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Abstract 

 
The need to leverage means to specify robotic missions from a high abstraction level has 

gained momentum due to the popularity growth of robotic applications. As such, it is 

paramount to provide means to guarantee that not only the robotic mission is correctly  

specified, but that it also guarantees degrees of safety given the growing complexity of 

tasks assigned to Multi-Robot System (MRS). Therefore, robot missions now need to be 

specified and formally verified for both robots and other agents involved in the robotic 

mission operation. However, many mission specifications lack a streamlined verification 

process that ensures that all mission properties are thoroughly verified through model 

checking. This work proposes a model checking process for mission specification and 

decomposition of MRS in UPPAAL model checker. In particular, we present an automated 

generation process containing hierarchical domain definition properties transformed into 

UPPAAL templates and mission properties formalized into the UPPAAL timed automata 

language TCTL. We have evaluated our approach in three robotic missions and results 

show that the expected behaviour is correctly verified and the corresponding properties 

satisfied in the UPPAAL model checking tool. 

 
Keywords: Formal Verification, Model checking, Multi-Robot Systems 
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Chapter 1 

Introduction 

1.1 Motivation 

The Multi-Robot System (MRS) field has grown significantly in the past few years. From 

task planning to control theory, this field holds many open challenges for researchers. Some 

of the main reasons for that are the increasing complexity of tasks entrusted to robots, 

robust collaboration between human and robots [6] and the need for unique domain- 

specific restrictions for verification and certification of safety-critical MRSs [7]. Some of 

those scenarios today include hospital robots [8], social robots [9] and robot assistants 

[10]. Many of these systems share the similarity of directly or indirectly interacting with 

humans during their operations, which, in turn, demand a more robust certification for 

their safety [11] and mission correctness. Therefore, it is imperative that robot systems 

must not contain any design flaws that could compromise the integrity of humans involved 

in their operation. 

Model checking techniques are formal techniques for verification of a given model of a 

system through analysis of whether it satisfies specified properties or not [12]. The formal 

verification of systems offers automatic and exhaustive verification of the state space in 

finite state systems, assuring that any changes made to the specified model will not incur 

in new unforeseen errors. These specifications can be evaluated in terms of properties, 

such as safety, security, efficiency, reliability, dependability, etc. Model checking has been 

used extensively in the MRS field [13, 14, 15] as it is quite useful for evaluating if multi- 

robot models working in different settings are free of deadlocks and other design problems 

overlooked during design. 

Since many robot systems have completely different context settings and objectives,  

their representation can be vastly different [16]. Therefore, several software engineer- 

ing techniques are employed for designing robotic systems. Specifying behaviour can be 

done through frameworks, in fact, a lot of middleware architectures and Model-Driven 
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Engineering (MDE) techniques have gained traction for their ability to engineer a MRS 

with unique characteristics [17, 18]. Another famous approach is the use of graphical 

notations, which can be used to depict systems with a large set of parallel and/or se- 

quential actions. The graphical notation is most useful for its inherent characteristic of 

visual representation, offering a common ground for both stakeholders and engineers to 

discuss specific implementation details with the aid of an illustrative system description. 

Some of the most known approaches are Finite State Machine (FSM)s and flowcharts 

such as RoboFlow [19]. On the other hand, one can also use Domain-Specific Language 

(DSL) approaches to represent a MRS with textual language. DSLs have two central 

characteristics: first, as the name suggests, their expressiveness must be directed to the 

specific domain, i.e. the use of a specific language must be justified by a significant gain 

in expressiveness during design. Second, the notation must be comprehensible for stake- 

holders while also being machine tractable [20]. Therefore, it is highly recommended that 

stakeholders decide which important features should be addressed in MRS due to scope 

restrictions in certain DSLs. 

Another important concern is at what level of abstraction the specification must be, i.e.  

low-level specifications for MRSs would involve more detailed control over tasks, resulting 

in a larger system [16]. On the other hand, this approach would require more granularity 

and more thorough specification requirements for their inherent level of detail.  Studies 

have shown that large systems are better suited for statistical verification, since other 

verification methods would often fail due to space state explosion errors [21]. Therefore, a 

high-level abstraction MRS is often recommended for non-statistical verification methods 

inside model checking. One other aspect that must be taken into consideration when 

designing a high-level specification is defining predicates: statements that may change 

during the course of a mission. They might be used to evaluate a certain universal state 

during the mission execution or simply checking if a robot state has changed while per- 

forming an action when it is supposed to. Likewise, it is possible to use agent capabilities 

working similarly as predicates to define if a certain agent has the capacity of carrying 

out certain actions. 

There are many aspects when it comes to designing high-level MRS missions accur- 

ately. Some of them might be critical or not for mission success depending on the mission 

scope and its complexity. It is important to periodically submit a mission description to 

scrutiny (e.g. verification or testing) to ensure that all preliminary steps are being taken 

to guarantee mission correctness. 
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1.2 Context 

An important aspect of the MRS mission specification is describing the system operation 

and its behaviour (also known as missions) [3]. Missions play an important role in defining 

main goals and tasks that must be carried out in order to achieve mission success.  Fur- 

thermore, it is possible to create alternative mission paths should the main ones fail, this  

adds more complexity to the mission design overall but also expands the list of possible 

successful paths. Thus, regarding reachability, a mission is less prone to failure the more 

alternative mission paths available it has. 

Mission requirements include movement and manipulation as robot capabilities, i.e. if  

a robot has some ability in order to carry out particular tasks. Robot capabilities are a 

way to define MRSs heterogeneity, i.e. if a group of robots differ from each other in terms 

of behaviour, equipment and abilities. Heterogeneity can make MRSs more complex as 

they grow larger in size [22]. 

Other mission requirements include: predicates or statements concerning the mission 

environment or the agents involved; and task ordering, as some tasks can be impossible to 

perform in a particular order if a previous requirement was not met e.g. a robot must pick 

a glass of water before delivering to its destination, this is usually considered under the 

communication aspects of systems, as they often need to coordinate actions with other  

robots in various missions. 

Multi-Robot systems mission Specification and decomposition (MutRoSe) is a mission 

modelling framework for goal-oriented, high-level MRS specifications. It specialises in 

decomposing its input files into hierarchical task plans and outputting valid combinations  

of task instances as well as the execution constraints between them. In order to do so, 

it needs a GM [23, 24, 25] with domain-specific contextual runtime additions to accom- 

modate flexible and real-world scenarios and a Hierarchical Domain Definition Language 

(HDDL) [26] file, which is responsible for describing hierarchical tasks pertinent to the 

mission domain. 

Similarly to specifying MRSs, verification formalisms are also a very complex issue in 

MRS; it is possible to choose from a variety of different formal methods. Formal methods 

are mathematical techniques for specification and verification of properties in systems. 

They can be employed in MRS using formal verification tools for design, simulation, 

verification and testing. Besides, they offer potential for automation in software systems 

and MRS systems as well due to their re-usability feature. The survey in [16] identified and 

classified formalisms used in MRS, some examples are set-based (such as the B-Method 

[27]), state-transition systems [28] and temporal logics [29], for instance Linear Temporal 

Logic (LTL), Computational Tree Logic (CTL), Probabilistic Computational Tree Logic 

(PCTL) and Timed Computational Tree Logic (TCTL). 

3 
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Among the verification tools, model checking is the most prominent and flexible verific- 

ation approach due to its automatic nature and the ability to check for every combination  

of states within a model [16]; these characteristics also guarantee that an inexperienced 

user will be able to quickly design a specification then exhaustively check for safety, live- 

ness and other properties within the model. This is not always true for other methods 

such as theorem proving or simulation [30] which may require additional specification 

(e.g. for the environment) for a thorough verification and a more skilled user beforehand. 

Within model checking, one can use one or more different formalisms to tackle a MRS 

design, this is mostly done by using process algebras or temporal logics. 

One of the direct advantages of using verification is because it is an effective technique  

to outline potential design errors [12]. As shown in Fig 1.1, during a software lifecycle, 

errors detected during the conceptual design stage are about 40% less costly to fix com- 

pared to those detected in operation. Additionally, model checking verifies if important 

properties are maintained throughout system operation. 

UPPAAL [5] is an integrated tool environment used for the creation, verification and 

validation of timed automata networks, a subset of FSA systems. UPPAAL has three 

main parts: a description language, a simulator and a model checker. These components 

will be outlined thoroughly on Section 2. While UPPAAL has a great focus on task 

synchronisation and model checking real-time systems (i.e. using TCTL), it can also 

be used to CTL as well by simply omitting the timed properties in a model. It uses 

locations as an abstraction for states and its transitions are defined by invariants, guards 

and synchronisation channels. UPPAAL has been used extensively to model and verify 

many MRSs [31, 32]. UPPAAL files are written in eXtensible Markup Language (XML). 

 
1.3 Problem Definition 

Demonstrating MRS specification correctness can be difficult without verification pro- 

cesses in place due to their complexity, multiple robots configurations and unknown con- 

text conditions, predicates, etc. might greatly increase the number of states inside a 

mission specification. Therefore, a verification technique such as model checking applied 

to MRSs specifications to identify potential inconsistencies would help mission designers 

to reason about mission specifications during early stages. 

Thus, verification directly generated from specification models in high-level specific- 

ation would impact positively on the accuracy of properties being evaluated. Other im- 

portant challenge is accurately describing all important aspects of a high-level mission 

from the verification process, as other system properties may not be fully covered, even 
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if they are evaluated during verification. Defining the important aspects of a mission can 

be quite complex as it varies significantly from one mission specification to another. 

In this work, important characteristics are defined as several properties such as reach- 

ability or mission correctness concerning predicates, capabilities and mission ordering 

which could be facilitated if identified through model checking and its exhaustive state 

space exploration. For instance, assume that a predicate p would drive the mission to 

failure every time it was set to true, hence indicating it must be either removed or safely 

guarded for certain contexts of operation in the mission specification. Depending on 

the mission complexity, the designer might not be able to identify this alone without a 

verification process in place. 

This work aims to automate the verification process of high-level MRSs mission spe- 

cifications. Specifications can range from behavior, planning, robot capabilities and co- 

ordination protocols between robots. This approach particularly focuses on MRS hetero- 

geneous missions and how they can be verified through formal methods concerning the the 

correctness and consistency of MRS specification model and its requirements expressed 

in the form of temporal properties. In order to verify the MRS mission specifications, 

the generated models will be submitted to verification using the UPPAAL tool and their 

properties will be evaluated via TCTL formulas. UPPAAL was chosen for this work due to 

being able to represent a system as a Network of Timed Automata (NTA), extended with 

data types. It supports the system design as a collection of non-deterministic template 

with control structures able to communicate with each other through the use of channels 

or shared variables [33]. 

It is possible to evaluate MRS mission specification as verification properties as some 

works already show [34, 13]. Other works in MRS formal verification follow a similar 

workflow to provide a straightforward process when generating specification model then 

offering a verification technique for the given model in order to evaluate its correctness  

[35]. Therefore, an automated verification technique such as model checking applied to 

the specification of multi-robot models are able to provide more degrees of safety when 

compared to other verification techniques such as testing or simulation. 

Concerning the properties that need verification, model checking already defines some 

default properties such as safety (something bad will never happen), liveness (something 

good will eventually happen), reliability, security, availability, survivability,  maintainabil- 

ity, dependability and others. This work aims to assure safety and liveness inside a MRS 

specification, but also tries to guarantee mission reliability by ensuring to a certain level  

that they are correctly specified and able to potentially show the presence of design flaws 

in the MRS specification. 

Although the mission describes the high-level tasks that the MRS must accomplish, 
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Figure 1.1. Software lifecycle and error introduction, detection and repair costs [1] 

 
it is important to note that the mission specification must not necessarily explain how it  

will be achieved. Instead, it shows what tasks may be executed in order to successfully 

complete the mission [36]. In various MRS applications, this level of detail is crucial when 

the scope of the specification is still being defined, for it will define what properties are 

verifiable depending on the granularity of the system. 

We should note that specification concerns such as mission layout (e.g. terrain char- 

acteristics, wall positioning, etc.), physical, kinetic or environment properties are out of  

this work’s scope. Therefore, our verification process does not include robot implement- 

ation errors or mission environment problems due to the high-level perspective this work 

focuses on. 

In order to be able to verify mission specifications automatically, the generation process 

must abide to rigid specification rules to attest that the output given by any of the 

specification files created will always be the same for a given input model. Thus, it is 

important to precisely outline how each member included in specification files relates to 

the verifiable model e.g. how a mission goal would be represented in the generated file 

and how the rule applied would be the same for every goal. 

Robot swarms [34] are an example of homogeneous MRS due to no specialised robots.  

By specifying different capabilities as one of the many high-level mission requirements 

needed to be met by verification, it is possible to define if a predicate is fundamental for 

the achievement of a certain mission or what are the possible execution paths to achieve 

a certain goal. Which leads to the first research question: 
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The second research question emerges from the fact that the generated verifiable files 

must retain important properties in order to assess the mission specification correctness.  

Thus, the scope for the following research question needs to be defined regarding the first 

one. For instance, if a given mission specification model is incorrectly specified, then the  

generated model verification must output some error indicating that the properties are 

not satisfied due to the inconsistency occurring in the model i.e. the properties specified  

must conform to the original model in a comprehensible manner. Furthermore, the error 

must relate to what problem exists in the specification and preferably suggest or give hints 

to what are the possible alternatives to fix them in a way to help the mission designer. 

Some of the relevant properties MRS mission specifications verify are safety, security,  

correctness and others. As one might expect, it is important to assure to a certain level 

that mission correctness is achieved. Likewise, one can verify safety by ensuring absence 

of deadlocks. Other relevant characteristics such as reachability, i.e. being able to reach 

a certain path during the mission, or liveness are also possible inside verification through 

model checking. 

The second research question aims to extract relevant characteristics as properties 

and other domain-specific MRS properties relevant to the mission context as well as 

verifiable in UPPAAL. One of its flaws is not allowing nested operators when writing 

formula queries, thus some properties are automatically ruled out by the verifier or require 

some modifications for further verification. Nonetheless, some characteristics must be 

addressed when it comes to fully verifying robotic mission specifications that are not  

common properties to all robot systems. For instance, if there is a mission path capable 

of accomplishing the mission with a certain set of capabilities enabled or if the needed 

preconditions are met before a certain goal or task. The relevant characteristics must 

be extracted from the specification model as verifiable properties in a comprehensible 

manner. 

Another concern derived from the first question is the possible loss of meaning during 

the verification stage i.e. the specification and the verification model do not have the same 

implied properties or some properties are missing, and thus would render the verification 

model partially or completely useless. Therefore, both generation of verifiable files and 

verification properties processes must be sound and thoroughly specified to assure that  

such properties were not ignored during the generation process. 

 
 

7 

Research Question 1. (RQ1) : How to automatically verify mission specifications 

of heterogeneous MRS from a high-level perspective? 
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1.4 Contributions 

The contributions for this work are twofold: 

1. a verification process for high-level MRS mission specification to assure its correct- 

ness and identify potential inconsistencies early in the MRS mission engineering 

process. This is achieved through a strict set of mapping rules between mission 

specification and UPPAAL elements; 

2. We also propose a framework that automatically implements this translation into 

UPPAAL models and properties. The output intended is as a set of verifiable TCTL 

properties and UPPAAL models generated from MRS mission specification inputs 

in the form of goal models and complex tasks expressed as Hierarchical Domain 

Definition Language (HDDL). 

Additionally, a case study verifying mission scenarios from RoboMAX will be used 

for evaluation of this work. Figure 1.2 depicts the overview process for MutRoSe along 

with a proposed contribution. The area circled in red depicts the proposed addition to 

the current process. First, the mission specification elements are mapped and generated 

as a UPPAAL NTA, then the model is verified using UPPAAL model checker verifier tool. 

Should the specification verification be incorrect, the user is then able to correct the 

specification files and submit them once again for verification, restarting the process, it is 

important to stress that the restart is not automatic, however, given the arrow pointing 

back to mission specification files. It only points out that the same file (now corrected) 

is used once again as input. Note that the main contribution is an automated generation 

process derived from the models. One should note that the world knowledge is excluded 

from this verification process, that is due to the fact that the world knowledge if considered 

in this approach, would instantiate variables inside the verification model, this is not the  

best intended option since verification in UPPAAL is able to cover extensively multiple 

paths of execution. Therefore, the world knowledge is not an input for this verification 

process. 

 
1.4.1 UPPAAL 

UPPAAL is the model checking tool used in this project for specification and verification 

of MRSs. Its 3 parts (Design, simulation and verification) consist in an integrated envir- 

8 

Research Question 2. (RQ2) : Is it possible to extract relevant characteristics 

from MRS mission specification models as verifiable properties? 
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Figure 1.2. Proposed contribution overview 

 
onment that will be used for designing and verification of properties. It uses TCTL as 

formalism for verification. The designs are focused on channel communication between 

timed transitions, but the latter can be omitted by the user if the system does not con- 

tain any timed constraints. Additionally, UPPAAL verifies properties by using TCTL, 

likewise, timed constraints can be also be omitted, allowing the verification of non-timed 

properties as well. 

UPPAAL is a tool used in several works in the verification field [37, 38], thus establishing 

its academical prominence, additionally, it provides a rich environment for verification of  

its models. It was the chosen tool due to its ability of providing a comprehensive model 

ordering through template graphs, moreover, its communication channels and variables 

are useful to link and describe many templates as an unique system. 

Additionally, UPPAAL has many industrial case studies [39, 40], which proves its re- 

sourcefulness in both academic and business settings. This can be attributed to its re- 

sponsive interactivity and friendly interface when designing templates. Arguably, UPPAAL 

has MDE features as it is able to break down complex systems in separate templates de- 

scribed as models, which helps to describe various systems timed scenarios. 
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1.5 Dissertation Outline 

The remaining chapters of this document are structured as follows: Chapter 2 contains 

the relevant theoretical background. Chapter 3 presents the solution proposed in this 

approach. Chapter 4 displays experiments and their respective results, along with veri- 

fication of properties. Chapter 5 approaches related works in MRS. Chapter 6 concludes 

this document with final remarks and directions for future works. 
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Chapter 2 

Theoretical background 

 
2.1 Goal Model 

In requirements engineering, it is often beneficial to describe a system as a set of object- 

ives and the related steps towards their achievement. In goal-oriented approaches, goal 

models are a popular way to graphically describe a tree structure containing tasks and 

goals performed by certain actors in a bottom-up fashion. They also provide a compre- 

hensive and intuitive language, which is useful for quick visualisation of high-level mission 

specifications. 

In Fig 2.1, there is an example of a goal model. Goals are shaped as rectangular circles 

and the tasks are represented by hexagons. The set of goals and tasks refer to the actor 

responsible to enact them. The main task is the root node of the tree, if all sub-goals 

and tasks are performed accordingly, then the root goal will be achieved. Usually, a goal  

model has more than one way to achieve the main goal, justifying the need of a complex 

diagram to represent. 

In order to further improve the representation of goal models, CRGM adds runtime 

annotations and contexts to the goal model. Contexts can be defined as a partial state of 

the system’s surrounding world that may impact it negatively or positively. The algorithm 

which defines if the main goal is achieved, namely achievability [2], considers all possible  

path branches instances of contextual settings in order to satisfy the root goal, similar to  

the SAT problem. A similar process is done in CRGM missions by MutRoSe to derive all 

possible mission decompositions and how they can be achieved. 

 
2.2 HDDL 

Hierarchical Domain Definition Language (HDDL) is a language extension of Planning 

Domain Definition Language (PDDL) for hierarchical planning, the extension adds hier- 

11 
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Figure 2.1. Goal model example for a museum’s visitor assistance system [2] 

 
archical planning characteristics while trying to preserve all other aspects of the original  

PDDL. The hierarchical language is responsible for representing a domain with abstract 

tasks and its respective methods. This domain may also contain variables and predicates 

related to them. A HDDL file may have the following elements: 

• types: the list of types allowed for variables; 

• constants: constants defined for the domain; 

• predicates: the possible predicates (preconditions and effects). Predicates may act 

as constraints in the case of preconditions or as assignments in the case of effects; 

• task: abstract task with name and parameters containing one or more methods; 

• method: method with name, parameters and respective types, preconditions and 

subtasks; 

• action: an atomic primitive task containing parameters, types and predicates 

 
These elements are organised in tasks: they contain the different types involved in one 

or more methods that can execute the task. A method contains the actions that must be 

accomplished to finish the task and if their ordering is sequential or parallel.  Addition- 

ally, methods may have preconditions defined by predicates, which could constrain the 

execution of the method due to preconditions not being met. Actions have parameters 

containing the types involved, since this is done in an hierachical manner, the types in- 

volved in an action also belong to the method. Actions also contain effects: they work as 

statements which may update values of predicates in HDDL. 
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2.3 MutRoSe 

MutRoSe [3] is a framework for hierarchical task planning with strict rules for system 

description and world knowledge. Additionally, the project contains examples to help 

beginners to understand the tool and design their own mission specifications and output 

their tasks decomposition provided that mission specifications and world knowledge are 

made correctly. The output for MutRoSe are instantiated HTN (iHTN)s, which are the 

valid mission decompositions based on specification constraints, also known as mission 

plans. Hierarchical Task Network (HTN)s are task networks that represent possible de- 

compositions given a HDDL specification and differ from iHTNs for their lack of concrete  

variables instantiated. Thus, iHTNs are concrete instances of previously decomposed 

HTNs inside MutRoSe. In other words, Multi-Robot systems mission Specification and 

decomposition (MutRoSe) is a goal-oriented DSL framework used to specify multi-robot 

mission plans. MutRoSe is concerned with the high-level task planning of multi-robot 

missions and the allowed decompositions available given a specific state of the system 

and its environment. After given the mission specification files, it runs an algorithm and 

derives the valid mission decompositions as output. 

An incorrect specification can compromise the entire decomposition process.  The 

reason is that MutRoSe cannot detect if a mission has valid decompositions up until its  

execution, leaving the mission planner to discover what is the model error without any 

assistance. Moreover, there is not a generation process for MutRoSe missions as veri- 

fiable specification files. This process should be done automatically for valid MutRoSe 

mission specifications, i.e. a specification syntactically correct, but not necessarily se- 

mantically correct, as it could contain design errors. Therefore, model checking could be 

greatly beneficial to MutRoSe specification files as they are not subjected to any verific- 

ation techniques and these errors could impact a MRS mission performance or even its 

achievement. Figure 2.2 shows MutRoSe process overview 

 

2.4 The UPPAAL Model Checking Tool 
 

Model checking is a formal verification method that “explores all possible system states 

in a brute-force manner" [12] and can help to verify systems at an early stage of design. 

A popular model checker to verify real-time systems is UPPAAL [5]. It is used for the 

creation, verification and validation of networks of timed-automata (NTA), a subset of 

FSA systems. 

UPPAAL provides a graphical interface divided into three main parts: the editor, the 

simulator, and the verifier [5]. In the editor, systems are modeled as networks of timed- 
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Figure 2.2. MutRoSe process overview [3] 

 
automata inside template files. These networks are composed of locations connected by 

edges that can execute functions, hold logical conditions, and synchronize with other auto- 

mata in the system through channels [41]. UPPAAL uses locations as an abstraction for 

states and its transitions are defined by invariants, guards and synchronisation channels.  

UPPAAL has been used extensively to model and verify many MRSs [31, 32]. Finally, the 

system defined in the editor can be executed in the simulator, which displays the state of  

the automaton at every step. 

Table 2.1. Types of TCTL formulae supported by UPPAAL [5]. 

TCTL 
formula 

UPPAAL 
formula 

 
Description 

 
 

AG ϕ A[] ϕ ϕ should be true in all reachable states, i.e., for all paths ϕ is 
always true. 

EG ϕ E[] ϕ The should exist a maximal path for which ϕ is always true, 
i.e., in every state of this path. 

AF  ϕ A<> ϕ For all paths, ϕ should be eventually true. 

EF  ϕ E<> ϕ There should exist at least one path, for which ϕ is eventually 
true. 

AG(ϕ AF  ψ) ϕ –> ψ For all reachable states, whenever ϕ is true, then eventually ψ 
  will be true.  

 
According to several definitions in [5, 42, 43], a timed automaton is defined as a tuple 

(L, l0, C, 

A, E, I) where L is the set of available locations, l0 ∈ L is the initial location, C is 

the set of clocks, A is the set of actions, co-actions and the internal τ -action, E ⊆ 

14 
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0 

L × ×A × B(C) × 2C × L is a set of edges between locations with an action, a guard 

and a set of clocks to be reset, and I : L → B(C) assigns invariant to locations. A 

NTA is therefore, a network of n timed automata Ai = (Li, li , C, A, Ei, Ii).  Since no 

clock constraints are used in this generation (as MutRoSe itself does not contain timed 

constraint properties), C = ∅. Templates automata are defined with a set of particular 

parameters defined in our approach by the HDDL types used during task execution, these  

parameters may be passed by value or by reference. Due to flexibility concerns, this work 

uses pass by reference to define which variables will be passed as parameters. 

Properties in UPPAAL are specified in Timed Computational Tree Logic (TCTL) lan- 

guage [5], which has its syntax shown in Table 2.1. As TCTL implies, UPPAAL supports 

verification of timed automata, such as real-time systems. Nevertheless, it can be used 

for verifying untimed software by simply omitting the timed properties in a model[44]. 
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Chapter 3 

Proposed solution 

This chapter contains a detailed explanation concerning the proposed solution discussed 

in Section 1.3, comprising the stages of development necessary to achieve the solution. 

This section is organised as follows: first, it will be discussed the overall proposed solution, 

with a descriptive image showing what the intended contribution is. Next, another figure 

will depict in details the process overview used in this work. The process is divided in 

stages and the following sections are defined by each stage described in the figure. For 

instance, the generation stage will cover the mapping rules used to map MutRoSe elements 

to UPPAAL structures, alongside a general overview of how the main components of the 

NTA interact. Finally, a more internal view of the parsing and generation process is 

depicted in order to give the reader a more concrete sense of what is happening inside the  

automated process. 

 
3.1 Process overview 

The process uses MutRoSe execution to perform the creation of output files used for this 

approach, from then on, it is in a separate program used for parsing and generation. 

As of now, the verification process is not fully integrated with MutRoSe, as Figure 1.2 

suggests, but it is possible to generate UPPAAL models by executing MutRoSe and then 

the program with the output files. 

An explanation of the process itself is available in Figure 3.1, which depicts the input 

files and processes involved in the parsing and generation of UPPAAL models. The process 

begins by executing the MutRoSe framework with input files derived from the specific- 

ation files, namely, the MutRoSe execution stage. Next, the generated files are used as 

input for the parsing stage, where they are parsed as data structures to be used in the 

generation stage. Generation comprises the generation of domain, goal model templates 

and verification queries. Lastly, the verification stage is responsible for evaluating TCTL 
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Figure 3.1. Process overview 

 
queries designed to verify mission properties. As indicated in Figure 3.1, we further delve  

into the sub-parts of our process in the forthcoming sections. 

 
3.2 MutRoSe execution stage and parsing stage 

The execution of this stage is necessary to extract information to parse it into data 

structures afterwards during the parsing stage. The parsing stage is basically responsible 

of reading and transforming the generated files in data structures responsible for the 

actual generation process. During the execution stage, two main files are generated from 

the goal model file and three from the domain definition input file. For the goal model, 

these files are the goal nodes info file and the goal model order file. The goal nodes info 

contains all information concerning a node (i.e. a task or a goal) inside the GM. 

As for the domain definition, the main generated files are: the types and variables 

information file, the available methods for abstract tasks and the method ordering file. 

The first one contains the listed variables in the HDDL file and their respective types. 

Next, the available methods for an abstract task file contains the names of one or more 

methods available in the domain definition. Lastly, the method orderings contains all 

possible orderings for actions within a method. 

Examples of generation files are shown in A.1 for both domains (i.e. GM and HDDL). 

In the following sections, we will discuss the generation stage and the verification stage 

in a high-level fashion, i.e. the sections will not concentrate on specifics of code. The 
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Figure 3.2. Goal model example 

] 

 
generation stage section will also contain the mapping rules needed to generate UPPAAL 

templates and additional structures derived from MutRoSe elements. 

 
3.3 Generation stage 

The generation stage mainly consists in compiling the information available in the parsed 

data structures and translating them to templates inside UPPAAL. The already parsed 

data structures are sent to this stage where they are submitted divided into two main 

processes: generation of domain methods templates and generation of goal model tem- 

plates. The generation of domain methods is derived from files related to the HDDL while 

the goal model templates derive from mission ordering and general goal model inform- 

ation data structures. Both processes also comprise the global and system declarations 

(textual structures) used for the templates. After the generation of templates, templates 

are merged into the same NTA and some automatic verification queries such as deadlock 

freedom are added to the verification queries automatically, since they follow the same 

syntax in every NTA. 

In order to do so, a strict translation process must be established to determine how 

the elements of specification in MutRoSe will be adapted to a generated UPPAAL NTA for 

verification while preserving the original semantics. Therefore, it is imperative to display  

in a subsection, namely mapping rules section, to describe exactly how this process occurs. 
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Additionally, following subsections will also contain specifics of the generation process 

itself with a breakdown of how mapping rule is applied during the generation. 

 
3.4 Mapping rules 

To generate a coherent generation, applicable to all missions designed in MutRoSe, one 

must define how elements present in the original specification are translated to a verifica- 

tion grammar (i.e. the UPPAAL NTA). Table 3.1 express the rules derived from elements 

which are described in the GM or the HDDL input files and how they are created within 

the generation process for the NTA. In addition, rules will be further elaborated in their 

respective subsections. A UPPAAL timed automaton is defined as a non-deterministic 

finite state machine enhanced with clock variables where the clock variables are evaluated 

to real numbers during simulation. In the next subsection, we will use the semantics of the 

definition present in [43, 5] as grounds to establish the generation process, this semantics 

will be used throughout this section. 

 
NTA generation 

Two main automata generated are defined as the goal model level template and the task 

level template, note that templates and automata will be used interchangeably from now 

on. The goal model level template is one automaton responsible for coordinating task and 

method execution in the order defined by the CRGM tree, whereas the task level template 

is a collection of m available task methods and templates responsible for execution of the 

subtasks needed to achieve a particular abstract task, defined in the HDDL file. 

When mentioning certain MutRoSe elements, it is worth noting that there is an input  

file responsible for each rule ID. For instance, consider rule #1: for the goal model level  

template, no particular types are necessary for its creation, therefore no parameters are 

used in this template by default, while the task level template may use one or more types, 

depending on the types used in the actions defined in their subtasks. Both levels have 

their declarations stated in the global declarations, which, as the name suggests, is visible  

to all other templates. It is beneficial for tasks to be able to check each other status during 

mission simulation, such as capabilities, which are globally visible. This is justified by the 

fact that types are elements originated from the HDDL inside MutRoSe. The following 

rules try to divide template responsibilities in order to clarify the generation process, 

however, this is not possible at all times, since some interaction is needed for both levels 

to cooperate inside the same network of automata. 

The common flow between those two automata is as follows: the goal model template 

triggers the execution of goals and tasks as described by the goal model input file, goals 
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may have runtime annotations which are critical to mission ordering, while tasks are used 

as execution placeholders to their respective methods. Whenever a task is executed, the 

goal model then triggers a channel to execute the particular method template for that 

task. The method may finish with a successful or failure state, this indicates that the 

task has finished in both cases. Next, a channel is triggered by the task method warning  

the goal model template that its execution has ended, which delegates the simulation 

execution back to the goal model level. This is done until the mission is finished or fails 

by being unable to execute one or more tasks. 

Therefore, one of the immediate advantages of using a verifiable model is to investigate 

execution traces and how predicates or other mission parameters such as variables may 

impact on their behaviour. Next subsections dwell deeper in how rules interact during 

the model generation and how these constructions are helpful during mission simulation 

and/or verification. 

 
Rules #1 and #2 

Types in HDDL are used to define allowed types for variables in the domain [3]. Types 

may have predicates, which are more thoroughly defined in rule #3. In our generation 

process, a type is mapped as a struct type with a particular method and variables are 

instantiated according to the maximum number of parameter variables present in one 

single task. Assuring that the number of instance variables will suffice the required amount 

of variables associated with that type for the mission description. 

A type is therefore a set of predicates T = [P ] where V P ⊆ P is the subset of valid 

predicates in P . As rule #2 states: types without preconditions or effects present in the 

domain file (i.e. valid predicates) are discarded, as they are not present in the domain 

definition. This is done inside the generation process by evaluating the available methods, 

their subtasks and actions and removing the types without valid predicates until only V P 

are mapped in our approach. In MutRoSe semantics, types can also have their types 

defined through the world knowledge, a secondary file which contains objects that will  

replace variables with instances. In addition, the world knowledge contains definitions of  

predicates and functions being initialised. Since the world knowledge is being discarded 

for the sake of generality, some variables have no defined value and cannot be properly 

taken into account without this file. 

 
Rules #3, #4 and #5 

Predicates are defined as boolean expressions which can be used as preconditions or effects 

and are always defined inside a type. Consider the equation with the following semantic 
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of a transition [42]:  
l →− 

 
l�, where 

 

(3.1) 

g = t.precondition == true 

Equation 3.1 defines a transition from location l to l� bounded by an guard g, which means 

that the transition will only occur when the t.precondition is true. In this approach, the 

start location is denoted by l of a method with a predicate precondition == true of 

variable t from a type Type. The Figure in rule #4 row depicts a similar transition to 

an action bounded by the same guard where l named as "action" for clarity purpose. In 

other words, the action will only be performed if the precondition stands, as defined in 

the domain specification. 

This, however, raises a problem with preconditions defined as guards: if the precon- 

dition is not met by some reason, this would result in a deadlock inside the model, as 

there would be no other transition available for the template to go to. This was solved 

in this approach by adding an extra location with two new transitions: one containing a  

guard with negation of the predicate as shown in rule #5 to avoid deadlocks; the other 

transition goes back to the initial node, triggering method failure with the assignment 

of a boolean variable to true (namely method_0_failed) which denotes mission failure 

in templates. The transitions are both represented in the Figure of rule #5 and in the 

equation below: 
 

l −¬→g lfail, 

lfail  →− l, where (3.2) 

¬g = t.precondition == false (i.e. the negation of g), 

u = method_0_failed = true 

Where lfail is the additional location created for failure and l remains the same location 

from Equation 3.1, stressing that both must stem from the same initial location where the 

precondition rule appears in order to prevent a deadlock condition. ¬g is the negation of 

the precondition generated simultaneously. In the case of having more than one predicate 

in the same transition, UPPAAL is able to support n predicate clauses using boolean 

algebra: consider P and ¬P the set of n predicates in a transition, thus the following 

equation depicts how predicates and their respective negations are generated: 
 

P = p1 ∧ p2 ∧ p3 ∧ ... ∧ pn 

¬P = ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ... ∨ ¬pn 

 
(3.3) 

Where p1, p2, ..., pn as well as their negated counterparts correspond to individual 

predicates, such as g and ¬g in Equation 3.1 and 3.2. It is also possible to note that 
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synchronisation issues are addressed by communication channels. While there are not 

imperative mapping rules for them as they are not derived from MutRoSe elements, they 

are present throughout implementation in order to guarantee execution in the correct 

order of the NTA methods defined by the goal model template, which will be explained 

in rules destined for the GM input file. 

 
Rule #6 

Predicates also come in the form of effects, which can be defined as the triggered predicate  

after performing an action (i.e. a transition). Likewise, a similar pattern is found in rule 

#6, where instead of being a guard, it takes form of a UPPAAL update. Updates are 

used in UPPAAL to assign values to variables or invoke functions defined in declaration 

templates. An update transition works similarly, where instead of being the target location 

for a transition, it is its source location. However, they do not require a negation nor extra  

transitions as preconditions do, this is due to the fact that they are only an assignment 

to a variable which side effect is changing the system state, thus, they do not cause any 

deadlocks. Referring to the rule #6 Figure in Table 3.1, an equation below depicts how 

an effect could be generically expressed: 
 

l� →−e l��, where  
(3.4) 

e = t.ef fect = true 

Where t.ef fect  is another predicate from the same type struct variable t, location l� 

is  the  source  location  and  l�� is  the  end  node  if  the  method  does  not  contain  any  more 

subtasks or a subsequent action. For reference, an example of the struct used can be seem 

in Figures of rule #1 and #3. 

 
Rules #7 and #8 

Capabilities are one of MutRoSe particular additions to HDDL syntax and are used to 

define capabilities necessary for mission achievement. As such, they work in a similar 

manner as predicates, with the exception that capabilities are not assigned such as in rule 

#6. 

Capabilities have a global scope when mapped to UPPAAL as boolean variables but 

do not possess any types and are individual instances. This however poses a limitation 

to how these capabilities are used inside UPPAAL, since they are converted directly to 

a variable during generation, it is not possible to have multiple instances of a given 

capability, whereas predicates may have as many variables as possible. Capabilities are 

mapped as such mostly because it is not possible to infer how many capabilities will be 
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needed using only the domain file. The following equation depicts the original capability 

transition followed by the additional transitions and location added to prevent deadlocks: 
 

l →−c   l�, where 

c = capability == true 

l −¬→c lfailc, 
 

(3.5) 

lfailc  →− l, where 

¬c = capability == false 

u = method_0_failed = true 

It is important to stress that while Equation 3.5 is very similar to equations regarding 

preconditions  (i.e.   Equations  3.1,  3.2)  l  and  l�  are  different  locations  from  the  former 

equations used here for clarity purposes. Furthermore, it is possible to define a set of 

C  capabilities  for  a  given  transition  in  which  the  generation  process  for  l, l�,lfailc  would 

behave very similarly as Equation 3.3. Lastly, capabilities too might compromise the task 

execution, therefore its transition also contains the update u. 

 
Rules #9 and #10 

1 ( : task AbstractTask : parameters  (? r 1 ? r 2 - robot  ?p - person ) ) 

2 ( : method  method - 0 

3 : parameters (? r 1 ? r 2 - robot ?p - person ) 

4 : task ( AbstractTask ? r 1 ? r 2 ?p ) 

5 : p r e c o n d i t i o n ( and 

6 ( p r e c o n d i t i o n ? r 2 ) 

7 ) 

8 : ordered - su bta sks  ( and 

9 ( act ion - 0 ? r 1 ?p ) 

10 ( act ion - 1 ? r 1 ?p ) 

11 ( act ion - 2 ? r 1 ?p ) 

12 ) 

13 ) 

14 ( : method  method - 1 

15 : parameters (? r 1 ? r 2 - robot ?p - person ) 

16 : task ( AbstractTask ? r 1 ? r 2 ?p ) 

17 : ordered - subt a sks  ( and 

18 ( act ion  - 3 ? r 2 ?p ) 

19 ( act ion - 4 ? r 2 ? r 1 ) 
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Listing 3.1. AbstractTask definition from domain file 

Abstract tasks are used in HDDL to describe how they are achieved through the execution  

of a method m contained in a set of methods M , which may contain sub-actions and sub- 

methods. The domain file does not contain explicit instructions of which methods will 

be needed for a particular mission setting, in fact, the method might not be used at all 

for that MutRoSe instance should it not be included in M . Thus, the generation process 

adopts the naive approach of generating all method templates. The generation process 

adopts this behaviour since the abstract tasks which will be executed are only known 

during the generation of the goal model template, where goal tasks are directly related 

to abstract tasks from the HDDL file. Thus, it is safe to conclude that the collection of 

UPPAAL template graphs related to a abstract task directly represents the said task. 

In order to illustrate how the generation of task in HDDL to a UPPAAL template is 

done, suppose we have an abstract task with two methods as in Listing 3.1. It depicts an 

example of a HDDL abstract task composed by two methods, which are related to the task  

due to the task attribute (lines 4 and 16). method-1 does not contain a precondition while 

method-0 does (lines 5 through 7). method-1 contains an abstract task in its subtasks. 

HDDL specification supports nested abstract tasks inside other tasks, the solution adopted 

in this work is to use yet another synchronisation channel inside the method template 

referring to the respective available methods for the abstract task in question. In an 

UPPAAL template, this means that there will be a transition channel linking the generated 

template of method-1 to the available methods of AbstractTask-2 when transitioning 

from action-4. Suppose that the only available method to execute AbstractTask-2 is 

method_2 (since its definition is not shown in Listing 3.1). Whenever the task method 

ends (succesfully or not), a channel triggered returns the simulation to the method. From 

then on, there are two transitions from which the method continues its execution, one is the 

remaining subtasks, where the underlying method has not failed and other where it has. 

For the failed method transition, there is a specific location (namely failed_AT) where 

the failure state is triggered, which has a transition going back to the end-method node, 

which triggers the channel indicating that the method has ended. Figure 3.3 illustrates 

how the following output would be for this method. It is important to stress that the only  

available method for AbstractTask-2 was method_2, thus, the synchronisation channels 

used in this example coincide with the specification. If there was more than one method for 

AbstractTask-2 to be achieved, this method would be included as an available transition 
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Figure 3.3. UPPAAL generated template for method-1 

 
as well. Figure 3.4 displays an example for nested abstract tasks with two available 

methods. 

Abstract tasks and methods coincidentally have parameters, which are used to define 

which parameter variables are used in their subtasks. Thus, the parameter generation 

derives from the domain file specification. One important exception is that if the type is  

removed due to not having valid predicates (as mentioned in 3.4), the type itself will be 

removed from the parameters list. As mentioned before, the parameters are defined by 

reference for two main reasons: one is that the domain file also does not instantiate vari- 

ables, only defines which variables are used, thus it is possible to infer that the definition 

uses call by reference in the domain file as well. The second reason is that by adopting 

the call by reference approach when generating, it is possible for the end user to define 

which variables are used for each method in system declarations. It is possible to identify  

the parameters from the domain file in lines 15 and 3 in Listing 3.1, derived from the 

parameters needed for the task (line 1). 

Both tasks and parameters are directly involved in system declarations. UPPAAL uses 

system declarations to define which templates will be instantiated as processes in that 

system instance. In more concrete terms, if a template is not attached to the system 

process, it will not be accounted for in simulation and verification stages. This allows 

for more flexibility while using the templates as the end user is also able to define which 

methods will be truly used in its system. For this generation approach, all methods are 

included in the system declarations. In addition, variables of a same type can be switched 

to evaluate new system configurations, this essentially means that if a variable r of type 

Robot is defined in the template, that variable may be reassigned in system declarations 

to another robot r2. In doing so, the end user may analyse the behaviour of a single robot 

throughout the entire mission to see if the mission itself is compromised somehow. The 

only pitfall for this approach is assigning variables not declared in the global declarations,  

which will obviously output an error. 
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Figure 3.4. Method template with nested abstract task with two methods in UPPAAL 

 
Rule #11 

Actions (also known as primitive tasks) [3] are concrete tasks from the domain file which 

belong to one or more methods and need to be carried out to achieve a certain task. Ac- 

tions may have preconditions, effects and parameters, alongside their types (type instances 

needed for that action to occur). 

Aside from being mapped as locations and having transitions originating from or to 

them with guards or updates, actions themselves do not hold much importance since they 

do not go into details as how they are achieved. The reason is that actions should not be 

specific by design, which overall contributes to the high-level approach MutRoSe has. 

 
Rule #12 

In a GM, a goal represents an objective achieved by carrying out its sub-goals and sub- 

tasks. It is therefore the representation of a mission goal that is relevant to the mission 

context. MutRoSe adds another layer for goals when adding runtime annotations that 

may affect the order as well. The tree traversal in a goal model is done depth-first from 

the leftmost position, also known as preorder traversal. This order can be changed if a 

runtime operation takes place. 

In UPPAAL NTA generation, Goals are the primary generated structure from the 

goal model level template. As stated before, the goal model level template consists of 

one template which replicates the ordering present in the CRGM file. Goals without 

runtime operators are only added to the UPPAAL template graph if they contain a leaf 

node containing a task in their traversal path, otherwise they are not generated. This is 

done to reduce the state space complexity without loss of meaning for both the model 
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and MutRoSe specification as the actual execution is carried out by tasks, there is not 

an issue in ignoring nodes which are not crucial for task achievement. Other goals that 

possess runtime annotations will be discussed in other specific rules. 

 
Rules #13 and #14 

Tasks in the GM translate to abstract tasks (domain file) by name, which, in turn, rep- 

resent one or more methods. Tasks are only descriptions of which steps must be taken 

in a goal-oriented setting to achieve a particular objective, tasks only contain one id 

(e.g. AT 1, AT 2, ..., ATn), namely task_ID, and a name which refers to the abstract task 

method name. 

In the generation process, whenever a task node is encountered, the goal model level 

template  creates  two  locations:  one  is  the  initial  task  location,  named  exec_[task_ID] 

and  other  is  the  end  task  location,  named  finish_[task_ID].  The  initial  task  location 

is responsible for being a transition target (i.e.   an edge with an arrow pointed to in 

the initial task location) for a synchronisation channel where it triggers the execution of  

the method. The goal model level template is then halted at this location because the 

next transition to the end task location contains a synchronisation channel waiting for 

the task to be finished, thus it must wait for the channel trigger. The end task location 

is responsible for analysing the result of the task execution after its end was triggered 

and taking the correct deterministic transition afterwards. Similarly with preconditions, 

where there is a failure and a successful state, the end task location has two branching 

transitions to decide if the task has failed or not. This is decided by the triggering of 

the previously discussed variables in guards which denote mission failure for a method. 

Should the task fail and not inside a fallback operator, then this means that the mission 

has failed and the execution stops abruptly followed by the triggering of a variable which 

represents mission failure, named mission_failed. Otherwise, the mission continues to 

the next locations or to the location representing the end of the mission. Figures in rules 

#13 and #14 depict how this pattern occurs in the goal model level template. 

 
Rules #15 and #16 

A fallback operator is a GM runtime annotation operator contained in goals inside the 

CRGM. If a goal contains this operator, a very specific pattern both in MutRoSe and 

in the generation process occurs. First, the rule for the fallback operator will be briefly 

discussed, next, the generation rule will be explained to establish the relationship between 

both representations. 
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A fallback runtime operator is one of the three runtime operators in MutRoSe. Having 

a fallback annotation means that the goal has an alternative course of action should the 

first one fail. The semantics for the fallback operator is: 

FALLBACK(N 1, N 2) (3.6) 

 
Where N 1 and N 2 are the first and second id node and may be a task or a goal inside the 

goal model. What the fallback operator essentially does is: Should N 1" fail its execution, 

then N 2 must execute correctly, or else the mission fails. The fallback operator has nodes 

N 1 and N 2 as children and its execution pattern differs greatly from others. For instance, 

if N 1 finishes successfully, then N 2 is not even executed. On the other hand, N 2 should 

only be executed when a failure of N 1 is confirmed. 

In UPPAAL, the generation rule takes into account all three possible outcomes. 

• If the first operand from fallback is successfully executed, then it transitions directly 

for the next node available (i.e. the sibling node, if it exists) or; 

• if the first one fails, then the second operand is executed. If it also finishes with a 

failure state, then it diverges to a failed mission state; 

• If the first one fails and the second one is executed successfully, then a transition is 

made where to the next mission node available. 

This is illustrated by Figure 3.5 where we have the generation of a fallback oper- 

ator as part of a UPPAAL template in the following syntax: FALLBACK(AT 1, AT 2). 

goal_G[previous] is the goal location where the pattern begins, as stated in rule #9 and 

#10, it is possible to see the transition with a synchronisation channel triggering the ex- 

ecution of the AT 1 task, executed by the method_0 template. Next, in the finish_AT 1 

task, there are two transitions: one to the next goal goal_G[next] and other in the case 

the method fails. In the failed method transition, it is possible to observe that the second 

task AT 2 begins its execution, following the same pattern. After trying again with a 

different task, the pattern ends in a successful state or a mission failed state, represented 

by missionFailed location, if both tasks should fail. 

Lastly, another modification is made inside methods involved in fallback operands, 

stated by rule #16: if a template method is inside a fallback operator, a default failure 

location is added to it. This is done to assure that all mission paths allowed are explored,  

even if the method does not possess failure states defined by other conditions, such as 

abstract tasks failing or preconditions or capabilities not being met. 
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Rule #17 

A sequential operator is a runtime operator in the GM inside MutRoSe. It is a very 

straightforward pattern: whenever a goal contains a sequential operator, all operands (i.e. 

goals or tasks) involved must be executed in that strict order, establishing an execution 

constraint. As opposed to a fallback operator, a sequential operator may have two or 

more operands, while the fallback operator is binary. 

In UPPAAL generation, this is done by an algorithm which "unwinds" the goal model 

from the sequential root whenever a sequential operator is found. Unwinding the sequen- 

tial root means that another generation process takes place to ensure that the tasks are 

sequentially executed in the order stated by the operator. The result for one task is de- 

picted in the Figure in rule #17. The sequential pattern can be extended to one or more 

tasks, 

 
Rules #18, #19 and #20 

The rules #18 and #19 state that all generated NTA models possess boolean variables 

used to indicate whether a mission has failed or not in the goal model level template. 

Necessarily, one of them receives a true value after the end of an execution due to the fact  

that they are linked to locations situated at the end of the template graph or in failure 

locations. This value is used afterwards during simulations and verification queries to 

assert if a mission has ended successfully given a certain configuration. 

After a mission has ended, it goes back to the initial node (beginMissionNode), where 

it can begin its execution again. Since the values are still stored, the startM ission() 

global function is used to flush these values whenever a new mission begins, this is done 

in the first transition of the system. 

 
Rules #21 and #22 

The initial nodes in templates play a central role in triggering mission or method execution 

but also pointing out that they have finished. In the goal model level template, aside from 

starting the mission, the beginMissionNode is also responsible for being the location where 

all final states concerning the previously executed mission can be seem during simulation. 

As for the task level template, the init_node location is used to trigger execution 

of the method, while the end_method is responsible for triggering the synchronisation 

channel which warns the goal model level of its end. Both are generated for every NTA 

and are used during generation process by linking of the dynamic parts of the template  

(i.e. the mission specification). 
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Representation 

 
 

 
HDDL 

 
 

 
#1 

 
 

 
Types 

 
Structs inside the global 

declaration if they have 

predicates related to 

methods used within the 

mission 

 

 

 
 

HDDL 

 
 

#2 

 
 

None 

Types without valid 

predicates (i.e. predicates 

not used as precondition 

or effects) are ignored in 

the specification 

 
 

Not applicable 

 

 
HDDL 

 

 
#3 

 

 
Predicates 

 

Boolean variables inside 

their struct types which 

denote the predicate 

value for that instance. 

 

 

 
HDDL 

 
#4 

 
Preconditions (Predicates) 

Transition guards in 

template graphs defined 

by the HDDL task 

description 
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HDDL 

 
 
 

 
#5 

 
 
 

 
None 

A new location and 

additional transitions are 

added for the negation of 

the guard in order to avoid 

deadlocks, if a predicate 

fails, the method itself fails 

and the task triggers its 

failure channel.task ends 

prematurely 

 

 

 

 
HDDL 

 

 
#6 

 

 
Effects (Predicates) 

Transition updates in 

template graphs defined by 

the HDDL task description 

which assigns a boolean 

value inside a struct 

variable 
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HDDL 

 
 

 
#7 

 
 

 
Capabilities 

Boolean variables without 

struct types which denote 

the capability value for that 

instance. For the template 

graph, they are used as 

guard conditions in 

actions with required 

capabilities 

 
 
 

 

 

 
 
 

 
HDDL 

 
 
 

 
#8 

 
 
 

 
None 

A new location and two 

additional transitions are 

added for the negation 

of the guard condition in 

order to avoid deadlocks, 

if a capability fails, the 

method itself fails and the 

task triggers its failure 

channel. The method ends 

prematurely. 

 

 

 
HDDL 

 
#9 

 
Tasks 

A collection of UPPAAL 

graphs containing one or 

more methods related to 

that task 

 
Not applicable 
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HDDL 

 
#10 

 
Task parameters 

Called by reference as 

types displayed in the 

specification 

 
 

 

HDDL 

 

#11 

 

Actions 

 

An atomic UPPAAL 

location for each action 

 

 

 

 
GM 

 

 
#12 

 

 
Goal 

If a goal is within the subset 

of nodes (i.e. sub-goals or 

sub-tasks) that contain a task 

as a leaf node, this goal is 

included as a location in the 

goal model template 
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GM 

 
 
 
 

#13 

 
 
 
 

Task 

Two subsequent locations are 

added, one triggers the 

channel execution for the one 

or more methods available for 

that task. The second one deals 

with the end of task execution 

and checks if the task has failed, 

depending on the task parent 

operations, this may trigger 

mission failure inside the goal 

model template 

 
 
 

 

 

 
 
 
 

 
GM 

 
 
 
 

 
#14 

 
 
 
 

 
None 

 

 
A transition activating the method 

boolean variable indicating 

method failure is added to the 

goal model template. The mission 

fails if the task does not belong to 

a fallback runtime operator, where 

it may have an alternative task to 

execute afterwards. 
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GM 

 
 
 
 

#15 

 
 
 
 

Fallback runtime operator 

Locations with additional transitions. 

If the first operand finishes succesfully, 

a transition links the last node of the 

first operand to the next sibling (i.e. the 

next task) or the end of the goal model 

template. If not, it is directly linked to 

the second fallback operator, where it 

triggers its execution. If the second 

operator also fails, the transition then 

goes to a mission failure state, ending 

the mission 

 
 
 
 

See Figure 3.5 

 
 
 

 
GM / HDDL 

 
 
 

 
#16 

 
 
 

 
Task / Fallback 

 
Whenever a GM task is inside a 

fallback operand (i.e. being a child 

node), an additional failure location 

and its respective transitions are added 

by default in the method(s) template 

graph due to the specification stating 

that the particular method(s) may fail 
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GM 

 

 
#17 

 

 
Sequential runtime operator 

Whenever a GM task is inside a 

sequential operator (i.e. it is a child 

node of the sequential operator), it is 

generated and executed strictly in the 

sequential order to prevent 

specification violations. 

 

 

 
GM 

 
#18 

 
None 

A mission succesful node is added 

alongside a global boolean variable 

which denotes mission success 

 

 

 
GM 

 
#19 

 
None 

A mission failure location is added 

alongside a global boolean variable 

which denotes mission failure 

 

 

 
 
 

GM 

 
 
 

#20 

 
 
 

None 

A function named startMission() 

containing all global variables and 

struct variables being reset to false as 

mission starts so that no previous values 

are carried out to a 

new mission execution. 

They may be customised by the 

end-user to test new 

mission configurations 
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GM 

 
#21 

 
None 

In the goal model level template, a initial 

node is always created to denote the 

beginning of a new mission structure. 

This node is called beginMissionNode 

 

 

 

 
HDDL 

 

 
#22 

 

 
None 

In each method template from the task 

level there is a initial location called 

init_node and another one called 

end_method. These locations are used to 

trigger the start and finish of method 

executions, respectively 
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Figure 3.5. Fallback runtime operator template pattern 

 
3.4.1 Generation of TCTL verification properties 

Many of UPPAAL TCTL verification queries properties could not be automatically gener- 

ated for some cases as they are somehow dependent of the generation process itself. How- 

ever, some properties were possible to generate automatically since their syntax would 

not change from model to model and thus the generation was possible. 

Some examples of automatically generated properties are deadlock freedom and reach- 

ability, which is described as whether the mission root goal will eventually be successful,  

this is also done with intermediary goals to show that ordering constraints still influence 

in partial mission achievement. All properties are described in Table 3.2, where each row 

represents a different property evaluated for this work: reachability evaluates if a mis- 

sion can achieve its root goal given the correct configuration; mission ordering correctness 

evaluates if a certain goal is achieved after the execution of its task methods, used in 

this work to depict that mission ordering follow the same as the goal model, even sharing  

the same mission constraints; predicate or capability reachability is used to verify if a 

predicate or a capability with a certain value (i.e. true or false) might compromise the 

execution of a method or the entire mission as well, the example for this row contains a 

TCTL query where the left side of the formula is a capability and the right side is the 

variable triggered if a particular method fails; last property states that the system is free  

from deadlocks. 

 
3.5 Verification stage 

The verification of TCTL mission properties is done after the generation using the already 

completed NTA. Due to some of properties being boolean variables, it is also possible to  

explore other mission configurations by changing predicates and capabilities. Additionally, 

it is possible to test multiple configurations with different robots, this can be done by 
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Table 3.2. Properties verified in missions 

 

changing system or global declarations depending on which one the end-user plans to 

analyse. Once the model is completed after the generation, the verifier is used to assert 

verification queries written in TCTL. One limitation is that UPPAAL does not accept 

nested quantifiers. This limitation required some adjustments in following verification 

queries, analysed in the next chapter. Note that Figure 3.1 outlines that the process of 

generation ends the automated contribution. Therefore, the verification queries denoting 

mission properties (both automatically and manually generated) must be verified by the 

user inside the UPPAAL verifier tool. 
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Property Description Example 

Reachability 
If a root goal will be achieved 

successfully or not 
E<>mission_complete 

Mission ordering correctness 

or goal satisfiability 

A goal is only reached if previous 

task methods are completed correctly 

A[ ] var_goal_model_template.goal_G8 imply 

(not pickup_with_door_opening_0_failed or 

not pickup_without_door_opening_0_failed) 

Predicate or capability 

reachability 

A predicate and/or capability 

leads eventually to a failure 

state in a method 

not manipulation - ->fetch_deliver_0_failed 

Deadlock freedom The system contains no deadlocks A[ ] not deadlock 

 



Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 51  

 
 
 
 
 

 

Chapter 4 

Experiments and results 

 
This chapter shows the results from the proposed methodology, how they were verified 

and the results obtained from both the generation and verification. It is organised in 

four sections: one for the experiment settings, containing the general hypothesis for our  

experiments, the experimental setup and overall results. Next, one for each of the three 

different experiment scenarios, starting from generation results derived from mapping 

rules to the verification queries analysed in each case. 

Results are from three different RoboMAX [45] mission settings: Two missions from 

the Food Logistics mission domain (i.e Pickup and Delivery scenarios) and one from the 

Deliver Goods - Equipment. The food logistics missions share the same HDDL domain 

file for both missions, but its GM input files are different. The last scenario is a mission 

about delivering equipment to agents. 

 
4.1 Experiment settings 

4.1.1 Experimental setup 

The experiments were conducted in UPPAAL in version 4.1.26-1. The code used to generate 

the NTA for missions was made in Python version 3.10.7, with the use of the uppaalpy 

library [46, 47] is available at GitHub [48]. Another relevant project is a fork of the 

original MutRoSe repository [49], modified to output relevant files, as stated in Section 

3.2. Additionally, the experiments were conducted on AMD Ryzen 5 4600H with a total 

of 16GB memory. 

 
4.1.2 General hypothesis 

For each of the three missions being analysed, it is intended to display generation results  

when being compared to the original specification to show that both rules and specification 
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Figure 4.1. Food Logistics - Delivery goal model 

 
adhere to each other. Additionally, we verify properties as queries to validate this ap- 

proach, properties range from relevant characteristics, deadlock freedom and reachability 

as defined in Table 3.2. 

For RQ1, the hypothesis for this work is that the results yield the same specification 

from MutRoSe as a NTA by following the mapping rules from 3.4 from MutRoSe and 

that verification queries are fit for validating the previously stated properties. As for 

RQ2, the hypothesis is that the verification such as mission correctness and predicates or  

capabilities affect reachability properties. 

 
4.2 Mission description 

4.2.1 Food Logistics - Delivery 

Goal Model 

The food logistics is a mission used to analyse how robot cooperation can be used to 

deliver meals to patients who are often unable to pick up a meal tray by themselves. 

The scenario offers two alternatives to deliver food to those patients: either deliver them 

directly to the patient, that is, if the patient is able to hold the tray; or deliver to another 

robot that is capable of delivering the tray next to the patient. 

The goal model starts searching for rooms which need delivering in G2. Next, the 

model moves to goal G3 which contains two sub-goals: one for the robots to get the meals 

 
41 



Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 53  

in the kitchen (G4) and other for delivering them to the patient rooms (G7). A sequential 

annotation in G3(i.e. G4; G7) already establishes that these tasks cannot be done in no 

other order. The Figure 4.1 depicts the goal model of the food logistics mission. 

During delivery, one important part of the goal model structure is the OR decom- 

position present in goal G10, responsible for defining that either goal G11 or G12 are 

executed, but not both. Although runtime operators are primarily associated with chan- 

ging mission ordering, the OR decomposition plays a fundamental role in this mission to  

establish which goal and subsequent task will be executed per mission configuration. 

 
Domain definition 

As stated before, the domain definition file is used for two separate missions with different 

goal models. Thus, it contains a lot more method definitions than the ones used in a single  

mission. The complete file is shown in Listing A.6. In essence, this file domain defines 

a hospital with patients and robots interacting in methods for various reasons such as 

object manipulation, delivering and overall logistics inside a health setting. 

The abstract tasks used for this mission are as follows: GetFood, DeliverToTable, 

DeliverToFetch. The GetFood task, as the name suggests, contains the necessary subtasks 

needed for the robot to get a food meal from a certain location. Then, as the food 

is obtained, a robot may decide between tasks DeliverToTable and DeliverToFetch, the 

first one requires no human interaction, but requires the robot to have the capability 

manipulation to be able to deliver the meal correctly. DeliverToFetch needs human 

interaction, however, it also requires that the predicate patientcanf etch is true for the 

task to be accomplished. 

 
4.2.2 Food Logistics - Pickup 

Goal Model 

The main goal of this mission is picking up dirty dishes from the rooms where patients 

are residing in the hospital, in order to achieve that, it must first survey which rooms 

require pickup of dishes. Next, the main mission is identifying and going through each 

room to pickup the dirty plates. After dishes have been retrieved, they are delivered to 

the kitchen. 

This GM contains a slightly less complicated task ordering than the last one, where 

two tasks must be executed in any mission path. This is shown in Figure 4.2, where it 

is possible to deduct quickly from the CRGM that both tasks must be achieved for a 

successful execution. This mission contains the remaining methods not used in the last 

one. 
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Figure 4.2. Food logistics pickup mission goal model 

 
4.2.3 Deliver Goods - Equipment 

Goal Model 

This mission scenario from RoboMAX illustrates robots delivering goods or equipment to 

agents in an uncertain environment. As Figure 4.3 The main goal, of course, is assuring  

that all the deliveries are made. Differently from the other two previous missions, this 

one contains fallback operators in 3 goals. In this case, the output will follow rules stated 

in Section 3.4. 

 
Domain definition 

The domain definition file displayed in Listing A.7. Once again, the domain is still a 

hospital, but storage, agent and obj types were added. Unfortunately, it is noticeable that  

no predicates are used inside the method definitions, which leaves only action ordering to 

be generated in the respective templates. This leads to the conclusion that this HDDL file  

is much more simpler, which shifts the responsibility to the CRGM to deal with variable  

instances. 
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Figure 4.3. Goal model for Deliver Goods - Equipment mission 

 

4.3 Results 

4.3.1 Profiling results 

The generation program [48] took 0.434s for the food logistics mission (in both cases) and 

0.433s for the deliver goods. With the cumulative time for the generation process being 

0.319s for the food logistics missions and 0.302s to the deliver goods mission. This could be 

attributed to many generation loops which traverse through the data structures and were  

not optimised and inner calls made by uppaalpy [46] to other libraries. Base generation 

performance does not drastically change since most specifications go through the same 

functions before being properly generated. With the exception of a few additional loops 

for runtime operators which do not change the general complexity, the overall performance 

results are rather similar. This could be attributed to the specification and mission sizes  

which are pretty similar as well. The profiling results were captured using snakeviz [50] 

and cProfile [51]. 

 
4.3.2 Food Logistics - Delivery 

On total, 14 templates were generated in UPPAAL, with 6 being directly associated with 

this execution due to execution paths. The task methods contain many of the original 

elements present in the original specification. The goal model, at this version, only sus- 

tains the original ordering established by runtime and decomposition operators. The goal  

model template for this specification is displayed in Figure 4.4 and clearly shows that 

even the OR decomposition was generated correctly, which enables the user to correctly 
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Figure 4.4. Goal model template for food logistics 

 

analyse all mission paths. It is also possible to see that tasks are strictly executed in one 

of the following orders: 

AT 1 −→ AT 2 or 

AT 1 −→ AT 3 
(4.1) 

Where abstract tasks representation of execution are present in exec_AT and finish_AT 

locations. 

It is also important to discuss the declarations created by this generation, the variables 

generated are in full conformity with what was expected, even the types for some were 

derived correctly from specification. As stated before in the generation stage, capabilities 

are defined in the domain definition without a specific type because the domain defini- 

tion file does not express directly which robot needs to possess the capability, therefore 

the addition of a type would imply that the generation knows which robot possess the 

capability in question, which is incorrect. One benefits in this specification from this fact  

by not having the necessity to formally assigning another variable to the robot struct 

every time it is used. This also helps reducing the state space without compromising the 

specification, since the capability is modelled as a guard constraint in either scenario as 

shown in Figure 4.5 which corresponds to the template generated for the table-deliver 

method from the domain file in Listing A.6. 

The list of task method templates related to this mission is described below: 

 
1. Food pickup template (temp_food_pickup_0); 
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Figure 4.5. Table deliver template generated in UPPAAL 

 

Figure 4.6. Abstract task pattern in FetchMeal inside fetch-deliver method generated for UPPAAL 

 
2. Table deliver template (temp_table_deliver_0); 

3. Fetch deliver template (temp_fetch_deliver_0); 

4. Fetch meal with human template (temp_fetch_meal_with_human_0); 

5. Fetch meal with robot template (temp_fetch_meal_with_human_0); 

It is important to note that the DeliverT oF etch contains abstract tasks as subtasks, 

which will result in a pattern used to trigger these tasks. This pattern is displayed in 

Figure 4.6. As stated in rule #9 in 3.4, the pattern stands but with its values changed to 

the actual methods and their respective reference channels and variables. 

 
4.3.3 Food Logistics - Pickup 

The same number of templates as the last mission were created. The results are what was 

expected, however, since our approach is not focused on inferring which robot is respons- 
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Figure 4.7. Generated template for food logistics pickup mission in UPPAAL 

 
ible for each task, this system declaration requires adjustment of variables to successfully  

finish the mission. However, it is important that it stays consistent both with GM and 

domain file definitions. As expected, the generation process also showed to follow the 

same creation when facing the same patterns rules. One interesting observation from this  

method is that AT1 possess two available methods: pickup-with-door-opening, pickup- 

without-door-opening. This is reflected in the generation process as stated in the rule for 

generation of tasks (i.e. Section 3.4) and its behaviour is present in Figure 4.7. Addi- 

tionally, it is possible to also see the transition where the task finishes successfully with 

two guard values in a single boolean clause. This clause was divided in the missionFailed  

target transitions for this mission to improve readability for the model. 

 
4.3.4 Deliver Goods - Equipment 

The results were very positive concerning mission ordering for the goal model template, 

the method templates, however, fall short due to not having any available predicates 

that could work as precondition or effect on task level templates. Figure 4.8 shows the 

UPPAAL goal model level template and depicts how fallback operators are implemented, 

by comparing with Figure 4.3, it is possible to see that structures follow the CRGM 

execution pattern, however, it is possible that the execution paths are not clear. In order 

to illustrate all successful execution paths concerning tasks, please consider the equation 

below: 
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Figure 4.8. Generated template for deliver goods - equipment mission in UPPAAL. 
 
 

AT 1 −→ AT 3 or 

AT 1_fail −→ AT 2 −→ AT 3 

AT 1 −→ AT 3_fail −→ AT 4 

AT 1 −→ AT 3_fail −→ AT 4_fail −→ AT 5 

AT 1_fail −→ AT 2 −→ AT 3 

AT 1_fail −→ AT 2 −→ AT 3_fail −→ AT 4 

AT 1_fail −→ AT 2 −→ AT 3_fail −→ AT 4_fail −→ AT 5 

 
 
 
 

(4.2) 

Equation 4.2 depicts possible execution paths where the abstract tasks annotated with 

the _fail suffix means that they have failed execution. It is understandable how Figure 

4.8 may appear confusing, but the goal model itself offered many alternatives concerning 

method ordering, hence all the transitions generated. 

 
4.3.5 Properties verification 

This section comprises all queries made in UPPAAL (i.e. the expressions made in TCTL 

syntax for property verification). They are displayed in Tables 4.1, 4.2 and 4.3, one for 

each mission previously described. 
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Table 4.1. Properties verification for Food Logistics Delivery mission 

 
 

Food Logistics - Delivery 

The properties verified for the food logistics mission are: reachability (i.e. if a mission 

is capable of eventually reaching a successfull or a failure state, denoting its end) and 

deadlock freedom (if the system does not reach a deadlock state). Other relevant charac- 

teristics include mission ordering correctness and a capability which influences the mission 

achievement. 

Property #1 represents deadlock freedom, this query format is default and it is gen- 

erated for all missions, properties #2 through #6 were manually inserted. Property #2 

and #3 show mission ordering strictness, which means here that the mission order de- 

rived from the specification files still holds in the verification system, in order to show 

its correctness. For instance, property #2 states that AT1 (i.e. food_pickup method) 

must be successfully executed to enable the mission to succeed. One can see from Figure 

4.1 that this is correct, since G3 fails from not executing AT1. As for mission successful 

completion, Equation 4.1 shows the available execution paths, which are verified through 

their methods failure inside property #3. Both queries result in success, pointing out 

that the generated template for the goal model is in accordance with the specification 

CRGM. Next, property #4 is a relevant characteristic where the manipulation variable 

is evaluated in the fetch_deliver task. The query essentially states that, if the capability 

is not enabled, then the method will invariably fail in the future. The last two proper- 

ties (i.e. #5 and #6) verify if the mission is always able to reach a failure or success, 

since UPPAAL verification is based on the present configuration, property #6 fails due to 

non-existent failure paths in this configuration since both capabilities are true, while, in  

contrast, property #5 is satisfied. 
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Property 

ID 
Formal description Expression in UPPAAL Result 

Elapsed 

time 

#1 Deadlock freedom A[ ] not deadlock Success 0,002s 

 
#2 

Goal G6 is neeeded for mission conclusion: 

For all paths, if the mission is complete it 

implies that the goal G6 is also complete 

(AT1 did not fail) 

 
A[ ] mission_complete imply not food_pickup_0_failed 

 
Success 

 
0,002s 

 
#3 

Mission complete: For all paths, 

if the mission is complete it implies that 
AT1 and AT2 or AT3 were completed 

successfully 

A[ ] mission_complete imply (not food_pickup_0_failed) and 

(not fetch_deliver_0_failed or not table_deliver_0_failed) 

 
Success 

 
0,002s 

#4 

In all paths, if the capability manipulation 

is not set, then the method fetch_deliver 

will eventually fail 

not manipulation –> fetch_deliver_0_failed Success 0,002s 

#5 
Reachability, a mission has a path of 

success in this given configuration 
E<>mission_complete Success 0,002s 

#6 
Reachability, a mission has a path of 

failure in this given configuration 
E<>mission_failed Fail 0,002s 
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Table 4.2. Properties verification for Food Logistics Pickup mission 

 
 

Food Logistics - Pickup 

Food logistics pickup contains only mission ordering correctness as relevant characterist- 

ics properties, since no predicates as preconditions or effects are available for this mis- 

sion. Property #2 stems from the same mission ordering correctness issues explored 

in last mission. In this case, it is possible to see from 4.2 that goal G7 is satisfied by 

the execution of AT1 (PickupDishes) which, in turn, possess 2 available task methods: 

pickup_with_door_opening and pickup_without_door_opening. Thus, it is possible to 

reach task success by executing one of them. The graph then progresses to the next goal 

to be executed, which is G8. Therefore, it is safe to conclude that G8 is only reached 

if G7 is satisfied. Property #3 is used to evaluate mission conclusion successfully from 

the ordering correctness from the point of view of task execution, which means that it 

must assure that AT1 and AT2 are executed, hence property #3 states the conditions for 

that to be achieved. Property #4 and #5 state reachability issues, and their results are 

coherent with what was expected, since this configuration does not possess failure paths  

with the current configuration. 

 
Deliver Goods - Equipment 

The properties derived from this mission do not come from the domain file because, as 

stated before, the domain files do not possess any predicates used during the execution of 

tasks. Property #1 stands for deadlock freedom, properties #2, #3 and #4 investigate 

mission ordering correctness, finally, #5 and #6 are reachability properties. 

In property #2, it is important to note that since there is a fallback runtime operator 

(see Figure 4.3), this means that the task may be completed successfully in two separate 

conditions: 
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Property 
ID 

Formal description Expression in UPPAAL Results 
Elapsed 
time 

#1 Deadlock freedom A[ ] not deadlock Success 0s 

 
 
#2 

For all paths, for goal G7 to be satisfied 
(and goal G8 to be reached), either one 
of the task AT1 methods 
(pickup_with_door_opening or 
pickup_without_door_opening) must 
be satisfied 

 
A[ ] var_goal_model_template.goal_G8 imply 
(not pickup_with_door_opening_0_failed or 
not pickup_without_door_opening_0_failed) 

 
 

Success 

 
 

0s 

 
#3 

For all paths, mission is completed 
successfuly if and only if AT1 and 
AT2 do not fail 

A[ ] mission_complete imply 
(not pickup_with_door_opening_0_failed or 
not pickup_without_door_opening_0_failed) and 
not dishes_retrieval_0_failed 

 
Success 

 
0s 

#4 
Reachability, a mission has a path of 
success in this given configuration 

E<>mission_complete Success 0s 

#5 
Reachability, a mission has a path of 
failure in this given configuration 

E<>mission_failed Fail 0s 
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Table 4.3. Properties verification for Deliver Goods - Equipment mission 

 
 

1. AT1 (with method object_get) finishes successfully; 

2. AT1 fails and AT2 (with method battery_recharge) finishes successfully. 

Given those two conditions, it is clear why property #2 fails, since it does not take option 

2 into account. As opposed to property #2, property #3 takes the alternative path into 

account, thus it is satisfied since both paths are the only available paths to reach goal 

G11 and satisfy goal G9. 

Property #4 pushes the structure of nested fallbacks even further: as the last line in 

Equation 4.2 the verification query evaluates the execution path where AT1, AT3 and 

AT4 fail, but the necessary tasks are executed and the mission completes with success.  

Reachability properties #5 and #6 are the same as the other missions, however, #6 yields 

a success result, this is because the failure states are automatically added when a task is  

inside a fallback runtime operator, in order to stay true to the specification, where the 

task might fail, but also to analyse the execution paths spanned from failed tasks. Thus,  

since failure is by default an option, both reachability properties are true at the same 

configuration. 

 
4.4 Complexity issues 

Given that all locations are currently derived from HDDL and the GM, an analysis of the 

generation process itself is necessary to evaluate its space and time complexity. In the 

sections below, we will analyse the complexity in the generation stages for each input file,  

which will help the reader to assess not only the complexity of this approach, but also its 

current limitations for future scalability. 
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Property 

ID 
Formal description Expression in UPPAAL Results 

Elapsed 

time 

#1 Deadlock freedom A[ ] not deadlock Success 0s 

 
#2 

Meant to fail, this one shows that G11 is 

executed if AT1 or AT2 (if AT1 fails) 

successfully execute, not just AT1, 

once again showing that the fallback 
structure is sound 

 
A[ ] var_goal_model_template.goal_G11 imply 

not object_get_0_failed 

 
Fail 

 
0s 

 
#3 

For all paths: Goal G11 is reached if 

AT1 or AT2 (in case AT1 fails)are 

successfully completed, it also means 

that G9 is completed 

A[ ] var_goal_model_template.goal_G11 imply 

not object_get_0_failed or object_get_0_failed 

and not battery_recharge_0_failed 

 
Success 

 
0s 

 
 
#4 

 
Mission complete is achieved by 

adopting one of the execution paths 

available in Equation 4.2 

A[ ] mission_complete imply 

(not object_get_0_failed) or 

(object_get_0_failed and not battery_recharge_0_failed) and 

(not objects_delivery_0_failed) or 

(objects_delivery_0_failed and not object_returning_0_failed) or 
(object_returning_0_failed and not alert_trigger_0_failed) 

 
 

Success 

 
 

0s 

#5 
Reachability, a mission has a path 
of success in this given configuration 

E<>mission_complete Success 0s 

#6 
Reachability, a mission has a path 
of failure in this given configuration 

E<>mission_failed Success 0s 
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4.4.1 HDDL 

When considering hierarchical domains in UPPAAL, the generation process does not dis- 

criminate between what methods are used or not. Therefore, all methods present in the 

domain file are generated and instantiated as UPPAAL processes, even if they do not take 

part in a specific mission. Recall that, all methods become one UPPAAL template, and 

all subtasks are individually created. This applies even if the same action is used for 

two different methods or in two different subtasks in the same method. Additionally, 

the branching paths preventing deadlocks in templates add a constant number of new 

locations, also increasing the state space. Thus, consider that for s subtasks present in all 

methods that the same amount of locations will be derived from the generation process,  

additionally, we have a constant number of additional locations which bear a k constant 

number for all subtasks with preconditions or capabilities needed. Which leads to time 

complexity O(s + k) = O(s). Therefore, we conclude that the generation takes linear 

time. As for the space complexity, the generation itself also needs to use data structures 

containing all methods with all subtasks, thus the complexity also stands at O(s). 

 
4.4.2 GM 

The CRGM generation in UPPAAL uses a structured tree for generation, where a top- 

down creation for the related tasks and goals takes place. Before starting the generation 

process, as stated by rule #12 in Section 3.4, the removal of some unnecessary goals 

(i.e. goals that are not included in the current approach such as query goals or achieve 

goals) takes place, where they are discarded from the generation process. After that, 

the node from the tree which contains all tasks as children is the starting node from the 

generation, which then generates all nodes as locations (and uses a particular generation 

pattern, should the node contain a runtime operator) until a task or a goal leaf is reached.  

In case of the latter, the goal leaf is also discarded since it contains no tasks and therefore  

does not hold any importance for the current version of this project. Thus, it is possible 

to describe the generation process in terms of time complexity could be expressed by the 

following equation: 

O(n − ug − lg) (4.3) 

Where n is the total number of nodes in the goal model, where the tree generation time in 

UPPAAL is O(n), subtracted by the ug unnecessary goals and lg leaf goals with no tasks. 

As for state space, the tree structure is broken down as lists of lists, resulting in a space 

complexity of O(n) for the generation process. 
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(b) Worst case goal model 

 

(a) Best case goal model 

Figure 4.9. Best and worst case scenarios for generation of the goal model 

 
Worst case and best case scenarios 

For the best case, it is easy to immediately deduct that the smallest GM (i.e. one with the  

minimal valid amount of nodes) is the best case, because the generation would take less  

time. Given this scenario, consider a valid MutRoSe CRGM depicted in 4.9a with exactly 

three nodes: two goals, a root goal, a goal preceding a task and the task itself. No goals 

would be excluded, so the generation process is clearly O(3) = O(C). This is the best 

case as the generation would not be void, which would compromise the generation as the  

methods generated in task templates depend on channel triggering by the GM template. 

In contrast, the worst case scenario is one which: 

• No unnecessary goals or leaf goals (i.e. ug and lg) are present; 

• All nodes in the GM are generated. 

With that in mind, the figure depicted in 4.9b meet this criteria, with the generation 

complexity generating all 5 nodes (i.e. O(5)). Now extrapolate this example for a goal 

model with n total nodes, it is easy to see that the generation would take O(n) time. 

Thus, the worst case scenario for GM generation takes linear time (O(n). 

 
4.5 Discussion 

To test the generation tool, seven different scenarios were executed in this approach, all 

of them generated outputs for UPPAAL. However, two of them gave inconsistent gen- 
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HDDL Generated in NTA? 

Types and variables Yes 

Predicates Yes 

Tasks Yes 

Methods Yes 

Ordered subtasks Yes 

Subtasks No 

Actions Yes 

Capabilities Yes 

Goal Model 
 

OCL Statements (monitors/controls syntax) No 

Task attributes No 

Goal Types Perform goals only 

Divisible and group attributes No 

Runtime Operators Partially (parallel not implemented) 

Mission ordering Yes 

Table 4.4. Summary of MutRoSe elements generated to UPPAAL 

 

eration results and one contained syntax errors, this can be attributed to unexpected 

nested runtime operations, which have many edge cases able to compromise the genera- 

tion process. The three mission scenarios described here were carefully analysed and no 

generation errors concerning specification flaws were found. 

Generating mission ordering as a NTA took more time than expected during the 

project due to many edge cases, this also hindered progress in generating other MutRoSe 

GM structures, which were critical to full mission verification. The results generated for 

the domain files were very interesting as many of the domain structures are correctly 

generated as a verifiable model, with the exception of non-ordered subtasks, which were 

not explored in missions analysed. Table 4.4 brings a summary which lists the elements 

from MutRoSe that were generated or not in the UPPAAL NTA, future works aim to 

contemplate more CRGM elements in a near future. 

 
4.5.1 Scalability issues 

Scalability is an issue which needs to be addressed for future iterations of the project. 

However, it is suggested that the generation would not differ in overall complexity as only  

new runtime annotations and divisible and group attributes would add constant time 

complexity for template generation. This due to the fact that the levels described in 

this approach would be further implemented with more variables and locations without 
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the need for more templates. As for UPPAAL, it is still uncertain that these additions 

would impact severely on the state space, new experiments must take place to assess the  

robustness of the tool in larger state spaces. Another alternative is switching to statistical 

model checking for the verification of properties if the current approach is not possible. 

In conclusion, the solution is incomplete for MutRoSe specifications due to its lack of  

many CRGM elements, but holds interesting study points as to where it is possible to 

evolve and integrate this solution. One other interesting remark is expanding MutRoSe 

specification such as timed constraint to verify more properties with UPPAAL. The an- 

swers for RQ1 and RQ2 are as follows: 

RQ1 (How to automatically verify mission specifications of heterogeneous MRS from a 

high-level perspective?) Through the automatic generation of a program [48], it 

was possible to not only generate verifiable models for mission specifications from 

MutRoSe but also to verify missions from a high-level perspective (predicates, goals, 

capabilities, abstract tasks, etc.). Although not all elements were mapped in this 

generation process, it has been shown that this the automatic verification is defin- 

itely feasible. 

RQ2 (Is it possible to extract relevant characteristics from MRS mission specification 

models as verifiable properties?) Some properties such as capability were submitted 

through verification and have shown interesting results regarding method or mission 

reachability. Additionally, the automatic generation of a verifiable model from a 

MRS mission specification alongside the manually inserted properties verified have 

shown that mission specifications as verifiable models might provide more insight  

concerning mission properties to designers. 

 
4.6 Threats to validity 

Although the UPPAAL models were generated automatically, many edge cases in the pro- 

gram implementation could greatly increase the experimenter bias. Additionally, repet- 

itive testing was made during the creation of the generation process, thus compromising 

internal validity to an extent. On the other hand, these claims could be countered as 

many generation stages are the same for the three experiments analysed in this work. 

Additionally, mapping rules have not changed during the elaboration of the methodology 

through experimental stages, increasing confidence in internal validity. Additionally, since 

it is a generation program, the results are not affected by time features. 

Since MutRoSe is still a DSL, the generation process is obviously tethered to its 

syntax, which means that the generalisation of the experiment is not applicable to other 
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frameworks or other MRS without adjustments. Additionally, only functional samples 

were analysed, thus, external threats may include selection bias and sample features. A 

factor that improve the external validity is that the generator of 

freely available [48] for replication. 
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Chapter 5 

Related works 

The MRS area contains many works ranging from operation and planning to specification 

and verification. Regarding verification, a survey made in 2019 by Luckcuck et al. [16] 

gathered 25 works using model checking in the literature in various tools. The most used  

tool was SPIN [52], containing 5 works, followed closely by others such as PRISM [53], 

UPPAAL [5] and others. Table 4 in the same survey indicates that model checking the 

most popular formal approach for verification in MRSs, containing a total of 32 works,  

more than all other formal approaches surveyed combined (24). Thus, this once again 

shows that, while there’s not a predominant tool used in model checking since they all 

possess many different characteristics when it comes to implementation and could be 

applied to many different domains, model checking is often the most adopted formal 

verification method as it provides an outlined mathematical proof as to why properties  

would hold or not in the states specified. 

The MRS field contains many papers using formal verification, since safety, liveness 

and reachability are common properties evaluated during design or execution time in 

such systems. Additionally, as mentioned before, there are various formalisms and tools 

to tackle verification problems on such systems, but not many of them contain a pipeline  

of specification and validation inside the same framework. Therefore, works containing a  

integrated framework for verifiable MRS will be outlined in this section. Additionally, al- 

though some approaches accommodate other types of systems, such as Self-Adaptive Sys- 

tems (SAS), the works will be focused in single or multiple robotic applications (namely 

MRS). Another important aspect of MutRoSe is that missions are described on a high- 

level, meaning that no specific mission context other than being accomplished by MRSs 

must be considered before designing a mission inside the framework. One of the compar- 

ison levels with other works is if they offer a high-level, top-down approach. Some other 

concerns such as heterogeneity, which formalisms and tools are used for verification in 

each work (e.g PCTL, TCTL, Process algebras, etc.), lastly, which properties are being 
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verified, such as safety, reachability, security, dependability, etc. 

 
5.1 Translating RoboSim models to UPPAAL 

The work of [35] aims to translate RoboSim [54] models as UPPAAL Network of Timed 

Automata (NTA)s automatically following a strict set of timed automata patterns and 

rules, it is also restricted to a specific context of RoboSim metamodel mission i.e the 

plugin only generates NTAs for RoboSim models. The work presented in this paper can 

describe any mission setting described inside the MutRoSe framework, this indicates that  

there is a trend in establishing a streamlined and automatic verification process from the 

very DSLs specification in recent works. Additionally, the work also provides a combina- 

tion of the NTA and the Network of Stochastic and Hybrid Automata (NSHA) to enable 

verification of Weigthed Metric Temporal Logic (WMTL) properties using UPPAAL with 

the Statistical model checking (SMC) extension (namely UPPAAL SMC). MutRoSe spe- 

cification does not contain any weighted properties, likewise, the models do not contain  

this. Another interesting point of comparison between the two works is what are the 

input languages for the generated model. RoboSim models are diagrams similar to Uni- 

fied Modeling Language (UML) notation, containing roughly two main module levels: a  

syntactic unit module, which models the robotic system by specifying the interfaces of 

the robotic platform, and the software controllers module, which contains the behaviour 

of controllers running in parallel with the unit module. 

While MutRoSe focuses on mission specification and decomposition of high-level mis- 

sion plans for MRS, RoboSim is a framework used for modelling robotic simulations in 

diagrams using state machines using a timed syntax. The work in [35] transforms models 

designed in RoboSim to UPPAAL. Both works converge in translating a specification lan- 

guage to a verifiable model using UPPAAL as the verification tool. Unlike the latter, it 

is much more difficult to generate a automata from a set of tasks. Since RoboSim models 

describe a cyclic simulation, Zhang et al. work provide a low-level abstraction transform- 

ation process, whereas this approach generates abstractions for verifying abstract plans,  

where no detailed explanation of how the tasks will be carried out is provided, only their 

ordering (if not partial). One shared similarity is that the two approaches generate default  

verifiable properties such as deadlock-freedom from their translation. The case study is a 

RoboSim model using the Alpha Algorithm, a algorithm studied in other MRS works [55] 

that aims to aggregate a swarm of robots. The work for this paper focuses on high-level 

specification in order to be able to accommodate more mission contexts. 
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5.2 The Esterel framework 

The work of Kim et al. [56] uses the Esterel framework, which consists of a programming 

language, a graphical simulator and the XEVE model checker [57], to formally verify a ro- 

bot home assistant named Samsung Home Robot (SHR) developed by Samsung Advanced 

Institute of Technology (SAIT). XEVE uses model checking on FSM models generated 

by the programming language after compilation, however temporal logics are not used in  

verification, instead, it uses compositional techniques to reduce the state space complexity 

with the removal of redundant states in a process similar as OBDDs in MCMAS. and then 

implement verification using observers: reactive components placed in parallel with the 

main program which are triggered by signals of success or failure during simulation stage, 

where all possible inputs are tested to cover all possible combinations. It is possible to 

check for safety and liveness properties within the system by using synchronous observers  

as outputs. 

The implementation of robot systems is considerably low-level, signals are used for 

interaction between components, including timing intervals and counters. Thus the user 

can describe each behaviour of the robot accurately, which incur in many code lines. How- 

ever, the very use of signals inside the modules allow for the user to preemptively creating  

events for error handling and guarantee safety in SHR as well as other properties. While 

this allows for more control from the designer when defining properties, it is necessary 

that the events are properly rigged to guarantee safety, as such, requirements must be 

thoroughly inspected before they are specified in Esterel. Another advantage of specifying 

interactions when it comes to debugging is that since signals are the only communica- 

tion channels between modules, then the testing among components is simplified by only 

observing their signal states. 

The Esterel framework and the model checking approach for MutRoSe differ in many 

levels, ranging from the verification techniques used to the very scope of robotic applica- 

tions (i.e. low-level behaviour of a single robot versus high-level mission goals and tasks). 

Some similarities both works share is that both MutRoSe specifications and the SHR are  

designed inside their respective frameworks and have safety properties assessed through 

model checking. Another coincidence between both frameworks is the use of graphical 

simulators to assist designers in the specification process, likewise, the representation 

using FSMs shares some similarities with NTAs used UPPAAL. 
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5.3 The BIP framework 

There is a clear difference between top-down and bottom-up approaches: as mentioned 

before, although bottom-up approaches are more likely to capture all aspects of a certain 

background as they are more specific, top-down ones tend to create a more simple ab- 

straction for MRSs. This is useful for designers who do not have a lot of time to design 

a MRS from scratch, however, it is important to note that hurrying modelling stages 

may conceal a lot of design-specific problems. Many MRSs use a bottom-up approach to 

ensure verification, as shown in the case of [58]. 

The paper adds the idea of a component-driven design in robotic systems combining 

the strengths of GenoM and the (Behavior, Interaction, Priority) (BIP) Framework [59]. 

Furthermore, the combination of both tools enable automatic generation of correct robotic 

software in GenoM through specified behaviours in BIP for the GenoM environment. 

Components are described using transition systems written in C/C++ through BIP. By 

describing components in an individual level, it is possible to design MRSs in a incremental 

and safe manner due to modelling and verification being done on the component itself and 

then gradually on others as design progresses, reducing the cost of correction by detecting  

the problem at an early stage. This methodology is applied to a autonomous rover robot 

as the case study where constraints defined by the BIP framework hold in generated 

code. The verification used inside the toolset is a model checker tool called DFinder 

[60] which also uses a compositional verification method. With the use of component 

and interaction invariants (i.e. descriptors of atomic constraints and constraints between 

modules, respectively, described as invariants), it is possible to check if properties remain 

satisfied incrementally during verification. The input program for verification is written 

in the BIP language. The properties verified are: deadlock-freedom and safety. 

While this is not a MRS, this work can be easily adapted to a multiple number of 

robots in the same incremental manner. This study also shows an interesting verification 

technique: by using the negation of a defined property and checking if there is not a 

state where the negation occurs, we can safely assume the property holds. Otherwise, the 

potential violation can be investigated further as the state is shown by the verification 

tool. In UPPAAL, when a property described in TCTL fails to hold, it is possible to 

check which state, i.e. location, is responsible for the violation. This idea is used in 

this work to show locations of the negated property when there are more locations of 

the property itself during verification queries. Other similarity with the component-based 

construction is that control mechanisms coordinate connection and functional elements 

by providing a control flow, enforcing a clear separation of responsibilities, likewise, in the  

verification stage of MutRoSe, aside from developing a different abstraction for each file,  

the generation of each task must be done in a hierarchical approach to assure a harmonic 
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interaction with the upper levels. 

 
5.4 MissionLab and VIPARS 

The work of [4] offers autonomous verification of behavior-based controllers created in the 

Configuration Network Language (CNL), a component of the MissionLab Mission Spe- 

cification System [61] by translating specifications to Process Algebra for Robot Schemas 

(PARS) and then submitting them to processing with the verification module Verifica- 

tion in Process Algebra for Robot Schemas (VIPARS). Additionally, the paper provides 

a feedback loop by returning the verification results to the human operator. Figure 5.1 

illustrates the overview of the architecture. It is possible to notice that the performance 

criteria are distinct from the models and can be parameterised in order to find the best  

tuning for the robot controller. Specification of the models is done in CNL, which is a 

superset of C++ designed to express the separation between behaviour implementation 

and its integration with other previously defined behaviours, thus, a top-down construc- 

tion of robotic applications. PARS is the specification language for formal verification. It 

is specialised in verification of concurrent systems, as such, it is capable of representing  

robot controllers and their hardware as well as the environment and how it affects the 

MRS through interactions. In process algebras, the composition of processes follows a 

stop and an abort condition, in a way that basic processes can be connected with oth- 

ers and generate complex behaviour patterns. The automatic translation of controllers 

into PARS is done following a strict set of rules of lexical grammar parsing using Flex 

and Bison [62], two parser tools widely known that have also been used for the work of  

MutRoSe during its parsing of HDDL. As a downside, the paper reports that it is more 

suitable to design and select a set low-level behaviours rather than designing intricate and 

complex behaviours for the translation to PARS primitives. This could be attributed to 

the corresponding number of CNL nodes generated and a state-space explosion problem 

during translation as well as accuracy when parsing behaviours to PARS. 

Although the verification using VIPARS uses process algebras, both process converge 

in using a similar input, the CNL language converts its controllers into a FSA that is 

translated as a PARS, while the base format for UPPAAL specifications is a NTA which 

is closely related to the other automata notation. Another point of convergence is that 

the translation process starts from a high-level mission structure. As said before, the 

complex processes found in the upper levels of PARS are compositions of more primitive  

nodes, this is a strong correlation where the mission process specification start its de- 

scription from the higher levels of behaviour and starts specialising behaviours as needed. 

However, both works differ when analysing description of process algebras and temporal 
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Figure 5.1. Overview of the architecture used in [4] 

 
logics, while it is necessary to describe interactive environment behaviours inside VIPARS 

to accurately represent the MissionLab specification, which is a robot search mission for  

biological weapons in an unknown environment, one does not need to outline contextual 

specifications depending on the mission context for MutRoSe, although it is possible with  

the use of contextual annotations. As such, the performance criteria defined further dis- 

tinguish both framework goals when it comes to the properties verified: the VIPARS 

framework is able to define timed criteria for its missions. For instance, in the search 

mission, a performance criteria chosen was that the robot must find the target within 60 

seconds. In conclusion, since VIPARS framework is concerned with specific performance 

criteria i.e qualitative properties, the verification processes between both works are fun- 

damentally different when comparing objectives, nonetheless, it is possible to compare 

both works when assessing robot specification and automatic translation to verification 

models. 

 
5.5 vTSL 

verifiable Task Specification Language (vTSL) [63] is a DSL used to specify task trees 

which allows formal verification of a set of previously defined safety and integrity restric- 
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tions of a robotic application using the model checker SPIN [52]. It is important to note  

that it is also possible to define task constraints to be checked against within the language.  

Additionally, the paper offers a automatic transformation of vTSL specification models 

into Promela models, i.e. the input language for SPIN, and demonstrate its usability and 

scalability through experiments that directly use the behaviour specification models. The 

example application used for this work was a logistics use case. vTSL uses only a textual 

language similar to C/C++ to describe the behaviours of a robotic system, one limitation 

of this approach is only being able to describe one robot behaviour in favor of more elab- 

orate specification when compared to other works [64]. The specification language has a  

fundamental block called action, an action may trigger other single or concurrent actions 

and return type values, additionally, each can contain input parameters, thus enabling to 

relate actions with one another. Inside a task it is possible to define behaviour blocks, 

responsible for defining which action will be taken based on the current conditions. Since  

actions are the basic building block, it is safe to conclude that the designer is likely to 

follow a bottom-up approach when defining a task tree. It is important to note that 

vTSL also has interface connectivity with Robot Operating System (ROS) [65] ranging 

from messages to services. 

During translation, each action and component stub in vTSL is created as a Promela 

component named proctype, which is a similar structure to actions in the specification 

language. As Promela also shares a resembling C structure, many of the transformations 

for the verification model are considerably straightforward. After generating assertions 

and all execution paths in Promela, the model is then submitted for verification inside  

SPIN. The verification checks for deadlock-freedom and if assertions are satisfied in all 

execution paths. As mentioned before, SPIN uses LTL as formalism for model checking, 

assertions are directly generated from the specification model as LTL properties. However, 

more complex behaviours must be manually specified in the model. 

Compared to the verification approach proposed for MutRoSe, this work focus on 

single robot behaviour and is mission-oriented, being able to define in a reasonably low- 

level what the specific robot actions are. Conversely, the verification for MutRoSe is not 

concerned on which behaviours are allowed during runtime, rather, it focuses on which 

actions should be taken, but does not go into detail on how they will be carried out, 

only their sequencing. Another interesting comparison is the difficulty of the translation, 

whereas there are graphical inputs in the CRGM for MutRoSe, vTSL is a text-only 

language similar to C, same as Promela. UPPAAL also shares C/C++ notations, but 

has a graphical notation as well. Therefore, it is safe to assume that the properties are 

preserved with more precision from the specification model since it has a more direct  

translation process. Moreover, the bottom-up approach for modelling vTSL differs from 
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the verification done in MutRoSe, which is high-level and top-down. Finally, one great 

point of difference is the depth of each abstraction, as vTSL is focused on one robot, it 

is much more likely to go into further details to explain the abstractions and behaviours 

it must follow, while MutRoSe is more suitable for a mission specification rather than a  

robot specification. 

 
5.6 Translation of high-level models to SMV 

In National Aeronautics and Space Administration (NASA) robotic applications, it is 

imperative that autonomy of systems is concise, due to long-term mission applications 

or environments where human involvement would be too dangerous or too expensive. 

The work of Pecheur and Simmons [66] presents formal verification on Livingstone, a  

model-based health monitoring system developed at NASA using Model-Based Processing 

Language (MPL). The approach used was to design an automatic translator of mission 

specifications to the SMV model-checking language, next, the generated models were 

checked using the SMV model checker and the results were returned to the source language 

in order to assist the designer with the diagnosis process. Additionally, the translation 

was done to Task Description Language (TDL) task descriptions of mobile robot systems. 

The properties in SMV are expressed in CTL. 

The translation process benefits from the fact that MPL and SMV specifications are 

reasonably similar, for instance, the synchronous concurrency semantics are present in 

both languages. One downside was hierarchically mapping variables to SMV: while the 

MPL models do not possess such syntax, SMV variables are linked to modules. Therefore,  

one incorrect mapping could compromise the entire hierarchical chain in a specification.  

The solution was to map the variables in all three parts of the translation and select 

them accordingly. Top-level modules are defined using a similar syntax in MPL, where 

some specifications for verification are already in CTL, making the translation to SMV 

only a matter of syntax. Specification patterns are used for common properties such 

as reachability. For other properties such as completeness and consistency, some disjoint  

nodes are used to prevent transition synchronisation issues during SMV translation. Thus,  

this enables for two properties from the same node to be able to hold in a specification 

pattern. Not many details are given about the robot application, but it is possible to 

see a simplified TDL code excerpt dealing with the deployment strategy specification of 

a MRS in a related work by the same authors [67]. 

High-level models often hinder some of the more specific implementations to the user, 

this is also true for the work of Simmons and Pecheur: the specification modules only 

present how actions will be synchronised, and if there are any concurrency issues where 
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properties would not hold. Another similarity with the verification done for the MutRoSe 

is the automatic translation to a specification model. Due to language syntax, the process 

seems to be more straightforward than the one done in MutRoSe, as a textual and a 

graphical language are being translated to a NTA. Another interesting point is the use of  

the translation process in more than one language (i.e. MPL and TDL), the same could 

be said for CRGM and HDDL as they have different mapping rules inside the generation 

process, however, both outputs do not relate in the work of Simmons and Pecheur, as 

they are discussing different autonomous applications. Finally, another interesting point 

is that TDL is similar to HTN, where tasks are described as hierarchical, showing that 

HDDL and TDL indeed share some similarities and both are used to define multi-robot 

applications. 

 
5.7 Related works comparison 

A comparison between the related works and the current work proposed is done in this 

section. The comparison Table 5.1 outlines the differences between all works, in the list 

below are the axis of comparison explained and why they are relevant for MRS. 

• High-Level Specification: A high-level specification works the same as a high-level 

abstraction: it hinders some layers of the implementation in order to prioritise other 

more important concerns. One major concern of the Verification and Verification 

(V&V) field in robotics is delimiting the scope of verification techniques, since many 

robot applications have completely different objectives when it comes to their spe- 

cific settings. For example, in service robotics it is difficult to assess which properties 

need to be covered to assure correct functioning in a HRI scenario as there is not 

a single technique that would provide complete coverage [68]. Therefore, defining 

whether it is a high-level specification or not is crucial when defining which proper- 

ties are verifiable. 

• Tools and formalisms: Verifiable frameworks can use one or more formalisms. Since 

this work deals specifically with verification of robot specifications, it is very import- 

ant to know and compare what other formalisms are being used in other frameworks 

in order to evaluate the current work impact on the current state-of-the-art. An- 

other factor that could impact the verification is the tool adopted: UPPAAL, for 

instance, does not accept nested operators. 

• Design-time verification: In verification, there are many techniques to achieve prop- 

erties verification, some of them can offer complete coverage such as model checking, 
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Table 5.1. Comparison chart of related works 

 
 

since it evaluates all possible combinations. However, there are other types of veri- 

fication, such as running simulations and establishing a level of confidence based on 

the test results for a given number of experiments. 

• Top-down or bottom-up construction of MRS: An application built from the most 

fundamental fragment is more likely to present less errors since it could be verified 

from the very beginning. Whereas top-down approaches would benefit from having 

less details to worry during first design iterations. Both approaches have their 

advantages and flaws, however, it is important to notice that, similar to high-level 

and low-level specifications, this construction design also impacts on the types of  

properties verified, moreover, how they are specified by each work. 

• Automated or manual verification: Manual properties are more likely to capture 

specific properties of a MRS. The disadvantage of manually defining them is causing 

an overhead during system design for extra translation to a specification language,  

often undesirable for many stakeholders while also leaving them prone to errors 

[67]. Automatic verification of properties emerges as a interesting alternative to 

check such systems without having to worry with writing in a verification language.  

While this saves time, many related works studied here may need additional coding 

to verify non-common properties [66, 63]. 

• Mission-oriented: As the verification for MutRoSe is mission-oriented, it may differ 

from other verifications, which can be more focused on the overall robot behaviour,  

excluding mission concerns. This is valuable for comparison since some properties 

would not be feasible if they are not mission-oriented. For instance, the work in [4] 

evaluates if the mission can be completed under a certain time, while Heinzemann 

and Lange [63] have shown the scalability performance of their approach. Mission 

properties can only be evaluated if mission aspects are being placed in specification. 

As shown in Table 5.1, the work of [35] possess very similar characteristics to the 

ones being evaluated in this work, however, it is not high-level as movement constraints 

 
66 

 Feature 

Work High-Level? 
Verification Formalism and 
Tool used 

Design-Time? 
Top-Down (TD) or 
Bottom-Up (BU) 

Automated? Mission-Oriented 

[35]  Model Checking / UPPAAL ✓ TD ✓ ✓ 

[58]  Model Checking / DFinder ✓ BU ✓ X 
[56] X Model checking / Xeve X BU X X 

[4] X Process Algebras /VIPARS X BU ✓ ✓ 
[63] ✓ Model Checking / SPIN ✓ BU ✓ X 

[67, 66]  Model Checking / SMV ✓ TD ✓ X 

This work ✓ Model Checking / UPPAAL ✓ TD ✓ ✓ 

 



Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 78  

and other layout specifics are taken into account inside the RoboSim model, whereas 

in this approach they are not. The work in [58] is also not high-level due to its incre- 

mental (bottom-up) construction of individual components leading to a connected system 

of components, which takes communication and other low-level aspects into consider- 

ation. Additionally, the work is heavily focused on component specification and not 

mission-oriented, while this approach is not concerned with low-level implementation of 

communication modules nor how components behave individually and collectively out- 

side a mission context. The work of [56] is clearly low level, as communications signals 

between components are included in the robot design, the automated verification pro- 

cess proposed here is only palpable for high-level mission specification, thus properties 

involving low-level signal communication would not be in the scope of verification. Other  

diversion point is that the approach using the XEVE model checker is for only one robot,  

whereas this approach is focused in multi-robot settings. 

[4] proposes an automated framework for verification of behaviour based controllers, 

the formalism uses process algebras and timed constraints in its properties. Although this 

work uses UPPAAL, such timed properties were not included because there are no timed 

constraints inside MutRoSe specification, another difference is that UPPAAL uses only 

temporal logics as verification formalism. Since controllers are made separately and then 

connected, it is safe to conclude that the approach is also bottom-up, another point of 

divergence with the work presented in this document. The work in [63] once again brings 

a single-robot system in contrast with the ones being verified in this work. The second and 

last difference with the axis of comparison used is that the bottom-up approach completely 

differs from the top-down verification process used in this work. Lastly, the work of 

[67, 66] also proposes an automatic generation, one difference between both works is that 

the high-level specification differs from the ones approached here, where the specification 

is concerned with the specifics of an inference engine inside Livingstone. This also renders 

Livingstone verification more component-based rather than mission-oriented. 
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Chapter 6 

Conclusion and Future Work 

 
This chapter contains the conclusions made from this work, along with future works and  

other important remarks. 

 
6.1 Conclusion 

The automatic generation process has proven to be resourceful, however, not all elements 

from MutRoSe could be added to the generation process. Still, through properties verified, 

it has already been established that MutRoSe mission configurations may only output 

success or failure, which is very useful to establish if a mission without fallback tasks 

may contain a defective execution path which needs correction. By adding the remaining 

CRGM elements to the UPPAAL model, deducting successful execution paths simply by 

looking at specifications might be challenging. 

Verification & Validation has been emerging as one of the most important areas in 

multiple fields due to growing complexity of systems. MRSs are no different: testing a 

robot application before deployment is a common industry standard to prevent accidents 

or flaws during operation. Verification through model checking is a great way to reduce 

design flaws by thoroughly and exhaustively analysis of multiple execution paths.  Model 

checking is as flexible as it is useful: by comprising a small set of rules needed to specify and 

verify a system with a few steps, it has been proven during the course of this project why it  

is the most used technique to verify MRS. MutRoSe may have many more properties left 

to explore, however, the ones done in this work already show how many of the future works 

are feasible with formal verification. Therefore, model checking, automated frameworks 

and DSLs will surely remain relevant for as long as robots evolve their capacities and 

break more boundaries. 
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6.2 Future works 

Future works include improving the state space of the generated NTAs by reducing con- 

trol structures which replicate the mission ordering, this is possible by adding commit- 

ted annotations to UPPAAL locations as they are being generated. Other works include 

expanding the verification of other properties such as CRGM elements left out of this 

iteration of the project. It is also possible to expand MutRoSe specification to cope with 

timed constraints and make use of UPPAAL clock variables to verify even more properties 

from a single specification. Other possible addition would be adding knowledge from the 

world knowledge file, intentionally left out of this approach in order to improve flexibility.  

However, during the course of this project, it has been identified that it is possible to 

derive information from the world knowledge without directly using them. Therefore, 

future iterations of the project might include partial knowledge about the world state 

without actual instances. 
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Appendix A 

 

A.1 Files derived from MutRoSe execution 

This section includes a more detailed explanation for files derived from MutRoSe execution 

and how they are used within this work. It is important to note that these files only parse  

the information contained in the original specification files in order to aid the generation  

process afterwards. 

An excerpt of the goal nodes information file is displayed in Listing A.1. The GM 

order tree file contains a parent node and its children in each line of the file, separated by 

an arrow (−− >). If there is more than one child for the current node, they are separated 

by white spaces. It is worth noting that some nodes contain a special notation of type 

_OP where OP denotes the node runtime operator (e.g. sequential (;), parallel (#), OR 

(OR) and fallback (FALLBACK), this is used during later stages of generation to create 

patterns which reflect the changes in the node execution order inside UPPAAL. This file 

is then parsed as a list of lists where its possible to traverse through nodes similarly as a  

tree. An example of the goal model order file is displayed in Listing A.2. One can see the 

similarities when comparing the ordering of goals and tasks (i.e. the mission ordering) 

between Listings A.2 and A.1 with Figure 3.2, where the latter is the visual representation 

where the goal order files are derived from. 

For the domain definition, the main generated files are: the types and variables inform- 

ation file, a snippet of this file is displayed in Listing A.4. Next, the available methods for  

an abstract task file is available in Listing A.3. Finally, the method orderings is available 

in Listing A.5. If the actions contain preconditions or effects, those will be appended to 

the order along with the type and the predicate or capability. This is done to assure that 

proper transitions with guards or updates will be generated in UPPAAL during the cre- 

ation of templates. The file is somewhat illegible for human-reading due to being a direct 

product for generation of templates. For each of the methods and respective orderings, a  

corresponding template is automatically generated during the generation stage. 
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Name : GetFood 

food - pickup 

Name : Deliver To Table 

table  - d e l i v e r 

Name : Deliver To Fetch 

 

 

Listing A.1. Goal nodes information file 

 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Listing A.2. Goal model order 
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Context : 

No Context 

Parameters : 

Group?  1 

D i v i s i b l e ? 1 

. . . 

Node :  AT3 : Deliver To Fetch 

Context : 

No Context 

Parameters : 

Param : current_pat ient  

Group?  1 

D i v i s i b l e ? 1 

G1_; -- > G2 G3_; 

G2 -- > 

G3_; -- > G4_; G7_; 

G4_; -- > G5 G6 

G5 -- > 

G6 -- > AT1_1 

AT1_1 -- > 

G7_; -- > G8 G9 G10_OR 

G8 -- > 

G9 -- > 

G10_OR -- > G11 G12 

G11 -- >  AT2_1 

AT2_1 -- > 

G12 -- > AT3_1 

AT3_1 -- > 
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Method   name :   food - pickup 

navto wait - fo r - food __task_effect  pickedmeal_true_argument_ ? r 

Method name : table - d e l i v e r 

__method_precondition_table  - d e l i v e r  pickedmeal_true_argument_ ? r   navto  approach - patie n t - t a b l e   d e l i v e r - to 

- t a b l e __method_capability  _argument_manipulation 

Method name : f e tch - d e l i v e r 

__method_precondition_fetch - d e l i v e r pickedmeal_true_argument_ ? r 1 navto FetchMeal 

Method name : f e tch - meal - with - human 

__method_precondition_fetch - meal - with - human patientcanfetch_true_argument_ ? p approach - human wait - fo r - 

human - to - f e t c h __task_effect pickedmeal_false_argument_ ? r 

Method   name :    f e tch - meal - with - robot  

navto approach - robot grasp - meal __task_effect  pickedmeal_false_argument_ ? r 2 __task_effect  

pickedmeal_true_argument_ ? r 1 d e l i v e r - meal - to - p a t i e n t __task_effect  pickedmeal_false_argument_ ? r 

. . . 

 

 

Listing A.3. Excerpt from methods avaliable for Abstact Tasks (AT) in food logistics mission 

 

Variable  name : ? r Variable  Type : robot 

Variable  name : ? l Variable  Type : l o c a t i o n 

Variable  name : ?d Variable  Type : d e l i v e r y 

Variable  name : ? r Variable  Type : robot 

. . . 
     

Listing A.4. Excerpt from types and variables information file 
 

Listing A.5. Snippet from method orderings file 
 

 

A.2 Domain files 

This section includes the domain files used for the missions included in the Chapter 4. 

As such, they do not require further explanation in the appendix as they are already 

explained in the results. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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f etch - d e l i v e r 

Name : FetchMeal 

f etch  - meal - with - human 

f etch - meal - with - robot  

. . . 

( d e f i n e ( domain  h o s p i t a l ) 

( : types 

d e l i v e r y pickup  p a t i e n t   l o c a t i o n   - 

) 

( : p r e d i c a t e s 

( p a t i e n tc a n f e t c h ? p   -   p a t i e n t ) 

( pat ientcanopen  ? p - p a t i e n t ) 

( d e l i v e r y p a t i e n t   ? p   -   p a t i e n t   ? d   - 

( d e l i v e r y l o c a t i o n ? l  -  l o c a t i o n ? d 

o b j e c t 

d e l i v e r y ) 

-   d e l i v e r y ) 

( p i c k u p p a t i e n t   ? p   -   p a t i e n t   ? pk   -   pickup ) 
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11 

12 

13 

14 

15 ) 

( p i c k u p l o c a t i o n ? l  -  l o c a t i o n ? pk - pickup ) 

( p i c k e d d i s h e s ? r - robot ) 

( pickedmeal  ? r - robot  ) 

( at  ? r -   robot  ? l   -   l o c a t i o n ) 

16 ( : c a p a b i l i t i e s manipulat ion  door - opening ) 

17 

18 ( : task  GetFood   : parameters  (? r   -   robot  ? l   -   l o c a t i o n   ? d   -   d e l i v e r y ) ) 

19 ( : method food - pickup 

20 : parameters  (? r - robot  ? l  -  l o c a t i o n ? d - d e l i v e r y ) 

21 : task  ( GetFood ? r   ? l   ? d ) 

22 : ordered - su bta sk s  ( and 

23 ( navto  ? r ? l ) 

24 ( wait - for - food ? r ? l ? d ) 

25 ) 

26 ) 

27 ( : a c t i o n wait - for - food 

28 : parameters  (? r - robot  ? l  -  l o c a t i o n ? d - d e l i v e r y ) 

29 : e f f e c t ( and 

30 ( pickedmeal  ? r ) 

31 ) 

32 ) 

33 

34 ( : task  Deliver  To Table  : parameters  (? r   -   robot  ? l   -   l o c a t i o n   ? p   -   p a t i e n t ) ) 

35 ( : method table  - d e l i v e r 

36 : parameters  (? r - robot  ? l  -  l o c a t i o n ? p - p a t i e n t ) 

37 : task  ( Deliver  To Table  ? r ? l   ? p ) 

38 : p r e c o n d i t i o n ( and 

39 ( pickedmeal  ? r ) 

40 ) 

41 : ordered - su bta sk s  ( and 

42 ( navto  ? r ? l ) 

43 ( approach - pati  ent - ta b l e ? r   ? l   ? p ) 

44 ( d e l i v e r - to - ta b l e ? r   ? l ) 

45 ) 

46 ) 

47 ( : a c t i o n approach - pat ient  - ta b l e 

48 : parameters  (? r - robot  ? l  -  l o c a t i o n ? p - p a t i e n t ) 

49 ) 

50 ( : a c t i o n d e l i v e r - to - ta b l e 

51 : parameters  (? r - robot  ? l  -  l o c a t i o n ) 

52 : re quired  - c a p a b i l i t i e s ( manipulat ion  ) 

53 ) 

54 

55 ( : task  Deliver To Fetch  : parameters  (? r 1 ? r 2   -   robot  ? l   -   l o c a t i o n   ? p   - 

p a t i e n t ) ) 

56 ( : method f e tc h - d e l i v e r 

57 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

58 : task  ( Deliver  To Fetch  ? r 1 ? r 2   ? l   ? p ) 
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59 

60 

61 

62 

63 

64 

65 

66 ) 

67 

: p r e c o n d i t i o n  ( and 

( pickedmeal  ? r 1 ) 

) 

: ordered - su bta sk s  ( and 

( navto  ? r 1   ? l ) 

( FetchMeal  ? r 1 ? r 2   ? l   ? p ) 

) 

68 ( : task  FetchMeal  : parameters  (? r 1   ? r 2   -   robot  ? l   -   l o c a t i o n   ? p   -   p a t i e n t ) ) 

69 ( : method f e tc h - meal - with - human 

70 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

71 : task  ( FetchMeal  ? r 1 ? r 2   ? l   ? p ) 

72 : p r e c o n d i t i o n ( and 

73 ( p a t i e n tc a n f e t c h ? p ) 

74 ) 

75 : ordered - su bta sk s  ( and 

76 ( approach - human ? r 1 ? l   ? p ) 

77 ( wait - for - human - to - f e t c h ? r 1 ? l  ? p ) 

78 ) 

79 ) 

80 ( : method f e tc h - meal - with - robot  

81 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

82 : task  ( FetchMeal  ? r 1 ? r 2   ? l   ? p ) 

83 : ordered - su bta sk s  ( and 

84 ( navto  ? r 2 ? l ) 

85 ( approach - robot  ? r 1 ? r 2 ) 

86 ( grasp - meal ? r 2 ? r 1 ) 

87 ( d e l i v e r - meal - to - p a t i e n t ? r 2 ? p ? l ) 

88 ) 

89 ) 

90 

91 ( : task Pickup Dishes : parameters (? r 1 ? r 2 -  robot ? l  -  l o c a t i o n  ? p  - 

p a t i e n t ) ) 

92 ( : method pickup - with - door - opening 

93 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

94 : task  ( Pickup Dishes  ? r 1 ? r 2   ? l   ? p ) 

95 : p r e c o n d i t i o n ( and 

96 ( not  ( p i c k e d d i s h e s ? r 1 ) ) 

97 ) 

98 : ordered - su bta sk s  ( and 

99 ( navto  ? r 1 ? l ) 

100 ( navto  ? r 2 ? l ) 

101 ( approach - door  ? r 1   ? l ) 

102 ( approach - door ? r 2 ? l ) 

103 ( open - door ? r 1 ? r 2 ? l ) 

104 ( Pick Dishes Two Robots AtLocation  ? r 1 ? r 2   ? l   ? p ) 

105 ) 

106 ) 
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107 ( : method pickup - without - door - opening   

108 : parameters (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

109 : task  ( Pickup Dishes  ? r 1 ? r 2   ? l   ? p )  

110 : p r e c o n d i t i o n ( and  

111 ( pat ientcanopen  ? p )  

112 ( not  ( p i c k e d d i s h e s ? r 1 ) )  

113 )  

114 : ordered - su bta sk s  ( and  

115 ( navto  ? r 1 ? l )  

116 ( approach - door ? r 1 )  

117 ( wait - for - door - opening ? r 1 )  

118 ( Pick Dishes One RobotAtLocation  ? r 1 ? r 2 ? l ? p ) 

119 )  

120 )  

121   

122 ( : task  Pick Dishes Two Robots AtLocation   : parameters  (? r 1 ? r 2  - robot  ? l - 

 
123 

l o c a t i o n ? p   -   p a t i e n t ) ) 

( : method pick - d i s he s - two - robots - at - l o c a t i o n 

  

124 : parameters (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t )  

125 : task  ( Pick Dishes Two Robots AtLocation  ? r 1 ? r 2   ? l   ? p )   

126 : p r e c o n d i t i o n ( and   

127 ( at  ? r 1  ? l )   

128 ( at  ? r 2 ? l )   

129 )   

130 : ordered - su bta sk s  ( and   

131 ( Pick Dishes  ? r 1 ? r 2   ? l   ? p )   

132 )   

133 )   

134    

135 ( : task  Pick Dishes One RobotAtLocation  : parameters  (? r 1 ? r 2   -   robot ? l - 

 
136 

l o c a t i o n ? p   -   p a t i e n t ) ) 

( : method pick - d i s he s - one - robot - at - l o c a t i o n 

  

137 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t )   

138 : task  ( Pick Dishes One RobotAtLocation  ? r 1 ? r 2   ? l   ? p )   

139 : p r e c o n d i t i o n ( and   

140 ( at  ? r 1  ? l )   

141 ( not  ( at ? r 2   ? l ) )   

142 )   

143 : ordered - su bta sk s  ( and   

144 ( Pick Dishes  ? r 1 ? r 2   ? l   ? p )   

145 )   

146 )   

147    

148 ( : task Pick Dishes : parameters  (? r 1 ? r 2  - robot ? l  -  l o c a t i o n ? p -   

 
149 

p a t i e n t ) ) 

( : method pick - d i s he s - with - human 

  

150 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t )   

151 : task  ( Pick Dishes  ? r 1 ? r 2   ? l   ? p )   

152 : ordered - su bta sk s  ( and   
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153 ( approach - human ? r 1 ? l   ? p ) 

154 ( wait - for - human - to - p lace - d i s h ? r 1 ? p ) 

155 ) 

156 ) 

157 ( : method pick - d i s he s - with - robot - at - l o c a t i o n 

158 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

159 : task  ( Pick Dishes  ? r 1 ? r 2   ? l   ? p ) 

160 : p r e c o n d i t i o n ( and 

161 ( at  ? r 2 ? l ) 

162 ) 

163 : ordered - su bta sk s  ( and 

164 ( pick - pati  ent - d i s h e s ? r 2 ? p ) 

165 ( load - d i s h e s ? r 2 ? r 1 ) 

166 ) 

167 ) 

168 ( : method pick - d i s he s  - with - robot - not - at - l o c a t i o n 

169 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ? p - p a t i e n t ) 

170 : task  ( Pick Dishes  ? r 1 ? r 2   ? l   ? p ) 

171 : p r e c o n d i t i o n ( and 

172 ( not  ( at ? r 2   ? l ) ) 

173 ) 

174 : ordered - su bta sk s  ( and 

175 ( navto  ? r 2 ? l ) 

176 ( pick - pati  ent - d i s h e s ? r 2 ? p ) 

177 ( load - d i s h e s ? r 2 ? r 1 ) 

178 ) 

179 ) 

180 

181 ( : task Re tr i e ve D i s h e s : parameters  (? r  - robot  ? l  -  l o c a t i o n ) ) 

182 ( : method d i s he s - r e t r i e v a l 

183 : parameters  (? r - robot  ? l  -  l o c a t i o n ) 

184 : task  ( Re tr i e ve D i s h e s ? r   ? l ) 

185 : ordered - su bta sk s  ( and 

186 ( navto  ? r ? l ) 

187 ( r e t r i e v e - d i s h e s ? r ? l ) 

188 ) 

189 ) 

190 

191 ( : a c t i o n approach - human 

192 : parameters  (? r - robot  ? l  -  l o c a t i o n ? p - p a t i e n t ) 

193 ) 

194 ( : a c t i o n approach - robot  

195 : parameters  (? r 1 ? r 2 - robot ) 

196 ) 

197 ( : a c t i o n grasp - meal 

198 : parameters  (? r 1 ? r 2 - robot ) 

199 : e f f e c t ( and 

200 ( not ( pickedmeal  ? r 2 ) ) 

201 ( pickedmeal  ? r 1 ) 
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202 ) 

203 ) 

204 ( : a c t i o n d e l i v e r - meal - to - p a t i e n t 

205 : parameters  (? r - robot  ? p - p a t i e n t ? l  -  l o c a t i o n ) 

206 : e f f e c t ( and 

207 ( not ( pickedmeal  ? r ) ) 

208 ) 

209 ) 

210 ( : a c t i o n wait - for - human - to - f e t c h 

211 : parameters  (? r - robot  ? l  -  l o c a t i o n ? p - p a t i e n t ) 

212 : e f f e c t ( and   

213 ( not ( pickedmeal  ? r ) )   

214 )   

215 )   

216    

217 ( : a c t i o n wait - for  - human - to - place - d i s h   

218 : parameters  (? r - robot  ? p -  p a t i e n t )   

219 : e f f e c t ( and   

220 ( p i c k e d d i s h e s ? r )   

221 )   

222 )   

223 ( : a c t i o n pick - pat ient  - d i s h e s   

224 : parameters  (? r - robot  ? p -  p a t i e n t )   

225 : e f f e c t ( and   

226 ( p i c k e d d i s h e s ? r )   

227 )   

228 )   

229 ( : a c t i o n load - d i s h e s   

230 : parameters  (? r 1 ? r 2 - robot )   

231 : e f f e c t ( and   

232 ( not  ( p i c k e d d i s h e s ? r 1 ) )   

233 ( p i c k e d d i s h e s ? r 2 )   

234 )   

235 ) 

236 ( : a c t i o n approach - door 

237 : parameters  (? r 1 - robot ? l  -  l o c a t i o n ) 

238 ) 

239 ( : a c t i o n open - door 

240 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ) 

241 : re quire d  - c a p a b i l i t i e s ( door - opening ) 

242 ) 

243 ( : a c t i o n wait - for - door - opening 

244 : parameters  (? r -   robot ) 

245 ) 

246 ( : a c t i o n pickup - di s h e s - with - robot  

247 : parameters  (? r 1 ? r 2 - robot ? l  -  l o c a t i o n ) 

248 : e f f e c t ( and 

249 ( p i c k e d d i s h e s ? r 1 ) 

250 ) 
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251 ) 

252 ( : a c t i o n r e t r i e v e - d i s h e s 

253 : parameters (? r - robot  ? l  -  l o c a t i o n ) 

254 ) 

255  

256 ( : a c t i o n navto 

257 : parameters (? r - robot  ? l  -  l o c a t i o n ) 

258 ) 

259 ) 

Listing A.6. Domain definition file for food logistics example in HDDL 
 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 
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( d e f i n e ( domain  h o s p i t a l ) 

( : types  l o c a t i o n s to r a g e   obj  agent  -   o b j e c t ) 

( : p r e d i c a t e s 

( re que st inge quip men t  ? a -  agent ) ( 

at ? o - obj ? s - s to r a g e ) 

( at  ? l   -   l o c a t i o n   ? a   -   agent ) 

( r e q u e s te d ? o - obj ? a - agent ) 

) 

( : c a p a b i l i t i e s ) 

 
( : task  GetObject   : parameters  (? r   -   robot  ? s    -   s to r a g e   ? o   -   obj ) ) 

( : method object  - get 

: parameters  (? r - robot  ? s  - s to r a g e ? o - obj  ) 

: task  ( GetObject  ? r ? s   ? o ) 

: p r e c o n d i t i o n ( ) 

: ordered - su bta sk s  ( and 

( get - o b j e c t ? r   ? s   ? o ) 

) 

) 

( : a c t i o n get - o b j e c t 

: parameters  (? r - robot  ? s  - s to r a g e ? o - obj  ) 

) 

 
( : task  Recharge Battery  : parameters  (? r   -   robot ) ) 

( : method battery  - r e c h a r g e 

: parameters  (? r -   robot ) 

: task  ( Recharge Battery  ? r ) 

: p r e c o n d i t i o n ( ) 

: ordered - su bta sk s  ( and 

( recharge - b a tte r y ? r ) 

) 

) 

( : a c t i o n recharge - b a tte r y 

: parameters  (? r -   robot ) 

) 

 
( : task  D e l i ve r O b j e c ts  : parameters  (? r   -   robot  ? l    -   l o c a t i o n ) ) 
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38  ( : method o b j e c ts - d e l i v e r y  

39  : parameters  (? r - robot  ? l  -  l o c a t i o n ) 

40  : task  ( D e l i ve r O b j e c ts  ? r ? l ) 

41  : p r e c o n d i t i o n ( ) 

42  : ordered - su bta sk s  ( and 

43  ( d e l i v e r - o b j e c t s ? r ? l ) 

44  ) 

45  ) 

46  ( : a c t i o n d e l i v e r - o b j e c t s 

47  : parameters  (? r - robot  ? l  -  l o c a t i o n ) 

48  ) 

49   

50  ( : task  Return Objects To Checkpoint  : parameters  (? r - robot ) ) 

51  ( : method object  - r e tu r n i n g  

52  : parameters  (? r -   robot )  

53  : task  ( Return Objects To Checkpoint  ? r )  

54  : p r e c o n d i t i o n ( )  

55  : ordered - su bta sk s  ( and  

56  ( return - o b j e c t s ? r )  

57  )  

58  )  

59  ( : a c t i o n return - o b j e c t s  

60  : parameters  (? r -   robot )  

61  )  

62    

63  ( : task  Al e r t Tr i g g e r : parameters  (? r   -   robot ) )  

64  ( : method a l e r t - t r i g g e r  

65  : parameters  (? r -   robot )  

66  : task  ( Al e r t Tr i g g e r ? r )  

67  : p r e c o n d i t i o n ( )  

68  : ordered - su bta sk s  ( and  

69  ( t r i g g e r - a l e r t ? r )  

70  )  

71  )  

72  ( : a c t i o n t r i g g e r - a l e r t  

73  : parameters  (? r -   robot )  

74  )  

75 )   

Listing A.7. Domain definition file for deliver goods - equipment mission in HDDL 
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