
Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 1

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An Approach for High-Level Multi-Robot Mission
Verification in UPPAAL

Uma abordagem para verificação de missões
multi-robôs em alto nível no UPPAAL

Danilo B. Galvão

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Orientador

Prof.a Dr.a Genaina Nunes Rodrigues

Brasília

2023

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 2

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Uma abordagem para verificação de missões
multi-robôs em alto nível no UPPAAL

Danilo B. Galvão

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Prof.a Dr.a Genaina Nunes Rodrigues (Orientador)

CIC/UnB

Prof. Dr. Rodrigo Bonifácio Prof. Dr. Radu Calinescu

CIC/UnB University of York

Prof. Dr. Ricardo Jacobi

Coordenador do Programa de Pós-graduação em Informática

Brasília, 19 de janeiro de 2023

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 3

Dedicatória

Dedico esse a minha família: Maria Madalena, João Vitor e José Pereira. O apoio emo-

cional de alguns de vocês me deu energias quando eu não conseguia me levantar sozinho.

Dedico esse trabalho também à minha namorada e parceira de mestrado Helena Schubert,

que me consolou e me deu forças nos momentos mais difíceis.

iv

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 4

Agradecimentos

A pandemia de 2020 significou um aumento de dificuldades para muitos estudantes,

agravado por um governo dedicado a destruir muitas instituições vitais para o desen-

volvimento social. A educação foi uma de suas maiores vítimas por constantes cortes em

verbas do orçamento da educação. Como estudante, me senti diversas vezes desmotivado

e ameaçado durante o processo. Meu primeiro agradecimento é direcionado a todos os

acadêmicos que me mostraram que a verdadeira ciência sempre foi resistência em um país

onde nossos representantes estão mais preocupados em manuntenção do poder e sobre-

vivência própria. Alguns nomes muito importantes são a minha orientadora, um exemplo

de pesquisadora, Genaina Nunes Rodrigues. Além de todos os outros professores que me

ensinaram algo durante a jornada como Raian Ali, Bozena Wozna-Szczesniak e vários

outros que não estão aqui nominalmente mas sempre farão parte das pessoas que fizeram

a diferença. Um agradecimento especial a alguns colegas de pesquisa como o Eric, Artur

e Gabriel que me ajudaram imensamente durante o desenvolvimento do trabalho. Em

segundo, agradeço a bolsa oferecida pela CAPES, que me permitiu fazer a compra do

computador onde eu fiz a maioria desse trabalho.

v

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 5

Abstract

The need to leverage means to specify robotic missions from a high abstraction level has

gained momentum due to the popularity growth of robotic applications. As such, it is

paramount to provide means to guarantee that not only the robotic mission is correctly

specified, but that it also guarantees degrees of safety given the growing complexity of

tasks assigned to Multi-Robot System (MRS). Therefore, robot missions now need to be

specified and formally verified for both robots and other agents involved in the robotic

mission operation. However, many mission specifications lack a streamlined verification

process that ensures that all mission properties are thoroughly verified through model

checking. This work proposes a model checking process for mission specification and

decomposition of MRS in UPPAAL model checker. In particular, we present an automated

generation process containing hierarchical domain definition properties transformed into

UPPAAL templates and mission properties formalized into the UPPAAL timed automata

language TCTL. We have evaluated our approach in three robotic missions and results

show that the expected behaviour is correctly verified and the corresponding properties

satisfied in the UPPAAL model checking tool.

Keywords: Formal Verification, Model checking, Multi-Robot Systems

vi

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 6

Contents

1 Introduction 1

1.1 Motivation .. 1

1.2 Context ... 3

1.3 Problem Definition .. 4

1.4 Contributions .. 8

1.4.1 UPPAAL ... 8

1.5 Dissertation Outline .. 10

2 Theoretical background 11

2.1 Goal Model ... 11

2.2 HDDL .. 11

2.3 MutRoSe .. 13

2.4 The UPPAAL Model Checking Tool .. 13

3 Proposed solution 16

3.1 Process overview .. 16

3.2 MutRoSe execution stage and parsing stage.. 17

3.3 Generation stage .. 18

3.4 Mapping rules .. 19

3.4.1 Generation of TCTL verification properties .. 38

3.5 Verification stage ... 38

4 Experiments and results 40

4.1 Experiment settings... 40

4.1.1 Experimental setup ... 40

4.1.2 General hypothesis .. 40

4.2 Mission description ... 41

4.2.1 Food Logistics - Delivery .. 41

4.2.2 Food Logistics - Pickup .. 42

4.2.3 Deliver Goods - Equipment ... 43
vii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 7

4.3 Results ... 44

4.3.1 Profiling results .. 44

4.3.2 Food Logistics - Delivery .. 44

4.3.3 Food Logistics - Pickup .. 46

4.3.4 Deliver Goods - Equipment ... 47

4.3.5 Properties verification ... 48

4.4 Complexity issues .. 51

4.4.1 HDDL ... 52

4.4.2 GM ... 52

4.5 Discussion ... 53

4.5.1 Scalability issues .. 54

4.6 Threats to validity .. 55

5 Related works 57

5.1 Translating RoboSim models to UPPAAL ... 58

5.2 The Esterel framework ... 59

5.3 The BIP framework ... 60

5.4 MissionLab and VIPARS .. 61

5.5 vTSL ... 62

5.6 Translation of high-level models to SMV .. 64

5.7 Related works comparison ... 65

6 Conclusion and Future Work 68

6.1 Conclusion ... 68

6.2 Future works... 69

Referências 70

Appendix 76

A 77

A.1 Files derived from MutRoSe execution .. 77

A.2 Domain files .. 79

viii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 8

List of Figures

1.1 Software lifecycle and error introduction, detection and repair costs [1] . . . 6

1.2 Proposed contribution overview .. 9

2.1 Goal model example for a museum’s visitor assistance system [2] 12

2.2 MutRoSe process overview [3] ... 14

3.1 Process overview .. 17

3.2 Goal model example .. 18

3.3 UPPAAL generated template for method-1 .. 25

3.4 Method template with nested abstract task with two methods in UPPAAL . 26

3.5 Fallback runtime operator template pattern ..38

4.1 Food Logistics - Delivery goal model .. 41

4.2 Food logistics pickup mission goal model ...43

4.3 Goal model for Deliver Goods - Equipment mission .. 44

4.4 Goal model template for food logistics .. 45

4.5 Table deliver template generated in UPPAAL ... 46

4.6 Abstract task pattern in FetchMeal inside fetch-deliver method generated

for UPPAAL ... 46

4.7 Generated template for food logistics pickup mission in UPPAAL....................... 47

4.8 Generated template for deliver goods - equipment mission in UPPAAL 48

4.9 Best and worst case scenarios for generation of the goal model53

5.1 Overview of the architecture used in [4] ... 62

ix

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 9

List of Tables

2.1 Types of TCTL formulae supported by UPPAAL [5]. ... 14

3.1 Mapping rules ... 37

3.2 Properties verified in missions ... 39

4.1 Properties verification for Food Logistics Delivery mission 49

4.2 Properties verification for Food Logistics Pickup mission 50

4.3 Properties verification for Deliver Goods - Equipment mission51

4.4 Summary of MutRoSe elements generated to UPPAAL 54

5.1 Comparison chart of related works ... 66

x

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 10

Acronyms

BIP (Behavior, Interaction, Priority).

CNL Configuration Network Language.

CRGM Contextual Runtime Goal Model.

CTL Computational Tree Logic.

DSL Domain-Specific Language.

FSA Finite State Automata.

FSM Finite State Machine.

GM Goal Model.

HDDL Hierarchical Domain Definition Language.

HRI Human-Robot Interaction.

HTN Hierarchical Task Network.

iHTN instantiated HTN.

LTL Linear Temporal Logic.

MCMAS Model Checker for Multi-Agent Systems.

MDE Model-Driven Engineering.

MPL Model-Based Processing Language.

MRS Multi-Robot System.

MutRoSe Multi-Robot systems mission Specification and decomposition.

xi

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 11

NASA National Aeronautics and Space Administration.

NSHA Network of Stochastic and Hybrid Automata.

NTA Network of Timed Automata.

OBDD Ordered Binary Decision Diagrams.

PARS Process Algebra for Robot Schemas.

PCTL Probabilistic Computational Tree Logic.

PDDL Planning Domain Definition Language.

ROS Robot Operating System.

SAIT Samsung Advanced Institute of Technology.

SAS Self-Adaptive Systems.

SHR Samsung Home Robot.

SMC Statistical model checking.

TCTL Timed Computational Tree Logic.

TDL Task Description Language.

UML Unified Modeling Language.

VIPARS Verification in Process Algebra for Robot Schemas.

vTSL verifiable Task Specification Language.

WMTL Weigthed Metric Temporal Logic.

XML eXtensible Markup Language.

xii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 12

Chapter 1

Introduction

1.1 Motivation

The Multi-Robot System (MRS) field has grown significantly in the past few years. From

task planning to control theory, this field holds many open challenges for researchers. Some

of the main reasons for that are the increasing complexity of tasks entrusted to robots,

robust collaboration between human and robots [6] and the need for unique domain-

specific restrictions for verification and certification of safety-critical MRSs [7]. Some of

those scenarios today include hospital robots [8], social robots [9] and robot assistants

[10]. Many of these systems share the similarity of directly or indirectly interacting with

humans during their operations, which, in turn, demand a more robust certification for

their safety [11] and mission correctness. Therefore, it is imperative that robot systems

must not contain any design flaws that could compromise the integrity of humans involved

in their operation.

Model checking techniques are formal techniques for verification of a given model of a

system through analysis of whether it satisfies specified properties or not [12]. The formal

verification of systems offers automatic and exhaustive verification of the state space in

finite state systems, assuring that any changes made to the specified model will not incur

in new unforeseen errors. These specifications can be evaluated in terms of properties,

such as safety, security, efficiency, reliability, dependability, etc. Model checking has been

used extensively in the MRS field [13, 14, 15] as it is quite useful for evaluating if multi-

robot models working in different settings are free of deadlocks and other design problems

overlooked during design.

Since many robot systems have completely different context settings and objectives,

their representation can be vastly different [16]. Therefore, several software engineer-

ing techniques are employed for designing robotic systems. Specifying behaviour can be

done through frameworks, in fact, a lot of middleware architectures and Model-Driven

1

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 13

Engineering (MDE) techniques have gained traction for their ability to engineer a MRS

with unique characteristics [17, 18]. Another famous approach is the use of graphical

notations, which can be used to depict systems with a large set of parallel and/or se-

quential actions. The graphical notation is most useful for its inherent characteristic of

visual representation, offering a common ground for both stakeholders and engineers to

discuss specific implementation details with the aid of an illustrative system description.

Some of the most known approaches are Finite State Machine (FSM)s and flowcharts

such as RoboFlow [19]. On the other hand, one can also use Domain-Specific Language

(DSL) approaches to represent a MRS with textual language. DSLs have two central

characteristics: first, as the name suggests, their expressiveness must be directed to the

specific domain, i.e. the use of a specific language must be justified by a significant gain

in expressiveness during design. Second, the notation must be comprehensible for stake-

holders while also being machine tractable [20]. Therefore, it is highly recommended that

stakeholders decide which important features should be addressed in MRS due to scope

restrictions in certain DSLs.

Another important concern is at what level of abstraction the specification must be, i.e.

low-level specifications for MRSs would involve more detailed control over tasks, resulting

in a larger system [16]. On the other hand, this approach would require more granularity

and more thorough specification requirements for their inherent level of detail. Studies

have shown that large systems are better suited for statistical verification, since other

verification methods would often fail due to space state explosion errors [21]. Therefore, a

high-level abstraction MRS is often recommended for non-statistical verification methods

inside model checking. One other aspect that must be taken into consideration when

designing a high-level specification is defining predicates: statements that may change

during the course of a mission. They might be used to evaluate a certain universal state

during the mission execution or simply checking if a robot state has changed while per-

forming an action when it is supposed to. Likewise, it is possible to use agent capabilities

working similarly as predicates to define if a certain agent has the capacity of carrying

out certain actions.

There are many aspects when it comes to designing high-level MRS missions accur-

ately. Some of them might be critical or not for mission success depending on the mission

scope and its complexity. It is important to periodically submit a mission description to

scrutiny (e.g. verification or testing) to ensure that all preliminary steps are being taken

to guarantee mission correctness.

2

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 14

1.2 Context

An important aspect of the MRS mission specification is describing the system operation

and its behaviour (also known as missions) [3]. Missions play an important role in defining

main goals and tasks that must be carried out in order to achieve mission success. Fur-

thermore, it is possible to create alternative mission paths should the main ones fail, this

adds more complexity to the mission design overall but also expands the list of possible

successful paths. Thus, regarding reachability, a mission is less prone to failure the more

alternative mission paths available it has.

Mission requirements include movement and manipulation as robot capabilities, i.e. if

a robot has some ability in order to carry out particular tasks. Robot capabilities are a

way to define MRSs heterogeneity, i.e. if a group of robots differ from each other in terms

of behaviour, equipment and abilities. Heterogeneity can make MRSs more complex as

they grow larger in size [22].

Other mission requirements include: predicates or statements concerning the mission

environment or the agents involved; and task ordering, as some tasks can be impossible to

perform in a particular order if a previous requirement was not met e.g. a robot must pick

a glass of water before delivering to its destination, this is usually considered under the

communication aspects of systems, as they often need to coordinate actions with other

robots in various missions.

Multi-Robot systems mission Specification and decomposition (MutRoSe) is a mission

modelling framework for goal-oriented, high-level MRS specifications. It specialises in

decomposing its input files into hierarchical task plans and outputting valid combinations

of task instances as well as the execution constraints between them. In order to do so,

it needs a GM [23, 24, 25] with domain-specific contextual runtime additions to accom-

modate flexible and real-world scenarios and a Hierarchical Domain Definition Language

(HDDL) [26] file, which is responsible for describing hierarchical tasks pertinent to the

mission domain.

Similarly to specifying MRSs, verification formalisms are also a very complex issue in

MRS; it is possible to choose from a variety of different formal methods. Formal methods

are mathematical techniques for specification and verification of properties in systems.

They can be employed in MRS using formal verification tools for design, simulation,

verification and testing. Besides, they offer potential for automation in software systems

and MRS systems as well due to their re-usability feature. The survey in [16] identified and

classified formalisms used in MRS, some examples are set-based (such as the B-Method

[27]), state-transition systems [28] and temporal logics [29], for instance Linear Temporal

Logic (LTL), Computational Tree Logic (CTL), Probabilistic Computational Tree Logic

(PCTL) and Timed Computational Tree Logic (TCTL).

3

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 15

Among the verification tools, model checking is the most prominent and flexible verific-

ation approach due to its automatic nature and the ability to check for every combination

of states within a model [16]; these characteristics also guarantee that an inexperienced

user will be able to quickly design a specification then exhaustively check for safety, live-

ness and other properties within the model. This is not always true for other methods

such as theorem proving or simulation [30] which may require additional specification

(e.g. for the environment) for a thorough verification and a more skilled user beforehand.

Within model checking, one can use one or more different formalisms to tackle a MRS

design, this is mostly done by using process algebras or temporal logics.

One of the direct advantages of using verification is because it is an effective technique

to outline potential design errors [12]. As shown in Fig 1.1, during a software lifecycle,

errors detected during the conceptual design stage are about 40% less costly to fix com-

pared to those detected in operation. Additionally, model checking verifies if important

properties are maintained throughout system operation.

UPPAAL [5] is an integrated tool environment used for the creation, verification and

validation of timed automata networks, a subset of FSA systems. UPPAAL has three

main parts: a description language, a simulator and a model checker. These components

will be outlined thoroughly on Section 2. While UPPAAL has a great focus on task

synchronisation and model checking real-time systems (i.e. using TCTL), it can also

be used to CTL as well by simply omitting the timed properties in a model. It uses

locations as an abstraction for states and its transitions are defined by invariants, guards

and synchronisation channels. UPPAAL has been used extensively to model and verify

many MRSs [31, 32]. UPPAAL files are written in eXtensible Markup Language (XML).

1.3 Problem Definition

Demonstrating MRS specification correctness can be difficult without verification pro-

cesses in place due to their complexity, multiple robots configurations and unknown con-

text conditions, predicates, etc. might greatly increase the number of states inside a

mission specification. Therefore, a verification technique such as model checking applied

to MRSs specifications to identify potential inconsistencies would help mission designers

to reason about mission specifications during early stages.

Thus, verification directly generated from specification models in high-level specific-

ation would impact positively on the accuracy of properties being evaluated. Other im-

portant challenge is accurately describing all important aspects of a high-level mission

from the verification process, as other system properties may not be fully covered, even

4

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 16

if they are evaluated during verification. Defining the important aspects of a mission can

be quite complex as it varies significantly from one mission specification to another.

In this work, important characteristics are defined as several properties such as reach-

ability or mission correctness concerning predicates, capabilities and mission ordering

which could be facilitated if identified through model checking and its exhaustive state

space exploration. For instance, assume that a predicate p would drive the mission to

failure every time it was set to true, hence indicating it must be either removed or safely

guarded for certain contexts of operation in the mission specification. Depending on

the mission complexity, the designer might not be able to identify this alone without a

verification process in place.

This work aims to automate the verification process of high-level MRSs mission spe-

cifications. Specifications can range from behavior, planning, robot capabilities and co-

ordination protocols between robots. This approach particularly focuses on MRS hetero-

geneous missions and how they can be verified through formal methods concerning the the

correctness and consistency of MRS specification model and its requirements expressed

in the form of temporal properties. In order to verify the MRS mission specifications,

the generated models will be submitted to verification using the UPPAAL tool and their

properties will be evaluated via TCTL formulas. UPPAAL was chosen for this work due to

being able to represent a system as a Network of Timed Automata (NTA), extended with

data types. It supports the system design as a collection of non-deterministic template

with control structures able to communicate with each other through the use of channels

or shared variables [33].

It is possible to evaluate MRS mission specification as verification properties as some

works already show [34, 13]. Other works in MRS formal verification follow a similar

workflow to provide a straightforward process when generating specification model then

offering a verification technique for the given model in order to evaluate its correctness

[35]. Therefore, an automated verification technique such as model checking applied to

the specification of multi-robot models are able to provide more degrees of safety when

compared to other verification techniques such as testing or simulation.

Concerning the properties that need verification, model checking already defines some

default properties such as safety (something bad will never happen), liveness (something

good will eventually happen), reliability, security, availability, survivability, maintainabil-

ity, dependability and others. This work aims to assure safety and liveness inside a MRS

specification, but also tries to guarantee mission reliability by ensuring to a certain level

that they are correctly specified and able to potentially show the presence of design flaws

in the MRS specification.

Although the mission describes the high-level tasks that the MRS must accomplish,

5

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 17

Figure 1.1. Software lifecycle and error introduction, detection and repair costs [1]

it is important to note that the mission specification must not necessarily explain how it

will be achieved. Instead, it shows what tasks may be executed in order to successfully

complete the mission [36]. In various MRS applications, this level of detail is crucial when

the scope of the specification is still being defined, for it will define what properties are

verifiable depending on the granularity of the system.

We should note that specification concerns such as mission layout (e.g. terrain char-

acteristics, wall positioning, etc.), physical, kinetic or environment properties are out of

this work’s scope. Therefore, our verification process does not include robot implement-

ation errors or mission environment problems due to the high-level perspective this work

focuses on.

In order to be able to verify mission specifications automatically, the generation process

must abide to rigid specification rules to attest that the output given by any of the

specification files created will always be the same for a given input model. Thus, it is

important to precisely outline how each member included in specification files relates to

the verifiable model e.g. how a mission goal would be represented in the generated file

and how the rule applied would be the same for every goal.

Robot swarms [34] are an example of homogeneous MRS due to no specialised robots.

By specifying different capabilities as one of the many high-level mission requirements

needed to be met by verification, it is possible to define if a predicate is fundamental for

the achievement of a certain mission or what are the possible execution paths to achieve

a certain goal. Which leads to the first research question:

6

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 18

The second research question emerges from the fact that the generated verifiable files

must retain important properties in order to assess the mission specification correctness.

Thus, the scope for the following research question needs to be defined regarding the first

one. For instance, if a given mission specification model is incorrectly specified, then the

generated model verification must output some error indicating that the properties are

not satisfied due to the inconsistency occurring in the model i.e. the properties specified

must conform to the original model in a comprehensible manner. Furthermore, the error

must relate to what problem exists in the specification and preferably suggest or give hints

to what are the possible alternatives to fix them in a way to help the mission designer.

Some of the relevant properties MRS mission specifications verify are safety, security,

correctness and others. As one might expect, it is important to assure to a certain level

that mission correctness is achieved. Likewise, one can verify safety by ensuring absence

of deadlocks. Other relevant characteristics such as reachability, i.e. being able to reach

a certain path during the mission, or liveness are also possible inside verification through

model checking.

The second research question aims to extract relevant characteristics as properties

and other domain-specific MRS properties relevant to the mission context as well as

verifiable in UPPAAL. One of its flaws is not allowing nested operators when writing

formula queries, thus some properties are automatically ruled out by the verifier or require

some modifications for further verification. Nonetheless, some characteristics must be

addressed when it comes to fully verifying robotic mission specifications that are not

common properties to all robot systems. For instance, if there is a mission path capable

of accomplishing the mission with a certain set of capabilities enabled or if the needed

preconditions are met before a certain goal or task. The relevant characteristics must

be extracted from the specification model as verifiable properties in a comprehensible

manner.

Another concern derived from the first question is the possible loss of meaning during

the verification stage i.e. the specification and the verification model do not have the same

implied properties or some properties are missing, and thus would render the verification

model partially or completely useless. Therefore, both generation of verifiable files and

verification properties processes must be sound and thoroughly specified to assure that

such properties were not ignored during the generation process.

7

Research Question 1. (RQ1) : How to automatically verify mission specifications

of heterogeneous MRS from a high-level perspective?

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 19

1.4 Contributions

The contributions for this work are twofold:

1. a verification process for high-level MRS mission specification to assure its correct-

ness and identify potential inconsistencies early in the MRS mission engineering

process. This is achieved through a strict set of mapping rules between mission

specification and UPPAAL elements;

2. We also propose a framework that automatically implements this translation into

UPPAAL models and properties. The output intended is as a set of verifiable TCTL

properties and UPPAAL models generated from MRS mission specification inputs

in the form of goal models and complex tasks expressed as Hierarchical Domain

Definition Language (HDDL).

Additionally, a case study verifying mission scenarios from RoboMAX will be used

for evaluation of this work. Figure 1.2 depicts the overview process for MutRoSe along

with a proposed contribution. The area circled in red depicts the proposed addition to

the current process. First, the mission specification elements are mapped and generated

as a UPPAAL NTA, then the model is verified using UPPAAL model checker verifier tool.

Should the specification verification be incorrect, the user is then able to correct the

specification files and submit them once again for verification, restarting the process, it is

important to stress that the restart is not automatic, however, given the arrow pointing

back to mission specification files. It only points out that the same file (now corrected)

is used once again as input. Note that the main contribution is an automated generation

process derived from the models. One should note that the world knowledge is excluded

from this verification process, that is due to the fact that the world knowledge if considered

in this approach, would instantiate variables inside the verification model, this is not the

best intended option since verification in UPPAAL is able to cover extensively multiple

paths of execution. Therefore, the world knowledge is not an input for this verification

process.

1.4.1 UPPAAL

UPPAAL is the model checking tool used in this project for specification and verification

of MRSs. Its 3 parts (Design, simulation and verification) consist in an integrated envir-

8

Research Question 2. (RQ2) : Is it possible to extract relevant characteristics

from MRS mission specification models as verifiable properties?

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 20

Figure 1.2. Proposed contribution overview

onment that will be used for designing and verification of properties. It uses TCTL as

formalism for verification. The designs are focused on channel communication between

timed transitions, but the latter can be omitted by the user if the system does not con-

tain any timed constraints. Additionally, UPPAAL verifies properties by using TCTL,

likewise, timed constraints can be also be omitted, allowing the verification of non-timed

properties as well.

UPPAAL is a tool used in several works in the verification field [37, 38], thus establishing

its academical prominence, additionally, it provides a rich environment for verification of

its models. It was the chosen tool due to its ability of providing a comprehensive model

ordering through template graphs, moreover, its communication channels and variables

are useful to link and describe many templates as an unique system.

Additionally, UPPAAL has many industrial case studies [39, 40], which proves its re-

sourcefulness in both academic and business settings. This can be attributed to its re-

sponsive interactivity and friendly interface when designing templates. Arguably, UPPAAL

has MDE features as it is able to break down complex systems in separate templates de-

scribed as models, which helps to describe various systems timed scenarios.

9

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 21

1.5 Dissertation Outline

The remaining chapters of this document are structured as follows: Chapter 2 contains

the relevant theoretical background. Chapter 3 presents the solution proposed in this

approach. Chapter 4 displays experiments and their respective results, along with veri-

fication of properties. Chapter 5 approaches related works in MRS. Chapter 6 concludes

this document with final remarks and directions for future works.

10

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 22

Chapter 2

Theoretical background

2.1 Goal Model

In requirements engineering, it is often beneficial to describe a system as a set of object-

ives and the related steps towards their achievement. In goal-oriented approaches, goal

models are a popular way to graphically describe a tree structure containing tasks and

goals performed by certain actors in a bottom-up fashion. They also provide a compre-

hensive and intuitive language, which is useful for quick visualisation of high-level mission

specifications.

In Fig 2.1, there is an example of a goal model. Goals are shaped as rectangular circles

and the tasks are represented by hexagons. The set of goals and tasks refer to the actor

responsible to enact them. The main task is the root node of the tree, if all sub-goals

and tasks are performed accordingly, then the root goal will be achieved. Usually, a goal

model has more than one way to achieve the main goal, justifying the need of a complex

diagram to represent.

In order to further improve the representation of goal models, CRGM adds runtime

annotations and contexts to the goal model. Contexts can be defined as a partial state of

the system’s surrounding world that may impact it negatively or positively. The algorithm

which defines if the main goal is achieved, namely achievability [2], considers all possible

path branches instances of contextual settings in order to satisfy the root goal, similar to

the SAT problem. A similar process is done in CRGM missions by MutRoSe to derive all

possible mission decompositions and how they can be achieved.

2.2 HDDL

Hierarchical Domain Definition Language (HDDL) is a language extension of Planning

Domain Definition Language (PDDL) for hierarchical planning, the extension adds hier-

11

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 23

Figure 2.1. Goal model example for a museum’s visitor assistance system [2]

archical planning characteristics while trying to preserve all other aspects of the original

PDDL. The hierarchical language is responsible for representing a domain with abstract

tasks and its respective methods. This domain may also contain variables and predicates

related to them. A HDDL file may have the following elements:

• types: the list of types allowed for variables;

• constants: constants defined for the domain;

• predicates: the possible predicates (preconditions and effects). Predicates may act

as constraints in the case of preconditions or as assignments in the case of effects;

• task: abstract task with name and parameters containing one or more methods;

• method: method with name, parameters and respective types, preconditions and

subtasks;

• action: an atomic primitive task containing parameters, types and predicates

These elements are organised in tasks: they contain the different types involved in one

or more methods that can execute the task. A method contains the actions that must be

accomplished to finish the task and if their ordering is sequential or parallel. Addition-

ally, methods may have preconditions defined by predicates, which could constrain the

execution of the method due to preconditions not being met. Actions have parameters

containing the types involved, since this is done in an hierachical manner, the types in-

volved in an action also belong to the method. Actions also contain effects: they work as

statements which may update values of predicates in HDDL.

12

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 24

2.3 MutRoSe

MutRoSe [3] is a framework for hierarchical task planning with strict rules for system

description and world knowledge. Additionally, the project contains examples to help

beginners to understand the tool and design their own mission specifications and output

their tasks decomposition provided that mission specifications and world knowledge are

made correctly. The output for MutRoSe are instantiated HTN (iHTN)s, which are the

valid mission decompositions based on specification constraints, also known as mission

plans. Hierarchical Task Network (HTN)s are task networks that represent possible de-

compositions given a HDDL specification and differ from iHTNs for their lack of concrete

variables instantiated. Thus, iHTNs are concrete instances of previously decomposed

HTNs inside MutRoSe. In other words, Multi-Robot systems mission Specification and

decomposition (MutRoSe) is a goal-oriented DSL framework used to specify multi-robot

mission plans. MutRoSe is concerned with the high-level task planning of multi-robot

missions and the allowed decompositions available given a specific state of the system

and its environment. After given the mission specification files, it runs an algorithm and

derives the valid mission decompositions as output.

An incorrect specification can compromise the entire decomposition process. The

reason is that MutRoSe cannot detect if a mission has valid decompositions up until its

execution, leaving the mission planner to discover what is the model error without any

assistance. Moreover, there is not a generation process for MutRoSe missions as veri-

fiable specification files. This process should be done automatically for valid MutRoSe

mission specifications, i.e. a specification syntactically correct, but not necessarily se-

mantically correct, as it could contain design errors. Therefore, model checking could be

greatly beneficial to MutRoSe specification files as they are not subjected to any verific-

ation techniques and these errors could impact a MRS mission performance or even its

achievement. Figure 2.2 shows MutRoSe process overview

2.4 The UPPAAL Model Checking Tool

Model checking is a formal verification method that “explores all possible system states

in a brute-force manner" [12] and can help to verify systems at an early stage of design.

A popular model checker to verify real-time systems is UPPAAL [5]. It is used for the

creation, verification and validation of networks of timed-automata (NTA), a subset of

FSA systems.

UPPAAL provides a graphical interface divided into three main parts: the editor, the

simulator, and the verifier [5]. In the editor, systems are modeled as networks of timed-

13

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 25

→

Figure 2.2. MutRoSe process overview [3]

automata inside template files. These networks are composed of locations connected by

edges that can execute functions, hold logical conditions, and synchronize with other auto-

mata in the system through channels [41]. UPPAAL uses locations as an abstraction for

states and its transitions are defined by invariants, guards and synchronisation channels.

UPPAAL has been used extensively to model and verify many MRSs [31, 32]. Finally, the

system defined in the editor can be executed in the simulator, which displays the state of

the automaton at every step.

Table 2.1. Types of TCTL formulae supported by UPPAAL [5].

TCTL
formula

UPPAAL
formula

Description

AG ϕ A[] ϕ ϕ should be true in all reachable states, i.e., for all paths ϕ is
always true.

EG ϕ E[] ϕ The should exist a maximal path for which ϕ is always true,
i.e., in every state of this path.

AF ϕ A<> ϕ For all paths, ϕ should be eventually true.

EF ϕ E<> ϕ There should exist at least one path, for which ϕ is eventually
true.

AG(ϕ AF ψ) ϕ –> ψ For all reachable states, whenever ϕ is true, then eventually ψ
 will be true.

According to several definitions in [5, 42, 43], a timed automaton is defined as a tuple

(L, l0, C,

A, E, I) where L is the set of available locations, l0 ∈ L is the initial location, C is

the set of clocks, A is the set of actions, co-actions and the internal τ -action, E ⊆

14

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 26

0

L × ×A × B(C) × 2C × L is a set of edges between locations with an action, a guard

and a set of clocks to be reset, and I : L → B(C) assigns invariant to locations. A

NTA is therefore, a network of n timed automata Ai = (Li, li , C, A, Ei, Ii). Since no

clock constraints are used in this generation (as MutRoSe itself does not contain timed

constraint properties), C = ∅. Templates automata are defined with a set of particular

parameters defined in our approach by the HDDL types used during task execution, these

parameters may be passed by value or by reference. Due to flexibility concerns, this work

uses pass by reference to define which variables will be passed as parameters.

Properties in UPPAAL are specified in Timed Computational Tree Logic (TCTL) lan-

guage [5], which has its syntax shown in Table 2.1. As TCTL implies, UPPAAL supports

verification of timed automata, such as real-time systems. Nevertheless, it can be used

for verifying untimed software by simply omitting the timed properties in a model[44].

15

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 27

Chapter 3

Proposed solution

This chapter contains a detailed explanation concerning the proposed solution discussed

in Section 1.3, comprising the stages of development necessary to achieve the solution.

This section is organised as follows: first, it will be discussed the overall proposed solution,

with a descriptive image showing what the intended contribution is. Next, another figure

will depict in details the process overview used in this work. The process is divided in

stages and the following sections are defined by each stage described in the figure. For

instance, the generation stage will cover the mapping rules used to map MutRoSe elements

to UPPAAL structures, alongside a general overview of how the main components of the

NTA interact. Finally, a more internal view of the parsing and generation process is

depicted in order to give the reader a more concrete sense of what is happening inside the

automated process.

3.1 Process overview

The process uses MutRoSe execution to perform the creation of output files used for this

approach, from then on, it is in a separate program used for parsing and generation.

As of now, the verification process is not fully integrated with MutRoSe, as Figure 1.2

suggests, but it is possible to generate UPPAAL models by executing MutRoSe and then

the program with the output files.

An explanation of the process itself is available in Figure 3.1, which depicts the input

files and processes involved in the parsing and generation of UPPAAL models. The process

begins by executing the MutRoSe framework with input files derived from the specific-

ation files, namely, the MutRoSe execution stage. Next, the generated files are used as

input for the parsing stage, where they are parsed as data structures to be used in the

generation stage. Generation comprises the generation of domain, goal model templates

and verification queries. Lastly, the verification stage is responsible for evaluating TCTL

16

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 28

Figure 3.1. Process overview

queries designed to verify mission properties. As indicated in Figure 3.1, we further delve

into the sub-parts of our process in the forthcoming sections.

3.2 MutRoSe execution stage and parsing stage

The execution of this stage is necessary to extract information to parse it into data

structures afterwards during the parsing stage. The parsing stage is basically responsible

of reading and transforming the generated files in data structures responsible for the

actual generation process. During the execution stage, two main files are generated from

the goal model file and three from the domain definition input file. For the goal model,

these files are the goal nodes info file and the goal model order file. The goal nodes info

contains all information concerning a node (i.e. a task or a goal) inside the GM.

As for the domain definition, the main generated files are: the types and variables

information file, the available methods for abstract tasks and the method ordering file.

The first one contains the listed variables in the HDDL file and their respective types.

Next, the available methods for an abstract task file contains the names of one or more

methods available in the domain definition. Lastly, the method orderings contains all

possible orderings for actions within a method.

Examples of generation files are shown in A.1 for both domains (i.e. GM and HDDL).

In the following sections, we will discuss the generation stage and the verification stage

in a high-level fashion, i.e. the sections will not concentrate on specifics of code. The

17

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 29

Figure 3.2. Goal model example

]

generation stage section will also contain the mapping rules needed to generate UPPAAL

templates and additional structures derived from MutRoSe elements.

3.3 Generation stage

The generation stage mainly consists in compiling the information available in the parsed

data structures and translating them to templates inside UPPAAL. The already parsed

data structures are sent to this stage where they are submitted divided into two main

processes: generation of domain methods templates and generation of goal model tem-

plates. The generation of domain methods is derived from files related to the HDDL while

the goal model templates derive from mission ordering and general goal model inform-

ation data structures. Both processes also comprise the global and system declarations

(textual structures) used for the templates. After the generation of templates, templates

are merged into the same NTA and some automatic verification queries such as deadlock

freedom are added to the verification queries automatically, since they follow the same

syntax in every NTA.

In order to do so, a strict translation process must be established to determine how

the elements of specification in MutRoSe will be adapted to a generated UPPAAL NTA for

verification while preserving the original semantics. Therefore, it is imperative to display

in a subsection, namely mapping rules section, to describe exactly how this process occurs.

18

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 30

Additionally, following subsections will also contain specifics of the generation process

itself with a breakdown of how mapping rule is applied during the generation.

3.4 Mapping rules

To generate a coherent generation, applicable to all missions designed in MutRoSe, one

must define how elements present in the original specification are translated to a verifica-

tion grammar (i.e. the UPPAAL NTA). Table 3.1 express the rules derived from elements

which are described in the GM or the HDDL input files and how they are created within

the generation process for the NTA. In addition, rules will be further elaborated in their

respective subsections. A UPPAAL timed automaton is defined as a non-deterministic

finite state machine enhanced with clock variables where the clock variables are evaluated

to real numbers during simulation. In the next subsection, we will use the semantics of the

definition present in [43, 5] as grounds to establish the generation process, this semantics

will be used throughout this section.

NTA generation

Two main automata generated are defined as the goal model level template and the task

level template, note that templates and automata will be used interchangeably from now

on. The goal model level template is one automaton responsible for coordinating task and

method execution in the order defined by the CRGM tree, whereas the task level template

is a collection of m available task methods and templates responsible for execution of the

subtasks needed to achieve a particular abstract task, defined in the HDDL file.

When mentioning certain MutRoSe elements, it is worth noting that there is an input

file responsible for each rule ID. For instance, consider rule #1: for the goal model level

template, no particular types are necessary for its creation, therefore no parameters are

used in this template by default, while the task level template may use one or more types,

depending on the types used in the actions defined in their subtasks. Both levels have

their declarations stated in the global declarations, which, as the name suggests, is visible

to all other templates. It is beneficial for tasks to be able to check each other status during

mission simulation, such as capabilities, which are globally visible. This is justified by the

fact that types are elements originated from the HDDL inside MutRoSe. The following

rules try to divide template responsibilities in order to clarify the generation process,

however, this is not possible at all times, since some interaction is needed for both levels

to cooperate inside the same network of automata.

The common flow between those two automata is as follows: the goal model template

triggers the execution of goals and tasks as described by the goal model input file, goals

19

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 31

may have runtime annotations which are critical to mission ordering, while tasks are used

as execution placeholders to their respective methods. Whenever a task is executed, the

goal model then triggers a channel to execute the particular method template for that

task. The method may finish with a successful or failure state, this indicates that the

task has finished in both cases. Next, a channel is triggered by the task method warning

the goal model template that its execution has ended, which delegates the simulation

execution back to the goal model level. This is done until the mission is finished or fails

by being unable to execute one or more tasks.

Therefore, one of the immediate advantages of using a verifiable model is to investigate

execution traces and how predicates or other mission parameters such as variables may

impact on their behaviour. Next subsections dwell deeper in how rules interact during

the model generation and how these constructions are helpful during mission simulation

and/or verification.

Rules #1 and #2

Types in HDDL are used to define allowed types for variables in the domain [3]. Types

may have predicates, which are more thoroughly defined in rule #3. In our generation

process, a type is mapped as a struct type with a particular method and variables are

instantiated according to the maximum number of parameter variables present in one

single task. Assuring that the number of instance variables will suffice the required amount

of variables associated with that type for the mission description.

A type is therefore a set of predicates T = [P] where V P ⊆ P is the subset of valid

predicates in P . As rule #2 states: types without preconditions or effects present in the

domain file (i.e. valid predicates) are discarded, as they are not present in the domain

definition. This is done inside the generation process by evaluating the available methods,

their subtasks and actions and removing the types without valid predicates until only V P

are mapped in our approach. In MutRoSe semantics, types can also have their types

defined through the world knowledge, a secondary file which contains objects that will

replace variables with instances. In addition, the world knowledge contains definitions of

predicates and functions being initialised. Since the world knowledge is being discarded

for the sake of generality, some variables have no defined value and cannot be properly

taken into account without this file.

Rules #3, #4 and #5

Predicates are defined as boolean expressions which can be used as preconditions or effects

and are always defined inside a type. Consider the equation with the following semantic

20

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 32

of a transition [42]:
l →−

l�, where

(3.1)

g = t.precondition == true

Equation 3.1 defines a transition from location l to l� bounded by an guard g, which means

that the transition will only occur when the t.precondition is true. In this approach, the

start location is denoted by l of a method with a predicate precondition == true of

variable t from a type Type. The Figure in rule #4 row depicts a similar transition to

an action bounded by the same guard where l named as "action" for clarity purpose. In

other words, the action will only be performed if the precondition stands, as defined in

the domain specification.

This, however, raises a problem with preconditions defined as guards: if the precon-

dition is not met by some reason, this would result in a deadlock inside the model, as

there would be no other transition available for the template to go to. This was solved

in this approach by adding an extra location with two new transitions: one containing a

guard with negation of the predicate as shown in rule #5 to avoid deadlocks; the other

transition goes back to the initial node, triggering method failure with the assignment

of a boolean variable to true (namely method_0_failed) which denotes mission failure

in templates. The transitions are both represented in the Figure of rule #5 and in the

equation below:

l −¬→g lfail,

lfail →− l, where (3.2)

¬g = t.precondition == false (i.e. the negation of g),

u = method_0_failed = true

Where lfail is the additional location created for failure and l remains the same location

from Equation 3.1, stressing that both must stem from the same initial location where the

precondition rule appears in order to prevent a deadlock condition. ¬g is the negation of

the precondition generated simultaneously. In the case of having more than one predicate

in the same transition, UPPAAL is able to support n predicate clauses using boolean

algebra: consider P and ¬P the set of n predicates in a transition, thus the following

equation depicts how predicates and their respective negations are generated:

P = p1 ∧ p2 ∧ p3 ∧ ... ∧ pn

¬P = ¬p1 ∨ ¬p2 ∨ ¬p3 ∨ ... ∨ ¬pn

(3.3)

Where p1, p2, ..., pn as well as their negated counterparts correspond to individual

predicates, such as g and ¬g in Equation 3.1 and 3.2. It is also possible to note that

21

g

u

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 33

synchronisation issues are addressed by communication channels. While there are not

imperative mapping rules for them as they are not derived from MutRoSe elements, they

are present throughout implementation in order to guarantee execution in the correct

order of the NTA methods defined by the goal model template, which will be explained

in rules destined for the GM input file.

Rule #6

Predicates also come in the form of effects, which can be defined as the triggered predicate

after performing an action (i.e. a transition). Likewise, a similar pattern is found in rule

#6, where instead of being a guard, it takes form of a UPPAAL update. Updates are

used in UPPAAL to assign values to variables or invoke functions defined in declaration

templates. An update transition works similarly, where instead of being the target location

for a transition, it is its source location. However, they do not require a negation nor extra

transitions as preconditions do, this is due to the fact that they are only an assignment

to a variable which side effect is changing the system state, thus, they do not cause any

deadlocks. Referring to the rule #6 Figure in Table 3.1, an equation below depicts how

an effect could be generically expressed:

l� →−e l��, where
(3.4)

e = t.ef fect = true

Where t.ef fect is another predicate from the same type struct variable t, location l�

is the source location and l�� is the end node if the method does not contain any more

subtasks or a subsequent action. For reference, an example of the struct used can be seem

in Figures of rule #1 and #3.

Rules #7 and #8

Capabilities are one of MutRoSe particular additions to HDDL syntax and are used to

define capabilities necessary for mission achievement. As such, they work in a similar

manner as predicates, with the exception that capabilities are not assigned such as in rule

#6.

Capabilities have a global scope when mapped to UPPAAL as boolean variables but

do not possess any types and are individual instances. This however poses a limitation

to how these capabilities are used inside UPPAAL, since they are converted directly to

a variable during generation, it is not possible to have multiple instances of a given

capability, whereas predicates may have as many variables as possible. Capabilities are

mapped as such mostly because it is not possible to infer how many capabilities will be

22

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 34

needed using only the domain file. The following equation depicts the original capability

transition followed by the additional transitions and location added to prevent deadlocks:

l →−c l�, where

c = capability == true

l −¬→c lfailc,

(3.5)

lfailc →− l, where

¬c = capability == false

u = method_0_failed = true

It is important to stress that while Equation 3.5 is very similar to equations regarding

preconditions (i.e. Equations 3.1, 3.2) l and l� are different locations from the former

equations used here for clarity purposes. Furthermore, it is possible to define a set of

C capabilities for a given transition in which the generation process for l, l�,lfailc would

behave very similarly as Equation 3.3. Lastly, capabilities too might compromise the task

execution, therefore its transition also contains the update u.

Rules #9 and #10

1 (: task AbstractTask : parameters (? r 1 ? r 2 - robot ?p - person))

2 (: method method - 0

3 : parameters (? r 1 ? r 2 - robot ?p - person)

4 : task (AbstractTask ? r 1 ? r 2 ?p)

5 : p r e c o n d i t i o n (and

6 (p r e c o n d i t i o n ? r 2)

7)

8 : ordered - su bta sks (and

9 (act ion - 0 ? r 1 ?p)

10 (act ion - 1 ? r 1 ?p)

11 (act ion - 2 ? r 1 ?p)

12)

13)

14 (: method method - 1

15 : parameters (? r 1 ? r 2 - robot ?p - person)

16 : task (AbstractTask ? r 1 ? r 2 ?p)

17 : ordered - subt a sks (and

18 (act ion - 3 ? r 2 ?p)

19 (act ion - 4 ? r 2 ? r 1)

23

u

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 35

20

21

22

Listing 3.1. AbstractTask definition from domain file

Abstract tasks are used in HDDL to describe how they are achieved through the execution

of a method m contained in a set of methods M , which may contain sub-actions and sub-

methods. The domain file does not contain explicit instructions of which methods will

be needed for a particular mission setting, in fact, the method might not be used at all

for that MutRoSe instance should it not be included in M . Thus, the generation process

adopts the naive approach of generating all method templates. The generation process

adopts this behaviour since the abstract tasks which will be executed are only known

during the generation of the goal model template, where goal tasks are directly related

to abstract tasks from the HDDL file. Thus, it is safe to conclude that the collection of

UPPAAL template graphs related to a abstract task directly represents the said task.

In order to illustrate how the generation of task in HDDL to a UPPAAL template is

done, suppose we have an abstract task with two methods as in Listing 3.1. It depicts an

example of a HDDL abstract task composed by two methods, which are related to the task

due to the task attribute (lines 4 and 16). method-1 does not contain a precondition while

method-0 does (lines 5 through 7). method-1 contains an abstract task in its subtasks.

HDDL specification supports nested abstract tasks inside other tasks, the solution adopted

in this work is to use yet another synchronisation channel inside the method template

referring to the respective available methods for the abstract task in question. In an

UPPAAL template, this means that there will be a transition channel linking the generated

template of method-1 to the available methods of AbstractTask-2 when transitioning

from action-4. Suppose that the only available method to execute AbstractTask-2 is

method_2 (since its definition is not shown in Listing 3.1). Whenever the task method

ends (succesfully or not), a channel triggered returns the simulation to the method. From

then on, there are two transitions from which the method continues its execution, one is the

remaining subtasks, where the underlying method has not failed and other where it has.

For the failed method transition, there is a specific location (namely failed_AT) where

the failure state is triggered, which has a transition going back to the end-method node,

which triggers the channel indicating that the method has ended. Figure 3.3 illustrates

how the following output would be for this method. It is important to stress that the only

available method for AbstractTask-2 was method_2, thus, the synchronisation channels

used in this example coincide with the specification. If there was more than one method for

AbstractTask-2 to be achieved, this method would be included as an available transition

24

(AbstractTask - 2 ? r 2 ? r 1)

)

)

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 36

Figure 3.3. UPPAAL generated template for method-1

as well. Figure 3.4 displays an example for nested abstract tasks with two available

methods.

Abstract tasks and methods coincidentally have parameters, which are used to define

which parameter variables are used in their subtasks. Thus, the parameter generation

derives from the domain file specification. One important exception is that if the type is

removed due to not having valid predicates (as mentioned in 3.4), the type itself will be

removed from the parameters list. As mentioned before, the parameters are defined by

reference for two main reasons: one is that the domain file also does not instantiate vari-

ables, only defines which variables are used, thus it is possible to infer that the definition

uses call by reference in the domain file as well. The second reason is that by adopting

the call by reference approach when generating, it is possible for the end user to define

which variables are used for each method in system declarations. It is possible to identify

the parameters from the domain file in lines 15 and 3 in Listing 3.1, derived from the

parameters needed for the task (line 1).

Both tasks and parameters are directly involved in system declarations. UPPAAL uses

system declarations to define which templates will be instantiated as processes in that

system instance. In more concrete terms, if a template is not attached to the system

process, it will not be accounted for in simulation and verification stages. This allows

for more flexibility while using the templates as the end user is also able to define which

methods will be truly used in its system. For this generation approach, all methods are

included in the system declarations. In addition, variables of a same type can be switched

to evaluate new system configurations, this essentially means that if a variable r of type

Robot is defined in the template, that variable may be reassigned in system declarations

to another robot r2. In doing so, the end user may analyse the behaviour of a single robot

throughout the entire mission to see if the mission itself is compromised somehow. The

only pitfall for this approach is assigning variables not declared in the global declarations,

which will obviously output an error.

25

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 37

Figure 3.4. Method template with nested abstract task with two methods in UPPAAL

Rule #11

Actions (also known as primitive tasks) [3] are concrete tasks from the domain file which

belong to one or more methods and need to be carried out to achieve a certain task. Ac-

tions may have preconditions, effects and parameters, alongside their types (type instances

needed for that action to occur).

Aside from being mapped as locations and having transitions originating from or to

them with guards or updates, actions themselves do not hold much importance since they

do not go into details as how they are achieved. The reason is that actions should not be

specific by design, which overall contributes to the high-level approach MutRoSe has.

Rule #12

In a GM, a goal represents an objective achieved by carrying out its sub-goals and sub-

tasks. It is therefore the representation of a mission goal that is relevant to the mission

context. MutRoSe adds another layer for goals when adding runtime annotations that

may affect the order as well. The tree traversal in a goal model is done depth-first from

the leftmost position, also known as preorder traversal. This order can be changed if a

runtime operation takes place.

In UPPAAL NTA generation, Goals are the primary generated structure from the

goal model level template. As stated before, the goal model level template consists of

one template which replicates the ordering present in the CRGM file. Goals without

runtime operators are only added to the UPPAAL template graph if they contain a leaf

node containing a task in their traversal path, otherwise they are not generated. This is

done to reduce the state space complexity without loss of meaning for both the model

26

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 38

and MutRoSe specification as the actual execution is carried out by tasks, there is not

an issue in ignoring nodes which are not crucial for task achievement. Other goals that

possess runtime annotations will be discussed in other specific rules.

Rules #13 and #14

Tasks in the GM translate to abstract tasks (domain file) by name, which, in turn, rep-

resent one or more methods. Tasks are only descriptions of which steps must be taken

in a goal-oriented setting to achieve a particular objective, tasks only contain one id

(e.g. AT 1, AT 2, ..., ATn), namely task_ID, and a name which refers to the abstract task

method name.

In the generation process, whenever a task node is encountered, the goal model level

template creates two locations: one is the initial task location, named exec_[task_ID]

and other is the end task location, named finish_[task_ID]. The initial task location

is responsible for being a transition target (i.e. an edge with an arrow pointed to in

the initial task location) for a synchronisation channel where it triggers the execution of

the method. The goal model level template is then halted at this location because the

next transition to the end task location contains a synchronisation channel waiting for

the task to be finished, thus it must wait for the channel trigger. The end task location

is responsible for analysing the result of the task execution after its end was triggered

and taking the correct deterministic transition afterwards. Similarly with preconditions,

where there is a failure and a successful state, the end task location has two branching

transitions to decide if the task has failed or not. This is decided by the triggering of

the previously discussed variables in guards which denote mission failure for a method.

Should the task fail and not inside a fallback operator, then this means that the mission

has failed and the execution stops abruptly followed by the triggering of a variable which

represents mission failure, named mission_failed. Otherwise, the mission continues to

the next locations or to the location representing the end of the mission. Figures in rules

#13 and #14 depict how this pattern occurs in the goal model level template.

Rules #15 and #16

A fallback operator is a GM runtime annotation operator contained in goals inside the

CRGM. If a goal contains this operator, a very specific pattern both in MutRoSe and

in the generation process occurs. First, the rule for the fallback operator will be briefly

discussed, next, the generation rule will be explained to establish the relationship between

both representations.

27

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 39

A fallback runtime operator is one of the three runtime operators in MutRoSe. Having

a fallback annotation means that the goal has an alternative course of action should the

first one fail. The semantics for the fallback operator is:

FALLBACK(N 1, N 2) (3.6)

Where N 1 and N 2 are the first and second id node and may be a task or a goal inside the

goal model. What the fallback operator essentially does is: Should N 1" fail its execution,

then N 2 must execute correctly, or else the mission fails. The fallback operator has nodes

N 1 and N 2 as children and its execution pattern differs greatly from others. For instance,

if N 1 finishes successfully, then N 2 is not even executed. On the other hand, N 2 should

only be executed when a failure of N 1 is confirmed.

In UPPAAL, the generation rule takes into account all three possible outcomes.

• If the first operand from fallback is successfully executed, then it transitions directly

for the next node available (i.e. the sibling node, if it exists) or;

• if the first one fails, then the second operand is executed. If it also finishes with a

failure state, then it diverges to a failed mission state;

• If the first one fails and the second one is executed successfully, then a transition is

made where to the next mission node available.

This is illustrated by Figure 3.5 where we have the generation of a fallback oper-

ator as part of a UPPAAL template in the following syntax: FALLBACK(AT 1, AT 2).

goal_G[previous] is the goal location where the pattern begins, as stated in rule #9 and

#10, it is possible to see the transition with a synchronisation channel triggering the ex-

ecution of the AT 1 task, executed by the method_0 template. Next, in the finish_AT 1

task, there are two transitions: one to the next goal goal_G[next] and other in the case

the method fails. In the failed method transition, it is possible to observe that the second

task AT 2 begins its execution, following the same pattern. After trying again with a

different task, the pattern ends in a successful state or a mission failed state, represented

by missionFailed location, if both tasks should fail.

Lastly, another modification is made inside methods involved in fallback operands,

stated by rule #16: if a template method is inside a fallback operator, a default failure

location is added to it. This is done to assure that all mission paths allowed are explored,

even if the method does not possess failure states defined by other conditions, such as

abstract tasks failing or preconditions or capabilities not being met.

28

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 40

Rule #17

A sequential operator is a runtime operator in the GM inside MutRoSe. It is a very

straightforward pattern: whenever a goal contains a sequential operator, all operands (i.e.

goals or tasks) involved must be executed in that strict order, establishing an execution

constraint. As opposed to a fallback operator, a sequential operator may have two or

more operands, while the fallback operator is binary.

In UPPAAL generation, this is done by an algorithm which "unwinds" the goal model

from the sequential root whenever a sequential operator is found. Unwinding the sequen-

tial root means that another generation process takes place to ensure that the tasks are

sequentially executed in the order stated by the operator. The result for one task is de-

picted in the Figure in rule #17. The sequential pattern can be extended to one or more

tasks,

Rules #18, #19 and #20

The rules #18 and #19 state that all generated NTA models possess boolean variables

used to indicate whether a mission has failed or not in the goal model level template.

Necessarily, one of them receives a true value after the end of an execution due to the fact

that they are linked to locations situated at the end of the template graph or in failure

locations. This value is used afterwards during simulations and verification queries to

assert if a mission has ended successfully given a certain configuration.

After a mission has ended, it goes back to the initial node (beginMissionNode), where

it can begin its execution again. Since the values are still stored, the startM ission()

global function is used to flush these values whenever a new mission begins, this is done

in the first transition of the system.

Rules #21 and #22

The initial nodes in templates play a central role in triggering mission or method execution

but also pointing out that they have finished. In the goal model level template, aside from

starting the mission, the beginMissionNode is also responsible for being the location where

all final states concerning the previously executed mission can be seem during simulation.

As for the task level template, the init_node location is used to trigger execution

of the method, while the end_method is responsible for triggering the synchronisation

channel which warns the goal model level of its end. Both are generated for every NTA

and are used during generation process by linking of the dynamic parts of the template

(i.e. the mission specification).

29

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#1

Types

Structs inside the global

declaration if they have

predicates related to

methods used within the

mission

HDDL

#2

None

Types without valid

predicates (i.e. predicates

not used as precondition

or effects) are ignored in

the specification

Not applicable

HDDL

#3

Predicates

Boolean variables inside

their struct types which

denote the predicate

value for that instance.

HDDL

#4

Preconditions (Predicates)

Transition guards in

template graphs defined

by the HDDL task

description

30

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

1

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#5

None

A new location and

additional transitions are

added for the negation of

the guard in order to avoid

deadlocks, if a predicate

fails, the method itself fails

and the task triggers its

failure channel.task ends

prematurely

HDDL

#6

Effects (Predicates)

Transition updates in

template graphs defined by

the HDDL task description

which assigns a boolean

value inside a struct

variable

3
1

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

2

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#7

Capabilities

Boolean variables without

struct types which denote

the capability value for that

instance. For the template

graph, they are used as

guard conditions in

actions with required

capabilities

HDDL

#8

None

A new location and two

additional transitions are

added for the negation

of the guard condition in

order to avoid deadlocks,

if a capability fails, the

method itself fails and the

task triggers its failure

channel. The method ends

prematurely.

HDDL

#9

Tasks

A collection of UPPAAL

graphs containing one or

more methods related to

that task

Not applicable

3
2

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

3

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#10

Task parameters

Called by reference as

types displayed in the

specification

HDDL

#11

Actions

An atomic UPPAAL

location for each action

GM

#12

Goal

If a goal is within the subset

of nodes (i.e. sub-goals or

sub-tasks) that contain a task

as a leaf node, this goal is

included as a location in the

goal model template

 3
3

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

4

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#13

Task

Two subsequent locations are

added, one triggers the

channel execution for the one

or more methods available for

that task. The second one deals

with the end of task execution

and checks if the task has failed,

depending on the task parent

operations, this may trigger

mission failure inside the goal

model template

GM

#14

None

A transition activating the method

boolean variable indicating

method failure is added to the

goal model template. The mission

fails if the task does not belong to

a fallback runtime operator, where

it may have an alternative task to

execute afterwards.

3
4

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

5

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#15

Fallback runtime operator

Locations with additional transitions.

If the first operand finishes succesfully,

a transition links the last node of the

first operand to the next sibling (i.e. the

next task) or the end of the goal model

template. If not, it is directly linked to

the second fallback operator, where it

triggers its execution. If the second

operator also fails, the transition then

goes to a mission failure state, ending

the mission

See Figure 3.5

GM / HDDL

#16

Task / Fallback

Whenever a GM task is inside a

fallback operand (i.e. being a child

node), an additional failure location

and its respective transitions are added

by default in the method(s) template

graph due to the specification stating

that the particular method(s) may fail

3
5

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

6

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#17

Sequential runtime operator

Whenever a GM task is inside a

sequential operator (i.e. it is a child

node of the sequential operator), it is

generated and executed strictly in the

sequential order to prevent

specification violations.

GM

#18

None

A mission succesful node is added

alongside a global boolean variable

which denotes mission success

GM

#19

None

A mission failure location is added

alongside a global boolean variable

which denotes mission failure

GM

#20

None

A function named startMission()

containing all global variables and

struct variables being reset to false as

mission starts so that no previous values

are carried out to a

new mission execution.

They may be customised by the

end-user to test new

mission configurations

3
6

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

7

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#21

None

In the goal model level template, a initial

node is always created to denote the

beginning of a new mission structure.

This node is called beginMissionNode

HDDL

#22

None

In each method template from the task

level there is a initial location called

init_node and another one called

end_method. These locations are used to

trigger the start and finish of method

executions, respectively

Table 3.1. Mapping rules

3
7

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

8

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 49

Figure 3.5. Fallback runtime operator template pattern

3.4.1 Generation of TCTL verification properties

Many of UPPAAL TCTL verification queries properties could not be automatically gener-

ated for some cases as they are somehow dependent of the generation process itself. How-

ever, some properties were possible to generate automatically since their syntax would

not change from model to model and thus the generation was possible.

Some examples of automatically generated properties are deadlock freedom and reach-

ability, which is described as whether the mission root goal will eventually be successful,

this is also done with intermediary goals to show that ordering constraints still influence

in partial mission achievement. All properties are described in Table 3.2, where each row

represents a different property evaluated for this work: reachability evaluates if a mis-

sion can achieve its root goal given the correct configuration; mission ordering correctness

evaluates if a certain goal is achieved after the execution of its task methods, used in

this work to depict that mission ordering follow the same as the goal model, even sharing

the same mission constraints; predicate or capability reachability is used to verify if a

predicate or a capability with a certain value (i.e. true or false) might compromise the

execution of a method or the entire mission as well, the example for this row contains a

TCTL query where the left side of the formula is a capability and the right side is the

variable triggered if a particular method fails; last property states that the system is free

from deadlocks.

3.5 Verification stage

The verification of TCTL mission properties is done after the generation using the already

completed NTA. Due to some of properties being boolean variables, it is also possible to

explore other mission configurations by changing predicates and capabilities. Additionally,

it is possible to test multiple configurations with different robots, this can be done by

38

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 50

Table 3.2. Properties verified in missions

changing system or global declarations depending on which one the end-user plans to

analyse. Once the model is completed after the generation, the verifier is used to assert

verification queries written in TCTL. One limitation is that UPPAAL does not accept

nested quantifiers. This limitation required some adjustments in following verification

queries, analysed in the next chapter. Note that Figure 3.1 outlines that the process of

generation ends the automated contribution. Therefore, the verification queries denoting

mission properties (both automatically and manually generated) must be verified by the

user inside the UPPAAL verifier tool.

39

Property Description Example

Reachability
If a root goal will be achieved

successfully or not
E<>mission_complete

Mission ordering correctness

or goal satisfiability

A goal is only reached if previous

task methods are completed correctly

A[] var_goal_model_template.goal_G8 imply

(not pickup_with_door_opening_0_failed or

not pickup_without_door_opening_0_failed)

Predicate or capability

reachability

A predicate and/or capability

leads eventually to a failure

state in a method

not manipulation - ->fetch_deliver_0_failed

Deadlock freedom The system contains no deadlocks A[] not deadlock

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 51

Chapter 4

Experiments and results

This chapter shows the results from the proposed methodology, how they were verified

and the results obtained from both the generation and verification. It is organised in

four sections: one for the experiment settings, containing the general hypothesis for our

experiments, the experimental setup and overall results. Next, one for each of the three

different experiment scenarios, starting from generation results derived from mapping

rules to the verification queries analysed in each case.

Results are from three different RoboMAX [45] mission settings: Two missions from

the Food Logistics mission domain (i.e Pickup and Delivery scenarios) and one from the

Deliver Goods - Equipment. The food logistics missions share the same HDDL domain

file for both missions, but its GM input files are different. The last scenario is a mission

about delivering equipment to agents.

4.1 Experiment settings

4.1.1 Experimental setup

The experiments were conducted in UPPAAL in version 4.1.26-1. The code used to generate

the NTA for missions was made in Python version 3.10.7, with the use of the uppaalpy

library [46, 47] is available at GitHub [48]. Another relevant project is a fork of the

original MutRoSe repository [49], modified to output relevant files, as stated in Section

3.2. Additionally, the experiments were conducted on AMD Ryzen 5 4600H with a total

of 16GB memory.

4.1.2 General hypothesis

For each of the three missions being analysed, it is intended to display generation results

when being compared to the original specification to show that both rules and specification

40

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 52

Figure 4.1. Food Logistics - Delivery goal model

adhere to each other. Additionally, we verify properties as queries to validate this ap-

proach, properties range from relevant characteristics, deadlock freedom and reachability

as defined in Table 3.2.

For RQ1, the hypothesis for this work is that the results yield the same specification

from MutRoSe as a NTA by following the mapping rules from 3.4 from MutRoSe and

that verification queries are fit for validating the previously stated properties. As for

RQ2, the hypothesis is that the verification such as mission correctness and predicates or

capabilities affect reachability properties.

4.2 Mission description

4.2.1 Food Logistics - Delivery

Goal Model

The food logistics is a mission used to analyse how robot cooperation can be used to

deliver meals to patients who are often unable to pick up a meal tray by themselves.

The scenario offers two alternatives to deliver food to those patients: either deliver them

directly to the patient, that is, if the patient is able to hold the tray; or deliver to another

robot that is capable of delivering the tray next to the patient.

The goal model starts searching for rooms which need delivering in G2. Next, the

model moves to goal G3 which contains two sub-goals: one for the robots to get the meals

41

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 53

in the kitchen (G4) and other for delivering them to the patient rooms (G7). A sequential

annotation in G3(i.e. G4; G7) already establishes that these tasks cannot be done in no

other order. The Figure 4.1 depicts the goal model of the food logistics mission.

During delivery, one important part of the goal model structure is the OR decom-

position present in goal G10, responsible for defining that either goal G11 or G12 are

executed, but not both. Although runtime operators are primarily associated with chan-

ging mission ordering, the OR decomposition plays a fundamental role in this mission to

establish which goal and subsequent task will be executed per mission configuration.

Domain definition

As stated before, the domain definition file is used for two separate missions with different

goal models. Thus, it contains a lot more method definitions than the ones used in a single

mission. The complete file is shown in Listing A.6. In essence, this file domain defines

a hospital with patients and robots interacting in methods for various reasons such as

object manipulation, delivering and overall logistics inside a health setting.

The abstract tasks used for this mission are as follows: GetFood, DeliverToTable,

DeliverToFetch. The GetFood task, as the name suggests, contains the necessary subtasks

needed for the robot to get a food meal from a certain location. Then, as the food

is obtained, a robot may decide between tasks DeliverToTable and DeliverToFetch, the

first one requires no human interaction, but requires the robot to have the capability

manipulation to be able to deliver the meal correctly. DeliverToFetch needs human

interaction, however, it also requires that the predicate patientcanf etch is true for the

task to be accomplished.

4.2.2 Food Logistics - Pickup

Goal Model

The main goal of this mission is picking up dirty dishes from the rooms where patients

are residing in the hospital, in order to achieve that, it must first survey which rooms

require pickup of dishes. Next, the main mission is identifying and going through each

room to pickup the dirty plates. After dishes have been retrieved, they are delivered to

the kitchen.

This GM contains a slightly less complicated task ordering than the last one, where

two tasks must be executed in any mission path. This is shown in Figure 4.2, where it

is possible to deduct quickly from the CRGM that both tasks must be achieved for a

successful execution. This mission contains the remaining methods not used in the last

one.

42

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 54

Figure 4.2. Food logistics pickup mission goal model

4.2.3 Deliver Goods - Equipment

Goal Model

This mission scenario from RoboMAX illustrates robots delivering goods or equipment to

agents in an uncertain environment. As Figure 4.3 The main goal, of course, is assuring

that all the deliveries are made. Differently from the other two previous missions, this

one contains fallback operators in 3 goals. In this case, the output will follow rules stated

in Section 3.4.

Domain definition

The domain definition file displayed in Listing A.7. Once again, the domain is still a

hospital, but storage, agent and obj types were added. Unfortunately, it is noticeable that

no predicates are used inside the method definitions, which leaves only action ordering to

be generated in the respective templates. This leads to the conclusion that this HDDL file

is much more simpler, which shifts the responsibility to the CRGM to deal with variable

instances.

43

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 55

Figure 4.3. Goal model for Deliver Goods - Equipment mission

4.3 Results

4.3.1 Profiling results

The generation program [48] took 0.434s for the food logistics mission (in both cases) and

0.433s for the deliver goods. With the cumulative time for the generation process being

0.319s for the food logistics missions and 0.302s to the deliver goods mission. This could be

attributed to many generation loops which traverse through the data structures and were

not optimised and inner calls made by uppaalpy [46] to other libraries. Base generation

performance does not drastically change since most specifications go through the same

functions before being properly generated. With the exception of a few additional loops

for runtime operators which do not change the general complexity, the overall performance

results are rather similar. This could be attributed to the specification and mission sizes

which are pretty similar as well. The profiling results were captured using snakeviz [50]

and cProfile [51].

4.3.2 Food Logistics - Delivery

On total, 14 templates were generated in UPPAAL, with 6 being directly associated with

this execution due to execution paths. The task methods contain many of the original

elements present in the original specification. The goal model, at this version, only sus-

tains the original ordering established by runtime and decomposition operators. The goal

model template for this specification is displayed in Figure 4.4 and clearly shows that

even the OR decomposition was generated correctly, which enables the user to correctly

44

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 56

Figure 4.4. Goal model template for food logistics

analyse all mission paths. It is also possible to see that tasks are strictly executed in one

of the following orders:

AT 1 −→ AT 2 or

AT 1 −→ AT 3
(4.1)

Where abstract tasks representation of execution are present in exec_AT and finish_AT

locations.

It is also important to discuss the declarations created by this generation, the variables

generated are in full conformity with what was expected, even the types for some were

derived correctly from specification. As stated before in the generation stage, capabilities

are defined in the domain definition without a specific type because the domain defini-

tion file does not express directly which robot needs to possess the capability, therefore

the addition of a type would imply that the generation knows which robot possess the

capability in question, which is incorrect. One benefits in this specification from this fact

by not having the necessity to formally assigning another variable to the robot struct

every time it is used. This also helps reducing the state space without compromising the

specification, since the capability is modelled as a guard constraint in either scenario as

shown in Figure 4.5 which corresponds to the template generated for the table-deliver

method from the domain file in Listing A.6.

The list of task method templates related to this mission is described below:

1. Food pickup template (temp_food_pickup_0);

45

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 57

Figure 4.5. Table deliver template generated in UPPAAL

Figure 4.6. Abstract task pattern in FetchMeal inside fetch-deliver method generated for UPPAAL

2. Table deliver template (temp_table_deliver_0);

3. Fetch deliver template (temp_fetch_deliver_0);

4. Fetch meal with human template (temp_fetch_meal_with_human_0);

5. Fetch meal with robot template (temp_fetch_meal_with_human_0);

It is important to note that the DeliverT oF etch contains abstract tasks as subtasks,

which will result in a pattern used to trigger these tasks. This pattern is displayed in

Figure 4.6. As stated in rule #9 in 3.4, the pattern stands but with its values changed to

the actual methods and their respective reference channels and variables.

4.3.3 Food Logistics - Pickup

The same number of templates as the last mission were created. The results are what was

expected, however, since our approach is not focused on inferring which robot is respons-

46

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 58

Figure 4.7. Generated template for food logistics pickup mission in UPPAAL

ible for each task, this system declaration requires adjustment of variables to successfully

finish the mission. However, it is important that it stays consistent both with GM and

domain file definitions. As expected, the generation process also showed to follow the

same creation when facing the same patterns rules. One interesting observation from this

method is that AT1 possess two available methods: pickup-with-door-opening, pickup-

without-door-opening. This is reflected in the generation process as stated in the rule for

generation of tasks (i.e. Section 3.4) and its behaviour is present in Figure 4.7. Addi-

tionally, it is possible to also see the transition where the task finishes successfully with

two guard values in a single boolean clause. This clause was divided in the missionFailed

target transitions for this mission to improve readability for the model.

4.3.4 Deliver Goods - Equipment

The results were very positive concerning mission ordering for the goal model template,

the method templates, however, fall short due to not having any available predicates

that could work as precondition or effect on task level templates. Figure 4.8 shows the

UPPAAL goal model level template and depicts how fallback operators are implemented,

by comparing with Figure 4.3, it is possible to see that structures follow the CRGM

execution pattern, however, it is possible that the execution paths are not clear. In order

to illustrate all successful execution paths concerning tasks, please consider the equation

below:

47

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 59

Figure 4.8. Generated template for deliver goods - equipment mission in UPPAAL.

AT 1 −→ AT 3 or

AT 1_fail −→ AT 2 −→ AT 3

AT 1 −→ AT 3_fail −→ AT 4

AT 1 −→ AT 3_fail −→ AT 4_fail −→ AT 5

AT 1_fail −→ AT 2 −→ AT 3

AT 1_fail −→ AT 2 −→ AT 3_fail −→ AT 4

AT 1_fail −→ AT 2 −→ AT 3_fail −→ AT 4_fail −→ AT 5

(4.2)

Equation 4.2 depicts possible execution paths where the abstract tasks annotated with

the _fail suffix means that they have failed execution. It is understandable how Figure

4.8 may appear confusing, but the goal model itself offered many alternatives concerning

method ordering, hence all the transitions generated.

4.3.5 Properties verification

This section comprises all queries made in UPPAAL (i.e. the expressions made in TCTL

syntax for property verification). They are displayed in Tables 4.1, 4.2 and 4.3, one for

each mission previously described.

48

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 60

Table 4.1. Properties verification for Food Logistics Delivery mission

Food Logistics - Delivery

The properties verified for the food logistics mission are: reachability (i.e. if a mission

is capable of eventually reaching a successfull or a failure state, denoting its end) and

deadlock freedom (if the system does not reach a deadlock state). Other relevant charac-

teristics include mission ordering correctness and a capability which influences the mission

achievement.

Property #1 represents deadlock freedom, this query format is default and it is gen-

erated for all missions, properties #2 through #6 were manually inserted. Property #2

and #3 show mission ordering strictness, which means here that the mission order de-

rived from the specification files still holds in the verification system, in order to show

its correctness. For instance, property #2 states that AT1 (i.e. food_pickup method)

must be successfully executed to enable the mission to succeed. One can see from Figure

4.1 that this is correct, since G3 fails from not executing AT1. As for mission successful

completion, Equation 4.1 shows the available execution paths, which are verified through

their methods failure inside property #3. Both queries result in success, pointing out

that the generated template for the goal model is in accordance with the specification

CRGM. Next, property #4 is a relevant characteristic where the manipulation variable

is evaluated in the fetch_deliver task. The query essentially states that, if the capability

is not enabled, then the method will invariably fail in the future. The last two proper-

ties (i.e. #5 and #6) verify if the mission is always able to reach a failure or success,

since UPPAAL verification is based on the present configuration, property #6 fails due to

non-existent failure paths in this configuration since both capabilities are true, while, in

contrast, property #5 is satisfied.

49

Property

ID
Formal description Expression in UPPAAL Result

Elapsed

time

#1 Deadlock freedom A[] not deadlock Success 0,002s

#2

Goal G6 is neeeded for mission conclusion:

For all paths, if the mission is complete it

implies that the goal G6 is also complete

(AT1 did not fail)

A[] mission_complete imply not food_pickup_0_failed

Success

0,002s

#3

Mission complete: For all paths,

if the mission is complete it implies that
AT1 and AT2 or AT3 were completed

successfully

A[] mission_complete imply (not food_pickup_0_failed) and

(not fetch_deliver_0_failed or not table_deliver_0_failed)

Success

0,002s

#4

In all paths, if the capability manipulation

is not set, then the method fetch_deliver

will eventually fail

not manipulation –> fetch_deliver_0_failed Success 0,002s

#5
Reachability, a mission has a path of

success in this given configuration
E<>mission_complete Success 0,002s

#6
Reachability, a mission has a path of

failure in this given configuration
E<>mission_failed Fail 0,002s

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 61

Table 4.2. Properties verification for Food Logistics Pickup mission

Food Logistics - Pickup

Food logistics pickup contains only mission ordering correctness as relevant characterist-

ics properties, since no predicates as preconditions or effects are available for this mis-

sion. Property #2 stems from the same mission ordering correctness issues explored

in last mission. In this case, it is possible to see from 4.2 that goal G7 is satisfied by

the execution of AT1 (PickupDishes) which, in turn, possess 2 available task methods:

pickup_with_door_opening and pickup_without_door_opening. Thus, it is possible to

reach task success by executing one of them. The graph then progresses to the next goal

to be executed, which is G8. Therefore, it is safe to conclude that G8 is only reached

if G7 is satisfied. Property #3 is used to evaluate mission conclusion successfully from

the ordering correctness from the point of view of task execution, which means that it

must assure that AT1 and AT2 are executed, hence property #3 states the conditions for

that to be achieved. Property #4 and #5 state reachability issues, and their results are

coherent with what was expected, since this configuration does not possess failure paths

with the current configuration.

Deliver Goods - Equipment

The properties derived from this mission do not come from the domain file because, as

stated before, the domain files do not possess any predicates used during the execution of

tasks. Property #1 stands for deadlock freedom, properties #2, #3 and #4 investigate

mission ordering correctness, finally, #5 and #6 are reachability properties.

In property #2, it is important to note that since there is a fallback runtime operator

(see Figure 4.3), this means that the task may be completed successfully in two separate

conditions:

50

Property
ID

Formal description Expression in UPPAAL Results
Elapsed
time

#1 Deadlock freedom A[] not deadlock Success 0s

#2

For all paths, for goal G7 to be satisfied
(and goal G8 to be reached), either one
of the task AT1 methods
(pickup_with_door_opening or
pickup_without_door_opening) must
be satisfied

A[] var_goal_model_template.goal_G8 imply
(not pickup_with_door_opening_0_failed or
not pickup_without_door_opening_0_failed)

Success

0s

#3

For all paths, mission is completed
successfuly if and only if AT1 and
AT2 do not fail

A[] mission_complete imply
(not pickup_with_door_opening_0_failed or
not pickup_without_door_opening_0_failed) and
not dishes_retrieval_0_failed

Success

0s

#4
Reachability, a mission has a path of
success in this given configuration

E<>mission_complete Success 0s

#5
Reachability, a mission has a path of
failure in this given configuration

E<>mission_failed Fail 0s

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 62

Table 4.3. Properties verification for Deliver Goods - Equipment mission

1. AT1 (with method object_get) finishes successfully;

2. AT1 fails and AT2 (with method battery_recharge) finishes successfully.

Given those two conditions, it is clear why property #2 fails, since it does not take option

2 into account. As opposed to property #2, property #3 takes the alternative path into

account, thus it is satisfied since both paths are the only available paths to reach goal

G11 and satisfy goal G9.

Property #4 pushes the structure of nested fallbacks even further: as the last line in

Equation 4.2 the verification query evaluates the execution path where AT1, AT3 and

AT4 fail, but the necessary tasks are executed and the mission completes with success.

Reachability properties #5 and #6 are the same as the other missions, however, #6 yields

a success result, this is because the failure states are automatically added when a task is

inside a fallback runtime operator, in order to stay true to the specification, where the

task might fail, but also to analyse the execution paths spanned from failed tasks. Thus,

since failure is by default an option, both reachability properties are true at the same

configuration.

4.4 Complexity issues

Given that all locations are currently derived from HDDL and the GM, an analysis of the

generation process itself is necessary to evaluate its space and time complexity. In the

sections below, we will analyse the complexity in the generation stages for each input file,

which will help the reader to assess not only the complexity of this approach, but also its

current limitations for future scalability.

51

Property

ID
Formal description Expression in UPPAAL Results

Elapsed

time

#1 Deadlock freedom A[] not deadlock Success 0s

#2

Meant to fail, this one shows that G11 is

executed if AT1 or AT2 (if AT1 fails)

successfully execute, not just AT1,

once again showing that the fallback
structure is sound

A[] var_goal_model_template.goal_G11 imply

not object_get_0_failed

Fail

0s

#3

For all paths: Goal G11 is reached if

AT1 or AT2 (in case AT1 fails)are

successfully completed, it also means

that G9 is completed

A[] var_goal_model_template.goal_G11 imply

not object_get_0_failed or object_get_0_failed

and not battery_recharge_0_failed

Success

0s

#4

Mission complete is achieved by

adopting one of the execution paths

available in Equation 4.2

A[] mission_complete imply

(not object_get_0_failed) or

(object_get_0_failed and not battery_recharge_0_failed) and

(not objects_delivery_0_failed) or

(objects_delivery_0_failed and not object_returning_0_failed) or
(object_returning_0_failed and not alert_trigger_0_failed)

Success

0s

#5
Reachability, a mission has a path
of success in this given configuration

E<>mission_complete Success 0s

#6
Reachability, a mission has a path
of failure in this given configuration

E<>mission_failed Success 0s

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 63

4.4.1 HDDL

When considering hierarchical domains in UPPAAL, the generation process does not dis-

criminate between what methods are used or not. Therefore, all methods present in the

domain file are generated and instantiated as UPPAAL processes, even if they do not take

part in a specific mission. Recall that, all methods become one UPPAAL template, and

all subtasks are individually created. This applies even if the same action is used for

two different methods or in two different subtasks in the same method. Additionally,

the branching paths preventing deadlocks in templates add a constant number of new

locations, also increasing the state space. Thus, consider that for s subtasks present in all

methods that the same amount of locations will be derived from the generation process,

additionally, we have a constant number of additional locations which bear a k constant

number for all subtasks with preconditions or capabilities needed. Which leads to time

complexity O(s + k) = O(s). Therefore, we conclude that the generation takes linear

time. As for the space complexity, the generation itself also needs to use data structures

containing all methods with all subtasks, thus the complexity also stands at O(s).

4.4.2 GM

The CRGM generation in UPPAAL uses a structured tree for generation, where a top-

down creation for the related tasks and goals takes place. Before starting the generation

process, as stated by rule #12 in Section 3.4, the removal of some unnecessary goals

(i.e. goals that are not included in the current approach such as query goals or achieve

goals) takes place, where they are discarded from the generation process. After that,

the node from the tree which contains all tasks as children is the starting node from the

generation, which then generates all nodes as locations (and uses a particular generation

pattern, should the node contain a runtime operator) until a task or a goal leaf is reached.

In case of the latter, the goal leaf is also discarded since it contains no tasks and therefore

does not hold any importance for the current version of this project. Thus, it is possible

to describe the generation process in terms of time complexity could be expressed by the

following equation:

O(n − ug − lg) (4.3)

Where n is the total number of nodes in the goal model, where the tree generation time in

UPPAAL is O(n), subtracted by the ug unnecessary goals and lg leaf goals with no tasks.

As for state space, the tree structure is broken down as lists of lists, resulting in a space

complexity of O(n) for the generation process.

52

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 64

(b) Worst case goal model

(a) Best case goal model

Figure 4.9. Best and worst case scenarios for generation of the goal model

Worst case and best case scenarios

For the best case, it is easy to immediately deduct that the smallest GM (i.e. one with the

minimal valid amount of nodes) is the best case, because the generation would take less

time. Given this scenario, consider a valid MutRoSe CRGM depicted in 4.9a with exactly

three nodes: two goals, a root goal, a goal preceding a task and the task itself. No goals

would be excluded, so the generation process is clearly O(3) = O(C). This is the best

case as the generation would not be void, which would compromise the generation as the

methods generated in task templates depend on channel triggering by the GM template.

In contrast, the worst case scenario is one which:

• No unnecessary goals or leaf goals (i.e. ug and lg) are present;

• All nodes in the GM are generated.

With that in mind, the figure depicted in 4.9b meet this criteria, with the generation

complexity generating all 5 nodes (i.e. O(5)). Now extrapolate this example for a goal

model with n total nodes, it is easy to see that the generation would take O(n) time.

Thus, the worst case scenario for GM generation takes linear time (O(n).

4.5 Discussion

To test the generation tool, seven different scenarios were executed in this approach, all

of them generated outputs for UPPAAL. However, two of them gave inconsistent gen-

53

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 65

HDDL Generated in NTA?

Types and variables Yes

Predicates Yes

Tasks Yes

Methods Yes

Ordered subtasks Yes

Subtasks No

Actions Yes

Capabilities Yes

Goal Model

OCL Statements (monitors/controls syntax) No

Task attributes No

Goal Types Perform goals only

Divisible and group attributes No

Runtime Operators Partially (parallel not implemented)

Mission ordering Yes

Table 4.4. Summary of MutRoSe elements generated to UPPAAL

eration results and one contained syntax errors, this can be attributed to unexpected

nested runtime operations, which have many edge cases able to compromise the genera-

tion process. The three mission scenarios described here were carefully analysed and no

generation errors concerning specification flaws were found.

Generating mission ordering as a NTA took more time than expected during the

project due to many edge cases, this also hindered progress in generating other MutRoSe

GM structures, which were critical to full mission verification. The results generated for

the domain files were very interesting as many of the domain structures are correctly

generated as a verifiable model, with the exception of non-ordered subtasks, which were

not explored in missions analysed. Table 4.4 brings a summary which lists the elements

from MutRoSe that were generated or not in the UPPAAL NTA, future works aim to

contemplate more CRGM elements in a near future.

4.5.1 Scalability issues

Scalability is an issue which needs to be addressed for future iterations of the project.

However, it is suggested that the generation would not differ in overall complexity as only

new runtime annotations and divisible and group attributes would add constant time

complexity for template generation. This due to the fact that the levels described in

this approach would be further implemented with more variables and locations without

54

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 66

the need for more templates. As for UPPAAL, it is still uncertain that these additions

would impact severely on the state space, new experiments must take place to assess the

robustness of the tool in larger state spaces. Another alternative is switching to statistical

model checking for the verification of properties if the current approach is not possible.

In conclusion, the solution is incomplete for MutRoSe specifications due to its lack of

many CRGM elements, but holds interesting study points as to where it is possible to

evolve and integrate this solution. One other interesting remark is expanding MutRoSe

specification such as timed constraint to verify more properties with UPPAAL. The an-

swers for RQ1 and RQ2 are as follows:

RQ1 (How to automatically verify mission specifications of heterogeneous MRS from a

high-level perspective?) Through the automatic generation of a program [48], it

was possible to not only generate verifiable models for mission specifications from

MutRoSe but also to verify missions from a high-level perspective (predicates, goals,

capabilities, abstract tasks, etc.). Although not all elements were mapped in this

generation process, it has been shown that this the automatic verification is defin-

itely feasible.

RQ2 (Is it possible to extract relevant characteristics from MRS mission specification

models as verifiable properties?) Some properties such as capability were submitted

through verification and have shown interesting results regarding method or mission

reachability. Additionally, the automatic generation of a verifiable model from a

MRS mission specification alongside the manually inserted properties verified have

shown that mission specifications as verifiable models might provide more insight

concerning mission properties to designers.

4.6 Threats to validity

Although the UPPAAL models were generated automatically, many edge cases in the pro-

gram implementation could greatly increase the experimenter bias. Additionally, repet-

itive testing was made during the creation of the generation process, thus compromising

internal validity to an extent. On the other hand, these claims could be countered as

many generation stages are the same for the three experiments analysed in this work.

Additionally, mapping rules have not changed during the elaboration of the methodology

through experimental stages, increasing confidence in internal validity. Additionally, since

it is a generation program, the results are not affected by time features.

Since MutRoSe is still a DSL, the generation process is obviously tethered to its

syntax, which means that the generalisation of the experiment is not applicable to other

55

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 67

frameworks or other MRS without adjustments. Additionally, only functional samples

were analysed, thus, external threats may include selection bias and sample features. A

factor that improve the external validity is that the generator of

freely available [48] for replication.

56

UPPAAL is a project

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 68

Chapter 5

Related works

The MRS area contains many works ranging from operation and planning to specification

and verification. Regarding verification, a survey made in 2019 by Luckcuck et al. [16]

gathered 25 works using model checking in the literature in various tools. The most used

tool was SPIN [52], containing 5 works, followed closely by others such as PRISM [53],

UPPAAL [5] and others. Table 4 in the same survey indicates that model checking the

most popular formal approach for verification in MRSs, containing a total of 32 works,

more than all other formal approaches surveyed combined (24). Thus, this once again

shows that, while there’s not a predominant tool used in model checking since they all

possess many different characteristics when it comes to implementation and could be

applied to many different domains, model checking is often the most adopted formal

verification method as it provides an outlined mathematical proof as to why properties

would hold or not in the states specified.

The MRS field contains many papers using formal verification, since safety, liveness

and reachability are common properties evaluated during design or execution time in

such systems. Additionally, as mentioned before, there are various formalisms and tools

to tackle verification problems on such systems, but not many of them contain a pipeline

of specification and validation inside the same framework. Therefore, works containing a

integrated framework for verifiable MRS will be outlined in this section. Additionally, al-

though some approaches accommodate other types of systems, such as Self-Adaptive Sys-

tems (SAS), the works will be focused in single or multiple robotic applications (namely

MRS). Another important aspect of MutRoSe is that missions are described on a high-

level, meaning that no specific mission context other than being accomplished by MRSs

must be considered before designing a mission inside the framework. One of the compar-

ison levels with other works is if they offer a high-level, top-down approach. Some other

concerns such as heterogeneity, which formalisms and tools are used for verification in

each work (e.g PCTL, TCTL, Process algebras, etc.), lastly, which properties are being

57

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 69

verified, such as safety, reachability, security, dependability, etc.

5.1 Translating RoboSim models to UPPAAL

The work of [35] aims to translate RoboSim [54] models as UPPAAL Network of Timed

Automata (NTA)s automatically following a strict set of timed automata patterns and

rules, it is also restricted to a specific context of RoboSim metamodel mission i.e the

plugin only generates NTAs for RoboSim models. The work presented in this paper can

describe any mission setting described inside the MutRoSe framework, this indicates that

there is a trend in establishing a streamlined and automatic verification process from the

very DSLs specification in recent works. Additionally, the work also provides a combina-

tion of the NTA and the Network of Stochastic and Hybrid Automata (NSHA) to enable

verification of Weigthed Metric Temporal Logic (WMTL) properties using UPPAAL with

the Statistical model checking (SMC) extension (namely UPPAAL SMC). MutRoSe spe-

cification does not contain any weighted properties, likewise, the models do not contain

this. Another interesting point of comparison between the two works is what are the

input languages for the generated model. RoboSim models are diagrams similar to Uni-

fied Modeling Language (UML) notation, containing roughly two main module levels: a

syntactic unit module, which models the robotic system by specifying the interfaces of

the robotic platform, and the software controllers module, which contains the behaviour

of controllers running in parallel with the unit module.

While MutRoSe focuses on mission specification and decomposition of high-level mis-

sion plans for MRS, RoboSim is a framework used for modelling robotic simulations in

diagrams using state machines using a timed syntax. The work in [35] transforms models

designed in RoboSim to UPPAAL. Both works converge in translating a specification lan-

guage to a verifiable model using UPPAAL as the verification tool. Unlike the latter, it

is much more difficult to generate a automata from a set of tasks. Since RoboSim models

describe a cyclic simulation, Zhang et al. work provide a low-level abstraction transform-

ation process, whereas this approach generates abstractions for verifying abstract plans,

where no detailed explanation of how the tasks will be carried out is provided, only their

ordering (if not partial). One shared similarity is that the two approaches generate default

verifiable properties such as deadlock-freedom from their translation. The case study is a

RoboSim model using the Alpha Algorithm, a algorithm studied in other MRS works [55]

that aims to aggregate a swarm of robots. The work for this paper focuses on high-level

specification in order to be able to accommodate more mission contexts.

58

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 70

5.2 The Esterel framework

The work of Kim et al. [56] uses the Esterel framework, which consists of a programming

language, a graphical simulator and the XEVE model checker [57], to formally verify a ro-

bot home assistant named Samsung Home Robot (SHR) developed by Samsung Advanced

Institute of Technology (SAIT). XEVE uses model checking on FSM models generated

by the programming language after compilation, however temporal logics are not used in

verification, instead, it uses compositional techniques to reduce the state space complexity

with the removal of redundant states in a process similar as OBDDs in MCMAS. and then

implement verification using observers: reactive components placed in parallel with the

main program which are triggered by signals of success or failure during simulation stage,

where all possible inputs are tested to cover all possible combinations. It is possible to

check for safety and liveness properties within the system by using synchronous observers

as outputs.

The implementation of robot systems is considerably low-level, signals are used for

interaction between components, including timing intervals and counters. Thus the user

can describe each behaviour of the robot accurately, which incur in many code lines. How-

ever, the very use of signals inside the modules allow for the user to preemptively creating

events for error handling and guarantee safety in SHR as well as other properties. While

this allows for more control from the designer when defining properties, it is necessary

that the events are properly rigged to guarantee safety, as such, requirements must be

thoroughly inspected before they are specified in Esterel. Another advantage of specifying

interactions when it comes to debugging is that since signals are the only communica-

tion channels between modules, then the testing among components is simplified by only

observing their signal states.

The Esterel framework and the model checking approach for MutRoSe differ in many

levels, ranging from the verification techniques used to the very scope of robotic applica-

tions (i.e. low-level behaviour of a single robot versus high-level mission goals and tasks).

Some similarities both works share is that both MutRoSe specifications and the SHR are

designed inside their respective frameworks and have safety properties assessed through

model checking. Another coincidence between both frameworks is the use of graphical

simulators to assist designers in the specification process, likewise, the representation

using FSMs shares some similarities with NTAs used UPPAAL.

59

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 71

5.3 The BIP framework

There is a clear difference between top-down and bottom-up approaches: as mentioned

before, although bottom-up approaches are more likely to capture all aspects of a certain

background as they are more specific, top-down ones tend to create a more simple ab-

straction for MRSs. This is useful for designers who do not have a lot of time to design

a MRS from scratch, however, it is important to note that hurrying modelling stages

may conceal a lot of design-specific problems. Many MRSs use a bottom-up approach to

ensure verification, as shown in the case of [58].

The paper adds the idea of a component-driven design in robotic systems combining

the strengths of GenoM and the (Behavior, Interaction, Priority) (BIP) Framework [59].

Furthermore, the combination of both tools enable automatic generation of correct robotic

software in GenoM through specified behaviours in BIP for the GenoM environment.

Components are described using transition systems written in C/C++ through BIP. By

describing components in an individual level, it is possible to design MRSs in a incremental

and safe manner due to modelling and verification being done on the component itself and

then gradually on others as design progresses, reducing the cost of correction by detecting

the problem at an early stage. This methodology is applied to a autonomous rover robot

as the case study where constraints defined by the BIP framework hold in generated

code. The verification used inside the toolset is a model checker tool called DFinder

[60] which also uses a compositional verification method. With the use of component

and interaction invariants (i.e. descriptors of atomic constraints and constraints between

modules, respectively, described as invariants), it is possible to check if properties remain

satisfied incrementally during verification. The input program for verification is written

in the BIP language. The properties verified are: deadlock-freedom and safety.

While this is not a MRS, this work can be easily adapted to a multiple number of

robots in the same incremental manner. This study also shows an interesting verification

technique: by using the negation of a defined property and checking if there is not a

state where the negation occurs, we can safely assume the property holds. Otherwise, the

potential violation can be investigated further as the state is shown by the verification

tool. In UPPAAL, when a property described in TCTL fails to hold, it is possible to

check which state, i.e. location, is responsible for the violation. This idea is used in

this work to show locations of the negated property when there are more locations of

the property itself during verification queries. Other similarity with the component-based

construction is that control mechanisms coordinate connection and functional elements

by providing a control flow, enforcing a clear separation of responsibilities, likewise, in the

verification stage of MutRoSe, aside from developing a different abstraction for each file,

the generation of each task must be done in a hierarchical approach to assure a harmonic

60

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 72

interaction with the upper levels.

5.4 MissionLab and VIPARS

The work of [4] offers autonomous verification of behavior-based controllers created in the

Configuration Network Language (CNL), a component of the MissionLab Mission Spe-

cification System [61] by translating specifications to Process Algebra for Robot Schemas

(PARS) and then submitting them to processing with the verification module Verifica-

tion in Process Algebra for Robot Schemas (VIPARS). Additionally, the paper provides

a feedback loop by returning the verification results to the human operator. Figure 5.1

illustrates the overview of the architecture. It is possible to notice that the performance

criteria are distinct from the models and can be parameterised in order to find the best

tuning for the robot controller. Specification of the models is done in CNL, which is a

superset of C++ designed to express the separation between behaviour implementation

and its integration with other previously defined behaviours, thus, a top-down construc-

tion of robotic applications. PARS is the specification language for formal verification. It

is specialised in verification of concurrent systems, as such, it is capable of representing

robot controllers and their hardware as well as the environment and how it affects the

MRS through interactions. In process algebras, the composition of processes follows a

stop and an abort condition, in a way that basic processes can be connected with oth-

ers and generate complex behaviour patterns. The automatic translation of controllers

into PARS is done following a strict set of rules of lexical grammar parsing using Flex

and Bison [62], two parser tools widely known that have also been used for the work of

MutRoSe during its parsing of HDDL. As a downside, the paper reports that it is more

suitable to design and select a set low-level behaviours rather than designing intricate and

complex behaviours for the translation to PARS primitives. This could be attributed to

the corresponding number of CNL nodes generated and a state-space explosion problem

during translation as well as accuracy when parsing behaviours to PARS.

Although the verification using VIPARS uses process algebras, both process converge

in using a similar input, the CNL language converts its controllers into a FSA that is

translated as a PARS, while the base format for UPPAAL specifications is a NTA which

is closely related to the other automata notation. Another point of convergence is that

the translation process starts from a high-level mission structure. As said before, the

complex processes found in the upper levels of PARS are compositions of more primitive

nodes, this is a strong correlation where the mission process specification start its de-

scription from the higher levels of behaviour and starts specialising behaviours as needed.

However, both works differ when analysing description of process algebras and temporal

61

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 73

Figure 5.1. Overview of the architecture used in [4]

logics, while it is necessary to describe interactive environment behaviours inside VIPARS

to accurately represent the MissionLab specification, which is a robot search mission for

biological weapons in an unknown environment, one does not need to outline contextual

specifications depending on the mission context for MutRoSe, although it is possible with

the use of contextual annotations. As such, the performance criteria defined further dis-

tinguish both framework goals when it comes to the properties verified: the VIPARS

framework is able to define timed criteria for its missions. For instance, in the search

mission, a performance criteria chosen was that the robot must find the target within 60

seconds. In conclusion, since VIPARS framework is concerned with specific performance

criteria i.e qualitative properties, the verification processes between both works are fun-

damentally different when comparing objectives, nonetheless, it is possible to compare

both works when assessing robot specification and automatic translation to verification

models.

5.5 vTSL

verifiable Task Specification Language (vTSL) [63] is a DSL used to specify task trees

which allows formal verification of a set of previously defined safety and integrity restric-

62

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 74

tions of a robotic application using the model checker SPIN [52]. It is important to note

that it is also possible to define task constraints to be checked against within the language.

Additionally, the paper offers a automatic transformation of vTSL specification models

into Promela models, i.e. the input language for SPIN, and demonstrate its usability and

scalability through experiments that directly use the behaviour specification models. The

example application used for this work was a logistics use case. vTSL uses only a textual

language similar to C/C++ to describe the behaviours of a robotic system, one limitation

of this approach is only being able to describe one robot behaviour in favor of more elab-

orate specification when compared to other works [64]. The specification language has a

fundamental block called action, an action may trigger other single or concurrent actions

and return type values, additionally, each can contain input parameters, thus enabling to

relate actions with one another. Inside a task it is possible to define behaviour blocks,

responsible for defining which action will be taken based on the current conditions. Since

actions are the basic building block, it is safe to conclude that the designer is likely to

follow a bottom-up approach when defining a task tree. It is important to note that

vTSL also has interface connectivity with Robot Operating System (ROS) [65] ranging

from messages to services.

During translation, each action and component stub in vTSL is created as a Promela

component named proctype, which is a similar structure to actions in the specification

language. As Promela also shares a resembling C structure, many of the transformations

for the verification model are considerably straightforward. After generating assertions

and all execution paths in Promela, the model is then submitted for verification inside

SPIN. The verification checks for deadlock-freedom and if assertions are satisfied in all

execution paths. As mentioned before, SPIN uses LTL as formalism for model checking,

assertions are directly generated from the specification model as LTL properties. However,

more complex behaviours must be manually specified in the model.

Compared to the verification approach proposed for MutRoSe, this work focus on

single robot behaviour and is mission-oriented, being able to define in a reasonably low-

level what the specific robot actions are. Conversely, the verification for MutRoSe is not

concerned on which behaviours are allowed during runtime, rather, it focuses on which

actions should be taken, but does not go into detail on how they will be carried out,

only their sequencing. Another interesting comparison is the difficulty of the translation,

whereas there are graphical inputs in the CRGM for MutRoSe, vTSL is a text-only

language similar to C, same as Promela. UPPAAL also shares C/C++ notations, but

has a graphical notation as well. Therefore, it is safe to assume that the properties are

preserved with more precision from the specification model since it has a more direct

translation process. Moreover, the bottom-up approach for modelling vTSL differs from

63

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 75

the verification done in MutRoSe, which is high-level and top-down. Finally, one great

point of difference is the depth of each abstraction, as vTSL is focused on one robot, it

is much more likely to go into further details to explain the abstractions and behaviours

it must follow, while MutRoSe is more suitable for a mission specification rather than a

robot specification.

5.6 Translation of high-level models to SMV

In National Aeronautics and Space Administration (NASA) robotic applications, it is

imperative that autonomy of systems is concise, due to long-term mission applications

or environments where human involvement would be too dangerous or too expensive.

The work of Pecheur and Simmons [66] presents formal verification on Livingstone, a

model-based health monitoring system developed at NASA using Model-Based Processing

Language (MPL). The approach used was to design an automatic translator of mission

specifications to the SMV model-checking language, next, the generated models were

checked using the SMV model checker and the results were returned to the source language

in order to assist the designer with the diagnosis process. Additionally, the translation

was done to Task Description Language (TDL) task descriptions of mobile robot systems.

The properties in SMV are expressed in CTL.

The translation process benefits from the fact that MPL and SMV specifications are

reasonably similar, for instance, the synchronous concurrency semantics are present in

both languages. One downside was hierarchically mapping variables to SMV: while the

MPL models do not possess such syntax, SMV variables are linked to modules. Therefore,

one incorrect mapping could compromise the entire hierarchical chain in a specification.

The solution was to map the variables in all three parts of the translation and select

them accordingly. Top-level modules are defined using a similar syntax in MPL, where

some specifications for verification are already in CTL, making the translation to SMV

only a matter of syntax. Specification patterns are used for common properties such

as reachability. For other properties such as completeness and consistency, some disjoint

nodes are used to prevent transition synchronisation issues during SMV translation. Thus,

this enables for two properties from the same node to be able to hold in a specification

pattern. Not many details are given about the robot application, but it is possible to

see a simplified TDL code excerpt dealing with the deployment strategy specification of

a MRS in a related work by the same authors [67].

High-level models often hinder some of the more specific implementations to the user,

this is also true for the work of Simmons and Pecheur: the specification modules only

present how actions will be synchronised, and if there are any concurrency issues where

64

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 76

properties would not hold. Another similarity with the verification done for the MutRoSe

is the automatic translation to a specification model. Due to language syntax, the process

seems to be more straightforward than the one done in MutRoSe, as a textual and a

graphical language are being translated to a NTA. Another interesting point is the use of

the translation process in more than one language (i.e. MPL and TDL), the same could

be said for CRGM and HDDL as they have different mapping rules inside the generation

process, however, both outputs do not relate in the work of Simmons and Pecheur, as

they are discussing different autonomous applications. Finally, another interesting point

is that TDL is similar to HTN, where tasks are described as hierarchical, showing that

HDDL and TDL indeed share some similarities and both are used to define multi-robot

applications.

5.7 Related works comparison

A comparison between the related works and the current work proposed is done in this

section. The comparison Table 5.1 outlines the differences between all works, in the list

below are the axis of comparison explained and why they are relevant for MRS.

• High-Level Specification: A high-level specification works the same as a high-level

abstraction: it hinders some layers of the implementation in order to prioritise other

more important concerns. One major concern of the Verification and Verification

(V&V) field in robotics is delimiting the scope of verification techniques, since many

robot applications have completely different objectives when it comes to their spe-

cific settings. For example, in service robotics it is difficult to assess which properties

need to be covered to assure correct functioning in a HRI scenario as there is not

a single technique that would provide complete coverage [68]. Therefore, defining

whether it is a high-level specification or not is crucial when defining which proper-

ties are verifiable.

• Tools and formalisms: Verifiable frameworks can use one or more formalisms. Since

this work deals specifically with verification of robot specifications, it is very import-

ant to know and compare what other formalisms are being used in other frameworks

in order to evaluate the current work impact on the current state-of-the-art. An-

other factor that could impact the verification is the tool adopted: UPPAAL, for

instance, does not accept nested operators.

• Design-time verification: In verification, there are many techniques to achieve prop-

erties verification, some of them can offer complete coverage such as model checking,

65

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 77

Table 5.1. Comparison chart of related works

since it evaluates all possible combinations. However, there are other types of veri-

fication, such as running simulations and establishing a level of confidence based on

the test results for a given number of experiments.

• Top-down or bottom-up construction of MRS: An application built from the most

fundamental fragment is more likely to present less errors since it could be verified

from the very beginning. Whereas top-down approaches would benefit from having

less details to worry during first design iterations. Both approaches have their

advantages and flaws, however, it is important to notice that, similar to high-level

and low-level specifications, this construction design also impacts on the types of

properties verified, moreover, how they are specified by each work.

• Automated or manual verification: Manual properties are more likely to capture

specific properties of a MRS. The disadvantage of manually defining them is causing

an overhead during system design for extra translation to a specification language,

often undesirable for many stakeholders while also leaving them prone to errors

[67]. Automatic verification of properties emerges as a interesting alternative to

check such systems without having to worry with writing in a verification language.

While this saves time, many related works studied here may need additional coding

to verify non-common properties [66, 63].

• Mission-oriented: As the verification for MutRoSe is mission-oriented, it may differ

from other verifications, which can be more focused on the overall robot behaviour,

excluding mission concerns. This is valuable for comparison since some properties

would not be feasible if they are not mission-oriented. For instance, the work in [4]

evaluates if the mission can be completed under a certain time, while Heinzemann

and Lange [63] have shown the scalability performance of their approach. Mission

properties can only be evaluated if mission aspects are being placed in specification.

As shown in Table 5.1, the work of [35] possess very similar characteristics to the

ones being evaluated in this work, however, it is not high-level as movement constraints

66

 Feature

Work High-Level?
Verification Formalism and
Tool used

Design-Time?
Top-Down (TD) or
Bottom-Up (BU)

Automated? Mission-Oriented

[35] Model Checking / UPPAAL ✓ TD ✓ ✓

[58] Model Checking / DFinder ✓ BU ✓ X
[56] X Model checking / Xeve X BU X X

[4] X Process Algebras /VIPARS X BU ✓ ✓
[63] ✓ Model Checking / SPIN ✓ BU ✓ X

[67, 66] Model Checking / SMV ✓ TD ✓ X

This work ✓ Model Checking / UPPAAL ✓ TD ✓ ✓

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 78

and other layout specifics are taken into account inside the RoboSim model, whereas

in this approach they are not. The work in [58] is also not high-level due to its incre-

mental (bottom-up) construction of individual components leading to a connected system

of components, which takes communication and other low-level aspects into consider-

ation. Additionally, the work is heavily focused on component specification and not

mission-oriented, while this approach is not concerned with low-level implementation of

communication modules nor how components behave individually and collectively out-

side a mission context. The work of [56] is clearly low level, as communications signals

between components are included in the robot design, the automated verification pro-

cess proposed here is only palpable for high-level mission specification, thus properties

involving low-level signal communication would not be in the scope of verification. Other

diversion point is that the approach using the XEVE model checker is for only one robot,

whereas this approach is focused in multi-robot settings.

[4] proposes an automated framework for verification of behaviour based controllers,

the formalism uses process algebras and timed constraints in its properties. Although this

work uses UPPAAL, such timed properties were not included because there are no timed

constraints inside MutRoSe specification, another difference is that UPPAAL uses only

temporal logics as verification formalism. Since controllers are made separately and then

connected, it is safe to conclude that the approach is also bottom-up, another point of

divergence with the work presented in this document. The work in [63] once again brings

a single-robot system in contrast with the ones being verified in this work. The second and

last difference with the axis of comparison used is that the bottom-up approach completely

differs from the top-down verification process used in this work. Lastly, the work of

[67, 66] also proposes an automatic generation, one difference between both works is that

the high-level specification differs from the ones approached here, where the specification

is concerned with the specifics of an inference engine inside Livingstone. This also renders

Livingstone verification more component-based rather than mission-oriented.

67

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 79

Chapter 6

Conclusion and Future Work

This chapter contains the conclusions made from this work, along with future works and

other important remarks.

6.1 Conclusion

The automatic generation process has proven to be resourceful, however, not all elements

from MutRoSe could be added to the generation process. Still, through properties verified,

it has already been established that MutRoSe mission configurations may only output

success or failure, which is very useful to establish if a mission without fallback tasks

may contain a defective execution path which needs correction. By adding the remaining

CRGM elements to the UPPAAL model, deducting successful execution paths simply by

looking at specifications might be challenging.

Verification & Validation has been emerging as one of the most important areas in

multiple fields due to growing complexity of systems. MRSs are no different: testing a

robot application before deployment is a common industry standard to prevent accidents

or flaws during operation. Verification through model checking is a great way to reduce

design flaws by thoroughly and exhaustively analysis of multiple execution paths. Model

checking is as flexible as it is useful: by comprising a small set of rules needed to specify and

verify a system with a few steps, it has been proven during the course of this project why it

is the most used technique to verify MRS. MutRoSe may have many more properties left

to explore, however, the ones done in this work already show how many of the future works

are feasible with formal verification. Therefore, model checking, automated frameworks

and DSLs will surely remain relevant for as long as robots evolve their capacities and

break more boundaries.

68

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 80

6.2 Future works

Future works include improving the state space of the generated NTAs by reducing con-

trol structures which replicate the mission ordering, this is possible by adding commit-

ted annotations to UPPAAL locations as they are being generated. Other works include

expanding the verification of other properties such as CRGM elements left out of this

iteration of the project. It is also possible to expand MutRoSe specification to cope with

timed constraints and make use of UPPAAL clock variables to verify even more properties

from a single specification. Other possible addition would be adding knowledge from the

world knowledge file, intentionally left out of this approach in order to improve flexibility.

However, during the course of this project, it has been identified that it is possible to

derive information from the world knowledge without directly using them. Therefore,

future iterations of the project might include partial knowledge about the world state

without actual instances.

69

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 81

Referências

[1] Liggesmeyer, Peter, Martin Rothfelder, Michael Rettelbach, and Thomas Ack-

ermann: Qualitätssicherung software-basierter technischer systeme–problembereiche
und lösungsansätze. Informatik-Spektrum, 21(5):249–258, 1998. ix, 6

[2] Ali, Raian, Fabiano Dalpiaz, and Paolo Giorgini: A goal-based framework for contex-
tual requirements modeling and analysis. Requirements Engineering, 15(4):439–458,
2010. ix, 11, 12

[3] Gil, Eric: Mutrose: A goal-oriented framework for mission specification and decom-
position of multi-robot systems. Master’s thesis, UnB, 2021. ix, 3, 13, 14, 20, 26

[4] O’Brien, Matthew, Ronald C Arkin, Dagan Harrington, Damian Lyons, and Shu
Jiang: Automatic verification of autonomous robot missions. In International Con-
ference on Simulation, Modeling, and Programming for Autonomous Robots, pages
462–473. Springer, 2014. ix, 61, 62, 66, 67

[5] Behrmann, Gerd, Alexandre David, and Kim G Larsen: A tutorial on uppaal. Formal

methods for the design of real-time systems, pages 200–236, 2004. x, 4, 13, 14, 15,
19, 57

[6] Guiochet, Jérémie, Mathilde Machin, and Hélène Waeselynck: Safety-critical
advanced robots: A survey. Robotics and Autonomous Systems, 94:43–52,
2017, ISSN 0921-8890. https://www.sciencedirect.com/science/article/pii/
S0921889016300768. 1

[7] Zhao, Xingyu, Valentin Robu, David Flynn, Fateme Dinmohammadi, Michael Fisher,
and Matt Webster: Probabilistic model checking of robots deployed in extreme envir-
onments. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01):8066–
8074, Jul. 2019. https://ojs.aaai.org/index.php/AAAI/article/view/4809. 1

[8] Ahn, Ho Seok, Min Ho Lee, and Bruce A. MacDonald: Healthcare robot systems for
a hospital environment: Carebot and receptionbot. In 2015 24th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), pages 571–
576, 2015. 1

[9] Belpaeme, Tony, James Kennedy, Aditi Ramachandran, Brian Scassellati, and Fu-

mihide Tanaka: Social robots for education: A review. Science robotics, 3(21), 2018.
1

70

http://www.sciencedirect.com/science/article/pii/

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 82

[10] Helms, Evert, Rolf Dieter Schraft, and M Hagele: rob@ work: Robot assistant in
industrial environments. In Proceedings. 11th IEEE International Workshop on Robot
and Human Interactive Communication, pages 399–404. IEEE, 2002. 1

[11] Bi, Z.M., Chaomin Luo, Zhonghua Miao, Bing Zhang, W.J. Zhang, and Lihui Wang:

Safety assurance mechanisms of collaborative robotic systems in manufacturing. Ro-
botics and Computer-Integrated Manufacturing, 67:102022, 2021, ISSN 0736-5845.
https://www.sciencedirect.com/science/article/pii/S0736584520302337. 1

[12] Baier, Christel and Joost Pieter Katoen: Principles Of Model Checking, volume
950. MIT Press, 2008, ISBN 9780262026499. http://mitpress.mit.edu/books/
principles-model-checking. 1, 4, 13

[13] Miyazawa, Alvaro, Pedro Ribeiro, Wei Li, Ana Cavalcanti, and Jon Timmis: Auto-
matic property checking of robotic applications. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3869–3876, 2017. 1, 5

[14] Konur, Savas, Clare Dixon, and Michael Fisher: Analysing robot swarm behaviour
via probabilistic model checking. Robotics and Autonomous Systems, 60(2):199–213,
2012, ISSN 0921-8890. https://www.sciencedirect.com/science/article/pii/
S0921889011001916. 1

[15] Lamine, Khaled Ben and Froduald Kabanza: Reasoning about robot actions: A
model checking approach. In Beetz, Michael, Joachim Hertzberg, Malik Ghallab,
and Martha E. Pollack (editors): Advances in Plan-Based Control of Robotic
Agents, pages 123–139, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg,
ISBN 978-3-540-37724-5. 1

[16] Luckcuck, Matt, Marie Farrell, Louise A Dennis, Clare Dixon, and Michael Fisher:

Formal specification and verification of autonomous robotic systems: A survey. ACM
Computing Surveys (CSUR), 52(5):1–41, 2019. 1, 2, 3, 4, 57

[17] Quigley, Morgan, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al.: Ros: an open-source robot operating system. In

ICRA workshop on open source software, volume 3, page 5. Kobe, Japan, 2009. 2

[18] Paraschos, Alexandros, Nikolaos I Spanoudakis, and Michail G Lagoudakis: Model-

driven behavior specification for robotic teams. In AAMAS, pages 171–178, 2012.
2

[19] Alexandrova, Sonya, Zachary Tatlock, and Maya Cakmak: Roboflow: A flow-based
visual programming language for mobile manipulation tasks. In 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 5537–5544, 2015.
2

[20] Nordmann, Arne, Nico Hochgeschwender, and Sebastian Wrede: A survey on domain-

specific languages in robotics. Lecture Notes in Computer Science (including subser-
ies Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
8810:195–206, 2014, ISSN 16113349. 2

71

http://www.sciencedirect.com/science/article/pii/S0736584520302337
http://mitpress.mit.edu/books/
http://www.sciencedirect.com/science/article/pii/

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 83

[21] Hamann, H.: Swarm Robotics: A Formal Approach. Springer International Pub-
lishing, 2018, ISBN 9783319745282. https://books.google.com.br/books?id=
pnNLDwAAQBAJ. 2

[22] De Nicola, Rocco, Luca Di Stefano, and Omar Inverso: Toward formal models and
languages for verifiable multi-robot systems. Frontiers Robotics AI, 5(SEP):1–14,
2018, ISSN 22969144. 3

[23] Bresciani, Paolo, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylo-

poulos: Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, 2004. 3

[24] Dardenne, Anne, Axel Van Lamsweerde, and Stephen Fickas: Goal-directed require-
ments acquisition. Science of computer programming, 20(1-2):3–50, 1993. 3

[25] Yu, Eric: Modeling strategic relationships for process reengineering. Social Modeling
for Requirements Engineering, 11(2011):66–87, 2011. 3

[26] Höller, Daniel, Gregor Behnke, Pascal Bercher, Susanne Biundo, Humbert Fiorino,
Damien Pellier, and Ron Alford: Hddl: An extension to pddl for expressing hierarch-
ical planning problems. Proceedings of the AAAI Conference on Artificial Intelligence,
34(06):9883–9891, Apr. 2020. https://ojs.aaai.org/index.php/AAAI/article/
view/6542. 3

[27] Abrial, J. R., M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and I. H. Sørensen:
The b-method. In Prehn, Søren and Hans Toetenel (editors): VDM ’91 Formal
Software Development Methods, pages 398–405, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg, ISBN 978-3-540-46456-3. 3

[28] Mohammed, Ammar, Ulrich Furbach, and Frieder Stolzenburg: Multi-robot systems:

Modeling, specification, and model checking. Robot Soccer, pages 241–265, 2010. 3

[29] Schillinger, Philipp, Mathias Bürger, and Dimos V Dimarogonas: Simultaneous task
allocation and planning for temporal logic goals in heterogeneous multi-robot systems.
The international journal of robotics research, 37(7):818–838, 2018. 3

[30] Bagade, P., A. Banerjee, and S.K.S. Gupta: Chapter 12 - validation, verifica-
tion, and formal methods for cyber-physical systems. In Song, Houbing, Danda

B. Rawat, Sabina Jeschke, and Christian Brecher (editors): Cyber-Physical Sys-
tems, Intelligent Data-Centric Systems, pages 175–191. Academic Press, Bo-
ston, 2017, ISBN 978-0-12-803801-7. https://www.sciencedirect.com/science/
article/pii/B9780128038017000122. 4

[31] Aniculaesei, Adina, Daniel Arnsberger, Falk Howar, and Andreas Rausch: Towards
the verification of safety-critical autonomous systems in dynamic environments. In

Kargahi, Mehdi and Ashutosh Trivedi (editors): Proceedings of the The First Work-
shop on Verification and Validation of Cyber-Physical Systems, V2CPS@IFM 2016,
Reykjavík, Iceland, June 4-5, 2016, volume 232 of EPTCS, pages 79–90, 2016.
https://doi.org/10.4204/EPTCS.232.10. 4, 14

72

http://www.sciencedirect.com/science/

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 84

[32] Halder, Raju, José Proença, Nuno Macedo, and André Santos: Formal verification of
ros-based robotic applications using timed-automata. In 2017 IEEE/ACM 5th Inter-
national FME Workshop on Formal Methods in Software Engineering (FormaliSE),
pages 44–50, 2017. 4, 14

[33] Ferrari, Alessio, Franco Mazzanti, Davide Basile, Maurice H ter Beek, and Alessandro
Fantechi: Comparing formal tools for system design: a judgment study. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, pages 62–
74, 2020. 5

[34] Konur, Savas, Clare Dixon, and Michael Fisher: Formal verification of probabilistic
swarm behaviours. In Dorigo, Marco, Mauro Birattari, Gianni A. Di Caro, René
Doursat, Andries P. Engelbrecht, Dario Floreano, Luca Maria Gambardella, Ro-
derich Groß, Erol Şahin, Hiroki Sayama, and Thomas Stützle (editors): Swarm
Intelligence, pages 440–447, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg,
ISBN 978-3-642-15461-4. 5, 6

[35] Zhang, Mingzhuo, Dehui Du, Augusto Sampaio, Ana Cavalcanti, Madiel Conserva

Filho, and Menghan Zhang: Transforming robosim models into uppaal. pages 79–86,
2021. 5, 58, 66

[36] Broy, M.: Declarative specification and declarative programming. In Proceedings

of the Sixth International Workshop on Software Specification and Design, pages
2,3,4,5,6,7,8,9,10,11, Los Alamitos, CA, USA, oct 1991. IEEE Computer Society.
https://doi.ieeecomputersociety.org/10.1109/IWSSD.1991.213082. 6

[37] Lestingi, Livia, Cristian Sbrolli, Pasquale Scarmozzino, Giorgio Romeo, Marcello M
Bersani, and Matteo Rossi: Formal modeling and verification of multi-robot interact-
ive scenarios in service settings. In Proceedings of the IEEE/ACM 10th International
Conference on Formal Methods in Software Engineering, pages 80–90, 2022. 9

[38] Vogel, Thomas, Marc Carwehl, Genaína Nunes Rodrigues, and Lars Grunske: A
property specification pattern catalog for real-time system verification with uppaal.
Information and Software Technology, 154:107100, 2023. 9

[39] Ravn, Anders P., Jiří Srba, and Saleem Vighio: Modelling and verification of web ser-
vices business activity protocol. In Proceedings of the 17th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems: Part of the Joint
European Conferences on Theory and Practice of Software, TACAS’11/ETAPS’11,
page 357–371, Berlin, Heidelberg, 2011. Springer-Verlag, ISBN 9783642198342. 9

[40] Havelund, Klaus, Arne Skou, Kim Guldstrand Larsen, and Kristian Lund: Formal
modeling and analysis of an audio/video protocol: An industrial case study using
uppaal. In Proceedings Real-Time Systems Symposium, pages 2–13. IEEE, 1997. 9

[41] Behrmann, Gerd, Alexandre David, Kim Guldstrand Larsen, Paul Pettersson, and

Wang Yi: Developing uppaal over 15 years. Software: Practice and Experience,
41(2):133–142, 2011. 14

73

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 85

[42] Bengtsson, Johan, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi:
Uppaal — a tool suite for automatic verification of real-time systems. In Alur,

Rajeev, Thomas A. Henzinger, and Eduardo D. Sontag (editors): Hybrid Sys-
tems III, pages 232–243, Berlin, Heidelberg, 1996. Springer Berlin Heidelberg,
ISBN 978-3-540-68334-6. 14, 21

[43] Alur, Rajeev and David Dill: Automata for modeling real-time systems. In Paterson,
Michael S. (editor): Automata, Languages and Programming, pages 322–335, Berlin,
Heidelberg, 1990. Springer Berlin Heidelberg, ISBN 978-3-540-47159-2. 14, 19

[44] Li, Ran, Jiaqi Yin, and Huibiao Zhu: Modeling and analysis of rabbitmq using UP-
PAAL. In Wang, Guojun, Ryan K. L. Ko, Md. Zakirul Alam Bhuiyan, and Yi Pan

(editors): 19th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2020, pages 79–86, Guangzhou, China,
2020. IEEE. https://doi.org/10.1109/TrustCom50675.2020.00024. 15

[45] Askarpour, Mehrnoosh, Christos Tsigkanos, Claudio Menghi, Radu Calinescu, Pat-
rizio Pelliccione, Sergio García, Ricardo Caldas, Tim J von Oertzen, Manuel Wim-
mer, Luca Berardinelli, Matteo Rossi, Marcello M. Bersani, and Gabriel S. Rodrigues:
Robomax: Robotic mission adaptation exemplars. In 2021 International Symposium
on Software Engineering for Adaptive and Self-Managing Systems (SEAMS), pages
245–251, 2021. 40

[46] Koluacik, Deniz: Koluacik/uppaal-py: Uppaal wrapper for python. https://github.
com/koluacik/uppaal-py. 40, 44

[47] Koluacik, Deniz: Koluacik/uppaal-py: Uppaal wrapper for python - pip library.

https://pypi.org/project/uppaal-py/0.0.1/. 40

[48] Bispo, Danilo: Danilobispo/mutrose-uppaal-generator github project. https://
github.com/danilobispo/MutRoSe-UPPAAL-Generator. 40, 44, 55, 56

[49] Bispo, Danilo: Danilobispo/mutrose-mission-decomposer: A mission decom-
poser for the mutrose framework. this is built upon the panda hddl parser
(https://github.com/panda-planner-dev/pandapiparser). https://github.com/
danilobispo/MutRoSe-Mission-Decomposer. 40

[50] (jiffyclub), Matt Davis: Snakeviz. https://jiffyclub.github.io/snakeviz/
#snakeviz. 44

[51] Python profilers: profile and cprofile module reference. https://docs.python.org/
3/library/profile.html#module-cProfile. 44

[52] Holzmann, Gerard J.: The model checker spin. IEEE Transactions on software en-
gineering, 23(5):279–295, 1997. 57, 63

[53] Kwiatkowska, Marta, Gethin Norman, and David Parker: Prism: Probabilistic sym-
bolic model checker. In International Conference on Modelling Techniques and Tools
for Computer Performance Evaluation, pages 200–204. Springer, 2002. 57

74

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 86

[54] Cavalcanti, Ana, P Ribeiro, A Miyazawa, A Sampaio, Madiel Conserva Filho, and

Andre Didier: Robosim reference manual. Technical report, Technical report, Uni-
versity of York, 2019. 58

[55] Dixon, Clare, Alan F. T. Winfield, Michael Fisher, and Chengxiu Zeng: Towards tem-
poral verification of swarm robotic systems. Robot. Auton. Syst., 60(11):1429–1441,
nov 2012, ISSN 0921-8890. https://doi.org/10.1016/j.robot.2012.03.003. 58

[56] Kim, Moonzoo, Kyo Chul Kang, and Hyoungki Lee: Formal verification of robot
movements - a case study on home service robot shr100. In Proceedings of the 2005
IEEE International Conference on Robotics and Automation, pages 4739–4744, 2005.
59, 66, 67

[57] Bouali, Amar: Xeve , an Esterel verification environment, pages 500–504. April 2006,
ISBN 978-3-540-64608-2. 59

[58] Bensalem, Saddek, Lavindra de Silva, Andreas Griesmayer, François Ingrand, Axel
Legay, and Rongjie Yan: A formal approach for incremental construction with an
application to autonomous robotic systems. Volume 6708, pages 116–132, June 2011.
60, 66, 67

[59] Rigorous design of component-based systems - the bip component framework, Apr
2022. https://www-verimag.imag.fr/Rigorous-Design-of-Component-Based.
html?lang=en. 60

[60] Bensalem, Saddek, Andreas Griesmayer, Axel Legay, Thanh Hung Nguyen, Joseph
Sifakis, and Rongjie Yan: D-finder 2: Towards efficient correctness of incremental
design. pages 453–458, April 2011, ISBN 978-3-642-20397-8. 60

[61] MacKenzie, Douglas and Ronald Arkin: Evaluating the usability of robot programming
toolsets. The International Journal of Robotics Research, 17, September 2001. 61

[62] Levine, John: Flex & Bison: Text Processing Tools. " O’Reilly Media, Inc.", 2009. 61

[63] Heinzemann, Christian and Ralph Lange: vtsl - a formally verifiable dsl for specifying
robot tasks. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 8308–8314, 2018. 62, 66, 67

[64] Lyons, Damian, Ronald Arkin, S. Jiang, D. Harrington, and T. Liu: Verifying and
validating multirobot missions. IEEE International Conference on Intelligent Robots
and Systems, pages 1495–1502, October 2014. 63

[65] Koubâa, Anis et al.: Robot Operating System (ROS)., volume 1. Springer, 2017. 63

[66] Pecheur, Charles and Reid Simmons: From livingstone to smv. In International
Workshop on Formal Approaches to Agent-Based Systems, pages 103–113. Springer,
2000. 64, 66, 67

[67] Simmons, Reid and Charles Pecheur: Automating model checking for autonomous
systems. In In AAAI Spring Symposium on Real-Time Autonomous Systems, 2000.
64, 66, 67

75

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 87

[68] Webster, Matthew, David Western, Dejanira Araiza Illan, Clare Dixon, Kerstin I
Eder, Michael Fisher, and Anthony G Pipe: A corroborative approach to verification
and validation of human–robot teams. International Journal of Robotics Research
(IJRR), November 2019, ISSN 1741-3176. 65

76

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 88

Appendix A

A.1 Files derived from MutRoSe execution

This section includes a more detailed explanation for files derived from MutRoSe execution

and how they are used within this work. It is important to note that these files only parse

the information contained in the original specification files in order to aid the generation

process afterwards.

An excerpt of the goal nodes information file is displayed in Listing A.1. The GM

order tree file contains a parent node and its children in each line of the file, separated by

an arrow (−− >). If there is more than one child for the current node, they are separated

by white spaces. It is worth noting that some nodes contain a special notation of type

_OP where OP denotes the node runtime operator (e.g. sequential (;), parallel (#), OR

(OR) and fallback (FALLBACK), this is used during later stages of generation to create

patterns which reflect the changes in the node execution order inside UPPAAL. This file

is then parsed as a list of lists where its possible to traverse through nodes similarly as a

tree. An example of the goal model order file is displayed in Listing A.2. One can see the

similarities when comparing the ordering of goals and tasks (i.e. the mission ordering)

between Listings A.2 and A.1 with Figure 3.2, where the latter is the visual representation

where the goal order files are derived from.

For the domain definition, the main generated files are: the types and variables inform-

ation file, a snippet of this file is displayed in Listing A.4. Next, the available methods for

an abstract task file is available in Listing A.3. Finally, the method orderings is available

in Listing A.5. If the actions contain preconditions or effects, those will be appended to

the order along with the type and the predicate or capability. This is done to assure that

proper transitions with guards or updates will be generated in UPPAAL during the cre-

ation of templates. The file is somewhat illegible for human-reading due to being a direct

product for generation of templates. For each of the methods and respective orderings, a

corresponding template is automatically generated during the generation stage.

77

Node : G1 : D e l i v e r Food to Pa t i e n ts [G2 ; G3]

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 89

Name : GetFood

food - pickup

Name : Deliver To Table

table - d e l i v e r

Name : Deliver To Fetch

Listing A.1. Goal nodes information file

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Listing A.2. Goal model order

78

Context :

No Context

Parameters :

Group? 1

D i v i s i b l e ? 1

. . .

Node : AT3 : Deliver To Fetch

Context :

No Context

Parameters :

Param : current_pat ient

Group? 1

D i v i s i b l e ? 1

G1_; -- > G2 G3_;

G2 -- >

G3_; -- > G4_; G7_;

G4_; -- > G5 G6

G5 -- >

G6 -- > AT1_1

AT1_1 -- >

G7_; -- > G8 G9 G10_OR

G8 -- >

G9 -- >

G10_OR -- > G11 G12

G11 -- > AT2_1

AT2_1 -- >

G12 -- > AT3_1

AT3_1 -- >

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 90

Method name : food - pickup

navto wait - fo r - food __task_effect pickedmeal_true_argument_ ? r

Method name : table - d e l i v e r

__method_precondition_table - d e l i v e r pickedmeal_true_argument_ ? r navto approach - patie n t - t a b l e d e l i v e r - to

- t a b l e __method_capability _argument_manipulation

Method name : f e tch - d e l i v e r

__method_precondition_fetch - d e l i v e r pickedmeal_true_argument_ ? r 1 navto FetchMeal

Method name : f e tch - meal - with - human

__method_precondition_fetch - meal - with - human patientcanfetch_true_argument_ ? p approach - human wait - fo r -

human - to - f e t c h __task_effect pickedmeal_false_argument_ ? r

Method name : f e tch - meal - with - robot

navto approach - robot grasp - meal __task_effect pickedmeal_false_argument_ ? r 2 __task_effect

pickedmeal_true_argument_ ? r 1 d e l i v e r - meal - to - p a t i e n t __task_effect pickedmeal_false_argument_ ? r

. . .

Listing A.3. Excerpt from methods avaliable for Abstact Tasks (AT) in food logistics mission

Variable name : ? r Variable Type : robot

Variable name : ? l Variable Type : l o c a t i o n

Variable name : ?d Variable Type : d e l i v e r y

Variable name : ? r Variable Type : robot

. . .

Listing A.4. Excerpt from types and variables information file

Listing A.5. Snippet from method orderings file

A.2 Domain files

This section includes the domain files used for the missions included in the Chapter 4.

As such, they do not require further explanation in the appendix as they are already

explained in the results.

1

2

3

4

5

6

7

8

9

10

79

f etch - d e l i v e r

Name : FetchMeal

f etch - meal - with - human

f etch - meal - with - robot

. . .

(d e f i n e (domain h o s p i t a l)

(: types

d e l i v e r y pickup p a t i e n t l o c a t i o n -

)

(: p r e d i c a t e s

(p a t i e n tc a n f e t c h ? p - p a t i e n t)

(pat ientcanopen ? p - p a t i e n t)

(d e l i v e r y p a t i e n t ? p - p a t i e n t ? d -

(d e l i v e r y l o c a t i o n ? l - l o c a t i o n ? d

o b j e c t

d e l i v e r y)

- d e l i v e r y)

(p i c k u p p a t i e n t ? p - p a t i e n t ? pk - pickup)

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 91

11

12

13

14

15)

(p i c k u p l o c a t i o n ? l - l o c a t i o n ? pk - pickup)

(p i c k e d d i s h e s ? r - robot)

(pickedmeal ? r - robot)

(at ? r - robot ? l - l o c a t i o n)

16 (: c a p a b i l i t i e s manipulat ion door - opening)

17

18 (: task GetFood : parameters (? r - robot ? l - l o c a t i o n ? d - d e l i v e r y))

19 (: method food - pickup

20 : parameters (? r - robot ? l - l o c a t i o n ? d - d e l i v e r y)

21 : task (GetFood ? r ? l ? d)

22 : ordered - su bta sk s (and

23 (navto ? r ? l)

24 (wait - for - food ? r ? l ? d)

25)

26)

27 (: a c t i o n wait - for - food

28 : parameters (? r - robot ? l - l o c a t i o n ? d - d e l i v e r y)

29 : e f f e c t (and

30 (pickedmeal ? r)

31)

32)

33

34 (: task Deliver To Table : parameters (? r - robot ? l - l o c a t i o n ? p - p a t i e n t))

35 (: method table - d e l i v e r

36 : parameters (? r - robot ? l - l o c a t i o n ? p - p a t i e n t)

37 : task (Deliver To Table ? r ? l ? p)

38 : p r e c o n d i t i o n (and

39 (pickedmeal ? r)

40)

41 : ordered - su bta sk s (and

42 (navto ? r ? l)

43 (approach - pati ent - ta b l e ? r ? l ? p)

44 (d e l i v e r - to - ta b l e ? r ? l)

45)

46)

47 (: a c t i o n approach - pat ient - ta b l e

48 : parameters (? r - robot ? l - l o c a t i o n ? p - p a t i e n t)

49)

50 (: a c t i o n d e l i v e r - to - ta b l e

51 : parameters (? r - robot ? l - l o c a t i o n)

52 : re quired - c a p a b i l i t i e s (manipulat ion)

53)

54

55 (: task Deliver To Fetch : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p -

p a t i e n t))

56 (: method f e tc h - d e l i v e r

57 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

58 : task (Deliver To Fetch ? r 1 ? r 2 ? l ? p)

80

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 92

59

60

61

62

63

64

65

66)

67

: p r e c o n d i t i o n (and

(pickedmeal ? r 1)

)

: ordered - su bta sk s (and

(navto ? r 1 ? l)

(FetchMeal ? r 1 ? r 2 ? l ? p)

)

68 (: task FetchMeal : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t))

69 (: method f e tc h - meal - with - human

70 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

71 : task (FetchMeal ? r 1 ? r 2 ? l ? p)

72 : p r e c o n d i t i o n (and

73 (p a t i e n tc a n f e t c h ? p)

74)

75 : ordered - su bta sk s (and

76 (approach - human ? r 1 ? l ? p)

77 (wait - for - human - to - f e t c h ? r 1 ? l ? p)

78)

79)

80 (: method f e tc h - meal - with - robot

81 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

82 : task (FetchMeal ? r 1 ? r 2 ? l ? p)

83 : ordered - su bta sk s (and

84 (navto ? r 2 ? l)

85 (approach - robot ? r 1 ? r 2)

86 (grasp - meal ? r 2 ? r 1)

87 (d e l i v e r - meal - to - p a t i e n t ? r 2 ? p ? l)

88)

89)

90

91 (: task Pickup Dishes : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p -

p a t i e n t))

92 (: method pickup - with - door - opening

93 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

94 : task (Pickup Dishes ? r 1 ? r 2 ? l ? p)

95 : p r e c o n d i t i o n (and

96 (not (p i c k e d d i s h e s ? r 1))

97)

98 : ordered - su bta sk s (and

99 (navto ? r 1 ? l)

100 (navto ? r 2 ? l)

101 (approach - door ? r 1 ? l)

102 (approach - door ? r 2 ? l)

103 (open - door ? r 1 ? r 2 ? l)

104 (Pick Dishes Two Robots AtLocation ? r 1 ? r 2 ? l ? p)

105)

106)

81

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 93

107 (: method pickup - without - door - opening

108 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

109 : task (Pickup Dishes ? r 1 ? r 2 ? l ? p)

110 : p r e c o n d i t i o n (and

111 (pat ientcanopen ? p)

112 (not (p i c k e d d i s h e s ? r 1))

113)

114 : ordered - su bta sk s (and

115 (navto ? r 1 ? l)

116 (approach - door ? r 1)

117 (wait - for - door - opening ? r 1)

118 (Pick Dishes One RobotAtLocation ? r 1 ? r 2 ? l ? p)

119)

120)

121

122 (: task Pick Dishes Two Robots AtLocation : parameters (? r 1 ? r 2 - robot ? l -

123

l o c a t i o n ? p - p a t i e n t))

(: method pick - d i s he s - two - robots - at - l o c a t i o n

124 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

125 : task (Pick Dishes Two Robots AtLocation ? r 1 ? r 2 ? l ? p)

126 : p r e c o n d i t i o n (and

127 (at ? r 1 ? l)

128 (at ? r 2 ? l)

129)

130 : ordered - su bta sk s (and

131 (Pick Dishes ? r 1 ? r 2 ? l ? p)

132)

133)

134

135 (: task Pick Dishes One RobotAtLocation : parameters (? r 1 ? r 2 - robot ? l -

136

l o c a t i o n ? p - p a t i e n t))

(: method pick - d i s he s - one - robot - at - l o c a t i o n

137 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

138 : task (Pick Dishes One RobotAtLocation ? r 1 ? r 2 ? l ? p)

139 : p r e c o n d i t i o n (and

140 (at ? r 1 ? l)

141 (not (at ? r 2 ? l))

142)

143 : ordered - su bta sk s (and

144 (Pick Dishes ? r 1 ? r 2 ? l ? p)

145)

146)

147

148 (: task Pick Dishes : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p -

149

p a t i e n t))

(: method pick - d i s he s - with - human

150 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

151 : task (Pick Dishes ? r 1 ? r 2 ? l ? p)

152 : ordered - su bta sk s (and

82

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 94

153 (approach - human ? r 1 ? l ? p)

154 (wait - for - human - to - p lace - d i s h ? r 1 ? p)

155)

156)

157 (: method pick - d i s he s - with - robot - at - l o c a t i o n

158 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

159 : task (Pick Dishes ? r 1 ? r 2 ? l ? p)

160 : p r e c o n d i t i o n (and

161 (at ? r 2 ? l)

162)

163 : ordered - su bta sk s (and

164 (pick - pati ent - d i s h e s ? r 2 ? p)

165 (load - d i s h e s ? r 2 ? r 1)

166)

167)

168 (: method pick - d i s he s - with - robot - not - at - l o c a t i o n

169 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n ? p - p a t i e n t)

170 : task (Pick Dishes ? r 1 ? r 2 ? l ? p)

171 : p r e c o n d i t i o n (and

172 (not (at ? r 2 ? l))

173)

174 : ordered - su bta sk s (and

175 (navto ? r 2 ? l)

176 (pick - pati ent - d i s h e s ? r 2 ? p)

177 (load - d i s h e s ? r 2 ? r 1)

178)

179)

180

181 (: task Re tr i e ve D i s h e s : parameters (? r - robot ? l - l o c a t i o n))

182 (: method d i s he s - r e t r i e v a l

183 : parameters (? r - robot ? l - l o c a t i o n)

184 : task (Re tr i e ve D i s h e s ? r ? l)

185 : ordered - su bta sk s (and

186 (navto ? r ? l)

187 (r e t r i e v e - d i s h e s ? r ? l)

188)

189)

190

191 (: a c t i o n approach - human

192 : parameters (? r - robot ? l - l o c a t i o n ? p - p a t i e n t)

193)

194 (: a c t i o n approach - robot

195 : parameters (? r 1 ? r 2 - robot)

196)

197 (: a c t i o n grasp - meal

198 : parameters (? r 1 ? r 2 - robot)

199 : e f f e c t (and

200 (not (pickedmeal ? r 2))

201 (pickedmeal ? r 1)

83

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 95

202)

203)

204 (: a c t i o n d e l i v e r - meal - to - p a t i e n t

205 : parameters (? r - robot ? p - p a t i e n t ? l - l o c a t i o n)

206 : e f f e c t (and

207 (not (pickedmeal ? r))

208)

209)

210 (: a c t i o n wait - for - human - to - f e t c h

211 : parameters (? r - robot ? l - l o c a t i o n ? p - p a t i e n t)

212 : e f f e c t (and

213 (not (pickedmeal ? r))

214)

215)

216

217 (: a c t i o n wait - for - human - to - place - d i s h

218 : parameters (? r - robot ? p - p a t i e n t)

219 : e f f e c t (and

220 (p i c k e d d i s h e s ? r)

221)

222)

223 (: a c t i o n pick - pat ient - d i s h e s

224 : parameters (? r - robot ? p - p a t i e n t)

225 : e f f e c t (and

226 (p i c k e d d i s h e s ? r)

227)

228)

229 (: a c t i o n load - d i s h e s

230 : parameters (? r 1 ? r 2 - robot)

231 : e f f e c t (and

232 (not (p i c k e d d i s h e s ? r 1))

233 (p i c k e d d i s h e s ? r 2)

234)

235)

236 (: a c t i o n approach - door

237 : parameters (? r 1 - robot ? l - l o c a t i o n)

238)

239 (: a c t i o n open - door

240 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n)

241 : re quire d - c a p a b i l i t i e s (door - opening)

242)

243 (: a c t i o n wait - for - door - opening

244 : parameters (? r - robot)

245)

246 (: a c t i o n pickup - di s h e s - with - robot

247 : parameters (? r 1 ? r 2 - robot ? l - l o c a t i o n)

248 : e f f e c t (and

249 (p i c k e d d i s h e s ? r 1)

250)

84

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 96

251)

252 (: a c t i o n r e t r i e v e - d i s h e s

253 : parameters (? r - robot ? l - l o c a t i o n)

254)

255

256 (: a c t i o n navto

257 : parameters (? r - robot ? l - l o c a t i o n)

258)

259)

Listing A.6. Domain definition file for food logistics example in HDDL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

85

(d e f i n e (domain h o s p i t a l)

(: types l o c a t i o n s to r a g e obj agent - o b j e c t)

(: p r e d i c a t e s

(re que st inge quip men t ? a - agent) (

at ? o - obj ? s - s to r a g e)

(at ? l - l o c a t i o n ? a - agent)

(r e q u e s te d ? o - obj ? a - agent)

)

(: c a p a b i l i t i e s)

(: task GetObject : parameters (? r - robot ? s - s to r a g e ? o - obj))

(: method object - get

: parameters (? r - robot ? s - s to r a g e ? o - obj)

: task (GetObject ? r ? s ? o)

: p r e c o n d i t i o n ()

: ordered - su bta sk s (and

(get - o b j e c t ? r ? s ? o)

)

)

(: a c t i o n get - o b j e c t

: parameters (? r - robot ? s - s to r a g e ? o - obj)

)

(: task Recharge Battery : parameters (? r - robot))

(: method battery - r e c h a r g e

: parameters (? r - robot)

: task (Recharge Battery ? r)

: p r e c o n d i t i o n ()

: ordered - su bta sk s (and

(recharge - b a tte r y ? r)

)

)

(: a c t i o n recharge - b a tte r y

: parameters (? r - robot)

)

(: task D e l i ve r O b j e c ts : parameters (? r - robot ? l - l o c a t i o n))

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 97

38 (: method o b j e c ts - d e l i v e r y

39 : parameters (? r - robot ? l - l o c a t i o n)

40 : task (D e l i ve r O b j e c ts ? r ? l)

41 : p r e c o n d i t i o n ()

42 : ordered - su bta sk s (and

43 (d e l i v e r - o b j e c t s ? r ? l)

44)

45)

46 (: a c t i o n d e l i v e r - o b j e c t s

47 : parameters (? r - robot ? l - l o c a t i o n)

48)

49

50 (: task Return Objects To Checkpoint : parameters (? r - robot))

51 (: method object - r e tu r n i n g

52 : parameters (? r - robot)

53 : task (Return Objects To Checkpoint ? r)

54 : p r e c o n d i t i o n ()

55 : ordered - su bta sk s (and

56 (return - o b j e c t s ? r)

57)

58)

59 (: a c t i o n return - o b j e c t s

60 : parameters (? r - robot)

61)

62

63 (: task Al e r t Tr i g g e r : parameters (? r - robot))

64 (: method a l e r t - t r i g g e r

65 : parameters (? r - robot)

66 : task (Al e r t Tr i g g e r ? r)

67 : p r e c o n d i t i o n ()

68 : ordered - su bta sk s (and

69 (t r i g g e r - a l e r t ? r)

70)

71)

72 (: a c t i o n t r i g g e r - a l e r t

73 : parameters (? r - robot)

74)

75)

Listing A.7. Domain definition file for deliver goods - equipment mission in HDDL

86

