
adequate frequency. According to [59], the uses and gratification theory can explain how
engagement in media-consuming habits relates to various psychological needs.

Figure 4.1: The streaming environment early requirements.

The Viewers’ hard goal is to consume live video content from its preferred streamers,
what they seek out from the Streaming Platform, among other ways of social recommen-
dation. As explained before, viewers want to hit in content that they could relate with
their own needs. Thus, they expect the streamer to produce content of its interest.

The Streaming Platform wants to maintain the viewers connected as long as possible.
However, this is not possible without the Streamer’s work. Therefore, the Streaming
Platform must have the Streamer providing new content regularly. Since it is hard to
state how frequently new content must be added to the platform to maintain viewers’
interest, we listed this goal as a soft goal of the Streaming Platform, which depends on
the streamer’s productivity but not only. A bad QoS can make viewers abandon the
presentation and disconnect, hurting the Streaming Platform objectives.

36

4.1.2 Late requirements

In the Late requirements phase of the Tropos methodology, the model defined in the
Early requirements is updated with an actor to represent the system to be developed.
The actor introduced is the Distributed Transcoding System (DTS). The DTS will act
as an intermediary between Viewers and the Streaming Platform. Figure 4.2 shows the
relations between the DTS and Viewers, and the DTS and the Streaming Platform.

Figure 4.2: The streaming environment late requirements.

As an intermediary, the DTS actor will provide the viewers with the live video content
they want to consume with an advantage: it will manage to ensure that viewers could get
the better QoS possible, providing all the bitrate versions needed. In exchange, the DTS
expects that viewers give feedback on the quality obtained from each video segment.

On the other side of the relations, the Streaming Platform depends on the DTS to
maintain the viewers connected. The Streaming Platform relies on the DTS’ ability
to coordinate transcoding jobs so that the viewers obtain a good QoS. The Streaming
Platform can evaluate the DTS performance just by observing the viewers’ tendency of
staying connected or not.

4.1.3 Architectural design

The architectural design phase is when the system introduced in the Late Requirements
phase is divided into actors representing the software agent subsystems. In Figure 4.3,
the DTS appears now divided into three roles: Viewer Proxy, Transcoder, and Broker. A
role differs from an agent since it is a set of features observable from the exterior, and

37

an agent is an embodied entity. Since the same node can perform more than one role at
once, these design elements do not classify as agents or actors.

Since the Viewer, a human agent, would not respond within the required time, we
introduced the Viewer Proxy, a software agent represented by a role. The Viewer Proxy’s
responsibility is to interact with the other software agents using an interaction protocol for
the sake of the Viewer. Those agents who will perform the Transcoder role are interested
in receiving the transcoding jobs. As Viewer Proxy’s role, the Transcoder role is also
suited to software agents. The Brokers are up to select the better nodes to perform
the transcoding tasks, negotiate with them the transcoding jobs, and then inform Viewer
Proxies where to find the transcoded video segments. Within a specific geographic region,
a Broker can coordinate at the same time the distributed transcoding of more than one
live video streaming.

Figure 4.3: The DTS architectural design.

4.1.4 Capabilities

Capabilities are abstractions for agent’s internal processes that allow them to fulfill a
goal. In this section, we proceed to elicit the capabilities of each one of the roles defined
in the architectural phase needs to have. Table 4.1 list the capabilities for the three roles
in our architecture. In Table 4.1, we identify capabilities by a code compounded by two
letters identifying the role (VC for viewer’s proxy capability, TC for transcoder capability,
and BC for broker capability) and a number. In the sequence, we describe them.

The Viewer Proxy capabilities are the following:

38

• VC1 - Require a broker to transcode the stream - when the Viewer Proxy identifies
that the obtained QoS is not adequate, it can execute a plan to find a Broker to
provide a transcoded version with more suitable bitrate versions.

• VC2 - Run playlist - this is a general plan with many actions related to the playback
of the streaming video. It includes performing HTTP requests to obtain the playlist,
the video segment and play them. After playing a video segment, the Viewer Proxy
uses an assessment function1 to evaluate the QoS.

Table 4.1: List of agents’ capabilities.

Role Name
VC1 Viewer Proxy Require a broker to transcode the stream
VC2 Viewer Proxy Run playlist
TC1 Transcoder Register into brokers
TC2 Transcoder Negotiate a contract with a broker
TC3 Transcoder Accept transcoding job
TC4 Transcoder Transcode video segment
TC5 Transcoder Provide transcoded segment
BC1 Broker Accept transcoding task
BC2 Broker Obtain stream playlist
BC3 Broker Provide transcoded playlist
BC4 Broker Evaluate transcoders’ trustworthiness
BC5 Broker Accept transcoder registration
BC6 Broker Negotiate contract
BC7 Broker Assign a transcoding job

The Transcoder capabilities are the following:

• TC1 - Register into brokers - this capacity involves finding nearby brokers and
selecting the ones into which the Transcoder will register.

• TC2 - Negotiate a contract with a broker - the Transcoder must evaluate the con-
ditions offered by a broker in a contract, then decide if either they are acceptable
or not.

• TC3 - Accept transcoding job - the Transcoder receives a request to transcode a
video segment, then, after deciding whether accepting is convenient to its reputation,
it accepts or rejects the job.

• TC4 - Transcode video segment - the Transcoder must require the original video
segment from the Streaming Platform and then perform the required transcoding
function.

1In Section 4.4, we present the Equation 4.5 to evaluate utility from the perspective of viewers.

39

• TC5 - Provide transcoded segment - when required by Viewer Proxy, the Transcoder
has to provide the transcoded video segments it produced and stored.

Finally, the Broker role capabilities are the following:

• BC1 - Accept transcoding task - the Broker executes this capability when it receives
a request for transcoding a stream from a Viewer Proxy.

• BC2 - Obtain stream playlist - to elaborate on the transcoding job offers and dis-
tribute them among the transcoders, the Broker should first obtain a playlist from
the Streaming Platform containing the original video segment location. This seg-
ment information will be passed to the Transcoder when offering the transcoding
jobs. The Brokers have to request playlists periodically because playlists are up-
dated during the live event whenever new segments are available.

• BC3 - Provide transcoded playlist - when asked by the Viewer Proxy, the Broker
must provide a playlist that allows locating the video segments distributed through
the transcoders.

• BC4 - Evaluate transcoders’ trustworthiness - periodically, the Broker must evaluate
the transcoders’ performance based on the feedback provided by Viewer Proxies. We
suggest that QoS feedback will be given by Viewer Proxies piggybacking during the
playlist requests to save communication costs.

• BC5 - Accept transcoder registration - this capacity will be activated when a
Transcoder requires its registration. It involves two elementary actions, accepting
the registration and updating the transcoders database.

• BC6 - Negotiate a contract with a transcoder - the Broker must select a registered
transcoder without an active contract, evaluate that transcoder and then calculate
the conditions upon which the contract will be offered.

• BC7 - Assign a transcoding job - this capacity involves selecting and executing a
plan to choose appropriate transcoders within the registered and evaluated inside
the pool of available transcoder, then managing the offer of transcoding jobs to
them.

4.2 Architecture

In this section, we present the DTS architecture wherein the FEC layers including the
nodes performing the three agent roles. The FEC architecture provides a macro vision

40

of the proposal. Then, we look inside the agents to suggest a micro layered architecture
that enables agents to demonstrate their required capabilities.

4.2.1 FEC network architecture

The agent roles should rest in the FEC layered architecture described in Section 2.5,
and presented in Figure 4.4. The diagram includes only a suggestion of network distribu-
tion since different roles can be performed by the same node. The roles were organized
by the intended coverage area. The Streaming Platform lies in the core of the cloud.
The Directory Facilitator is an agent whose responsibility is to serve the Viewer Proxies
and Transcoders with the address of near Brokers. The Broker role agents can lie in the
middle-edge or the outer-edge, so they can be reached by nodes in the outer-edge, not
being too far from the clients.

Figure 4.4: The agent-based architecture with the FEC layers.

4.2.2 Agent roles architecture

Since we propose to deal with video processing on the fly during live video events,
we identify our approach as a real-time constrained system. During the transcoding of a
live streaming session, our agents do not have much time for deliberation, which leads us
to design agents where reasoning and performing are separated asynchronous processes.
In the transcoding process, reactive behaviors are predominant. We suggest that two of
our roles should be performed by hybrid agents. These are Broker and Transcoder roles.
Viewer Proxy role can be performed by purely reactive agents.

41

The Broker role architecture is hybrid since one of the components is a T&R module.
Figure 4.5 shows the internal architecture of the Broker role. The Messaging layer and
the Belief Database Management are orthogonal to other layers allow them to operate
asynchronously. The Belief Database is the repository of facts about the environment
through which the layers exchange information about the world.

Figure 4.5: The detailed Broker’s layered architecture.

The Belief Database Management layer is responsible for requesting the playlist from
the Streaming Provider and registering the new segments, receiving the Transcoder reg-
istration requests, managing parameters as the reputation threshold and the transcoders’
state, besides all other data repositories related tasks.

The Agent Evaluation layer will exchange the playlist with the reports of viewer prox-
ies, converts them to ratings, and activate the T&R module, which converts those ratings
in evaluations of trust values for Transcoders and witnesses credibility value for Viewer
Proxies. Ratings and agent evaluations are stored in the Belief Database for future use.

The Transcoding Assignment layer has two responsibilities, negotiate transcoding con-
tracts with transcoders and distribute the transcoding tasks to the available transcoders.
This layer accomplishes these responsibilities by executing them asynchronously. The
negotiation process’s responsibility is to make agreements with all registered transcoders
about the conditions for the transcoding tasks. Once the Broker and the Transcoder
have a deal, the Broker includes the Transcoder into the available transcoders pool. The
selecting process will periodically check for recently added segments. For every new video
segment and desired bitrate, the Transcoding Assignment layer will use the Selection
module to select a Transcoder for doing the job. Then, the algorithm will offer the task
to the selected Transcoder. If a Transcoder rejects an offer, the segment returns to the
pool of not-assigned segments. Table 4.2 shows how the Broker’s layered architecture
relates to the capabilities listed in Section 4.1.4.

42

Besides the orthogonal layers described in Broker’s architecture, the Transcoder role
layered architecture has two additional layers, as we can see in Figure 4.6. The respon-
sibility of the Negotiation layer is registering the agent into Brokers and negotiating the
transcoding contracts with them. The architecture is agnostic about how this layer can
reason to maximize the return that a transcoder could obtain, although some approaches
may require additional message exchange. For example, we do not preview Brokers disclos-
ing reputation information with the Transcoder, but this could be useful. The Processing
layer is responsible for requesting the original segments from the stream provider and
transcoding them using the method negotiated with the Broker. It is also responsible for
serving the transcoded segment files to the proxy viewers.

Table 4.2: Broker role – mapping layers and capabilities.

Layers Capabilities
BC1 BC2 BC3 BC4 BC5 BC6 BC7

Belief Database
Management X X

Transcoding
Negotiation X X X

Transcoder
Evaluation X X

Figure 4.6: The detailed Transcoder’s layered architecture.

Table 4.3 shows how the Transcoder’s layered architecture relates to the capabilities
listed in Section 4.1.4.

Table 4.3: Transcoder role – mapping layers and capabilities.

Layers Capabilities
TC1 TC2 TC3 TC4 TC5

Negotiating X X X
Processing X X

The Viewer Proxy role has a layer for reasoning about the QoE delivered to the
viewer, as presented in Figure 4.7. The QoE Reasoning layer can proactively request

43

that a Broker arrange to make plus bitrate versions available. Hence, it needs to get
information from the player and use it to invocate an assessment function to evaluate
utility. In Viewer Proxy architecture, the player is also a layer that only communicates
with the QoE Reasoning.

Figure 4.7: The detailed Viewer Proxy’s layered architecture.

Table 4.4 shows how the Viewer Proxy’s layered architecture relates to the capabilities
listed in Section 4.1.4.

Table 4.4: Viewer Proxy role – mapping layers and capabilities.

Layers Capabilities
VC1 VC2

Player X
QoE reasoning X X

4.3 Communication and interaction protocols

As software agents inhabit the FEC environment, the nodes performing the roles of
our system must use the messaging layer to communicate with the environment and with
other agents. Interfaces for receiving messages represent the agent’s sensors, and those
for sending messages are the actuators. Thus, receiving a message is a sense, and sending
it is an action over the environment. In other words, agents performing their roles will
perceive the environment interpreting the information received from other agents, then
act by sending messages to drive the behavior of others. Table 4.5 presents a sample of
the messages used as the communication protocol.

We are proposing that interaction among agents takes place in two distinct phases.
The first phase is destined to brokers negotiate with transcoders the conditions under

44

Table 4.5: A sample of messages exchanged among agents.

Message Sender Receiver
Propose transcoding a stream Proxy Viewer Broker
Accept transcoding a stream Broker Proxy Viewer
Reject transcoding a stream Broker Proxy Viewer
Request segment Proxy Viewer Transcoder
Provide transcoded segment Transcoder Proxy Viewer
Request transcoded playlist Proxy Viewer Broker
Request playlist Broker Streaming Platform
Propose a transcoding task Broker Transcoder
Accept the transcoding task Transcoder Broker
Reject the transcoding task Transcoder Broker
Request segment Transcoder Streaming Platform
Offer a contract Broker Transcoder
Accept the contract Transcoder Broker
Reject the contract Transcoder Broker
Inform that contract is finished Broker Transcoder

with the transcoding tasks will be distributed and rewarded. The second is when brokers,
transcoders, and viewers’ proxies will collaborate to enable which one to achieve their
goals. We propose a protocol to govern interaction in each specific phase. However,
before detailing the protocol, we present an overview in Figure 4.8.

Figure 4.8 presents the core of agents’ interaction in nine consecutive steps. We omit-
ted message exchange between transcoders and streaming providers for better understand-
ing. Transcoders register into brokers (Figure 4.8a), including that some transcoders can
seek registration into more than one broker. After registering themselves and without ac-
tive contracts, transcoders expect to receive offers. Thus, brokers offer personalized agree-
ments to transcoders, depending on their reputation (Figure 4.8b). Transcoders respond
if they accept or reject the offered conditions (Figure 4.8c). Already in the transcoding
phase, brokers request the transcoding of video segments to selected transcoders (Fig-
ure 4.8d). So, transcoders can agree to or can refuse to do it (Figure 4.8e). A non-response
is considered a refusal by brokers. Before knowing if transcoding is ready, brokers inform
viewers’ proxies where to get the transcoded segments (Figure 4.8f). Then, when they
need them, viewers’ proxies request video segments to transcoders (Figure 4.8g). In the
course, viewers’ proxies inform respective brokers of reward obtained interacting with
transcoder (Figure 4.8h). Brokers take reports and use them to evaluate transcoders.
When it is time, brokers inform transcoders that their contracts finish (Figure 4.8i).

45

(a) Transcoders register into brokers. (b) Brokers offer contracts.

(c) Transcoders accept or reject conditions. (d) Brokers request transcoding.

(e) Transcoders agree or refuse to do the task. (f) Viewer’s proxy receives segments locations.

(g) Viewer’s proxy requests video segment. (h) Viewer’s proxy informs obtained reward.

(i) The broker informs current contract fin-
ished.

Figure 4.8: Roles interaction overview.

46

4.3.1 Transcoding phase

The sequence diagram represents interaction among objects in the Unified Modeling
Language (UML), showing a temporal view of the message exchange [60]. Figure 4.9 is
an example of interaction among the component roles of our proposed architecture and
the Streaming Platform. The Viewer and the Streamer are human agents and interact in
a wider time scale than the software agents in the diagram (omitted here).

Disregarding that some message exchanges can take place in parallel, the interaction
in Figure 4.9 is an example of interaction among agents performing our architecture roles.
The exchange of messages goes this way. The Viewer Proxy requests the transcoding of a
live video stream to a Broker. Then, the Broker requests to the Streaming Platform the
list of all video segments generated until that moment. After receiving the playlist, the
Broker selects one of the registered transcoders to do the transcoding job. The Transcoder
requests to the Streaming Platform the original video segment and transcodes it to the
requested representation.

Meanwhile, the Viewer Proxy asks for the stream playlist to the Broker. The Broker
responds with the location of the segments produced and stored by the Transcoders.
The Viewer Proxy will download the transcoded segments from the Transcoder and then
evaluate the QoS obtained using an assessment function. For managing to keep its internal
buffer occupancy, the Viewer requests an updated version of the Broker’s playlist with
the new segments added while informing the Broker about the QoS of previously played
video segments. The Broker will collect the Viewer Proxy feedback and then responds
with the requested playlist.

4.3.2 Negotiation phase

An assumption we have made about FEC devices is that there are plenty of available
devices, and those devices are interested in accepting transcoding jobs. Indeed, crowd-
sourced approaches assume that viewers will borrow their computational resources for
transcoding since they are interested in promoting the streaming channel. Nevertheless,
we suppose that transcoders will perform transcoding tasks after some reward. Crowd-
source supporters could be interested in receiving a VIP badge or some privilege that
distinguishes them from the crowd. For other transcoders, incentives can be as simples
as a certain amount of money.

In the proposed architecture, the Broker previously negotiate the conditions with the
transcoders due to the narrow timeframe. Transcoders and brokers must agree about
a contract that dictates conditions before the Broker includes devices in their available
transcoder pool. The brokers guide their partnership with transcoders based on how

47

Figure 4.9: The UML sequence diagram representing agents’ interaction.

trustworthy the Broker believes the Transcoder is. Likewise, we propose that the Broker
reason over offered conditions upon these external believes.

In summary, the negotiation phase proceeds as follows. After a transcoder register
into a broker, the Broker will reckon the pursuit information about transcoders. If the
Broker and the Transcoder haven’t previous interaction, the Broker will offer a default
contract with a safe package of conditions to enable the Broker to evaluate the novice.
If the Broker possesses previous beliefs of the Transcoder’s trustworthiness, it will offer a
customized contract. Thus, the more trust a broker has in a transcoder, the more it will
offer tasks to that transcoder.

48

The contract conditions are the following:

• N : The number of transcoding tasks regarding the offer;

• P : The reward for every concluded task, referred to as the price;

• C: A compensation if the transcoder does not conclude any transcoding task, con-
sidering that it did not exceed the permitted number of refusals;

• Rs: The maximum number of times a transcoder can refuse a transcoding task
without losing the compensation. If the transcoder fails to respond to an offer, the
broker will account it as a refusal;

• T : The time the other conditions are valid is just after the broker receives an
acceptance.

Now and then, the broker will inspect the database of registered transcoders look-
ing after a transcoder without an active contract. The broker will avoid selecting those
transcoders whose current trustworthiness is under a threshold. The broker will then
calculate the customized conditions of the offer. After selecting a transcoder, the negoti-
ation phase follows two simple steps, the broker offers the corresponding contract to the
transcoder, and its responses either accept or reject the offer. Figure 4.10 presents the
sequence diagram of the negotiation phase. Note that:

1. The Broker makes an offer to the Transcoder including the conditions {N , P , C,
Rs, T}.

2. The Transcoder will answer whether it accepts or rejects the offer.

(a) If the Transcoder accepts the offer, the Broker includes it into the pool of
available transcoders.

(b) If the Transcoder rejects the offer, the negotiation ends.

3. The broker informs the transcoder that the contract is finished when time runs out
or the number of tasks is reached.

There is no prohibition that the broker selects a transcoder that has rejected a pre-
vious offer. There is no assumption about the transcoding reasoning of accepting or
rejecting the Broker’s offers. There is only one active contract between the same broker
and transcoder, but no limitation about how much active agreements a transcoder could
have since transcoders can register in more than a broker at once.

49

Figure 4.10: Sequence diagram of negotiation phase.

4.4 Model design

The multi-agent architecture design relates the performance measures for the three
agent roles and the method to transform these measures into ratings adequate to be
served for the T&RM employed. It also encompasses the selection algorithms ReNoS and
ReNoS-II. Table 4.6 presents a summary of notations used in the model.

4.4.1 Contract conditions

The model encompasses the following procedures for customizing the contract’s condi-
tions to a specific transcoder. The conditions R and T should be empirically determined
and be the same for all the offers. The condition P must depend on the effort to transcode
original segments to transcoded versions, e.g., resizing from 1080p to 720p must afford a
lower price than applying a CRF filter algorithm, which experiments shown is more com-
putational demanding [24]. The Broker calculates the conditions N and C proportional
to the transcoder trustworthiness using Equations 4.1 and 4.2, where τ is the trustworthi-
ness of the transcoder tc, and {MaxN,MinN} and {MaxC,MinC} are value range for
the conditions N and P , respectively. Unknown transcoders should receive the minimum
possible values of N and C.

N(tc) = max(MaxN ∗ τ(tc),MinN) (4.1)

C(tc) = max(MaxC ∗ τ(tc),MinC) (4.2)

50

Table 4.6: Summary of notations.

Notation Description
PA(v, tc, s) Playback assessment, from Equation 4.3.
AV (v) Cumulative reward obtained by a viewer.
TC Set of all transcoders.
S Set of all video segments.
AT (tc) Cumulative reward obtained by a transcoder.
R(tc, s) Reward that a transcoder receives per transcoded segment.
C(tc) Compensation if transcoder is not selected to transcode.
[MaxC,MinC] Valid range of compensation in a contract.
AB(b) Cumulative reward obtained by a broker.
Rf(v) Refund a viewer pays to a broker by bps.
M(s) Maximum reward possible of a segment, in bps.
NR(tc, v, s) Normalized rating.
N Number of transcoding tasks in a contract.
[MaxN,MinN] Valid range of transcoding tasks in a contract.
P Price paid by transcoded segment.
Rs Max refusals which are tolerated by a broker.
T Duration in which a contract is valid after acceptance.
τ Value representing trustworthiness of a transcoder ([0, 1]).

4.4.2 Performance measures

In many aspects, the idea of the agents’ rationality is linked to a performance mea-
sure [25]. Not only for evaluating the effectiveness of a plan of action but also for learning.
When learning, the agents need a way to measure their performance. In the ABR domain,
it is usual to resort to utility functions to evaluate performance, such as Equation 2.18
in Section 2.6. Thus, it is natural that the reasoning model of the three roles hangs on
maximizing a gained utility.

Work on [14] defines an evaluation function that takes into consideration the average
bitrate and the expected fraction of the time spent not rebuffering. The main goal is to
optimize the utility for just one viewer, and it ignores the source of the video segments.
We took those ideas, simplified the equation to a deterministic model, and adapted it to
a distributed environment, allowing the viewers to evaluate the video segment providers
with a performance measure related to their QoE.

However, before defining our performance function, let us take the video that is being
broadcast and slice it into n segments with fixed duration T . We define a video stream
S as a sequence of segments, S = {s0, s1, ..., sn}. In the same way, we take the set of
viewers in an ABR session as V = {v0, v1, ..., vn}, and the set of transcoders as TC =
{tc0, tc1, ..., tcn}. B(v, tc, s) is a primitive function that denotes the bits that a viewer v
downloaded from a transcoder tc when it required a segment s, and I(v, tc, s) denotes

51

the time interval passed during the playback of s, including eventual interruptions. The
function S(v, tc, s) says if the association was successful or not, i.e., if the viewer could
completely download and play the segment, then it returns 1, or 0 otherwise.

Brokers have to counterbalance the benefits to viewers with the cost of offloading
transcoding to the transcoders. In other words, viewers must pay transcoders accordingly
with the reward they have got from them. Viewers might not pay for live video streaming,
the same way the reward paid to transcoders is not actual money. Even so, it is helpful
to pair viewers’ and transcoders’ rewards. This way, we assume there exists a function
Rf that returns the value per bitrate a viewer must refund the broker so the broker can
compensate transcoders for their job.

Using these characteristics, we define the Playback Assessment function (PA) as pre-
sented in Equation 4.3. PA returns the reward that a viewer obtained downloading a
segment from a provider. Since all the sub-functions have the same arguments, we omit-
ted them for readability. The constant β is empirically defined to adjust the equation
considering how bad viewers evaluate video playback interruptions (QoE). The dimension
of β is bps. The value returned by PA can be negative if the attempt to download and
play a segment was not successful.

PA(v, tc, s) = Rf(v) ·
[
B · S + β(T · S − I)

T

]
(4.3)

To understand how the PA equation should work, let us take the segment duration
of 2s and β at 250bps and then compare a stream at 3,000 Kbps with another at 6,000
Kbps2. This way, switching versions will improve PA by 1%. However, if increasing the
bitrate resulted in an interval of 1s per minute, the accumulated bitrate will decrease by
1%, then the viewer could have preferred the lower bitrate version. Figure 4.11 shows
how the accumulated PA value is impacted by different β values when the time interval
is increasing.

Viewer’s proxy can use Equation 4.3 to evaluate rewards achieved cooperating with
other agents’ roles of our architecture. However, it is still necessary to link PA with the
idea of the agent’s utility. For doing so, let us take p as one of our proposed agent roles
(broker, transcoder, and viewer proxy), and ar the rewards that an agent performing
p accumulates until now. We assume that there is a utility function U that, given the
situation where the agent performing p has achieved ar, returns the corresponding utility
value. We also assume that U is monotonic between the ar domain, i.e., considering a
fixed role p, if ar1 > ar2 then U(p, ar1) > U(p, ar2). In other words, agents who perform
roles defined in our proposed architecture will always prefer states that lead them to

2Using Twitch’s encoder, the bitrates of 3,000 Kbps and 6,000 Kbps correspond to 720p-30fps and
1080p-60fps quality versions, respectively. See https://stream.twitch.tv/encoding/.

52

https://stream.twitch.tv/encoding/

Figure 4.11: Accumulated PA value for different β values.

accumulate more rewards, and maximizing cumulative reward agents maximize utility as
well.

Considering what was said, we proceed to define our roles’ cumulative reward func-
tions, which, under the assumption of the utility function U , we are using to compare the
preferability of scenarios.

The Broker will reward the Transcoder based on the expected effort to complete the
transcoding task. Equation 4.4 propose function R that takes as arguments tc and s,
and returns the reward that tc achieved from transcoding s. If the Broker did not assign
the transcoding of s to tc, R must return zero. Supposing a transcoder was not selected
for any transcoding job, it receives compensation. The compensation is an incentive for
transcoding reserving resources for completing future tasks. The function C returns a
non-zero value if the Transcoder met the conditions.

AT (tc) =
∑
s∈S

R(tc, s) + C(tc) (4.4)

Viewer’s cumulative reward can be calculated from Equation 4.3 fixing a viewer and
then iterating all over the transcoders and segments, then multiplying by the correspond-
ing refund, as shown in Equation 4.5.

AV (v) =
∑
tc∈TC

∑
s∈S

PA(v, tc, s) (4.5)

The broker’s cumulative reward function AB represented by Equation 4.6 is the dif-
ference between the sum of the rewards obtained by viewers (Equation 4.5) and the sum
of the rewards delivered to the transcoders during a session (Equation 4.4).

53

AB =
∑
v∈V

AV (v)−
∑
tc∈TC

AT (tc) (4.6)

4.4.3 Ratings normalization

To evaluate transcoders’ trustworthiness, brokers must collect feedback from viewers
and use them as input to the T&RM. This procedure is prescribed by capability BC4
described in Section 4.1.4. The rating input for numerical T&RM are usually in the
range [−1, 1], so ratings obtained by Equation 4.5 must be normalized by the Broker.
This normalization is a linear transformation from the range including the maximum and
minimum possible reward to the interval [−1, 1].

The viewer obtains the maximum reward when there is no interruption in the playback.
In this case, the maximum possible reward is equal to the bitrate of the transcoded
segment times the corresponding refund. Brokers can estimate the bitrate that resulted
from the transcoding. Thus, we assume there exists the function M that takes a segment
s and returns the estimated bitrate. However, the minimum possible reward depends on
the timeout set up in the viewer’s player, which is not on the broker’s domain. In practice,
players tolerate interruptions many times longer than the duration of a segment. Anyway,
we assume that rating feedback less than five times the negative maximum has no use in
the model. Putting these reasons on the table, we suggest that rating normalization use
Equation 4.7, where TO is the timeout relative to the segment duration.

NR(v, tc, s) = max

(
2 · PA(v, tc, s)− TO(s) ·M(s)

(TO(s) + 1) ·M(s) − 1,−1
)

(4.7)

4.5 T&R for transcoder selection

Thinking about the work that our model imposes on brokers, after a certain point,
brokers will form a set of available transcoders where some of them will be well known
while others still need to be tested. Therefore, brokers should balance their strategies
between exploiting the best-known transcoders or exploring the unknown ones to learn
about them. Regarding learning of the available transcoders, we mean that brokers must
form a belief about how good a specific node is as a transcoder to a group of viewers.
This external belief, external since it is not reflexive, is a measure of the reputation of
the transcoder in the community of viewers. For the Broker, a transcoder’s reputation is
represented by a pair of values - the transcoder’s trustworthiness (T) and a measure of
confidence in the first value, the reliability (ρ).

54

Brokers should be agnostic about the transcoders’ expected performance to avoid
making too many assumptions about transcoders’ behavior. However, it can be helpful if
brokers could model the probability distribution of transcoders’ performance as a beta or
a Gaussian distribution. Then, relate trustworthiness and reliability with the shape of the
curve. Therefore, novice transcoders will begin with a short and wide curve. However,
as the broker tests the novice, the broker accumulates information from the viewers, then
reliability grows, and the curve narrows around the mean. Figure 4.12 is a representation
of brokers model the transcoder performance as a single-tailed Gaussian distribution,
where the first value of the pair is the trustworthiness and the second the confidence.

Figure 4.12: Proposed model for transcoders performance based on reputation.

Considering this transcoder reputation model, we suggest that the implementer of
our architecture select a bandit algorithm to balance exploitation and exploration. The
model is very close to the Thompson Sampling algorithm [61]. However, many stochastic
bandit algorithms can fit well. Indeed, outcomes from experiments described in Chapter 5
indicate that combining reputation with stochastic bandit algorithms mitigates the risk
of fake feedback attacks, also referred to as unfair feedback attacks. The conditions to
this are that brokers must substitute simple averaging to reputation as input of MAB
algorithms and apply a T&RM that offers witness credibility evaluation. Figure 4.13 is
a representation of this idea. We hypothesize that relying on T&R capacity to evaluate
witness credibility, stochastic bandit’s algorithms should perform as expected even when
attacked with fake feedback. Besides, since trust values in its bottom-line semantics is a
subjective probability of performance, using τ(a) instead of µ(a) should not compromise
the guarantees of stochastic bandit’s algorithm.

55

(a) The conventional model. (b) The proposed solution.

Figure 4.13: Schematizing conventional MAB and T&R with MAB algorithms.

The FIRE T&RM describe in [34, 23], and in Section 2.2.3 of this work, fits in this
proposal since it is a numerical model which offers a mechanism to witness credibility
evaluation. As explained in [34], the FIRE T&RM only requires that Interaction Trust
(IR) and Witness Reputation (WR) were available as information sources to enable the
witness credibility, which is the way we propose to use it.

Nevertheless, for evaluating witness credibility, FIRE T&RM requires that report from
direct interaction is available. Direct interaction means that the Broker has a player or
emulates one, and it requires transcoded segments for itself. When the same node performs
the roles of broker and viewer simultaneously, direct interaction is naturally available. It
might not be possible when the Broker is an infrastructure node and not an end-user. In
this case, the Broker must elect an accredited viewer per streaming session whose reports
are as trustworthy as direct ones. Since not all T&RM requires direct interaction reports
to evaluate witness credibility, we left the heuristic to electing an accredited viewer to the
implementer of our architecture.

Reputation-based node selection algorithms

Since some MAB algorithms tend to narrow the set of choices to only a few options,
it may overload some FEC nodes and degrade their performance. Besides, as FEC is a
dynamic and unpredictable environment, even the best-evaluated node can quit without
warning. Thus, MAB algorithms may perform better if modified to take into consideration
load-balancing. In [24], we introduce the Reputation-base Node Selection (ReNoS), as
presented in Algorithm 4.

The ReNoS algorithm balances exploration and exploitation to avoid overloading of
the most trustworthy transcoders. When a new transcoder registers itself, it receives an
initial trust evaluation above the threshold but slightly below the higher evaluation value,
raising its chance to be selected in the next iteration. Concerning ReNoS parameters,
the input Nodes is the set of available transcoders. The input Factor must be equal
to or greater than 1 and represents how much is desired to explore the set of available

56

transcoders. The default value for Factor is 2. The input Threshold is the interaction
threshold defined in [35] and explained before in Section 2.2 of Chapter 2.

Algorithm 4 Reputation-based Node Selection (ReNoS)
1: procedure ReNoS(Nodes, Factor, Threshold)
2: Update T&R evaluations of Nodes
3: Sort Nodes by Trustworth
4: Distribution ← Empty dictionary
5: Probability ← 1.0
6: for Each N in Nodes do
7: if Trustworth(N) ≥ Threshold then
8: Distribution[N] ← Probability / Factor
9: Probability ← Probability − Distribution[N]

10: Last ← N
11: Distribution[Last] ← Distribution[Last] + Probability
12: Selected ← Draw a node by Distribution
13: return Selected

An issue with ReNoS is that it requires the initial trust value to be high. Thus, the
trustor must believe that a new and unknown node is as trustworthy as a very known
and well-evaluated one. Otherwise, the exploration will not work adequately. This policy
is comparable with the UCB1 MAB algorithm, where the less tried bandits are those
with the highest chance of being selected in the next round. Nevertheless, a high initial
trust value might not be adequate for other usages than selecting. For example, when
we introduced the negotiation phase protocol described in Section 4.3.2, the selection
algorithm had to be changed so it would work with a more conservative initial trust
value.

Thus, a new version of the ReNoS algorithm was defined as presented in Algorithm 5.
The Reputation-base Node Selection II (ReNoS-II) is based on the same idea of the
Thompson Sampling MAB algorithm, first proposed in [61]. The ReNoS-II takes into
consideration the node performance modeling suggested in Section 4.5. When a new
transcoder registers itself, it receives a reputation value with low trustworthiness and
confidence values, so its performance distribution curve is flat and wide, close to the
uniform distribution. ReNoS-II will use the set performance curves to predict the node’s
reward and select the node with the highest predicted value. Thus, with a flat and wide
curve, a high reward is as probable as a low reward, then this algorithm will likely select
the novices. The performance curve narrows around the confidence value as the confidence
value increases, so veteran nodes are more prone to exploitation than exploration.

The inputs of ReNoS-II are the set of available nodes, Nodes; ModelDistribution,
which is a probability distribution to predict reward based on trust and reliability values;

57

Trustworthiness, a function that returns the trust value of a node; Reliability, a function
that returns the reliability of the trust value returned by Trustworthiness; and the
Threshold. We have empirically determined that the best trust threshold below which
brokers should disregard transcoders can be obtained by the equation th(n) = 1 − 1/n,
where th is the desired threshold, and n is the number of available transcoders.

Algorithm 5 Reputation-based Node Selection II (ReNoS-II)
1: procedure ReNoS-II(Nodes, Model-Distribution, Trust, Reliability, Threshold)
2: Update T&R evaluations of Nodes
3: selected-node ← None
4: greater-prediction ← -1
5: for Each n in Nodes do
6: T ← Trust(n)
7: ρ ← Reliability(n)
8: if T ≥ Threshold then
9: predicted ← Model-Distribution(T , ρ)

10: if predicted ≥ greater-prediction then
11: selected-node ← n
12: greater-prediction ← predicted
13: return selected-node

In Chapter 5, we validate the proposed architecture in real-time transcoding sce-
nario. We believe that the architecture adequately copes with the problem of distributed
transcoding on the FEC, as indicated by the experimental results.

58

Chapter 5

Experimental validation

Real-time transcoding of a live streaming event in ABR requires tight synchronization.
Transcoders must download a part of the video stream before starting the transcoding,
and only after they finish the job will the resulting segment be available for the viewers.
The contribution of a transcoder settles in close relation to its processing power and
network bandwidth. Notwithstanding, our approach must observe if transcoded segments
are ready on time as requested.

In this chapter, we present the designed experiments to validate our proposal. The
main objective of the experiments is to check whether the multi-agent architecture can
adequately cope with the problem of distributed transcoding on the FEC, considering the
risk of cooperating with potentially untrustworthy partners. More specifically, we want
to verify the following assumptions:

1. Combining T&RM and MAB improves nodes selection by mitigating the risk of fake
feedback manipulation.

2. The algorithm ReNoS-II can outperform the original ReNoS when initial trust values
are far from the highest possible.

We intend to prove the feasibility of the proposed architecture using a prototype
implemented strictly following the guidelines described in Chapter 4. The prototype
performs simulations of the tasks needed in real-time distributing transcoding. In this
experiment, we have to generate a stream whose video segments duration, periodicity, and
length ensembles an actual live video streaming session. For doing so, we appropriate the
experimental results presented in [24], which found out that viewer players request new
video segments in a period close to the duration of the segments. Also, a typical end-user
CPU should complete a segment transcoding in up to 0.5s.

Validating our multi-agent architecture combining T&RM and MAB for selecting
nodes in the FEC involves identifying the conditions in which the environment open-

59

ness could harm the MAB algorithms guarantees. One of these conditions is when agents
are not trustful in their feedback reports. Since transcoders are interested in receiving as
many transcoding jobs as possible, untrustworthy transcoders may form a coalition with
viewers to manipulate brokers’ choices. This kind of attack to trust systems is referred to
as fake feedback attacks [41].

In [24], we compared the performance of the ReNoS algorithm against MAB UCB1
and random selection of transcoder nodes. Both ReNoS and MAB UCB1 performed
better than random selection, presenting close results when the comparison involves only
a cumulative reward. However, ReNoS has the drawback of needing the initial trust value
to be close to the maximum for enabling the exploration of novices. Usually, initial trust
and reputation values are set to the minimum or a neutral to discourage agents from
switching identities. We designed the algorithm ReNoS-II so initial trust can be neutral.
We validate the ReNoS-II algorithm by comparing it with Random selection, MAB UCB1,
ReNoS, and the simple application of T&RM, which we referred to as Greedy trust (GT).
We apply them in our simulated environment and compare the outcomes.

5.1 Simulation prototype

We developed a prototype to simulate the validation environment using the Java Agent
Development Framework (JADE) [62]. JADE is an open-source framework for multi-agent
systems development using Java programming language. JADE has the advantage of
being compliant with the Foundation for Intelligent Physical Agents (FIPA)1 specification
and has built-in features that simplify the implementation of behaviors, messaging, and
response to time events. We have chosen the JADE framework for implementing the
prototype of the DTS due to our familiarity with the Java programming language and the
JADE similarity with other relevant Java simulation tools, like PeerSim2. The prototype
source code is available at [63].

Figure 5.1 presents the main classes implemented in the JADE prototype. All three
roles are subclasses of Agent, one of the classes of JADE in-built class hierarchy. The
Classes Broker, V iewerProxy, and Transcoder are abstract classes, i.e., they cannot be
instantiated. They need to be extended by concrete classes that implement some specific
behaviors. What can be seen about the abstract class Broker is that all brokers need
to have a collection of segments and a collection of transcoders, and the V iewerProxy
subclasses will have a player as a component.

1FIPA is an IEEE Computer Society standards organization that promotes agent-based technology
and the interoperability of its standards with other technologies. For more information, see http://www.
fipa.org/.

2See http://peersim.sourceforge.net/ for more information about PeerSim.

60

http://www.fipa.org/
http://www.fipa.org/
http://peersim.sourceforge.net/

Figure 5.1: The simulation prototype class diagram.

Figure 5.1 shows the concrete classes SequentialBroker, SequentialViewerProxy and
RandomTimeTranscoder. The prefix Sequential indicates that the segments are processed
within their order of creation. The RandomTime prefix in the RandomTimeTranscoder
means that the time spent transcoding a segment is randomly distributed inside an in-
terval. The average interval is characteristic of the profiles listed in Table 5.1. Behaviors
are not represented in Figure 5.1, but are instantiated in the concrete subclasses and are
closed related to the capabilities specified in Section 4.1.4 from Chapter 4.

Table 5.1: Transcoder profiles.

Profile Serving Range Transcoding Range
A 1s± 15% 0.5s± 100%
B 2s± 30% 0.75s± 100%
C 4s± 60% 1s± 100%

5.2 Experimental setup

The experimental setup units and parameters are defined as follows. The broker agent
can select nodes using five algorithms: Random selection, MAB UCB1, GT, ReNoS,
and ReNoS-II. Using random selection, brokers select transcoders by change with equally
distributed probability. When using the GT algorithm, brokers select the transcoder with
the highest trust value after a fixed number of bootstrap turns. In some aspects, GT
is similar to the ε-First algorithm described in Chapter 2, where the bootstrap turns
correspond to the initial exploratory phase. The algorithms MAB UCB1, ReNoS, and
ReNoS-II, will work as described in Chapters 2 and 4, respectively. Viewer Proxy agents
will request segments at their duration, i.e., every 2 seconds. We set the Viewers’ players’

61

buffers for three-segment length. Transcoders’ performance is accordingly the profiles
of Table 5.1. The serving range determines how long a viewer will wait for a segment,
but transcoding times include time spent downloading original segments from the server.
Transcoders of profiles A and B tend to accumulate positive results, but the C profile is
more prone to harm viewers’ utility. In Table 5.1, values are consistent with the range
observed from the experimental outcomes in [24].

The simulated live video streaming generates new segments every 2 seconds. Every
segment is 2s in length and has 1MB after transcoding, even though segments have differ-
ent bitrates in real situations. The total video length is 400 seconds or 200 segments. In
addition, agents are willing to exchange information and never reject an offer. Those are
assumptions that we can hardly find in a real scenario. However, our objective is to com-
pare the three algorithms in fair conditions. Besides, these assumptions are close to those
used to test the FIRE model in [23]. Other experimental parameters are summarized
in Table 5.2. For understanding the parameters Alpha, Beta, and Credibility threshold
refers to Section 2.2 from Chapter 2.

Two scenarios were tested to make explicit the effect of fake feedback attacks and how
they could compromise our distributed transcoding system if T&RM were not employed.
As input to the algorithm MAB UCB1, we used the simple averaging of all normalized
ratings (range -1 to 1). As input to GT, ReNoS, and ReNoS-II, we used the trust and
reliability values produced by the FIRE T&RM [23] using the witness credibility approach
proposed in [34]. For providing the direct interaction required for witness credibility
evaluation, we introduced an additional viewer proxy agent referred to as the accredited
viewer. The reward accumulated by the accredited viewer is not added to our comparisons.

The ReNoS-II algorithm receives as a parameter a PDF that characterizes the choices
in terms of trustworthiness (T) and reliability (ρ). In these experiments, we used a Gamma
distribution whose parameters {µ, sd} are defined by Equation 5.1.

µ = T · ρ, sd = e−2·ρ (5.1)

The two tested scenarios comprise:

• Scenario 01: The objective is to obtain a comparative baseline from fair evaluations.
It employs twenty viewer proxies which are all honest about their feedback reports.
Transcoders are referred to as ta1, tb2, tb3, tc4, and tc5 accordingly to its profile in
Table 5.1, i.e., ta1 is of profile A, tb2 and tb3 are of profile B and tc4 and tc5 of
profile C.

• Scenario 02: The objective is to observe what happens when a transcoder tries to
manipulate the distributed transcoding with fake feedback attacks. In this scenario,

62

Table 5.2: General experimental parameters.

Parameter Value
Number of repetitions 12
Confidence interval 95%
Number of Brokers 1
Number of Viewer Proxies 20
Number of Transcoders 5
Number of segments/turns 200
Segment duration 2s
Viewer Proxies’ segment’s buffer length 3
Viewer’s player timeout 6s
Alpha 1
Beta 1,000
Credibility threshold 0.8
Evaluation values range [0, 1]
Trust threshold 0.5
Initial trust value 0.75
Initial reliability value 0.5
ReNoS-II PDF function see Equation 5.1
Rf(v) 1, 000 per Mbps
R(tc, s) fixed in 1 per segment
C(tc) fixed in zero
GT bootstrap turns 40

we added two co-opted Viewer Proxy agents. In every opportunity, they evaluate
the transcoder tc5 with the highest possible rating (1) and the other transcoders
with the worst possible (−1). The goal of the untrustworthy agents is to increase
the chance of tc5 being selected by the Broker.

5.3 Measurements

From data collected during the experiment, we derived three metrics used to analyze
and compare the proposal performance. The metrics are Broker’s cumulative reward,
exploration factor, and transcoder tc5 assignments.

Broker’s cumulative reward

This measure is the reward accumulated by the broker during the whole running,
calculated accordingly Equation 4.6. In our architecture, the first step to obtaining this
metric is a viewer’s proxy applying Equation 4.3. Let us assume that the believes’ database
of a viewer proxy v1 was the way described in Table 5.3. The playback interval is the

63

time spent by the viewer’s player playing a segment, including in it the time when the
playback was eventually interrupted. Success is 1 if the player could finish playing the
segment, or 0 if the playback waited until it reached timeout.

Table 5.3: Example of a viewer’s proxy believes’ database.

Segment Source Length Duration Playback interval Success
s1 ta1 1Mb 2000s 2000s 1
s2 tb2 1MB 2000s 2500s 1
s3 tc5 1MB 2000s 6000s 0

When it is time to request the updated playlist, v1 reports to the broker the rewards
it obtained from every played segment. Considering the parameters in Table 5.2, v1

calculates playback assessment as follows:

PA(v1, ta1, s1) = 1, 000
1Mb

· 1Mb · 1 + 1, 000 · (2, 000 · 1− 2, 000)
2, 000 = 0.500

PA(v1, tb2.s2) = 1, 000
1Mb

· 1Mb · 1 + 1, 000 · (2, 000 · 1− 2, 500)
2, 000 = 0.262

PA(v1, tc5.s3) = 1, 000
1Mb

· 1Mb · 0 + 1, 000 · (2, 000 · 0− 6, 000)
2, 000 = −2.861

We calculate the broker’s cumulative reward as follows if v1 were the only viewer
registered into the broker, and segments listed in Table 5.3 are the only ones to consider:

AB = (0.500 + 0.262− 2.861)− (1 + 1 + 1) = −5, 099

The cumulative reward calculated above is negative since the chosen parameters
toughly penalize utility when playback is interrupted until timeout, which is the case
with v1 trying to play segment s3. However, an unsuccessful attempt to play a segment
was a rare event in the experiment described in this work, which allowed us to obtain a
positive cumulative reward in all repetitions.

Exploration factor

The exploration factor is the proportion of times the broker selected a transcoder
other than the most selected. If the exploration factor is too low, it should indicate
that the algorithm could overload a transcoder by over selecting it. Let us suppose that
transcoder tc5 was the most selected transcoder after a repetition ends, and it was selected
to transcode a segment 60 times. Since the total number of segments is 200, as described
in Table 5.2, we can calculate the exploration factor as follows:

64

Exploration_Factor = (200− 60)/200 = 0.70 (5.2)

Considering the number of available transcoders is 5, the maximum possible explo-
ration factor is 0.80, and the minimum is zero. An exploration factor of 0.7 means that the
most selected transcoder had 71.43% more task assignments than any other transcoder.

Transcoder tc5 assignments

This measure is the total number of times that transcoder tc5 was selected. An in-
crease in this measure between Scenarios 01 and 02 should indicate that the fake feedback
strategy was successful.

5.4 Outcomes

Table 5.4 presents the summarized data obtained from the experiment after all the
repetitions. It shows the cumulative reward, the exploration factor, and the number of
assignments the broker gave to transcoder tc5. We present the measures summarized by
the average and standard deviation.

We intend to use Student’s t-test to compare the averages in cumulative reward as it
is advised by [56] for comparing two systems’ performances. However, first, it is necessary
to verify if we can accept that data follows the normal distribution. Figure 5.2 shows the
QQ plots of every selecting algorithm and scenario combination that visually compare our
data with the normal distribution. As said in [56], a K-S test is adequate to compare two
continuous distributions when samples are small. Table 5.5 shows the respective D and
p-Value of applying the K-S test to our outcomes, after data normalization, calculated as
described in [58]. Since all p-Values are insignificant, we can reject the hypothesis that
our data does not follow the normal distribution. In this condition, it is safe to apply the
Student’s t-test to compare the meanings from Scenarios 01 and 02.

5.5 Discussion

Table 5.6 shows the average cumulative reward for every algorithm-scenario combina-
tion, with the respective deviation. We calculated the estimated error using t-Student’s
distribution at 0.95 confidence. We proceed to compare cumulative reward using t-Value
and p-Value when it is relevant to our experimental objectives. Table 5.7 shows the com-
parisons. Figure 5.6 presents the data from Table 5.6 overlaid by the exploration factor
present in Table 5.4.

65

Table 5.4: Experimental outcomes over algorithm and scenario.

Selection
algorithm Scenario

Cumulative
reward

Exploration
factor

tc5
assignments

Average SD Average SD Average SD
Random 01 721 69 0.76 0.015 39.67 6.23
Random 02 722 64 0.76 0.020 37.92 4.80
MAB UCB1 01 855 27 0.75 0.001 29.90 2.35
MAB UCB1 02 796 24 0.77 0.015 46.17 3.21
ReNoS 01 839 78 0.74 0.015 32.67 5.66
ReNoS 02 845 56 0.75 0.015 31.17 6.04
ReNoS-II 01 1,205 108 0.59 0.084 17.00 4.88
ReNoS-II 02 1,177 143 0.60 0.084 19.83 7.48
GT 01 1,558 34 0.41 0.100 7.75 2.73
GT 02 1,551 26 0.42 0.103 5.50 2.61

Table 5.5: Results of K-S test for normality in data from Table 5.4.

Algorithm - Scenario D p-Value
Random - Scenario 01 0.2111 0.1476
Random - Scenario 02 0.2178 0.1199
UCB1 - Scenario 01 0.1839 0.3170
UCB1 - Scenario 02 0.1380 0.7627
ReNoS - Scenario 01 0.1764 0.3273
ReNoS - Scenario 02 0.1769 0.3230
ReNoS-II - Scenario 01 0.1823 0.3302
ReNoS-II - Scenario 02 0.2058 0.1727
GT - Scenario 01 0.1532 0.6674
GT - Scenario 02 0.1545 0.6542

Table 5.6: Confidence interval for cumulative reward in Table 5.4.

Algorithm - Scenario Average SD Estimated Error Confidence interval
at 95% confidence

Random - Scenario 01 721 69 151.30 569.04 to 872.49
Random - Scenario 02 722 64 140.10 581.91 to 861.92
UCB1 - Scenario 01 855 27 59.01 796.40 to 914.43
UCB1 - Scenario 02 796 24 52.42 743.40 to 848.24
ReNoS - Scenario 01 839 78 172.74 666.25 to 1,011.73
ReNoS - Scenario 02 845 56 123.07 721.81 to 967.94
ReNoS-II - Scenario 01 1,205 108 237.92 967.18 to 1,443.02
ReNoS-II - Scenario 02 1,177 143 315.54 861.79 to 1,492.87
GT - Scenario 01 1,508 34 73.76 1,483.76 to 1,631.28
GT - Scenario 02 1,551 26 56.76 1,493.94 to 1,607.47

Observing cumulative reward measures in Table 5.4, we can see that when the broker
applied random selection, the reward was worse than with other selection algorithms. It

66

(a) Random in Scenario 01. (b) Random in Scenario 02.

(c) UCB1 in Scenario 01. (d) UCB1 in Scenario 02.

(e) ReNoS in Scenario 01. (f) ReNoS in Scenario 02.

(g) ReNoS-II in Scenario 01. (h) ReNoS-IIin Scenario 02.

(i) GT in Scenario 01. (j) GT in Scenario 02.

Figure 5.2: QQ-Plot of outcomes over algorithms and scenarios.

indicates that learning about available performance transcoders and choosing those who
could cope with the transcoding tasks makes a difference. Also, when the broker used
random, there was no significant difference between Scenarios 01 and 02. Of course, the
fake feedback strategy has no effect if the broker selects transcoders randomly.

When the broker applied MAB UCB1, the input was the average rating that view-
ers’ proxies reported. Regarding Scenario 01, cumulative reward employing MAB UCB1
was significantly higher than that applying random, despite the exploration factor being
closed for the two selection algorithms. It indicates that when there is a difference among
expected returns from alternatives, the broker which applied MAB UCB1 was able to

67

Figure 5.3: Broker’s cumulative reward overlaid by exploration factor.

Table 5.7: Cumulative reward comparison using t-Test at 95% confidence.

Comparison t-Value p-Value Interpretation
Random - Sc. 01 with 02 -0.400 ≥ 0.05 No significant difference.
MAB UCB1 - Sc. 01 with 02 5.7563 < 0.05 Scr. 01 > Scr. 02.
ReNoS - Sc. 01 with 02 -0.2114 ≥ 0.05 No significant difference.
ReNoS-II - Scr. 01 with 02 0.5357 ≥ 0.05 No significant difference.
GT - Scr. 01 with 02 0.7342 ≥ 0.05 No significant difference.
MAB UCB1 with Random in Scr. 01 6.3156 < 0.05 MAB UCB1 > Random.
MAB UCB1 with Random in Scr. 02 3.7748 < 0.05 MAB UCB1 > Random.
MAB UCB1 with ReNoS in Scr. 01 0.6860 ≥ 0.05 No significant difference.
MAB UCB1 with ReNoS in Scr. 02 -2.7957 < 0.05 ReNoS > MAB UCB1.
ReNoS-II with ReNoS in Scr. 01 9.4939 < 0.05 ReNoS-II > ReNoS
ReNoS-II with ReNoS in Scr. 02 7.4842 < 0.05 ReNoS-II > ReNoS
GT with ReNoS-II in Scr. 01 10.3256 < 0.05 GT > ReNoS-II.
GT with ReNoS-II in Scr. 02 8.4393 < 0.05 GT > ReNoS-II.

explore alternatives and exploit the acquired knowledge to improve its choices. However,
about Scenario 02, from Table 5.7 we can observe a significant decrease in cumulative
reward from Scenario 01. Simultaneously, the number of tasks assigned to transcoder tc5
increased significantly. It indicates that the fake feedback strategy succeeded in manipu-
lating the broker choices, and this exploitation of that vulnerability resulted in a loss to
the broker and viewers’, as expected from results presented in [24].

Proceeding to analyze the results obtained when the broker employed ReNoS in combi-
nation with FIRE T&RM, we see from the comparisons listed in Table 5.7 that cumulative

68

reward in Scenario 01 is comparable with that on MAB UCB1. We observe the same sim-
ilarity in the exploration factor in Table 5.4. However, fake feedback attacks in Scenario
02 do not result in any damage to cumulative reward. As we also note, transcoder tc5
task assignments did not increase. These outcomes indicate that ReNoS combined with
FIRE T&RM is a better selecting algorithm choice than MAB UCB1 when fake feedback
attacks could occur.

From Table 5.7, the broker’s cumulative reward when ReNoS-II was employed is sig-
nificantly higher than those obtained from MAB UCB1 and ReNoS in both scenarios,
although the variance is similarly higher. Like with ReNoS, no significant decrease in
cumulative reward exists between outcomes from Scenarios 01 and 02, which allows us
to conclude that protection against fake feedback attacks is present. We can also note
that the exploration factor is smaller for ReNoS-II than for MAB UCB1 and ReNoS. The
exploration factor observed for ReNoS-II indicates that the highest evaluated transcoders
received about 180% more tasks than any other transcoder available in the experiment.

When the broker employed the GT selecting algorithm, the data from Table 5.7 shows
that cumulative reward is significantly higher than that observed for ReNoS-II, and, also,
we can not observe harmful effects from fake feedback attacks in Scenario 02, accordingly
with Table 5.4. However, GT’s exploration factor was smaller than any other tested
selecting algorithms. An exploration factor of only 0.41 means that the highest-rated
transcoder received 59% of all transcoding tasks, or, from another perspective, about 5.86
times more than any other transcoder. There is a correlation between cumulative reward
and the exploration factor since stochastic MAB policies tend to prioritize exploiting in
the late turns. This correlation can be seen in Figure 5.3. However, if the exploration
factor is too low, some transcoders might be overloaded, which can result in a small
cumulative reward and higher regret.

We can explain how the witnesses’ credibility evaluation of FIRE T&RM reduced the
damage of fake feedback attacks observing the distribution of transcoding tasks over time,
which we represent in Figure 5.4. Figures 5.4a and 5.4b present the tasks assignments at
one of the repetitions when MAB UCB1 was the selecting algorithm. We can see that in
Scenario 2, the transcoder tc5 performed many more transcoding tasks, which increased
its reward amount. However, since transcoders of C profile are not as good as transcoder
of other profiles, the broker’s final reward decreased. Therefore, we can conclude that
the tc5 strategy on fake feedback in manipulating the broker’s choices was successful.
The same did not occur when ReNoS were guiding broker’s choices. We can see that
tc5 assignments decreased when we compare Figure 5.4c with 5.4d. Thus, we conclude
that filtering the ratings employing the witnesses’ credibility evaluation, as defined in the
FIRE model, mitigated the effects of fake feedback.

69

(a) UCB1 assignments in Scenario 1. (b) UCB1 assignments in Scenario 2.

(c) ReNoS assignments in Scenario 1. (d) ReNoS assignments in Scenario 2.

Figure 5.4: Transcoding assignments over algorithms and Scenarios 1 and 2.

5.5.1 Analysing ReNoS-II

One of the differences between ReNoS and ReNoS-II is that ReNoS-II uses the reliabil-
ity measure besides the trust and reputation value. A low reputation value can mean two
things: that the agent does not present a higher performance, or the agent performance is
volatile. These two characteristics are not desirable in a transcoder agent. Thus, brokers
should defer transcoders with low-reliability values in favor of those with higher reliability.

Figure 5.5 shows how trust and reputation, and reliability values evolved with ReNoS-
II, meanwhile execution of the two scenarios. We observe that trust and reliability have
a positive covariance in the FIRE model. Besides, for the tc5 agent, the reliability value
increased in Scenario 2, although trust and reputation values remained almost the same
in Figures 5.5c and 5.5d.

70

(a) Trust & reliability of ta1 in Scenario 1. (b) Trust & reliability of ta1 in Scenario 2.

(c) Trust & reliability of tc5 in Scenario 1. (d) Trust & reliability of tc5 in Scenario 2.

Figure 5.5: Evolution of trust and reliability over time with ReNoS-II.

5.5.2 Considerations about the exploration factor

We have observed that the exploration factor correlates with the cumulative reward.
As can be seen in Figure 5.3, as lower is exploration, the higher is the broker’s cumulative
reward. Also, the difference between experimental scenarios does not seem to affect the
exploration factor. However, we are afraid that analysis using this metric can not be
extrapolated beyond the limits of this experiment. The first safeguard is that available
choices were well behaved and remained fixed during all experimental repetitions. If
options do not change, and there is an option that is better than all the others, selecting it
will increase the cumulative reward when simultaneously decreasing the chance of others’
selection. Another safeguard is that algorithms’ users can tune parameters to adapt the
balance between exploration and exploitation to the application scenario, although our
experimental setup did not explore this possibility.

An empirical effort to characterize algorithms under the exploration factor should re-
quire a more dynamic setup and extrapolates the objectives of this dissertation. However,
although the presented arguments, the exploration factor is still helpful to analyze our
outcomes. Anyway, we consider that conclusions are safe if made under the other two
measures.

71

5.6 Final considerations

Regarding the main objective of our experiments, the outcomes and the following
analyses allow us to conclude that our approach performed as expected. The prototype
could adequately coordinate the simulated distributed transcoding in conditions similar
to those present in real-world situations. Considering the specific objectives:

• We conclude that combining our algorithms with T&RM evaluation improves node
selection from comparing the scenarios with and without fake feedback. We observed
that all tested algorithms performed significantly better than random choice. We
also observed a significant decrease in the broker’s cumulative reward when MAB
UCB1 and simple averaging was applied. The same reduction did not occur when
witnesses were first evaluated concerning their credibility using the FIRE T&RM.

• The broker’s cumulative reward was higher when transcoder selection was guided
by the algorithm ReNoS-II instead of ReNoS. Thus, we conclude that ReNoS-II out-
performs ReNoS in conditions compatible with those in the conducted experiments.

72

Chapter 6

Conclusion

In this work, we presented a multi-agent architecture for dealing with the problem of
distributing live video transcoding throughout FEC nodes and end-user devices. The ar-
chitecture related three software agent roles with well-defined responsibilities, the viewer
proxy, the transcoder, and the broker. The agents performing the broker role are respon-
sible for coordinating the interaction of the other two. We also suggested where to place
agents into the layers of the FEC network architecture to achieve the desired improve-
ment on QoS. Since delegating tasks in such an open and dynamic environment as FEC
can be risky, we explained how T&RM should be applied to evaluate the performance
of transcoders as delegates and the credibility of the viewer proxies as witnesses. Then,
we presented two algorithms for partner selection, ReNoS, and ReNoS-II, which take ad-
vantage of reputation reports from viewers to select the best nodes for performing the
transcoding tasks.

We carried out experiments to validate the proposed architecture. We compared our
algorithms with MAB UCB1 in two similar scenarios, one of those involving untrustworthy
agents that tried to manipulate broker’s choices. Analyzing the outcomes, we could see
that ReNoS is as performative as UCB1, and ReNoS-II outperformed the other two in
both scenarios.

MAB algorithms are designed to cope with the trade-off between exploring an un-
known population of individuals and exploiting based on the pursuit of knowledge. The
MAB algorithms depend on accumulating information in an evaluation function, which
frequently is not much more elaborate than the simple average metric. Our experiments
have shown that weighting and filtering information based on witness credibility can
protect MAB stochastic algorithms from manipulative agents’ behavior. Applying the
FIRE model evaluations in our experiment, we could mitigate the effects of fake feedback
attacks.

Applying the Tropos methodology [30], as described in Section 2.1.2, was essential to

73

understand the requirements from the point of view of means-end agents, allowing us to,
as much as possible, preserve the autonomy of involved agents. The review of previews
work that proposed architectures to distributed transcoding on FEC helped us identify
the roles in common and where the agent approach could contribute to the discussion.

Regarding the research objectives (Chapter 1), we consider that the proposed multi-
agent architecture combined the robustness of T&RM and stochastic and MAB algorithms
to mitigate the risk of fake feedback attacks in open environments considering the context
of real-time video transcoding on the FEC (Chapter 4). About the secondary objectives:

• The multi-agent architecture presents three agent roles with defined goals and ac-
tions. Performance measures such as the viewer’s and broker’s cumulative reward
were used, as well as the playback assessment function (Chapter 4).

• The ReNoS and ReNoS-II algorithms presented in Section 4.5 and Chapter 4 suc-
cessfully select partners to perform the transcoding tasks combining T&RM and
MAB algorithms.

• Experimental outcome presented in Chapter 5 mainly indicates that our proposal
is feasible for live-video distributed transcoding in open environments.

The described achievements of this work indicate the validity of our hypothesis that a
multi-agent system could improve partnership on FEC, despite proper proof would only be
achievable under a real-world application. As previews works, this is a step directly toward
solving the problem of safely distributing tasks over a collection of unknown potential
partners.

6.1 Publications

During this research project we have worked on the following articles:

• Charles A. N. Costa, Bruno Macchiavello, and Celia G. Ralha, Trust and reputa-
tion multiagent-driven model for distributed transcoding on fog-edge, in Proceedings
of the 21st International Workshop on Trust in Agent Societies, co-located with the
20th International Conference on Autonomous Agents and Multiagent Systems (AA-
MAS), 3-7 May 2021, Virtual. Available online at http://ceur-ws.org/Vol-3022/
paper5.pdf [24].

• Charles A. N. Costa, and Celia G. Ralha, Reducing fake feedback damage to stochas-
tic bandits algorithms with reputation, submitted to the AI Communications (The
European Journal of Artificial Intelligence), IOS Press (under review).

74

http://ceur-ws.org/Vol-3022/paper5.pdf
http://ceur-ws.org/Vol-3022/paper5.pdf

6.2 Future work

We have left some open questions which worth consideration in future work. We do
not suggest any reasoning model for the transcoder role, although the decisions made
by transcoding agents substantially affect its utility. What should a transcoder consider
when negotiating contracts with brokers? When would they give up the compensation
refusing a transcoding job offer? Should transcoders be informed about their reputation?
Besides, considering the services that CDN nodes deliver, an agent role specialized in
caching services should be desirable.

Our architecture has similarities with recommendation systems regarding the selecting
algorithms employed by the broker role. This fact instigates further research related
to the cold-start problem. While ReNoS and ReNoS-II have mechanisms to allow new
transcoders’ selection with little or no information about them, further investigation is
necessary. Questions like the following ones would be subject of interest. How fast a
recently registered untrustworthy transcoder can affect a broker’s selections? Is there
a trade-off between avoiding the popularity bias and being vulnerable to fake-feedback
attacks? Does the T&RM employed by the broker affect these issues? To answer such
questions new investigation needs to be done.

75

References

[1] Buyya, Rajkumar and Satish N. Srirama: Fog and Edge Computing, chapter Internet
of things (IoT) and new computing paradigms, pages 3–21. John Wiley & Sons, Inc.,
Hoboken, New Jersey, 2019. xiv, 21, 22

[2] Dabrowski, Marek, Robert Kolodynski, and Wojciech Zielinski: Analysis of video
delay in internet TV service over adaptive HTTP streaming. In Position Papers
of the 2015 Federated Conf. on Computer Science and Information Systems, pages
143–150, Lodz, Poland, oct 2015. PTI. xiv, 21, 23

[3] Chang, Zhi H., Bih F. Jong, Wei J. Wong, and M. L. Dennis Wong: Distributed
video transcoding on a heterogeneous computing platform. In 2016 IEEE Asia Pacific
Conf. on Circuits and Systems (APCCAS), pages 444–447, Jeju, Republic of Korea,
oct 2016. IEEE. xiv, 2, 26, 27

[4] He, Qiyun, Cong Zhang, Xiaoqiang Ma, and Jiangchuan Liu: Fog-based transcoding
for crowdsourced video livecast. IEEE Communications Magazine, 55(4):28–33, apr
2017. xiv, 2, 3, 4, 24, 26, 27, 28, 29

[5] Liu, Xingchi, Mahsa Derakhshani, and Sangarapillai Lambotharan: Joint transcoding
task assignment and association control for fog-assisted crowdsourced live streaming.
IEEE Communications Letters, 23(11):2036–2040, nov 2019. xiv, 2, 3, 24, 26, 28, 29

[6] Bilal, Kashif, Emna Baccour, Aiman Erbad, Amr Mohamed, and Mohsen Guizani:
Collaborative joint caching and transcoding in mobile edge networks. Journal of Net-
work and Computer Applications, 136:86–99, 2019, ISSN 1084-8045. xiv, 2, 3, 24,
26, 29, 30

[7] Fu, F., Y. Kang, Z. Zhang, and F. R. Yu: Transcoding for live streaming-based
on vehicular fog computing: An actor-critic drl approach. In IEEE Conference on
Computer Communications Workshops (INFOCOM), pages 1015–1020, Toronto, ON,
Canada, 2020. IEEE. xiv, 2, 3, 30, 31

[8] Wang, Fangxin, Jiangchuan Liu, Cong Zhang, Lifeng Sun, and Kai Hwang: Intel-
ligent edge learning for personalized crowdsourced livecast: Challenges, opportuni-
ties, and solutions. Netwrk. Mag. of Global Internetwkg., 35(1):170–176, mar 2021,
ISSN 0890-8044. https://doi.org/10.1109/MNET.011.2000281. xiv, 2, 24, 26, 31,
32

[9] Chen, Xingyan, Changqiao Xu, Mu Wang, Zhonghui Wu, Lujie Zhong, and Luigi
Alfredo Grieco: Augmented queue-based transmission and transcoding optimization

76

https://doi.org/10.1109/MNET.011.2000281

for livecast services based on cloud-edge-crowd integration. IEEE Transactions on
Circuits and Systems for Video Technology, 31(11):4470–4484, 2021. xiv, 2, 24, 26,
32, 33

[10] Wooldridge, Michael: An introduction to multiagent systems. Wiley, Chichester, UK,
2nd edition, 2009, ISBN 978-0-470-51946-2. 1, 6, 7

[11] Oprea, Mihaela: Applications of multi-agent systems. In Information Technology,
pages 239–270. Kluwer Academic Publishers, 2004. 1

[12] Cisco: Cisco visual networking index: Forecast and trends, 2017-2022. Technical
report, Cisco, 2017. 1

[13] Duanmu, Zhengfang, Kede Ma, and Zhou Wang: Quality-of-experience for adaptive
streaming videos: An expectation confirmation theory motivated approach. IEEE
Transactions on Image Processing, 27(12):6135–6146, dec 2018. 2, 23

[14] Spiteri, Kevin, Rahul Urgaonkar, and Ramesh K. Sitaraman: BOLA: Near-optimal
bitrate adaptation for online videos. In The 35th Annual IEEE Int. Conf. on Com-
puter Communications (INFOCOM), pages 1–9, San Francisco, CA, apr 2016. IEEE.
2, 23, 51

[15] Bing, Benny: Next-generation video coding and streaming. John Wiley & Sons, Inc,
Hoboken, New Jersey, sep 2015. 2

[16] 23009-1:2012, ISO/IEC: Information technology — Dynamic adaptive streaming over
HTTP (DASH) — Part 1: Media presentation description and segment formats.
Standard, Int. Organization for Standardization, Geneva, CH, 2012. 2

[17] Pires, Karine and Gwendal Simon: DASH in twitch. In Proc. of the 2014 Workshop on
Design, Quality and Deployment of Adaptive Video Streaming, pages 13–18, Sydney,
Australia, 2014. ACM Press. 2

[18] Slivkins, Aleksandrs: Introduction to multi-armed bandits. Foundations and Trends
in Machine Learning, 12(1-2):1–286, 2019. 2, 18, 20

[19] Liu, L. and W. Shi: Trust and reputation management. IEEE Internet Computing,
14(5):10–13, 2010. 2, 17

[20] Granatyr, Jones, Vanderson Botelho, Otto R. Lessing, Edson E. Scalabrin, Jean
Paul Barthès, and Fabrício Enembreck: Trust and reputation models for multiagent
systems. ACM Computing Surveys, 48(2):1–42, nov 2015. 3

[21] Vallée, Thibaut, Grégory Bonnet, and François Bourdon: Multi-armed bandit policies
for reputation systems. In Y., Demazeau, Zambonelli F., Corchado J.M., and Bajo J.
(editors): Advances in Practical Applications of Heterogeneous Multi-Agent Systems.
The PAAMS Collection, volume 8473 of Lecture Notes in Computer Science. Springer,
Cham, 2014. 3, 21

77

[22] Huang, Hongbing, Guiming Zhu, and Shiyao Jin: Revisiting trust and reputation
in multi-agent systems. In 2008 ISECS International Colloquium on Computing,
Communication, Control, and Management, pages 424–429, Guangzhou, People’s
Republic of China, 2008. IEEE. 3

[23] Huynh, Trung D., Nicholas R. Jennings, and Nigel R. Shadbolt: An integrated trust
and reputation model for open multi-agent systems. Autonomous Agents and Multi-
Agent Systems, 13(2):119–154, mar 2006. 3, 12, 14, 17, 56, 62

[24] Costa, Charles A. N., Bruno Macchiavello, and Célia G. Ralha: Trust and reputation
multiagent-driven model for distributed transcoding on fog-edge. In Proc. of 21st
International Workshop on Trust in Agent Societies, 2021. http://ceur-ws.org/
Vol-3022/paper5.pdf. 4, 50, 56, 59, 60, 62, 68, 74

[25] Russell, Stuart and Peter Norvig: Artificial intelligence: A modern approach. Prentice
Hall, 3rd edition, 2010. 6, 22, 51

[26] Yoav Shoham, Kevin Leyton Brown: Multiagent systems. Cambridge University
Press, 2014, ISBN 0521899435. 6

[27] Lam, Ka man and Ho fung Leung: A trust/honesty model in multiagent semi-
competitive environments. In Intelligent Agents and Multi-Agent Systems, pages
128–147. Springer Berlin Heidelberg, 2005. 6

[28] Weiss, Gerhard: Multiagent systems: a modern approach to distributed artificial in-
telligence. MIT Press, Cambridge, Mass, 1999, ISBN 0262232030. 7, 8

[29] Sichman, Jaime S. and Helder Coelho: Autonomous agents and multi-agent systems.
In Lopes, Fernando and Helder Coelho (editors): Negotiation and argumentation in
multi-agent systems, pages 3–29. Bentham Science Publishers, apr 2014. 8

[30] Bresciani, Paolo, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos: Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, may 2004. 9, 10, 11, 73

[31] Dalpiaz, Fabiano, Xavier Franch, and Jennifer Horkoff: istar 2.0 language guide, 2016.
https://arxiv.org/pdf/1605.07767.pdf, Accessed: 2022-01-23. 9, 11

[32] Pimentel, João and Jaelson Castro: pistar tool – a pluggable online tool for goal
modeling. In 2018 IEEE 26th International Requirements Engineering Conference
(RE), pages 498–499, 2018. 9

[33] Castelfranchi, C. and R. Falcone: Principles of trust for MAS: cognitive anatomy,
social importance, and quantification. In Proc. Int. Conf. on Multi Agent Systems,
pages 72–79. IEEE Comput. Soc, 1998. 12, 21

[34] Huynh, T. Dong, Nicholas R. Jennings, and Nigel R. Shadbolt: On handling inac-
curate witness reports. In Proc. of 8th Int. Workshop on Trust in Agent Societies,
pages 63–77, 2005. http://eprints.soton.ac.uk/261136/. 12, 15, 16, 56, 62

78

http://ceur-ws.org/Vol-3022/paper5.pdf
http://ceur-ws.org/Vol-3022/paper5.pdf
https://arxiv.org/pdf/1605.07767.pdf
http://eprints.soton.ac.uk/261136/

[35] Marsh, Stephen: Formalising Trust as a Computational Concept. PhD thesis, Uni-
versity of Stirling, July 1999. 12, 13, 57

[36] Sabater-Mir, Jordi and Carles Sierra: REGRET. In Proc. of the 5th Int. Conf. on
Autonomous agents. ACM Press, 2001. 12

[37] Zacharia, Giorgos and Pattie Maes: Trust management through reputation mecha-
nisms. Applied Artificial Intelligence, 14(9):881–907, oct 2000. 12, 13, 14

[38] Hoelz, Bruno W. P.: Metamodelo para adaptação de confiança e reputação em sis-
temas multiagente dinâmicos. PhD thesis, Universidade de Brasília, September 2013.
12

[39] Hoelz, Bruno W. P. and Célia G. Ralha: Towards a cognitive meta-model for adaptive
trust and reputation in open multi-agent systems. Auton. Agents Multi Agent Syst.,
29(6):1125–1156, 2015. https://doi.org/10.1007/s10458-014-9278-9. 12

[40] Hoelz, Bruno W. P. and Célia G. Ralha: Towards a cognitive meta-model for adap-
tive trust and reputation in open multi-agent systems. In Jonker, Catholijn M., Stacy
Marsella, John Thangarajah, and Karl Tuyls (editors): Proceedings of the 2016 Inter-
national Conference on Autonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016, pages 624–625. ACM, 2016. 12

[41] Zhang, Yu, Jing Bian, and Weixiang Zhu: Trust fraud: A crucial challenge for china’s
e-commerce market. Electronic Commerce Research and Applications, 12(5):299–308,
2013, ISSN 1567-4223. Chinese E-Commerce. 17, 60

[42] Das, Anupam and Mohammad M. Islam: SecuredTrust: A dynamic trust computa-
tion model for secured communication in multiagent systems. IEEE Transactions on
Dependable and Secure Computing, 9(2):261–274, 2012. 17

[43] Teacy, W. T. Luke, Jigar Patel, Nicholas R. Jennings, and Michael Luck: TRAVOS:
Trust and reputation in the context of inaccurate information sources. Autonomous
Agents and Multi-Agent Systems, 12(2):183–198, 2006. 17

[44] Noor, Talal H., Quan Z. Sheng, Abdullah Alfazi, Jeriel Law, and Anne H. H. Ngu:
Identifying fake feedback for effective trust management in cloud environments. In
Ghose, Aditya, Huibiao Zhu, Qi Yu, Alex Delis, Quang Z. Sheng, Olivier Perrin,
Jianmin Wang, and Yan Wang (editors): Service-Oriented Computing - ICSOC
2012 Workshops, pages 47–58, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg,
ISBN 978-3-642-37804-1. 17

[45] Siadat, Safieh, Amir M. Rahmani, and Hamidreza Navid: Identifying fake feedback in
cloud trust management systems using feedback evaluation component and bayesian
game model. J. Supercomput., 73(6):2682–2704, jan 2017. 17

[46] Vermorel, Joannès and Mehryar Mohri: Multi-armed bandit algorithms and em-
pirical evaluation. In Proceedings of the 16th European Conference on Machine
Learning, ECML’05, page 437–448, Berlin, Heidelberg, 2005. Springer-Verlag,
ISBN 3540292438. 18, 19

79

https://doi.org/10.1007/s10458-014-9278-9

[47] Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer: Finite-time analysis of the mul-
tiarmed bandit problem. Machine Learning, 47(2/3):235–256, 2002. 20

[48] Pandey, Sandeep, Deepak Agarwal, Deepayan Chakrabarti, and Vanja Josifovski:
Bandits for taxonomies: A model-based approach. In Proceedings of the 2007 SIAM
International Conference on Data Mining. Society for Industrial and Applied Math-
ematics, apr 2007. 20

[49] Auer, Peter, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire: Gambling in
a rigged casino: The adversarial multi-armed bandit problem. In Proceedings of IEEE
36th Annual Foundations of Computer Science. IEEE Comput. Soc. Press, 1995. 20

[50] Lykouris, Thodoris, Vahab Mirrokni, and Renato P. Leme: Stochastic bandits ro-
bust to adversarial corruptions. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing. ACM, 2018. 20, 21

[51] Karagkioules, Theodoros, Cyril Concolato, Dimitrios Tsilimantos, and Stefan
Valentin: A comparative case study of HTTP adaptive streaming algorithms in mobile
networks. In Proceedings of the 27th Workshop on Network and Operating Systems
Support for Digital Audio and Video - NOSSDAV'17. ACM Press, 2017. 23

[52] Wang, Cong, Divyashri Bhat, Amr Rizk, and Michael Zink: Design and analysis of
QoE-aware quality adaptation for DASH. ACM Transactions on Multimedia Com-
puting, Communications, and Applications, 13(3s):1–24, aug 2017. 23

[53] Li, Zhenhua, Yan Huang, Gang Liu, Fuchen Wang, Zhi Li Zhang, and Yafei Dai:
Cloud transcoder. In Proceedings of the 22nd international workshop on Network and
Operating System Support for Digital Audio and Video - NOSSDAV '12. ACM Press,
2012. 24

[54] Adhikari, Vijay K., Yang Guo, Fang Hao, Matteo Varvello, Volker Hilt, Moritz
Steiner, and Zhi Li Zhang: Unreeling netflix: Understanding and improving multi-
CDN movie delivery. In 2012 Proceedings IEEE INFOCOM. IEEE, mar 2012. 24

[55] Liu, Dongyu, Eric Setton, Bo Shen, and Songqing Chen: Pat: Peer-assisted transcod-
ing for overlay streaming to heterogeneous devices. In Proc. Int. Workshop Netw.
Oper. Syst. Support Dig. Audio Video, 2007. 24

[56] Raj, Jain: The art of computer systems performance analysis. WILEY, New York,
1991, ISBN 0471503363. 24, 25, 65

[57] Spiegel, Murray: Schaum’s outline of theory and problems of statistics. McGraw-Hill,
New York, 2008, ISBN 0071594469. 25

[58] Verzani, John: Using R for introductory statistics. Chapman & Hall/CRC, Boca
Raton, 2005, ISBN 1584884509. 25, 65

[59] Hilvert-Bruce, Zorah, James T. Neill, Max Sjöblom, and Juho Hamari: Social motiva-
tions of live-streaming viewer engagement on twitch. Computers in Human Behavior,
84:58–67, jul 2018. 36

80

[60] OMG: OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, August 2011. http://www.omg.org/spec/UML/2.4.1. 47

[61] Thompson, William R.: On the likelihood that one unknown probability exceeds an-
other in view of the evidence of two samples. Biometrika, 25(3-4):285–294, December
1933, ISSN 0006-3444. https://doi.org/10.1093/biomet/25.3-4.285. 55, 57

[62] Bellifemine, Fabio, Giovanni Caire, and Dominic Greenwood: Developing multi-agent
systems with JADE. John Wiley & Sons, Ltd, Chichester, West Sussex, England,
mar 2007. 60

[63] Costa, Charles A. N.: DisTran – distributed transcoding simulator implemented in
Java with JADE framework. https://github.com/charlesANC/distran, 2021. 60

81

http://www.omg.org/spec/UML/2.4.1
https://doi.org/10.1093/biomet/25.3-4.285
https://github.com/charlesANC/distran

	Dedication
	Acknowledgements
	Resumo
	Abstract
	Introduction
	Problem and Hypothesis
	Objectives
	Thesis organization

	Background
	Multi-agent overview
	Types of interaction
	Tropos methodology

	Trust and reputation models
	Marsh
	Sporas
	FIRE

	Fake feedback
	Multi-armed bandits algorithms
	TEXT
	TEXT
	TEXT
	UCB family and UCB1
	Other MAB policy classes
	MAB and T&RM

	Fog-edge computing environment
	Adaptive bitrate streaming
	Statistical evaluation

	Related work
	End-assisted approaches
	Edge-assisted approaches
	Final Considerations

	Multi-agent architecture
	Requirements
	Early requirements
	Late requirements
	Architectural design
	Capabilities

	Architecture
	FEC network architecture
	Agent roles architecture

	Communication and interaction protocols
	Transcoding phase
	Negotiation phase

	Model design
	Contract conditions
	Performance measures
	Ratings normalization

	T&R for transcoder selection

	Experimental validation
	Simulation prototype
	Experimental setup
	Measurements
	Outcomes
	Discussion
	Analysing ReNoS-II
	Considerations about the exploration factor

	Final considerations

	Conclusion
	Publications
	Future work

	References

