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SCAN-NF: Um Sistema De Aprendizado de Máquina 
para Classificação de Notas fiscais de Transações de 
Produtos Atráves do Processamento de Textos 
Curtos. 

 

 

 

 

Resumo 

 
Nota Fiscal Eletrônica (NF-e) é um documento que reporta as transações de bens e ser- 

viços de forma eletrônica, tanto na transferência quanto no armazenamento. A utilização 

de notas fiscais eletrônicas é uma tendencia emergente e apresenta uma valiosa fonte de 

informação para diversas áreas. No entanto, o processamento dessas notas é uma ta- 

refa desafiadora. A informação reportada está geralmente incompleta ou apresenta erros. 

Antes que qualquer processamento significativo possa ser feito, é necessária identificar o 

produto representado em cada documento. A literatura disponível indica que são neces- 

sárias arquiteturas especializadas para lidar com este tipo de informação. Este trabalho 

propõe SCAN-NF, uma arquitetura para a classificação das transações de produtos con- 

tidas em notas fiscais eletronicas. A arquitetura modela o problema de processamento 

de notas ficais como um problema de processamento de textos curtos com o objetivo de 

identificar o produto de cada transação. A solução tem o intuito de auxiliar as tarefas de 

auditoria manual feita por auditores fiscais sobre grandes massas de dados não rotulados 

ou mal rotulados presente no contexto de notas fiscais. Para validar a arquitetura pro- 

posta, este trabalho apresenta tanto um framework contextual para o processamento de 

notas fiscais quanto um caso de estudo utilizando dados reais de notas fiscais. Modelos 

tradicionais baseados em frequência de termos foram comparados a modelos de classifi- 

cação de sentenças baseado em redes convulsionais artificiais. Experimentos demonstram 

que embora o texto presente em notas fiscais seja breve e apresente erros e falhas de 

escrita, modelos simples baseados em frequência de termos apresentam bons resultados 

para a etiquetagem de código de produtos, atingindo acurácia de até 98% entre as classes 

de produtos estudadas. Mostramos ainda, que é possível a utilização de transferencia de 

conhecimento entre os dados de notas fiscais destinadas ao consumidor e notas fiscais de 

transações entre empresas. 

Palavras-chave: Aprendizado Profundo, Redes Convolucionais, Classificação de textos 

curtos 
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Abstract 

 
An electronic invoice (E-invoice) is a document that records the transactions of goods and 

services electronically, both in storage and exchanges. E-invoice is an emerging practice 

and presents a valuable source of information for many areas. Processing these invoices is 

often a challenging task. Information reported is often incomplete or presents mistakes. 

Before any meaningful processing of these invoices, it is necessary to identify the product 

represented in each document. The available literature indicates that specialized architec- 

tures are necessary to deal with this type of information. This work proposes SCAN-NF, 

an architecture for invoice product transaction classification. The architecture models the 

invoice classification problem as a short-text classification problem, in which the goal is to 

identify the type of product in each transaction based on its short-text description. This 

solution is intended to aid tax auditors in the analysis of large unlabeled or poorly labeled 

invoice data.  To validate the proposed architecture,  this work provides both a contex- 

tual framework for invoice processing and a study case utilizing real-world invoice data. 

We compare traditional term frequency models to sentence classification  models based 

on convolutional neural networks.   Experiments demonstrate that even though invoice 

text descriptions are brief and present many mistakes and typos, simple term frequency 

models can achieve high baseline results on product code assignment, reaching accuracy 

scores up to 98% in studied product classes. We have also shown that it is possible to 

utilize transfer learning between retail invoice data and business to business invoice data. 

Keywords: Deep Learning, Convolutional Neural Networks, Short-text Classification, 

Transfer Learning 
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Chapter 1 

Introduction 

1.1 Motivation 

Invoices document the transactions of goods and services between two parties. Invoicing 

is a core component in daily commercial and financial operations. They are a rich source 

of information for financial analysis, fraud detection [2], value chain analysis, product 

tracking, and hazard alarms [3]. Extracting useful information from invoice documents 

can lead to valuable applications. However, processing invoices is a difficult task due the 

scale and nature of the data. Text in invoices is often brief and presents poor grammar. 

This associated with the variety of products makes rule-based processing unfeasible. This 

work tackles the problem on how to automatically identify the product in each transac- 

tion contained in electronic invoices, based on a short text description present in each 

transaction. We present SCAN-NF, a machine learning system to aid tax auditors in 

processing information contained in electronic invoices. 

The initial question presented was: how can we discover fraudulent behavior in brazil- 

ian invoices? By consulting with tax auditors, it was noted that one of the main ways 

in which issuers evade taxes is to purposely miss-classify the type of taxes to be applied 

to each product transaction. The type of tax is closely tied to the type of product. If 

the product type is known, the correct taxes can be identified trough additional business 

rules. In retail invoices there is no auditing over the fulfillment and correctness of the 

product code, which identifies the type of the product. The problem then becomes how to 

correctly identify the NCM code for each product transaction. We framed the problem as 

a short text classification problem and looked for Machine learning techniques that could 

use the large amount of data stored in the state treasury office to create a intelligent 

system to aid tax auditors. 

Product code assigns each product to a specific class in a taxonomy based on the type 

of product. In this work we utilize the Common Mercosur Nomenclature (NCM) to classify 
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each product. The NCM code is used as reference in assigned taxation and other policies 

as wells as being a common reference on product classification. While NCM is particular 

to countries in Mercosur, functionally taxonomy’s may be available in other countries. 

Correctly assigning the NCM code is the first step towards more complex analysis. In 

this work we provide a contextual framework to guide developers ans researchers through 

the possible applications. 

In Brazil, e-invoicing process started in 2008, first with NF-e, and latter with the 

NFC-e, which is a nationwide transaction reporting integrated system for both business 

to business (B2B) and retail operations. Similar measures have also been taken in Italy 

and China [4][5]. As of 2022, every transaction of goods and services in Brazil should 

emit electronic invoice in the form of a xml file to the corresponding treasure office. The 

physical document that accompany many products is just a auxiliary document (DANFE), 

the invoice itself is the xml file reported to the treasure office server.  This makes Brazil 

an excellent study case, as the schema for invoice data have already been standardized. 

Recent emerging techniques in the field of Machine Learning (ML) and Natural Lan- 

guage Processing (NLP) have allowed valuable applications. This methods allows the 

models to learn how to do a particular task through training on data.  This would solve 

the problem of rule-based classification, as instead of the manually creating rules for a 

large amount of classes taking hours of effort form specialists, models can be built on 

available reported data. In this work we take a look at different forms of representation 

as well ad different classification models. We train Support vector models on term based 

representation and different Artificial Neural Network models on word-vector represen- 

tation on NCM classification task. Models are trained and tested on real world data 

provided by the state treasure office in a study case on Brazilian Electronic Invoice (NF- 

e), and Brazilian Consumer Electronic Invoice (NFC-e). This documents report both B2B 

transactions and retail transactions respectively. 

While there is a wide array of possible tasks that can utilize invoices as input, in this 

work, we assume the point of view of the treasure office. The treasure office has access 

to a large stream of electronic invoices. One of its many tasks is to check for fraud in 

collected taxes. Once a suspicious issuer is identified, an auditor is assigned to conduct a 

deep look into that issuer finances. This process is costly and there is a balance between 

the amount of effort and the amount of tax funds that could be recuperated. It would be 

of great value if a automated process could point out suspicious or fraudulent invoices and 

flag them for human review. This is expected to increase the productivity of tax auditors. 

Figure 1.1 presents an overview of invoice processing in three phases. At the bottom, 

Label 1, we have both retail and larger companies that issue invoices as part of their 

day-to-day activities. In Figure 1, these invoices are represented by the NF-e and NFC- 
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Figure 1.1: Invoice Processing in a Nutshell 

 
e documents, the Brazilian document for retail, and B2B invoices. These invoices are 

reported to a centralized system through web applications. Once reported, these invoices 

are processed to aid in a particular task. This process is depicted in Label 2, as an analyst 

selects relevant data to the core problem (A), data is then cleaned (B), explored (C), and 

used as the input to train a task-specific model, Label D. The trained model and analyzed 

data set (F) is then used as input for other applications and to aid manual auditing of 

other invoices, Label 3. 

Modelling fraudulent behavior is a complex subject that may take input from many 

indicators. While the are some automated routines for checking validity of reported fields 

in the NF-e documents,  there is still room for improvement,  specially in the processing 

of NFC-e. Retail invoices are not checked at creation and possess inconsistencies and 

missing fields. Before any more complex tasks can be done, such as fraud detection [2], 

value chain and health hazards triggers [3], we have to correctly identify what products 

are represented in each invoice. The problem of invoice classification becomes correctly 

identifying the product being referred to in that transaction. 

According to the literature, electronic invoices are a particularly difficult problem for 

short-text processing. Even compared to other short text, such as Twitter posts and news 

headlines, the invoice product description is very brief, containing only a handful of words, 

often not forming a complete sentence. Another difference, is that invoice classification is 

not a natural language problem. Short texts are often produced by instant human com- 
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munication in the form of micro-blogs, tweets, and news. There is an intrinsic attempt at 

creating a communication channel with others. Product descriptions are defined individ- 

ually with no regard to how that message is perceived by the other end. This exacerbates 

the problem of domain-specific vocabulary, abbreviations, and typos, as authors use their 

individual logic. 

In recent years, works on product-level invoice classification have concentrated in 

China. Their solutions range from using hashing techniques to dealing with an unknown 

number of features [4][5], semantic expansion trough external knowledge bases [5], clas- 

sification of paragraph embedding by k-nearest-neighbors [6] to different artificial neural 

network architectures [7][8]. Semantic expansion is prevalent not only on invoice classi- 

fication but also on short-text classification [9],[10]. These works are not suited for the 

Brazilian case either due to language differences or reliance on knowledge bases that are 

often only available in English and Chinese [11]. In the literature, there are gaps in the 

models suitable for classifying languages other than Chinese. 

As the main contribution of this work, we present the architecture for SCAN-NF, a sys- 

tem for labelling product according to the Mercosur Common Nomenclature (NCM) based 

on the short text description present in product transactions. The system is intended to 

aid tax auditors on invoice processing tasks, in which errors in reported transactions may 

indicate fraud. In order to validate SCAN-NF’s approach, we present both a contex- 

tual framework for invoice processing and a study case on product level classification of 

invoices based on Brazilian invoice data. We present experiments using character-level, 

word-level CNN and support vector machines. Character level representation could be 

useful to tackle typos and abbreviations, such tokens would not be correctly represented 

when using pre-trained word embedding. Support Vector machines trained over term 

frequency-inverse document frequency representation act as an example of a term-count 

model. Our case study focuses on invoices in Brazil, since case study data was obtained 

through cooperation with the state treasury office. 

 
1.2 Hypothesis 

Text has been avoided in processing NF-e and NFC-e data. Product descriptions are 

supposedly too brief and to poor to be used as input. We hypothesize that it is possible 

to utilize short text processing and few-word classification techniques to classify each 

product in regards to the Mercosur Common Nomenclature (NCM). This classification 

method would allow a system to aid tax auditors by identifying the correct type of product 

for each transaction. 
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1.3 Objective 

In order to test our hypothesis, we will provide an architecture for a machine learning 

system to aid tax auditors. This model will be utilize a machine learning model to classify 

invoice product transactions. The model will take the product description field of the NF-e 

and NFC-e documents as input and output the corresponding NCM code for that product. 

Model will be tested on transfer learning based on how models trained with one type of 

document could be used to support the other type of document. 

 
1.3.1 Specific Objectives 

• Provide an architecture for the classification of short texts with few words. 

• Evaluate the proposed architecture on NFC-e product code classification task. 

• Compare the architecture to state of the art NLP methods. 

• Compare models on transfer learning task. 

• Present a real use case for the trained model. 

 
1.4 Additional Contributions of This Work 

In addition to this document, this research has produced the following contributions to 

the academic community: 

• SCAN-NF: A CNN-based System for the Classification of Electronic Invoices through 

Short-text Product Description [12]. 

• Towards Intelligent Processing of Electronic Invoices: the General Framework and 

Case Study of Short Text Deep Learning in Brazil. Publication pending on Springer 

Series: Lecture Notes in Business Information Processing. 

 
1.5 Dissertation Structure 

This document is organized as follows:  chapter 2 presents to the reader the fundamen- 

tal concepts of text mining, short text processing, Neural Networks and Transformers. 

In chapter 3, related works on short text classification and invoice classification are dis- 

cussed. Chapter 4 presents the overall system architecture, describes both NF-e and NFC-

e documents, the classification task, the architecture of the proposed model, and 
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the planned experiments. Chapter 5 presents our implementation of the models. In chap- 

ter 6 experiment results are presented. In Chapter 7, we present conclusions and future 

work. 
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Chapter 2 

Fundamentals 

The goal of the chapter is to present fundamental concepts for the understanding of 

this work to the reader. Section 2.1 presents the concepts associated with text mining. 

Section 2.2 describes the characteristics of short text and how early work attempted to 

address the problem. Section 2.3 presents basic concepts in deep learning, with segments 

for feed-forward artificial neural networks (ANN), convolutional neural networks (CNN), 

and recurrent neural networks (RNN). We also present an explanation for the additive 

attention mechanism. Section 2.4 presents popular word embedding algorithms such as 

Word2vec, Glove, FastText, and how these embeddings can be evaluated and combined. 

Finally, section 2.5 presents a brief overview of the transformer model. 

 
2.1 Text Mining 

Text mining refers to the extraction of useful information from text with the aid of various 

statistical algorithms. It may also be referred to as text analytics and machine learning 

for text [13]. Due to the large expansion of the internet and digital communications, the 

field has increased in popularity. Modern sources of text data include digital libraries, 

electronic news, web applications, and social media. Two possible feature representations 

are popularly used in text mining applications: text as a bag of words and text as a 

set of sequences. Bag-of-Words representation is based on the frequency of terms, disre- 

garding grammar, and word order. When treating text as a set of sequences, language- 

related properties are preserved. Text mining has traditionally focused on the first type 

of representation, but advances in artificial intelligence have allowed for easier modeling 

of language semantics, reasoning, and understanding through artificial neural networks. 

Traditionally, these features were handcrafted and were task dependant, this made them 

time-consuming and costly. Deep Learning allowed for automatic feature engineering of 

multi-task language features through neural language models [14]. 
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In the bag of words (BOW) representation, the corpus is represented by a document- 

term matrix. Each row represents a document and each column represents the frequency 

of a term in that document. Since only a small part of the vocabulary is present in each 

document, the final representation is a sparse, non-negative, high dimensional matrix. 

Many of the techniques applied in text mining aim at reducing the dimensions of the 

document-term matrix through feature engineering or filtering. Topic model methods such 

as Latent Dirichlet allocation (LDA), Latent Semantic Analysis (LSA) aim at clustering 

features into topics based on the co-occurrence of terms. 

Artificial neural networks (ANN) utilize a different approach for feature engineering. 

In artificial neural networks, text is represented as a sequence of vectors. These vectors 

are usually initiated through pre-trained word embeddings. Document representation is 

learned in conjunction with the classifier through supervised learning. Neural based text 

processing will be further discussed in section 2.3. 

The typical pipeline for text mining includes the following steps: data collection, 

data preprocessing, feature engineering/filtering, classification/clustering, and evaluation. 

Text co-occurs with a lot of extraneous data such as tags, anchor text, and application- 

related features. Furthermore, text needs to be converted from its unstructured form to 

a structured and multidimensional representation. 

 
2.1.1 Pre-processing 

Text preprocessing includes text extraction, stop-word removal,  stemming,  case fold- 

ing, and frequency-based normalization. Text is often created by human participants 

in unstructured environments. It is often embedded in web documents, with application- 

specific tags, misspellings, and ambiguous words. The goal in preprocessing is to extract 

tokens from the original raw data. 

Tokens are sequences of characters that are treated as indivisible units in text. For each 

word in the document, a token is computed.  After prepossessing, tokens are converted 

into terms with specific frequencies that represent the collection. While a document can 

have repetitions of the same token, terms consolidate these sets of tokens into a single 

occurrence with an appropriate frequency. 

Words with high frequency that are common across documents provide little infor- 

mation about the document’s content. These words are called stop-words and can be 

removed from the collection of terms. All articles, prepositions, pronouns, and conjunc- 

tions are stop words. Any token that is too frequent can also be considered a stop-word if 

its frequency surpasses a manually defined threshold. Language-specific dictionaries can 

be used to identify stop words. An alternative to stop-word removal is through down- 

weighing frequent words in the normalization step. 
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In most cases, words can be converted to their lowercase form. Nonetheless, capi- 

talization may occur for different reasons, such as differentiation of proper nouns and 

common nouns and verbs. The token "Rosa" could be related to a person’s name, while 

’rosa’ would refer to the color or the flower. This would result in two different terms. A 

collection of simple rule base heuristics can be utilized in casing, such as words at the 

start of a sentence can always be converted to lower case, or words in titles and headers 

can be converted to lower case. The case for all other words is retained. 

In order to reduce variance in the data, small variations of the same token could be 

represented by the same term. Stemming is the process of consolidating related words 

with the same morphological root. For example, singular and plural forms of the same 

noun can be consolidated into a single term.   The same is true for verbs in multiple 

tenses. Most common techniques for stemming include semi-automatic lookup tables, 

suffix stripping, and lemmatization. 

Lookup tables are created in advance through various heuristics, linking different to- 

kens to a singular term. Suffix stripping stores a small list of rules in order to find the root 

of a word by removing suffixes. Lemmatization goes beyond simple stripping rules and 

uses morphological domain-specific knowledge to identify lemmas. Lemmatization also 

requires part of speech tagging in order to produce the correct result. Python Natural 

Language Toolkit 1 provides stemmers for several languages, including Portuguese. 

 
Vector Space Representation and Normalization 

The outputted terms from preprocessing form the lexicon that is used as the base set of 

dimensions. However, not all terms provide the same amount of information. Normaliza- 

tion allows us to identify the most significant terms instead of using the raw term count. 

Tf-IDF(term frequency-inverse document frequency) is a popular form of normalization. 

It normalizes the raw term frequency based on the inverse document frequency: 
 

tfidf = tf · idf 
n 

 
(2.1) 

idf = log( ) 
ni 

where tf is the term frequency, n is the total number of documents and ni  is the 

number of documents in which the term appears. At the limit, where n = ni, the value 

of idf is 0. There are variations to tf-idf based on functions of tf , such as tf 2 and 

log(1+tf ). Although its common practice to utilize tf-idf normalization, some application 

may perform better with raw frequencies or binary values [13]. 

1available at https://www.nltk.org/ 

http://www.nltk.org/
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2.1.2 Dimensionality Reduction 

A high number of dimensions leads to more data being needed to fit models. Furthermore, 

many classification algorithms struggle with sparse data. This motivates efforts for the 

creation of a lower dimensionality representation for text. In the document-term matrix, 

term columns often correlate to one another and can be leveraged to generate a low 

dimensional representation of data. These dimensionality reduction techniques are based 

on low-rank factorization of the document-term matrix. Low rank factorization takes a 

n × d document-term matrix D, with n documents and d terms, that can be expressed in 

terms of k ≪ min{n, d} d−dimensional basis vectors. The value of k defines the number 

of  semantic  concepts  in  the  data.  A  d × k  matrix  V [vij]  can  be  constructed,  that  links 

individual d terms to the basis vectors. Furthermore, documents can also be expressed 

in term of the basis vectors by a n × k  matrix U  = [uij].  Therefore the document-term 

matrix can be represented by a factorized form: 

 

D ≈ UV T (2.2) 

The general idea of the factorization is that the remaining (d−k)-dimensional does not 

have significant representation in the corpus at hand and its captured by the approximate 

equality. The discovery of U and V aims to minimize residual error (D−UV T ). Algorithms 

differ in the objective function and the constraints applied to the UV matrices. 

Latent Semantic Analysis (LSA) applies the constraint that the UV matrices should 

be orthogonal, which facilitates computation through eigenvalue decomposition. Non- 

negative matrix factorization and Probabilistic Latent Semantic Analysis constraint to 

non-negative matrices, which improves the interpretability of the factorization. Latent 

Dirilecht Allocation assumes that each document is a mixture of topics, and each topic, 

in turn, is a mixture of other topics. 

Another form of dimensionality reduction is through feature selection. Instead of 

creating a new feature space, filtering selects a subset of available features through ranking 

based on a score, such as raw term frequency or TF-IDF [15]. 

 
2.1.3 Classification 

Classification is the process of assigning a document or item to a set of finite classes. 

Supervised classification models utilize labeled data to learn a function that maps input 

features to target classes. Each example is a tuple consisting of an input vector and the 

desired output value. Models are evaluated on their ability to correctly classify unseen 

data. 
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K-Nearest Neighbours 

K-Nearest Neighbours is a non-parametric supervised learning model, in which new data 

is classified by similarity to known data. Each new entry is classified based on the most 

common class among k nearest observations. In figure 2.1, examples are shown for different 

k values. For k = 3 the new white observation would be assigned to the blue class, if we 

utilize k = 5 it would be assigned the red class. The choice parameter k is done through 

hyper-parameter optimization and is data dependant. 

 

Figure 2.1: Example of K-NN classifier for k=3 and k=5 

 
 

Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning model that works by maximizing 

the margin that separates samples through a high dimensional hyperspace. Figure 2.2 

presents a graphical representation of a linear SVM. The hyperplane that separates the 

feature space is given by: 

 

g(→−x ) = →−w T →−x  + ω0 (2.3) 

where →−w T  represents the weight vector, →−x  is the coordinate vector and ω is a constant. 

The  goal of  learning  is to  minimize  ||→−w || in  order to  maximize  the margin.  Fitting the 

support vector classifier involves minimizing the following expression: 

minimize

 
Σ 

max[0, 1 − yi(
→−w  · →−xi  − ω)] + λ||→−w ||2  

 
(2.4) 

where λ is a non-negativetuning parameter that dictates the tolerance of the model to 

miss-classified observations. A high λ leads to a higher tolerance and a soft margin, while 

a low lambda leads to a low tolerance a hard margin.  SVM is able to handle nonlinear 
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classification through the use of kernel functions. Kernel function substitute the dot 

product between coordinates by a similarity function. The kernel allows SVM to model 

nonlinear functions by projecting the maximum-margin hyper plane in a transformed 

feature space. 

 

Figure 2.2: Linear Support Vector Machine 

 

 
2.2 Short Text Processing 

Short text is a type of text characterized primarily by its brevity. Traditional text mining 

approaches presented in section 2.1 struggles with short text processing due to low term 

count. Short text is deeply linked to Web 2.0, characterized by user-created content. Due 

to the nature of its environment, short text is also characterized by poor grammar and 

domain-specific vocabulary. Short text characterization can be done by [16]: 

• Individual author contributions are very brief and data is sparse. It does not provide 

enough word co-occurrence or shared context for good similarity measures. This 

makes it more difficult to extract valid language features. 

• Grammar used by authors is generally informal and unstructured, relative to a 

particular domain. There are many misspellings, non-standard terms, and noise. 

• Text is semi-structured by NLP definitions since it contains some metadata [17]. 
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• Immediacy: short-text is often sent and received in real-time and in large quantity. 

• Imbalanced Distribution: Background applications deal with large amounts of short- 

text data. However, tasks often involve detecting a small number of objects. There- 

fore, useful instances are limited and the distribution of short text classes is imbal- 

anced. 

• Large scale data and labeling bottlenecks: It is expensive to manually label all data. 

How to better combine labeled and unlabeled instances is one key problem of text 

classification. 

. 

Short texts exist in a variety of forms: SMS messages, e-commerce reviews, instant 

message apps, online chat, bulletin board systems, Twitter [18]. Short text processing 

allows for an array of applications, such as classifying news, search queries, identifying 

and removing erotic content messages, classifying/clustering tweets, blog messages and 

scientific abstracts and sentiment analysis [18]. Manual monitoring of online content is 

tedious and expensive. Short text processing allows for better situational awareness for 

industry, business, community, and military use [19]. 

Traditional text mining pipeline struggles with short text processing. Due to the 

low word count, the document-term matrix is particularly sparse, with documents be- 

ing represented only by the presence of few terms with low frequency. The abundance 

of abbreviations, misspellings, and dialects makes it harder to breakdown the matrix 

through dimensionality reduction. For the rest of this section, we will present non-neural 

approaches to short text processing. 

Under the nomenclature of microtext, Ellen [17] surveyed AI and NLP techniques 

applied to military chat rooms, SMS, voice transcriptions, and micro-blogging. Early 

techniques did not focus on the text but tried to leverage metadata in order to classify 

short-text. The metadata utilized was: 

• Source Attribution (Author, Screen Name, Originating Phone Number or Email 

Address) 

• Time stamp (Almost always with minute-level accuracy) 

• Audience (Public, Room or Chat channel, source attribution) 

• URL References (reply/threading mechanism, longer reference) 

• Geo-location information (location tags, GPS) 

• Other application-specific data (hashtags, mood, weather, user created and auto- 

matically generated, such as whats-app status. ) 
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On notable research, the author cites Twinner [20], a Twitter clustering based on 

physical location and TweetMotif [21] that grouped tweets based on statistically unlikely 

phrases that co-occur. Rosa [22] performed experiments on military chat posts with SVM’s 

K-Nearest Neighbours, Rocchio, and Naive Bayes classifiers, using mutual information and 

information gain as feature selection methods. However, these methodologies performed 

poorly on binary and four-way classification tasks. So far, short text work could be 

characterized by leveraging outside bodies of knowledge and non-traditional language 

features to create task-specific solutions, with little effort to create generalized models for 

short-text. 

Rafeeque [18] surveyed short text analysis. The general framework for short text anal- 

ysis included two steps before classification/clustering: expansion of the sparse features 

with additional information from a linked long text or document, and a measure of short 

text similarity. The document is fetched from an external source such as a database 

repository, blog, file system, or the internet. 

Web-based short text similarity used web documents returned by a search engine to 

compute the similarity between two short texts or words. Web-kernel similarity[23] and 

web relevance similarity [24] are computed using normalized term vectors extracted from 

the collection of returned documents. These similarity measures were primarily used for 

query suggestions, but they could also be used to create relationships between terms and 

entities when there is no available taxonomy. 

Sriram [25] used domain-specific features of Twitter to classify tweets into five generic 

classes such as News, Events, Opinions, Deals, and Private Messages. A total of 8 features 

were used: the author name, and seven tags representing the presence of slangs, time- 

event phrases, opinionated words, emphasis, currency and percentage signs, usernames at 

the beginning or middle of the text. The engineered features outperformed BOW in the 

classification of 5407 random tweets of 684 authors using the Naive Bayes Classifier. 

Alsmadi and Gan [15] conducted a review on short text classification. The author made 

a distinction between feature selection and extraction. The most common feature was a 

term vector with different weighting schemes, such as binary weights,  term frequency, 

log of term frequency, Tf-IDF, and probability term frequency. Classifiers were separated 

between example-based, probabilistic, decision tree, and linear classifiers. Of the reviewed 

articles, 89% utilized feature selection., while only 11% used feature engineering. Con- 

cerning classifiers, 44% used linear classifiers, 21% used probabilistic classifiers, 14% used 

decision Trees, 13% used ensemble classifiers and 8% used example based classifiers. 

Qiang et al. [26] conducted a survey on topic modeling techniques for short text. 

Traditional short text topic models such as LDA, LSA, and PLSA performed poorly on short-

text due to the low co-occurrence of words in short-text. The author was able to 
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identify three categories of topic models: Dirichlet multinomial mixture based models, 

global word co-occurrence based methods, and self-aggregation methods. 

 
2.3 Deep Learning 

Roughly speaking, machine learning is the process of representing data in a computer- 

oriented manner to interactively discover patterns through parameter optimization; be it 

maximizing in-group similarity, while minimizing cross-group similarity in clustering; or 

minimizing error function in classification. These techniques are limited in their ability to 

process data in its raw form, requiring data representation techniques that able to extract 

relevant information from available data for the task at hand. 

The key aspect of deep learning is that these layers of features are not designed man- 

ually. They are learned from data using a general purpose-learning procedure. Deep 

Learning constructs a complex representation expressed in terms of other simpler repre- 

sentations. While the overall model maps inputs to outputs, the function is formed by 

composing many simpler mathematical functions of each layer. We can think of each 

application of a different mathematical function as providing a new representation of the 

input [27]. 

Deep Learning has been particularly useful in tasks that demanded good represen- 

tations due to the high dimensionality of data,  such as image and text processing [28] 

[29]. Research in these fields has been traditionally oriented towards extracting features 

that could capture meaningful information from raw data, such as filters for images and 

POS tagging in text processing. Deep Learning has allowed advances in these fields and 

produced many applications such as object detection and speech recognition [28]. 

 
2.3.1 Feedforward Neural Network 

Feedforward neural networks, or multi-layer perceptrons, are the quintessential deep learn- 

ing models. The goal of the feedforward network is to approximate some function f that 

maps input x to a category y. A feedforward neural network defines a mapping y = f (x; θ) 

and learns the value of the parameters θ that result in the best function approximation 

[27]. 

Goodfellow provides explanations on feedforward neural networks as a function ap- 

proximator. Each of the three terms is explained individually. Feedforward comes from 

the fact that information flows from the input layer x, moves through the internal repre- 

sentations used to define f , and generates the output y. There are no connections in which 

information is fed back into itself. This contrasts with other models such as Recurrent 

Neural Networks, which include feedback connections. 
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The network portion is based on the compositionality of the final learned function. 

The model can be represented as an acyclic graph that describes how the functions are 

composed together. A 3 layer network could be described as f (x) = f (3)(F (2)(f (1)(x))), 

in which f (1) is the first layer, f (2) is the second and so forth. The number of layers in this 

chain is called the depth. This is where the deep part of the terminology comes from and 

serves to contrast with shallow linear models that do not possess the same representation 

power. 

The neural part comes from the fact that these networks are loosely related to neu- 

roscience. Early developments can be traced to the creation of mathematical models 

for pattern recognition of neurons in the perceptron algorithm and similar models [30]. 

The orientation of ANN research has changed through the years from an accurate repre- 

sentation of the brain to function approximation machines guided by mathematical and 

engineering techniques [27]. Nonetheless, there are still architectural decisions that are 

inspired by how neurons work. 

Each layer in a neural network is not a single vector to vector function, but a collection 

of different units that take all the outputs from the previous layer and compute a single 

scalar each. The output of said layer will in turn be used by the following layer. The 

resulting scalar of each unit is bound by an activation function, similar to how neurons 

work. Figure 2.3 presents a network with two hidden layers and the output of each layer. 

Each node takes the weighted sum of the outputs of the last layer, represented by z, and 

produces an output y based on the activation function f (z) that represents the neuron 

activation. 
 

 
Figure 2.3: Feedforward Neural Network. Adapted from [28] 

 
The choice of activation function impacts the training of the neural network as the 

cost of calculating the derivative impacts back-propagation. The slope of the activation 
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2 

function is also linked to the vanishing gradient problem due to how the error signal 

deteriorates the further it travels through the network. Figure 2.4 shows the flow of the 

error signal backwards through the network. The partial derivative of the error functions 

indicates the contribution of the term to the total error.   In the example provided by 

Figure 2.4, the error function is given by  1 (yl − ẏ)2, with yl  being the network output, ẏ 

the true value of the target variable. This leads to the partial derivative of the error in 

the output layer presented in the example.  For the hidden layers, the derivative of the 

error is a weighted sum of the error propagated by latter nodes.  The partial derivatives 

can be calculated through the chain rule. 

 

 
Figure 2.4: Back-Propagation of Error Signal. Adapted from [28] 

 
Neural networks are usually trained through an iterative, gradient-based optimizer 

that drives a cost function towards a very low value. The non-linearity of neural networks 

cause loss functions to become non-convex. This means that there is no guarantee that 

gradient descent will converge on a global minimum. Furthermore, there are several hyper- 

parameters in neural network training that impact the final result,  such as the learning 

rate, the number of epochs of training, batch size, drop-out rate, and momentum. 

Learning rate is the most important hyper-parameter. Learning rate dictates the rate 

at which weights are updated. If the learning rate is too large, the model can converge too 

quickly to a sub-optimal solution, while a low learning rate may get stuck. Optimizers, 

such as Adam [31] and AdaGrad [32] can be employed to utilize per adaptive learning 

rates per parameter. 

 
2.3.2 Convolutional Neural Network 

Convolutional neural networks (CNN) are a specialized kind of neural network for process- 

ing data through convolutions operations. Convolutions is an operation on two functions 
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of real-valued arguments, Goodfellow [27] provides an example as to how convolutions 

can be understood in the context of neural networks. Imagine a sensor x(t) that gives the 

position of an object at time t. This sensor is noisy. In order to prove a better estimate 

of the position of the object, we can use the convolution of the signal x(t) and a weight- 

ing function w(a) of the age of measurement a. In computation time is discrete and the 

convolution can be given by: 
 

s(t) = (x ∗ w)(t) = 
a=

Σ

−∞ 

x(a)w(t − a) (2.5) 

 

If the convolution is done over more than one axis, over an image I for example, we 

can use a two-dimensional kernel K: 

S(i, j) = (I ∗ K)(i, j) 
Σ Σ 

I(m, n)K(i − m, j − n) (2.6) 
m n 

 

Convolution is commutative so: 
 

S(i, j) = (K ∗ I)(i, j) 
Σ Σ 

I(i − m, j − n)K(m, n) (2.7) 
  

In order to obtain the commutative property the kernel is flipped. Many machine 

Learning Algorithms do not flip the kernel, and instead utilize cross-correlation: 

S(i, j) = (K ∗ I)(i, j) 
Σ Σ 

I(i + m, j + n)K(m, n) (2.8) 
  

Convolutions leverage three important ideas that can help improve machine learn- 

ing systems: sparse interactions, parameter sharing, and equivariant representations. In 

feedforward neural networks, operations between layers are done through matrix multi- 

plication. For every possible combination of input and output unit, there is a parameter. 

In convolutional neural networks, this parameter interaction is sparse, since the kernel is 

generally much smaller than the input, and the same kernel is applied several times over 

the input. 

This means that fewer parameters must be trained, which both reduces the memory 

requirements of the model and improves statistical efficiency. If there are m inputs and n 

outputs, matrix multiplication requires mxn parameters, then algorithms used in practice 

have O(m × n) runtime. By limiting the number of connections, the sparse connections 

require only kxn parameters and O(k × n) runtime, with k  being the kernel size.   In 

practice, k is often orders of magnitude lower than m, resulting in a large improvement. 

Sparse interactions are also related to parameter sharing. In  traditional  neural  net- 

works, every interaction is associated with a weight that is used only once. By reapplying 

n m 

n m 
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the same kernel multiple times over the input, weights associated with that kernel are 

shared over multiple computations. This doesn’t affect the number of runtime operations 

but reduces the number of parameters that must be stored. 

In turn, parameter sharing is related to the property of equivariance to translation. 

A function f (x) is equivariant to another function g if f (g(x)) = g(f (x)). Convolutions 

are equivariant for translation. This means if the input is shifted, the transformation will 

be shifted by the same amount. This is useful since the function of a small region of the 

matrix can be applied to multiple locations. In image classification, this means that a 

particular kernel that is able to detect vertical edges can be used all over the matrix to 

identify those same edges. In subsequent layers, this results in a filter that is capable of 

finding more complex patterns, such as a face, independently to where it appears in the 

image. It is important to notice that while convolutions are equivariant to translation, 

they are not equivariant to other transformations, such as rotation. 

The typical convolutional layer includes the convolution stage, detector stage, and 

pooling stage. The convolution stage is defined by the affine transformation done by 

applying the kernel to the input. The detector stage is where an activation function 

is applied, similar to that of feedforward neural networks. The final stage is pooling. 

Pooling replaces the output of the network with a summary of the statistics at that 

location. Pooling helps to make the representation invariant to small translations of the 

input. This means that if we translate the input by a small amount, the values pooled do 

not vary significantly change. Pooling also improves the computational efficiency of the 

network because the next layers have fewer inputs to process. 

When dealing with textual information, text is first converted to a sequence of vectors 

by applying pre-trained word embedding. This results in a representation of size n × k, n 

being the length of the sequence, and k the numbers of dimensions of the word embedding. 

Figure 2.5 presents the CNN architecture propose by Kim [33] for sentence classification. 

Unlike images, text is a one-dimensional representation. Convolutions in text processing 

are 1-dimensional and slide through the sequence. Filters of different sizes are utilized in 

order to learn multi-word features. Convolutions are followed by a max-over time pooling 

that selects the maximum value of each feature over all positions in the sequence. In 

practice, this means that the pooling layer summarizes whether or not that feature is 

present in the sequence. The resulting feature vector is connected to a fully connected 

neural network that will behave as the classifier. 

 
2.3.3 RNN Based Models 

While convolutional neural networks attempt to capture local patterns in data, recurrent 

neural networks (RNN) attempt to capture sequential patterns. They are based on state 
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Figure 2.5: CNN For Word Classification. Extracted from [33] 

 
machines, in which the current output of the node depends not only on the input but also 

on the previous state of the node. 

The most basic form of RNN used is based on Elman machines [34]. Elman machines 

consist of input, hidden, and output layers. For the sake of comprehension, RNNs are 

often represented in their unfolded format in order to explicitly express relationships 

between variable time inputs 

Since individual weight contribution is determined not only by the current input xt 

but also based on previous step computed hidden layer ht−1, RNNs are particularly prone 

to the vanishing gradient problem. This meant that RNN could not capture long term 

relationships of sequences. In order to address this problem, models such as Long Short- 

Term Memory (LSTM) and Gated Recurrent Unit (GRU) were created with the intent of 

preserving long-term contextual information. Figure 2.6 presents the overall architectures 

for these model’s units. 

LSTM [35][29] introduced forget gates over simple RNN architecture in order to in- 

definitely preserve signal. LSTM consist of three gates: input i, forget f, and output o 

gates. 

 

Figure 2.6: LSTM and GRU architecture, extracted from [29] 
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Signals in LSTM are defined by the following equations: 

x = 
ht−1  

 
 (2.9) 

 
xt 

 

 

ft = σ(Wf · x + bf ) (2.10) 

 
it = σ(Wi · x + bi) (2.11) 

 
ot = σ(Wo · x + bo) (2.12) 

ct = ft 
K 

ct−1 + it 
K 

tanh(Wc · x + bc) (2.13) 

ht = ot 
K 

tanh(ct) (2.14) 

GRU [36] is a simpler variant of RNN based on reset and update gates. GRUs have 

similar performance to that of LSTMs and there has been no consensus on which is the 

best model [29]. GRUs are governed by the following equations, where at time t the unit 

is presented with xt and produces output ht: 

 

z = σ(U� · xt + W� · ht−1) (2.15) 

r = σ(Ur · xt + Wr · ht−1)  (2.16) 

st = tanh(U� · xt + Ws · (ht−1 
K 

r))  (2.17) 

ht = (1 − z) 
K 

st + z 
K 

ht−1 (2.18) 

LSTMs have been used at multiple levels in the NLP field. At word level interactions, 

LSTM allowed for better sentence representation by taking into account word order and 

relationships between more distant words. This is particularly useful for resolving nega- 

tion and transition words. Traditional methods for the creation of word embeddings are 

based on distributional hypotheses [37] that terms with similar distribution have similar 

meanings. This does not hold true for negation and transition words.  In tasks that re- 

quire natural language understanding, such as sentiment analysis, these distinctions are 

important [38]. Bidirectional LSTM networks [39] utilize 2-layers of LSTM that process 
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data in opposite directions. Forwards states process the sequence from beginning to end, 

while backward states process the sequence in reverse. The output of the network is 

produced by the concatenation of both layers at each position. Figure 2.7 presents a 

representation of bidirectional RNN. Essentially, any RNN based network, such as RNN, 

LSTM, or GRU, can be made bidirectional. 

 

 

 

 

 
Figure 2.7: Bidirectional RNN. Extracted from [39] 

 
 

2.3.4 Attention Mechanism 

Recurrent neural networks have been widely used in sequence to sequence modeling. The 

overall architecture for this problem is based on the encode-decoder architecture. In 

encoder-decoder architecture, the network can be divided in two segments: the encoder 

part creates an embedding based on inputs and the decoder generates outputs based on 

the embedding created. Common uses for this architecture include machine translation 

and text generation. 

While standard RNN architectures only utilize the last produced vector as sentence 

representation, the attention mechanism leverages hidden states produced during the 

processing of all time steps. The attention mechanism proposed by Bahdanau [40] creates 

a context vector from hidden states as a weighted sum of hidden states. Figure 2.8 presents 

an illustration for the attention mechanism over a bidirectional RNN. For a sentence of 

length T : 
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Σ 

Σ x 

 
Tx 

ci = αijhj (2.19) 
j=1 

The weight αij of each annotation is computed by: 

  exp(eij)  

 
 

where 

αij =  T 
k=1 exp(eik) 

(2.20) 

 

eij = f (si−1, hj) (2.21) 

is an alignment model that scores how well the inputs around position j and the output 

at position i align. The score is based on the decoder last state si−1 and hidden state at 

position j. This model is implemented as a feedforward neural network that is trained 

in conjunction with other components. In practice, this means that the weight of each 

hidden state is learned by a fully connected layer that takes the hidden states as input. 

This generates dynamic weights across sentence positions that can track important words. 

 
 

 

Figure 2.8: Illustration of attention mechanism on encode decode architecture. Extracted 

from [40] 

 
 

2.4 Word Embeddings 

Word embeddings are a group of different methods that aim to represent words in dis- 

tributed vector form. Traditional word representations often scale with vocabulary size, 
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as the document-term matrix grows. By representing a word in a continuous-distributed 

representation, expansion of the vocabulary does not increase the representation size. At- 

tempts at creating word representation through neural networks date back to the early 

stages of neural networks [41]. These early attempts were limited by the availability of 

data and computational capacity of the time. More recent models such as N-gram neural 

language model [42] are trained over corpora of millions of words. In this section, we will 

present popular word embeddings such as Word2vec, Glove, and fastText. 

 
2.4.1 Word2vec 

Word2vec is a C++ library for computing two different neural language models based 

on the work of Mikolov [43][44]. Mikolov proposed both Continuous Bag of Words 

model(CBOW) and the Skip-Gram model, represented in Figure 2.9. CBOW predicts 

a word based on it’s surrounding, while skip-gram predicts the context of a center word. 

Models were trained on the Google news dataset, containing 6 billion words, with vocab- 

ulary restricted to the most frequent 1 million words. Training complexity is proportional 

to: 

 

O = E × T × Q (2.22) 

where E is the number of training epochs, T is the number of words in the training set 

and Q is related to each model. CBOW Q training complexity is given by: 

 

Q = N × D + D × log2(V ) (2.23) 

Where N is the context length, V is vocabulary size and D is the number of nodes in 

the projection layer. The projection layer differs from the traditional hidden layer used 

in neural networks in the sense that it does not utilize an activation function. The idea is 

that the reduced representation power is offset by lower computational cost. This allows 

the model to be trained with a larger corpus that produces better results. These shallow 

neural networks are referred as log-bilinear models and are represented in Figure 2.10 

For the skip-gram model Q training complexity is given by: 

 
Q = C × (D + D × log2(V )) (2.24) 

where C is the maximum distance of prediction. In training, a R number in range 

< 1; C > is selected, and the model makes predictions of the next and the former R words. 
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Figure 2.9: CBOW and Skip-Gram models. CBOW predicts words based on context and 

Skip-gram predicts context based on a given word. Extracted from [43] 

. 
 

2.4.2 FastText 

FastText is a word embedding library based on improvements over CBOW model [46]. 

Improvements involve: position dependant weighting, n-gram representation, and sub- 

word information [47]. Position dependant weighting relates to the learning of weights 

attributed to each position of the context window. In CBOW the context vector is simply 

computed from the average of word vectors in the context. 

FastText addresses n-grams during the pre-processing stage. during the pre-processing 

stage the word2phrase tool from the word2vec project is used to merge 50% of occur- 

rences of words with high mutual information. This process is repeated up to six times. 

This way, words like "New" and "York" can be merged in n-grams like "New_York", 

"New_York_University", and so on. 

The most important difference is that fastText utilizes subword representation. Words 

are represented as the combination of n-grams of characters. Each n-gram has its own 

vector representation. The final word representation is a sum of the learned representation 

and the n-grams vectors related to that word. This is particularly useful to treat misspells 

and provide representation for morphological similar words. 

For the English language, word vectors were trained using a 9.2 billion token Wikipedia 

corpus and a 630 billion token Common Crawl corpus. These2 and word embeddings for 

2https://fasttext.cc/docs/en/english-vectors.html 
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Figure 2.10: Word2vec architectures where based on shallow neural networks. Extracted 

from [45] 

 
other 157 languages were made available online3. 

 
2.4.3 Glove 

Since word2vec models are trained only on small context windows, Glove [48] aims to 

incorporate global co-occurrence in the training of word vectors.   The idea is that the 

ratio of co-occurrences is more important than the raw number of co-occurrences. The 

author provides examples for the words "Ice" and "Steam". While the co-occurrence of 

both words to the word ’Solid’ is very small,  the co-occurrence between (’Ice’,  ’Solid’) 

is several times that of (’Steam’, ’Solid’). In turn, the co-occurrence of ("Ice", "Gas") 

is several times smaller than that of (’Steam’, ’Gas’). Only in the ratio, does the noise 

from non-discriminate words cancel out. If we exchange "Gas" or "Solid" for words such 

as "Water" or "Fashion", the ratio will be close to 1, as both of these words are equally 

related or disconnected to "Ice" and "Steam". 

Be X the word co-occurrence matrix, and Xij the number of times the word j occurs 

in the context of word i. Xi = k Xik is the number of times any word appear in the 

context  of  i  and  Pij  =  P (j|i)  =  Xij/Xi  the  probability  that  the  word  j  appears  in  the 

context of the word i. 

The ratio between Pik  e Pjk  depends on the words i, j, k so the model must take the 

form  F (wi, wj, w̃).   The  model  is  trained  resolving  a  least  square  regression  problem  in 

the form of : 

3https://fasttext.cc/docs/en/crawl-vectors.html 
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J  =  
Σ  

f (Xij)(wT w̃j + bi + ̃bj − log Xij)
2 (2.25) 

i,j=1 

Like word2vec, word vectors created by Glove also manage to capture latent semantic 

relationships between pairs of words through euclidean distance. While the distance 

between two vectors does not equate to the same underlying semantic relationship, this 

relationship can be contextualized by the distance of other word pairs.  Such is the case 

for the distance between "man" and "woman" being similar to the distance of "boy" and 

"girl". 

Glove was trained on five corpora of different sizes: 2010 Wikipedia dump of 1 billion 

tokens, 2014 Wikipedia dump of 1.6 billion tokens, Gigaword 5 with 4.3 billion tokens, 

the combination of Wikipedia and Gigaword for 6 billion tokens,  and 42 billion tokens 

from Common Crawl. Corpora were tokenized by the Stanford Tokenizer, with a vo- 

cabulary of the 400,000 most frequent words. Training is split between populating the co-

occurrence matrix and training the model. These pre-trained embeddings were made 

available, including additional embeddings based on Twitter 4. 

 
2.4.4 Evaluation 

Word embeddings can be evaluated in two ways: intrinsic and extrinsic evaluation [49]. 

Intrinsic evaluation utilizes human-annotated word pairs as a representation of words re- 

lationship. Evaluation is done on how well word embeddings match these pairs. Extrinsic 

evaluation utilizes performance metrics on downstream tasks to rank word embeddings. 

A downstream task is any task that utilizes the representation provided for the word 

embedding as input, e.g POS, chunking, or classification. 

For a time, intrinsic representation was thought to be a good predictor of extrinsic 

performance. Intrinsic evaluation is easier and faster to perform and doesn’t rely on task- 

specific metrics. However, research showed that good performance on intrinsic evaluation 

did not correlate to extrinsic performance [49]. 

Word embeddings trained as part of a supervised task capture semantic relationships 

relevant to that particular task and may differ from the relationship captured by un- 

supervised training. A word embedding trained on POS tagging may present similar 

representations for words such as ’man’ and ’cat’ as they are both nouns. This same 

embedding would be penalized by intrinsic evaluation [50]. 

The overall solution for word embedding evaluation has been to use extrinsic evalua- 

tion. Extrinsic evaluation is task-dependant, this makes it difficult to generalize perfor- 

4https://nlp.stanford.edu/projects/glove/ 
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mance evaluation of word embeddings. Nevertheless, there have been efforts for creating 

evaluation tool-kits in the pursuit of universal sentence representation [51]. 

 
2.4.5 Meta Embedding 

The difference in the semantics captured by different embeddings motivated research on 

how to combine these embeddings. Meta embeddings are not trained on a pre-selected 

corpus; instead, they are created by the combination of different pre-trained embeddings. 

The two main advantages of meta embeddings are performance enhancement and word 

coverage [52]. 

Yin and Schütze [52] proposed 4 methods for meta-embedding computation in increas- 

ing levels of complexity. First, there is the simple concatenation of word vectors, second 

is the single value decomposition of the concatenated form of word vectors. The third 

model, named 1toN, treats individual embeddings as projections of the meta embedding 

vector. The meta embedding vector is randomly initiated and the learning objective is 

to minimize the euclidean distance to the sum of projections. The fourth model, named 

1toN+, is aimed at vocabulary filling of out of word vocabulary. 

Despite its simplicity, simple concatenation of word embeddings proved to be a good 

baseline for the performance of meta-embeddings [52]. Simple averaging of word em- 

beddings also produced comparative good results and had better performance for word 

analogy tasks [53]. 

Kiela et al [54] argue that instead of generic operations over word embedding, it is 

simpler and more effective to allow neural networks to decide which embedding to use 

based on performance on the downstream task. The author trained meta embeddings not 

only on language inference tasks but also on multi-modal learning, based on both text 

and image data.  Aside from performance,  the main benefit of dynamic embeddings is 

that the individual performance of word vectors can be explained by the learned weights. 

 
2.5 Transformers 

Prior to transformers, RNN based architectures, such as LSTM and GRU, were the state 

of the art for sequence modelling. However, due to the intrinsic cost of sequential com- 

putation, there were an interest in models that could be better parallelized and take 

advatange of GPUs. 

Figure 2.11 presents the transformer architectur, Transformers follows the encode- 

decode architecture, in which for a given sequence of symbols, the encode part generates 

a continuous representation the encapsulates that sequence. The decode  part  of  the 

model utilizes this representation to generate a new sequence of symbols. Transformers 
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dk) 

differs from other sequence transduction models by substituting the processing units in 

the encode-decode architecture , such as convolutional layers and lstm cells, for attention 

units. In order to model the sentence structure, model adds a positional embedding to 

the input embedding. 

 

 
 

 

Figure 2.11: Original Transformer Architecture. Extracted from [55] 

 
The original transformer model employed two types of attention, as shown in figure 

2.12. The attention function on a set of queries simultaneously, packed together into 

a matrix Q. The keys and values are also packed together into matrices K and V. We 

compute  the  matrix  of  outputs  as  Attention(Q, K, V )  =  sof tmax( Q√KT  

V )  .   The  self 

attention units are processed in parallel though the multi-head attention unit. 

 
2.6 Discussion and Review 

This chapter presented the relevant concepts regarding text classification, short-text pro- 

cessing, deep-learning, word-embedding and transformers. Traditional text classification 

rely on term-frequency in order to create a vector representation for text. This represen- 
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Figure 2.12: Attention Mechanism in the transformer model. Extracted from [55] 

 
tation is high dimensional and sparse due to each document using only a small portion 

of the vocabulary. Short-text is a special type of text, it’s main characteristic is briefness 

and poor quality. Due to its briefness, traditional term-frequency methods struggle with 

short-text related tasks. Deep learning differs from traditional methods by preserving 

the word order. In deep learning text is represented by a series of vectors and a rep- 

resentation is learned from the sentence structure or vector sequence. It is possible to 

initialize these vector with vectors pre-trained on a different task in order to provided 

semantic information. This vector may be combined to provided different representation 

for the same text. Transformer allowed for model pre-trained on a much larger corpus 

by allowing parallelization of training. Transformer are able to preserve context infor- 

mation for longer sentences than other sentence-based models. Due to the short-comings 

of traditional methods, deep-learning based methods have been investigated as possible 

solutions to invoice classification problem. The next chapter presents how different works 

addressed short-text classification and invoice classification though both traditional and 

deep-learning methodologies. 
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Chapter 3 

Related Work 

In this chapter, we highlight other works related to short text and invoice classification. 

Short-text classification is a broader area and some solutions may not be suited for invoice 

classification. In contrast, works aimed at invoice classification may not utilize short text 

processing techniques. 

This chapter is organized as follows: the first section presents non-neural method- 

ologies for short text processing. Section 3.2 will focus on neural-based short-text clas- 

sification architectures. In section 3.3, we present recent work on invoice classification. 

We then summarize the approaches presented in this chapter based on a set of desirable 

characteristics for short-text and invoice classification. Finally, we point out the intended 

contributions of this work. 

 
3.1 Non-neural Methods 

Traditional methods rely on bag-of-words representation and matrix factorization to create 

a representation for text processing. The low word count on short text documents leads 

to low co-occurrence of terms across the document-term matrix, which invalidate matrix 

factorization methods. 

Early works attempted to address this problem by expanding available information 

through auxiliary databases. Document expansion seeks to substitute the representation 

of short text for the representation of a set of related documents. In query-based expan- 

sion, these documents are returned by using short text as the input on a search engine 

[23][24]. The problem with document expansion is that it increases computational cost 

both on searching and processing a larger amount of data. This new data also introduces 

noise to the model. 

Phan [56] proposed a framework for short text classification that used an external 

"universal dataset" to discover a set of hidden topics through Latent Semantic Analysis. 
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The discovered topics were used as a representation for short text. The framework was 

evaluated on two different tasks: domain disambiguation for web search results and dis- 

ease classification of medical abstracts. The framework is simple enough to be adapted to 

different domains, with a "universal dataset" been utilized for multiple problems. Nonethe- 

less, it is necessary to manually construct the dataset in a way that the hidden topics are 

well represented. 

Alsmadi [57] tackled short text problem by utilizing a supervised weighting scheme 

to the document term matrix. Since the number of terms in short text representation is 

lower than in those of longer length, representation schemes should have a bigger focus on 

individual term strength. The models improved F-measure when compared to traditional 

weighting schemes. Alsmadi [15] points out that even though many models perform well 

on benchmark datasets, they struggle with real-world problems. 

Wang [58] compared Naive Bayes(NB) models and SVM modes on varied topic clas- 

sification and sentiment analysis. Based on the experiments, it was concluded that both 

NB and SVM were useful baselines modes, with models outperforming one another based 

on the task. Bi-grams were also shown to improve performance across multiple tasks. 

 
3.2 Neural Based Methods 

Neural based methods learn feature transformation on each of its layers. This allows non- 

neural methods to learn representations from higher dimensions feature inputs and also 

preserve sentence structure. Neural network generally use embedding vectors previoulsy 

trained on a auxiliary self-suppervised task as inpyt . Convolutional neural networks learn 

a new representation by passing filters through the input vector, caputuring the presence 

of sub-structures. Reccurent neural netwokrs process the input in vectors in sequence, 

creating a hidden state that is dependant on the order of inputs. 

The architecture proposed by Kim [33] serves as the basis for most CNN based solu- 

tions. Zhang [59] utilized a 12-layer CNN to learn features from character embeddings. 

Character-based representation does not rely on pre-trained word embeddings and could 

be used in any language. Wang [9] expanded the model proposed by Kim [33] by utilizing 

concept expansion and character level features. The model utilized knowledge bases to 

return related concepts and included them in the text before the embedding layer. Knowl- 

edge bases included: YAGO, Probase, FreeBase, and DBpedia. A character-based CNN 

was used in parallel to the word concept CNN. Representations learned by both networks 

were concatenated before the final fully connected layer. 

Naseem [10] proposed an expanded meta-embedding approach for sentiment analysis 

of short-text that combined features provided by word embeddings, part of speech tagging, 
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and sentiment lexicons. The resulting compound vector was fed to a Bi-LSTM with an 

attention network. The rationale behind the choice for an expanded meta-embedding is 

that language is a complex system and each vector provides only a limited understanding 

of the language. BiLSTM was used to address the semantic meaning of negation and 

conjunctions that are based on word order. 

Chen et al [60] proposed a 2-D TF-IDF feature representation as input to CNN and 

LSTM models. These models were used to classify tweets based on verbal aggression. 

In the experiments, 2D Tf-IDF outperformed Word2vec embeddings trained on problem 

data. Due to the small dataset and shortness of each input, word embeddings trained 

on domain data failed to capture word relationships such as positive words (successful, 

happy), negative(worst, lose) and neutral (everyone). Regarding the architecture, while 

a single layer of convolution produced the best results, as the number of convolutions 

increased, the number of parameters dramatically decreased. 

 
3.3 Invoice Classification 

Electronic invoices are a special kind of short text. Invoices are particularly brief, being 

composed of only a few words, not forming a complete sentence. Words are often ab- 

breviated and domain-specific vocabulary is abundant. Invoice classification techniques 

have ranged from traditional count-based methods to neural-based architectures. In 2017, 

chinese invoice data was made public for chinese researchers, which motivated research in 

the area. This leads to the prevalence of works dealing with the chinese invoice system. 

Some works aimed to address data sparsity problem by utilizing hash trick for di- 

mensionality reduction [4][5]. Yue [5] performed semantic expansion of features through 

external knowledge bases before using the hash trick for dimensionality reduction. Tang 

[6] utilized paragraph embedding to create a reduced representation and then applied K- 

NN classifier. Yu [7] utilized a parallel RNN-CNN architecture, with the resulting vectors 

being combined in a fully connected layer. Zhu [8] combined features selected through 

filtering with representation learned through the LSTM model. 

Unlike most western languages, in which text is expressed through words with white 

spaces as separators, text in Chinese is expressed  through characters  without  separa- 

tors, with no clear boundary. Words are constructed based on the context. Most of 

the cited works used jieba1 for word segmentation. Chinese invoice classification words 

leaned towards RNN based architectures in a way to mitigate error produced in the word 

segmentation step. 

1available at: https://github.com/messense/jieba-rs 
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Chinese works aside, Paalman et al [61] worked on the reduction of feature space 

through 2-step clustering. The first step was to reduce the number of terms through 

filtering and then cluster the distributed semantic vector provided by different pre-trained 

word embeddings. This method was compared to traditional representation schemes and 

matrix factorization techniques. In the experiments, simple term frequency and TF-IDF 

normalization performed better than LDA and LSA. 

 
3.4 Comparison of Methodologies 

Traditional methods mainly address the data sparsity problem of short text. Traditional 

methods are based on filtering, semantic expansion, or dimensionality reduction through 

the hash trick. The problem with filtering is that there is information loss in a context 

where information is already poor. It is also vulnerable to typos, multi-word expressions, 

domain-specific vocabulary, and does not account for new vocabulary as time passes. The 

benefit of the hash trick over filtering is that no term, aside from stop words, is excluded 

from the representation. This guarantees that there will be a corresponding representation 

for every possible document. The downside is that there is no semantic meaning in the 

collisions that occur in terms that are represented in the same bucket. Nonetheless, the 

hash trick presents all the other downsides of filtering. 

Semantic expansion can be done in conjunction with other methods and is based 

on increasing available information by leveraging external knowledge bases and thesauri. 

This increases processing cost and search-overhead. At the word-level, each word of 

the document will trigger a search for synonyms or related concepts.  Communication 

with knowledge bases becomes the bottleneck of the system. The overhead in processing 

makes it unsuited for invoice processing due to the amount of invoice data. Furthermore, 

knowledge bases are language-specific, costly to build and maintain, and may not be 

available in languages other than English and Chinese. 

Phan’s approach [56] manages to circumvent the data sparsity problem without cre- 

ating a processing overhead during training; instead, there is an increased effort at the 

preprocessing stage in creating the universal dataset. The "universal dataset" also requires 

domain expertise to correctly choose examples for each class. 

Word embeddings serve two purposes in short-text processing. First, they provide a 

vector representation in fixed size for each word. This bounds the dimensionality of the 

representation based on embedding and sentence length. This contrasts with count-based 

representation, in which the number of dimensions depends on vocabulary size. The 

second benefit is that word embeddings capture semantic concepts between words based 

on the distributional hypothesis. This property allows for similar words to have similar 
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vectors. In a way, this functions similarly to semantic expansion, in the sense of synonyms 

expansion, without the drawback of processing overhead. 

The limitation of word embeddings comes down to vocabulary coverage and word 

sense. Word embeddings cover the vocabulary present in the dataset they were trained 

on. During training, rare words are often dropped. Most architectures utilize pre-trained 

embedding as lookup tables to extract vector representations for each word. If the word 

is not covered by the embedding or if it is misspelled, the lookup table will fail to wield a 

representation and that vector will be randomly initialized. The second limitation of word 

embedding is that they capture the most common sense for each word based on the most 

frequent use of that word in the training data [50]. This may harm the representation of 

words with multiple senses. 

These limitations of word embeddings are significant to invoice classification. Words 

in invoices are often misspelled and abbreviated. Also, taxpayers often mix words of 

multiple languages depending on the kind of product being reported. Finally, invoices 

possess little to no context in order to disambiguate word sense. 

The literature indicates that a invoice classification architecture must the address the 

following issues: 

• Character level representation: One of short-comings of word-base representation is 

that words that are not in the indexed word embeddings lack a corresponding em- 

bedding vector. This words are called out-of-vocabulary tokens, and are represented 

by random initiate vectors. Character level representation allows for representation 

of out of vocabulary words in the context of word embeddings due to new words 

being a combination of previously seen characters. This covers both misspellings 

and abbreviations, as the resulting representation of this words from the character 

embeddings would be more similar to the original word embedding than a randomly 

initiated vector. 

• contextualized word vectors : In short-text classification, only few words are actu- 

ally useful for classification. By using a convolutional layer with filters of different 

window size and a single word slide,  it is possible to generate features for each 

word that take context in consideration. This is particularly useful for multi-word 

expressions. 

• Sequence modeling: Word order may play a significant role in semantics, mostly in 

cases involving negation and conjunctions in the sentence. LSTM are also able to 

leverage more distant relationships then CNN. 

• meta-word embedding: improves both vocabulary coverage and sense expression. 

Word representation learned by word embedding depends not only on the training 
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algorithm but also on the dataset in which it is trained. Invoice text differs in a 

great deal to natural language, so both word similarity and word sense capture by 

these embeddings may not reflect the characteristics of words present in the data. 

By combining multiple word embededings we allow the model to learn which is 

more useful for the task at hand.   Pre-trained embeddings can also be combined 

with domain specific embedding 

• Knowledge Base Independence : Due to the overhead in communication with exter- 

nal databases, knowledge base expansion may not be feasible for large scale datasets 

,such as invoice data. Furthermore, these resources are expensive to build and main- 

tain and may not be available in languages other than English and Chinese. 

With this work we expect to provide the following contributions: 

• A study on available machine learning classification models to assign the correct 

NCM code based solely on the product description. 

• The architecture for a Intelligent system to assist tax auditors. 

• A contextual framework that organizes the possibilities in invoice processing based 

on document aggregation and complexity, from product transaction to issuer pro- 

cessing. 
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Chapter 4 

SCAN-NF and Invoice Processing 

 
The goal of this chapter is to present our approach to invoice classification that consists 

of both a contextual framework to model the problem context and an architecture for a 

system to aid tax auditors, named SCAN-NF. This chapter is organized as follows: first, 

we present an explanation on the electronic invoice model is provided before a contextual 

framework for invoice processing is presented. This framework addresses the purpose of 

this field of research, the core concepts, research opportunities and how the present work 

fits the larger context. The last sections are dedicated to presenting the architecture of 

SCAN-NF, a system to aid tax auditors in identifying suspicious product transactions. 

 
4.1 Electronic Invoice Documents 

In the last 10 years, there has been an increased interest in electronically processing 

invoices due to both an improvement on the available computational resources and tech- 

niques, as the cost of processing large amounts of data have been decreasing year by year. 

The emergence of e-commerce as a regular practice has also contributed to the populariza- 

tion of e-invoicing. While technical implementations may differ form location to location, 

the overall structure of this documents is the same. They will contain identification of 

both parties, information about the products and services contained in the transaction, 

and other general metadata such as date and type of transaction. Structuring this infor- 

mation may prove to be difficult depending on the degree of e-invoicing maturity. For 

mature landscapes, retrieving a semi-structured dataset may be as simple as providing 

a SQL query to a data-warehouse, in other cases this means utilizing computer-vision 

applications to extract information from a large amount of scanned physical documents. 

Due to an availability of invoice data, this work will focus its on the Brazilian model. 

Nonetheless, our work could be useful for similar languages due to the similarity in invoice 

documents. 
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4.1.1 Brazilian Electronic Invoices 

Brazil utilizes two types of electronic fiscal documents. The NF-e is the electronic fiscal 

document, created to substitute physical invoices, providing judicial validity to the trans- 

action and real-time tracking for the tax office [62]. The NFC-e is a special case of the 

NF-e, issued by retailers for transactions with end-consumers. Some of the fields present 

in the NF-e are not mandatory in the NFC-e. 

 
 

 

Figure 4.1: Diagram of the information present in the NF-e. Extracted from [62] 

 
Figure 4.1 presents the nested structured of the NF-e XML file. It contains detailed in- 

formation about invoice identification, issuer identification, recipient identification, prod- 

uct, transportation, and total values. In this work, we will focus on product information. 

Table 4.1 presents the information contained in product XML node. 

Our analysis will focus on learning a feature vector for the product description field. To 

do so we will try to predict the NCM code. NCM is a regional standardized nomenclature 

for products adopted in Brazil, Argentina, Paraguay and Uruguay. It is used in all external 

commerce made by these countries.  Once it has been known, the product is represented 

by the NCM code in all future processing. 

There are validations rules for the NCM field in the NF-e manual[62]. The NCM field 

is obligatory and should contain all 8 digits, it should be a valid NCM code, and the NFC-

e can only contain certain types of products. According to a specialist working with tax 

audition and the schedule published in the NF-e manual, the validation procedures 
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Field Description Observations 

prod  Xml parent node 

cPROD Issuer Product Code 
Product Id in the issuer system, 

not to be confused with NCM code 

cEAN Global trade item number 

GTIN-8, GTIN-12, GTIN-13 or 

GTIN-14, blank if the there is no 

GTIN for the product 

xPROD Product description  

NCM NCM code 
Must be complete 8 digits, or ’00’ 

for entries that do not constitute products 

NVE NVE code Details certain NCM 

EXTIPI exemption code 

Some products may present 

different taxes from those with 

the same NCM due to tax exemption 

CFOP CFOP code 4 digit code that describes the transaction 

ucom Comercial unit E.g. kg, ml, L, un, etc 

qCom Comercial quantity  

vUnCom Individual value  

vPROD Total value of the product  

cEANTrib GTIN of the taxable unit  

uTrib Taxable unit  

qTrib Taxable quantity  

vUnTrib Unitaty tax value  

vFrete Shipping value  

vSeg Insurance value  

vDesc Discount value  

vOutro Complementary expenses  

indTot 
Tag if the vProd sums to 

the total value of the NF-e 

 

Table 4.1: Fields contained in the product node of the NF-e. Adapted from [62] 
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for the NF-e documents are currently implemented, while the same procedures are yet 

implemented for NFC-e documents. In the Federal District, NFC-e has only become 

mandatory as of late 2017. This results in data of poor quality, with lots of missing fields 

and no validation on whether or not the contained information is true. 

The correct evaluation of the NCM is of great value in processing invoices. From 

the NCM code, it is possible to retrieve the correct tax rate and better monitor the 

circulation of products. This, in turn, can aid the decision making of the legislative and 

executive branches. We can also cross the information contained in different fields of 

the invoice to check if the values reported seem to be valid. When dealing with invoice 

processing, we conceptualize different degrees of abstraction. From the bottom up, we can 

address problems based on product transaction, invoice transaction and invoice issuers. 

At product level we are dealing with the individual products being referred into each 

invoice. The goal at this level is how to represent products and how address missing 

information. Stepping up, we can deal with invoices. Each invoice invoice is a collection 

of product transactions between two parties at a given date with additional meta-data. 

When dealing with invoice data, new questions can be addressed such as product co- 

occurrence, transaction frequency and invoice data consistency.  At the upper level, we 

can investigate business behavior by the flux of products described in the invoices. For 

fraud analysis, we can conceptualize an analysis that that initiates from product analysis 

up to issuer. In this indicator suspicious product description act as the basis. From 

suspicious products we can tag suspicious invoices. Based on sum of values present in 

suspicious invoices, we can decide if it is economically viable to audit issuers. 

This works addresses invoice processing problem at product level for two reasons. 

The first reason is that before higher level processing can be done, handling how to 

represent product transaction is crucial. The second one is due to security reasons. When 

dealing with a large amount of invoices from a particular region, it is possible, with clever 

processing, to recreate economical behavior of key businesses. This kind of work would 

require closer partnerships with the treasury office due to legal and ethical reasons. 

Our goal is to use text description present in each invoice to identify the product 

in that transaction. For this work, we will evaluate different text classification methods 

on NCM classification. NCM codes are used to represent products in many transaction 

processing steps. If the system learn how to correctly assign NCM code based on prod- 

uct description, that means the system was able to extract a useful representation from 

product description.  Assigning NCM code is also useful for Tax auditors, since there is 

no current audition of the NCM being reported. The reported code could be missing, out 

of format or be wrongfully reported, either intentionally or not. 
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Our second goal is to verify if it is possible to leverage information presented in NF- 

e data to address NFC-e data. Since there is an overlap in the products described by 

both products, we raise the question if models pre-trained on NF-e data can be used on 

NFC-e data, or if patterns learn by models trained on NF-e data could be leveraged for 

NFC-e data. NF-e is historically issued by larger business with more mature audition 

processes, which leads to better data quality. If we could perform transfer learning from 

NF-e focused models to NFC-e model, this means that NFC-e models could be built from 

already existing NF-e models. 

 
4.2 Contextual Framework 

In this section, we present a contextual framework to understand the landscape of invoice 

processing. The framework is organized in a layered structure, with each layer representing 

a sequential step in invoice processing. Figure 4.2 presents a visual representation of the 

proposed framework. At the base level, there is the data structuring layer, followed by 

different invoice abstraction layers. 
 

Figure 4.2: E-invoice Processing Framework 

 
Although electronic invoices have become more and more popular in recent years, in 

many cases, useful documents only exist in physical forms or user-oriented digital files, 

such as document pictures and PDFs. Before processing any meaningful information, we 

need to extract data from these documents and store it in some semi-structured mode. 
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Related works have shown that computer vision solutions are useful for extracting useful 

information from physical documents directly [63][64][65] [66][64]. These methods can 

greatly reduce the costs and workload for generating invoice data sets. This task is 

especially important in auditing, because it is necessary to cross the information reported 

in invoices with sales records in other systems. 

The remaining steps in our framework relate to different levels of abstraction that 

can be applied to invoice modeling. These steps include product transaction processing, 

invoice processing and issuer processing. Each level serves as the stepping stone for the 

next. Product transaction is the first layer of processing, representing each individual 

product or service transaction represented on every invoice in the data. At this level, 

we are interested in extracting granular information such as product description, product 

price, due taxes as well as other task-oriented attributes. The main form of input at this 

level is the product description. Our work is situated at this level, as we treat product 

description as a short-text classification problem to predict the correct product code for 

each transaction.   This exemplifies the main concern at this stage: we are interested in 

creating a good representation for each product transaction in order to produce the input 

for later tasks. It is much easier to analyze products transactions from a standardized 

product taxonomy than processing text descriptions[67]. 

At the invoice processing level, individual product transactions are aggregated and 

used to represent each invoice in conjunction to other meta-data. It is possible to track 

the relationship between multiple products in the same invoice. For example, Paalman 

[61] utilized two-step clustering to track fraudulent invoices. Auto-encoders have also been 

employed in fraud detection by measuring the distance between the reported text and the 

expected text produced by the model [68]. At this level, we can also model consumer 

behavior by utilizing association rules based on common product transactions. Another 

example is the usage of invoices issued by healthcare centers to extract association rules 

between commonly used medication [69]. 

At the higher level of abstraction, the behavior of parties involved in transactions is 

taken into account. One approach is to utilize previously known troubled issuers as a flag 

in processing invoices. An example of this kind of procedure is Chang’s work [3], in which 

information about companies involved in violations is used to select and mark invoices to 

create an alarm system for safe edible oil. Another way to include issuer analysis in invoice 

processing is through graph analysis. It would be possible to model an oriented graph, 

each node representing an issuer with invoices being used to create the links between 

issuers. From this structure, it would be possible to look for communities, cycles, and 

other graph-oriented sub-structures and correlate them to real-world issues. At the time 

of this work, we have not been able to find works that model invoice processing utilizing 
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graphs. We hope to address this tackle this problem in the future. 

 
4.2.1 Larger Context 

Invoice processing is also related to other concerns that are not directly related to extract- 

ing information from invoice documents. Due to a large amount of data, invoice-based 

systems require big data architecture [70]. This may lead to solutions in distributed 

computing paradigm as storing and processing are more feasible in clusters than in single 

machines. The adoption of e-invoicing from the get-go is also a key factor, as it streamlines 

the data structuring layer, doing away with the need of using expensive image processing 

techniques to create digital representations of invoices. A maturity model for e-invoicing 

from the business perspective was provided by [71]. 

 
4.3 Architecture of SCAN-NF 

We present an overview of the architecture of the SCAN-NF system and inner model 

in Figure 3.  The system’s goal is to feed additional information for tax auditors by 

product code to each product transaction based on the product description. The labeled 

transaction is then used as inputs for  other  analyses by Tax Auditors and  Specialists. 

The system works in two phases: a training phase and a prediction phase. During the 

training phase, the system is fed audited data from tax office server to train a supervised 

model. Two models are trained, one for the classification of NF-e Documents and another 

for NFC-e Documents. After training, these models are used on new data during the 

prediction phase. The system works as follows: Data is extracted from the tax office 

server (Label 1 in Figure 3). At this point, data provided in by the server may not be in a 

format compatible with the classification model. Product description and corresponding 

NCM code for each product in each invoice are then extracted (Label 2 in Figure 3). Text 

is then cleaned from irregularities (Label 3 in Figure 3). A training dataset is constructed 

by balancing target classes samples and dropping duplicates (Label 4 in Figure 3). At this 

point data is already modified to fit the model. The training set is then fed to a model 

that learns to classify product descriptions (Label 5 in Figure 3). Outputs at the training 

phase of the system are used to validate models before being put into production (Label 

6 in Figure 3). During the Prediction Phase, trained models are utilized to classify new 

data. These datasets may be composed of invoices issued by a suspected party or a large, 

broad dataset used for exploratory analysis (Label 7 in Figure 3). Models trained in the 

training phase are then employed for the task at hand (Label 8 in Figure 3). The final 

output of the model is the classified set of products inputs (Label 9 in Figure 3). This set 
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of classified product transactions is then used in manual auditing by tax auditors (Label 

10 in Figure 3). 

 

 

 
Figure 4.3: Architecture of SCAN-NF. Extracted from [1]. 

 
The system is intended to aid tax auditors in auditioning invoices issued by already 

suspicious parties to pinpoint inconsistencies and irregularities. Currently, NFC-e docu- 

ments are not audited due to the amount of data,  a more significant number of issuers, 

and the nature of the data. Our solution helps auditors pinpoint inconsistencies in doc- 

uments reported by an already suspicious party and allows for the automatic processing 

of more data. We hope that this solution will improve the productivity of tax auditors 

regarding NF-e processing and be the first step towards NFC-e processing. 

 
4.4 Case Study of Brazilian E-Invoices 

In order to validate SCAN-NF architecture, we aim to address the following questions: 

 
• Is it possible to utilize product description to classify the NCM code of Brazilian 

Electronic invoices by using State of the Art Text Classification methods? 

• How does this methods compare to traditional Machine Learning Methods? 

• Is it possible to train models work across different types of electronic invoice docu- 

ments? 
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To answer this questions, we conducted a case study based on real NFC-e and NF-e 

documents from the the state treasury office (SEFAZ). Data were separated into train- 

ing and test sets, and different models were trained. Models were validated through cross-

validation. Hyper-parameter optimization was conducted based on the average per- 

formance through all folders of cross-validations. 

 
4.4.1 Dataset 

In our experiments, we utilized data provided by the estate tax office of SEFAZ. Data pro- 

vided included both NFC-e and NF-e documents. NF-e data consisted of a small curated 

dataset that was previously used in manual analysis of product codes and description on 

various products. This dataset contained information on the description and NCM code. 

NFC-e data consisted of a larger dataset of products from multiple sectors, extracted from 

a particular month over the transactions conducted by retail supermarkets. 

Due the lower number of rows in the NF-e Dataset, we established a treshold based 

on the number of unique rows of each class in the NF-e dataset, due its smaller size. We 

selected all classes with a total of distinct product description over 2000 rows. In total 

18 classes were selected from NF-e dataset to be used in the experiments. The same 18 

classes were selected to create the experiment NFC-e Dataset. Our NFC-e dataset is not 

labeled by tax auditors. From previous studies, tax auditors estimate that 5% of issuers 

miss-classify products in NF-e documents. We assume that issuers behave similarly with 

the NFC-e. Otherwise, if the majority of issuers presented fraudulent behavior, the task of 

auditing would become trivial as auditors would have to simply pick issuers with sufficient 

transactions to be cost effective to audit. 

These datasets were kept separate and balanced individually. Due to disparity in mar- 

ket share, preserving product frequency would bias the models toward larger issuers and 

the most popular products. This could lead models to better classify invoices from large 

companies or learn their representation as to the norm. Duplicate product descriptions 

for each target class were drooped, even though they represented different transactions. 

While there is a significant vocabulary overlap between NF-e and NFC-e documents re- 

garding NF-e data, NFC-e presents a much more vast vocabulary. Table 4.2 presents 

detailed information on the number of samples used in the experiment. 

 
4.5 Discussion and Review 

This chapter presented the modelling of the invoice classification problem as an short-text 

classification problem. The presented framework establishes different levels of abstraction 

for invoice processing. Each layer serves as the basis for the next layer. This work 
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Table 4.2: Number of samples and datasets used in experiments. Extracted from [1] 
 

 NF-E NFC-E 

Number of raw 

product samples 
198882 99637515 

Number of samples 

in balanced dataset 
36234 49536 

Number of balanced 

classes 
18 18 

Vocabulary 

Size 
3646 15312 

Shared Terms 2342 

 
addresses invoice classification at the product transaction layer by presenting SCAN-NF, 

a system to aid tax auditors identifying suspicious transactions by classifying product 

transaction NCM code based on product descriptions. From the NCM code it is possible 

to identify the correct taxation to be applied to each product. The output of this systems 

could be used as input for more complex systems in order to identify fraudulent behavior. 

Both the research questions and the study case used to address this questions are outlined. 

In the next chapter, the methodology and experimental setup used in the study case is 

presented. 
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Chapter 5 

Experiments and Methods 

 
Chapter 5 presents details about the methodology and implementation of experiments 

aimed at answering the research questions presented in the last chapters. The questions 

were: (1) Would it be possible to assign NCM code for product transactions based solely 

on the product-description field ? (2) How dos the different machine learning models 

compare to one another on this task? (3) Could models trained on one type document 

perform well on the other type. Answering these questions allows us to validate SCAN- 

NF architecture and also allows for other applications focused on aiding tax auditors and 

public decision-makers. Furthermore, by comparing results between the chosen classifier 

architectures, we can validate if invoice product description follows the same paradigm as 

other short-text processing. 

This chapter is organized as follows: In section 5.1, an explanation on experiments, 

baseline models and metrics employed is given. A Flowchart of the experiment process is 

presented and explained in detail.  Section 5.2 and 5.3 present training details for SVM 

and CNN architectures respectively. 

 
5.1 Experimental Setup 

As mentioned previously, two balanced datasets were constructed for both NF-e and 

NFC-e invoices. Data is split between training and test sets with a ratio of 80 to 20. 

Parameter tunning was done using 5-fold cross validation. We train different models on 

each dataset to compare metrics between document types. Hyper-parameter optimization 

was conducted based on the average performance through all folders of cross-validations. 

The final result for each model is taken by averaging the result of several configurations 

trained independently on the best parameters. Results are then analysed and compared 

to a naive classifier that that guesses at random. This naive classifier serves as a baseline 
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for comparison and put in to perspective the metrics achieved by other models. Code 

related to these experiments are publicly available 1. 

To address whether or not it is possible to utilize invoice data to classify the other 

type of invoice, we take the previously trained models and evaluate them on the dataset 

composed of the other document type. 

 
Baseline Models 

Based on the literature and previous insights, SVM and CNN-based models were inves- 

tigate as possible candidates to be used as the classification engine in SCAN-NF. SVM 

serves as a baseline model and a example of traditional frequency based classification. 

There is no consensus on the related literature whether or not frequency based model 

should perform well on short text classification.   Works based on short text classifica- 

tion indicate that this type of model should struggle due to document-term matrix being 

particularly sparse and the lack of sentence structure modelling present in other architec- 

tures. Nonetheless, related work on invoice classification utilized frequency based model 

with good results. SVM have also been cited as a reliable baseline model for both topic 

classification and sentiment analysis. 

In contrast with frequency methods, CNN and RNN based architectures were said to 

better preserve sentence structure information.  This is particularly important in short- 

text, since it is expected for every input to have less information than larger documents. 

Related work on CNN based short text classification seemed take the architecture pro- 

posed by Kim as the base for the classification model and iterate over it with some form 

of knowledge expansion. While CNN preserve local sentence structure based on the words 

taken by each filter, there is no context representation. 

 
Metrics 

We evaluate models based on the following metrics: accuracy, precision, recall, and F1- 

score. Metrics are calculated based on True Positives, True Negatives, False Negatives, 

and False Positives. 

Accuracy is given by the rate of correct predictions over all predictions, it can be 

expressed as: 

 
(TP + TN )/(TP + TN + FP + FN ) (5.1) 

Top k Accuracy represents how often the correct answer will be in the top k outputs 

of the model.  Accuracy is useful for getting an overall idea of model performance.  In 

1available at https://github.com/diegokieck/mestrado 
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unbalanced datasets, recall and precision can paint a better picture of how the model 

behaves. 

The recall represents the recovery rate of positive samples and is given by: 

 
TP/(TP + FN ) (5.2) 

 
Precision evaluates the correct set of retrieved samples and is given by: 

 
TP/(TP + FP ) (5.3) 

 
We utilize the F1-score, the harmonic mean of precision and recall, to get a balanced 

assessment of model performance on imbalanced classification. 

 
5.1.1 Experiment 

Figure 5.1 presents a flowchart of the machine learning pipeline. After data was provided 

by the state treasure office, research opportunities and solutions were identified through 

exploratory data analysis. At this stage, prior experiences in the treasure office with 

private consultants led to the belief that it wouldn’t be possible to utilize text descriptions 

to classify invoice documents. 

The idea that product description text is too poor to be used may have come due 

to challenges in establishing rule-based algorithms for product description classification. 

These studies were unavailable for the development of this work. While these rules could 

be extracted from the NCM taxonomy structure, setting up and maintaining such rules 

would be infeasible. 

The problem was framed as a short text classification problem. Product description 

fulfills all the criteria for short text: brief text with low term count; text with poor 

grammar; the presence of meta-data,  and individual author contribution being small. 

From the target variable, NCM, it is possible to assign the correct taxation type based 

on business rules. 

Item description duplicates were dropped to not bias the study towards large-scale 

businesses and frequently sold products. The selection of which classes should be used in 

the case study was based on the constraints of the provided NF-e dataset. Classes had 

to present at least 2000 distinc product descriptions. 18 classes met this criteria in the NF-

e dataset. The NFC-e dataset was created by sampling distinct transactions for the same 

18 classes. Data preprocessing consisted of lower casing, removing punctuation and 

accentuation, and tagging numbers and metrics. 
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Figure 5.1: Experiment Flowchart 

 
Train test split was done at an 80-20 ratio, with test data being set aside for the 

final model evaluation. Training Data needed to be prepared differently based on each 

model. Hyper-parameter optimization was conducted both on model and data preparation 

parameters. Records of each parameter trial were kept and used to select the final pipeline 

for each model. The average of the metrics over the set of ten experiment runs constructed 

the final results. For each experiment run, models were initialized, trained, and evaluated. 

 
5.2 SVM 

The Support Vector Machine implementation used was provided by the Sklearn library. 

For the initial evaluation, the model was presented with different kernel functions and 

different parameters for the selection of features. Text was vectorized through Sklearn 

TF-IDF vectorizer. Different parameters for maximal an minimal document frequency was 

used, as well as n_gram combinations from 1 up to 3. Maximal and minimal document 

frequency establish thresholds for the frequency for terms to be added to the vocabulary.If 

a term is present in more documents than the maximal document frequency threshold it 

is not added to the vocabulary, the same is true if the term is present in less documents 

than the minimal frequency. N-grams define the length of terms combinations to be added 
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to the vocabulary. N gram is defined as a range that includes all n-grams between the 

limits. 
 

Parameter NF-e Dataset Values NFC-e Dataset Values 

Kernel type [’linear’, ’poly’, ’rbf’, ’sigmoid’]) [’linear’, ’poly’, ’rbf’, ’sigmoid’]) 

max_df [1.0, 0.5, 0.75] [1.0, 0.5, 0.75] 

min_df [1,0.1, 0.01, 0.001,0.0001 ] [1,0.1, 0.01, 0.001,0.0001 ] 

n_gram [(1,1), (1,2), (1,3)] [(1,1), (1,2), (1,3)] 

Table 5.1: Hyper-parameters for SVM training 

 
Table 5.1 presents the hyper-parameters used in optimization, with the best results in 

bold. Figure ref presents results across trials.  The best parameter over all trials was used 

to train the final model. Hypeopt package was used to search for the best parameters. 

Hyperopt applies Bayesian inference to predict most likely best parameter in exploratory 

manner, converging to the best parameters over iterations. 

Figures 5.2a and 5.2b present Accuracy over all trials for each dataset over iterations 

of Hyperopt trials. We can see that models peaked at around 0.9 accuracy-score on the 

NF-e dataset and 0.8 accuracy-score on the NFC-e database. We can see three clusters 

with different ranges of accuracy. On the bottom figures 5.2c and 5.2d, we have trial 

results ordered by training time, in which the y axis represents accuracy metric and x 

axis represents time to train that configuration.  By looking at the left bottom side of 

theses two graphics we can see that the worst performing configurations had the least 

training time. This is explained by their choice of vocabulary. A lower vocabulary size 

generates a lower number of dimensions in TF-IDF, witch facilitates SVM convergences 

due to a lower number of kernel transformations. However, less information is presented 

to the model. In contrast, at the right side of the graphics we have  configurations  that 

took significantly more time to train but performed no better than faster configurations. 

This indicates that there is a limit to the relevancy of information that is useful for the 

model, including more terms or high n-grams to the vocabulary only slows the model and 

does not provide better. 

 
5.3 CNN architectures 

The Keras API for the TensorFlow library was used to implement the CNN models. The 

architecture consists of three channels with different kernel sizes concatenated and fed to 

a dense layer. Hyperopt optimized the mean validation accuracy over 10 folds. Optimized 

parameters consist of:  the number of filters in each channel, the size of the dense layer, 

the dropout rate, the size of the second dense layer, and the optimizer. 
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(a) Accuracy over each Trial for the NF-e 

dataset. 

(b) Accuracy over each Trial for the NFC-e 

dataset. 
 

 

  
 

(c) Trials sorted by training Time for NF-e 

dataset. 

(d) Trials sorted by training Time for NF-e 

dataset. 
 
 

Figure 5.2: Results of Hyper-parameter Tunning of SVM model 

 
Figure 5.3 presents the base CNN architecture used for CNN models. The input 

sentence is fed to a embedding layer.  In the embedding layer each token is replaced by 

the corresponding word embedding.  After that, input is reshaped to fit the next layers. 

The input is fed to 3 different channels that will apply 1D convolutional kernels followed 

by max pooling.  Each kernel functions as a filter that detects a relevant substructure in 

the sentence. Max pooling layers verify if the learned kernels were activated anywhere 

on the input sentence and pass on the information to the next layer. At this point each 

feature in the feature vector corresponds to the output of a learned filter applied to the 

sentence. The feature vector is flattened and passed through a dropout layer before being 

fed to a fully connected layer that will work as the classifier. 
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5.3.1 Word-CNN 

Figure 5.3: Base CNN Architecture 

The Word-CNN architecture splits the input sentence based on white space. Each word 

is substituted by a word vector with random values. 1-D convolutions go through the 

resulting sentence matrix computing filters of sizes 3,5, and 7. 

Figure 5.4 presents trial results for hyper-parameter optimization for the word-based 

CNN architecture over Hyperopt trials. We can see in Figure 5.4a and 5.4b that there is 

a lack of intermediate results in both datasets. Models either performed very similarly, 

around 0.85 accuracy score on the NF-e dataset and 0.8 accuracy score on the NFC-e 

dataset, or failed to learn, with accuracy lower than 0.2 accuracy score. 

When visualizing accuracy over training time for the models in Figures 5.4c and 5.4d, 

we can see that models with a good performance, top left, trained faster than those that 

performed poorly, bottom right. Models may be too complex for the given task. Table 

5.2 presents the hyper-parameters used during training. The best results are presented in 

bold. 

In Figure 5.5, sub-figures 5.5a and 5.5b present the training history and loss function 

for a model trained using the best hyper-parameter over the trials on the NF-e dataset 

and NFC-e dataset respectively. Accuracy on the NF-e dataset peaked at around 85% 

accuracy and 80% at the NFC-e dataset. From the graphs, we can see that the models 
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(a) Accuracy over trials results for the NF-e 

dataset. 

(b) Accuracy over trials results for the NFC-e 

dataset. 
 

 

  
 

(c) Accuracy over time spent for each trial in 

NF-e dataset. 

(d) Accuracy over time spent for each trial in 

NFC-e dataset. 
 
 

Figure 5.4: Results of Hyper-parameter Tunning of Word CNN model 

 
are overfitting from the second epoch onwards and may be too complex for the given task. 

We can see by comparing the curves of the training set and the validation set, loss on the 

training set continues to drop after the second epoch and starts to rise on the validation 

set. This indicates that the model is losing its ability to generalize its output. Either 

the architecture is too complex for the task or the amount of data for a convolutional 

modes was too small. This conflicts with the idea that short text classification requires 

specialized architectures. This raises the question if simpler models are more suited to 

the task. 
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(a) Training History of Word-Based CNN model on NF-e dataset. 
 

 

(b) Training History of Word-Based CNN model on NF-e dataset. 

 
 

Figure 5.5: History of Word-Based CNN model. 
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Parameter Values For NF-e Dataset Values for the NFC-e dataset 

Number of Filters on 

1D Convolution #1 
{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

Number of Filters on 

1D Convolution #2 

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

Number of Filters on 

1D Convolution #3 

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

#1 Dense Layer [100, 300, 600, 1000] [100, 300, 600, 1000] 

#2 Dense Layer [0, 100, 300, 600] [0,100, 300, 600] 

Dropout Rate [0.0, 0.38, 0.5] [0.0,0.27, 0.5] 

Optimizer 
[’Adam’, ’Adagrad’, 

’Adadelta’, ’Nadam’] 
[’Adam’, ’Adagrad’, 

’Adadelta’, ’Nadam’] 

Table 5.2: Hyper-Parameters for the Word-based CNN models trained on each dataset. 

Final parameters are presented in bold 

 
5.3.2 Char-CNN 

In the Char-CNN architecture, tokens are generated from individual characters and as- 

signed random initiated vectors. These vectors are fed to channels of different kernel sizes. 

Hyper-parameter optimization is aimed at finding the best size of neural network layers 

and whether or not the model could benefit from an extra dense layer. 

 

Parameter Values For NF-e Dataset Values for the NFC-e dataset 

Number of Filters on 

1D Convolution #1 
{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

Number of Filters on 

1D Convolution #2 

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

Number of Filters on 

1D Convolution #3 

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800} 

#1 Dense Layer [100, 300, 600, 1000] [100, 300, 600, 1000] 

#2 Dense Layer [0, 100, 300, 600] [0,100, 300, 600] 

Dropout Rate [0.0,0.13, 0.5] [0.0,0.37 , 0.5] 

Optimizer 
[’Adam’, ’Adagrad’, 

’Adadelta’, ’Nadam’] 
[’Adam’, ’Adagrad’, 

’Adadelta’, ’Nadam’] 

Table 5.3: Hyper-Parameters for the char-based CNN models trained on each dataset. 

Final parameters are presented in bold 

 
Figure 5.6 presents results metrics over Hyperopt trials. Similarly to the word-based 

CNN, we can see the models performed better on the NF-e dataset than on the NFC-e 
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(a) Results of the Character-Based Model on 

NF-e Dataset 
 

 

(c) Results on NF-e Dataset sorted by Train- 

ing Time 

(b) Results of the Character-Based Model on 

NF-e Dataset 
 

 

(d) Results of the Character-Based Model on 

NF-e Dataset 

 
 

Figure 5.6: Results on NFC-e Dataset sorted by Training Time 

 
database, with around 85% and 80% accuracy respectively. Similarly, when sorting results 

based on training time, configurations with higher accuracy had lower training time than 

configurations with higher training time. One possible cause for this phenomenon again is 

that increasing the model complexity had a detrimental effect on performance, increasing 

training time and lowering accuracy. Hyper-parameter values are shown in table 5.3. 

In Figure 5.7, sub-figures 5.7a and 5.7b present the training history and loss function 

for a model trained using the best hyper-parameter over the trials on the NF-e dataset 

and NFC-e dataset respectively. Accuracy on the NF-e dataset peaked at around 85% 

accuracy and 80% at the NFC-e dataset. Similarly to what we have seen in the Word- 

Based CNN, models are over-fitting from the second epoch on-wards and may be too 

complex for the given task. 
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(a) Training History of the Character-Based CNN Model on NF-e Dataset. 
 

 

(b) Training History of the Character-Based CNN Model on NFC-e Dataset. 

 
 

Figure 5.7: Training History of the Character-Based CNN Model. 
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5.4 Discussion and Review 

This chapter presented the methodology and experimental setup used to train the ma- 

chine learning models that could power SCAN-NF. Models were trained on two different 

datasets, each representing one type of brazilian invoice document, NF-e and NFC-e. The 

chosen classification models were SVM classifier, Word-based CNN and Character-Based 

CNN. These models were chosen based on related literature. For each type of model, 

hyper-parameter optimization was conducted on both datasets separately. Convolutional 

models easily overfitted on both datasets from the second epoch onwards. During model 

optimization, models tended to either perform very well or very badly, with large gaps 

in performance between the best hyper-parameters and the worst. Models that took the 

longest to train failed to learn relevant patterns. The next chapter will present experi- 

mental test result of models trained on the best hyperparametes found in optimization. 



60  

 

 

 

 

 

 

Chapter 6 

Case Study on Brazilian Invoice 

Data 

 
This chapter presents results of experiment conducted in the study case using real world 

invoice data provided by the state treasury office. Experiments were conducted as de- 

scribed in the previous chapter. Section 6.1 addresses the question if its possible to identify 

the NCM code for a product based solely on product-description field. This is done by 

comparing model performance to a dummy baseline. In section 6.2, comparison between 

different approaches is further detailed. Section 6.3 presents the results of models trained 

on one type of document and applied in the other. The chapter concludes with an review 

and discussion of findings. 

 
6.1 Classification of Invoices Based on Short Text 

Description 

In this section, we explore experimental results. Table 6.1 presents the results of all 

models on both datasets together with a baseline for a naive classifier. Models had to 

assign one of 18 possible labels to each product, representing the correct NCM code. The 

naive classifier represents a model that does not look at the data and simply randomly 

predicts a target label.  Results for each model are calculated based on the mean average 

of 10 runs, in which the model trains on the entire training dataset. Metrics are taken 

based on results of the test set. 

This experiment aimed to address several questions. The first one was if it was possi- 

ble to create a classifier that correctly assigns the NCM code for each product transaction 

based on product description. In order to prove that these models learned useful informa- 

tion from a text description, we compare them to a dummy model that ignores features. 
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Model Base Accuracy 

Accuracy 

STD 

Prediction 

Time (s) 

Prediction 

Time 

STD (s) 

Training 

Time (s) 

Training 

Time 

STD (s) 
 

 

 
 

 

 

 
 

Baseline 

Table 6.1: Summarized Experimental Results for each model and Dataset 

 
 

From the comparison is clear that the models learned to perform the task, with every 

model presenting an average accuracy over 0.75, which significantly higher than the naive 

prediction of 0.05. 

Another point of interest was the performance of the term-based model on the short- 

text classification. The low term count in each document led to the conception that term-

frequency representation such as TF-IDF should struggle with short-text problems, such 

as invoice product descriptions.  Models that also learned from the text structure were 

expected to outperform term count methods. This did not occur in our experiments. While 

models presented good results for both datasets,  the SVM model outperformed both 

neural network approaches on accuracy,a t the cost of longer training and prediction 

times. 

The argument for a character-based CNN was the possibility that it could positively 

impact NFC-e classification based on the capacity to better respond to typos and out- of-

vocabulary terms. However, either the model failed at addressing these points or they did 

not matter enough to offset the performance drop due to the increased complexity of the 

model.  On the other side, both CNN models took less time to train and predict than the 

SVM model. 

 
6.1.1 Individual Class results 

In this section, individual class results are further explored. Table 6.2 presents the F1- 

score for randomly sampled models trained on the NF-e dataset, the best results across 

the three models are presented in bold.  The number of samples of each class present in 

the support column. Performance ranged from 0.68 to 0.99, with at least 10 of the 18 

SVM NF-e 0.8823 0.0 18.1544 1.5430 81.5964 3.9396 

SVM NFC-e 0.8027 0.0 32.4233 0.5984 145.6682 2.9140 

WCNN NF-e 0.8604 0.0022 0.6491 0.0833 23.0331 21.7462 

WCNN NFC-e 0.7791 0.0050 0.9744 0.2996 19.9329 2.4455 

CCNN NF-e 0.8505 0.0043 1.4879 0.4604 123.0699 10.6410 

CCNN NFC-e 0.7664 0.0116 2.5909 0.2220 442.9317 1.86595 

Naive 
-
 

0,0555 - - - - - 

 



62  

classes presenting scores above 0.9 and only 2 classes presenting scores below 0.75. SVM 

outperformed both CNN models in most classes. 
 

Class 
SVM 

F1-SCORE 

WCNN 

F1-SCORE 

CCNN 

F1-SCORE 
support 

33030010 0.8555 0.8620 0.6127 413.0000 

33030020 0.7960 0.7823 0.6673 410.0000 

33041000 0.9398 0.9233 0.8936 419.0000 

33042010 0.9277 0.9237 0.8656 374.0000 

33043000 0.9658 0.9609 0.9221 404.0000 

33049100 0.9237 0.9148 0.8967 399.0000 

33049910 0.6836 0.6648 0.6002 387.0000 

33049990 0.7481 0.7220 0.6416 418.0000 

33051000 0.9523 0.9368 0.9325 427.0000 

33059000 0.8533 0.8472 0.7594 401.0000 

33061000 0.9664 0.9602 0.9603 397.0000 

33069000 0.9694 0.9603 0.9366 429.0000 

33072010 0.8214 0.7732 0.7455 375.0000 

33072090 0.7672 0.7509 0.6503 416.0000 

34011190 0.9064 0.8558 0.8245 408.0000 

34013000 0.8430 0.7949 0.7544 393.0000 

39249000 0.9908 0.9921 0.9778 381.0000 

96032100 0.9760 0.9785 0.9595 396.0000 

accuracy 0.8823 0.8684 0.8116 - 

macro avg 0.8826 0.8669 0.8111 7247.0000 

weighted avg 0.8827 0.8671 0.8109 7247.0000 

Table 6.2: Detailed Class Results for NF-e based on Individual models 

 

Table 6.3 presents F1-Score for randomly sampled models trained on the NFC-e 

dataset. Performance ranged from 0.52 to 0.94, with 5 classes presenting scores above 

0.9 and 5 classes presenting scores below 0.75. Similarly to the NF-e dataset, the SVM 

model outperformed both CNN models in most classes. 

It is possible to notice that the distance in model performance between both datasets 

varied between classes. This may indicate that the difficulty in classifying NFC-e prod- 

uct descriptions varies with the type of product being described. For certain classes of 

products, model performance dropped significantly, while for others stayed the same. 

 
6.2 Transfer Learning 

The goal of this experiment was to validate if it would be possible to utilize a model 

trained on one type of document to predict the NCM code for the other type. Since there 
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Class 
SVM 

F1-SCORE 

WCNN 

F1-SCORE 

CCNN 

F1-SCORE 
support 

33030010 0.6948 0.6673 0.6108 504.0000 

33030020 0.7839 0.7234 0.7492 563.0000 

33041000 0.8137 0.8125 0.7875 555.0000 

33042010 0.7892 0.7869 0.7410 510.0000 

33043000 0.9227 0.9127 0.9064 562.0000 

33049100 0.7970 0.7832 0.7638 529.0000 

33049910 0.5281 0.4927 0.4875 528.0000 

33049990 0.6667 0.6217 0.5725 581.0000 

33051000 0.8585 0.8483 0.8406 536.0000 

33059000 0.7545 0.7273 0.6955 555.0000 

33061000 0.9232 0.9094 0.9093 522.0000 

33069000 0.9194 0.9060 0.8873 579.0000 

33072010 0.7279 0.7079 0.6600 537.0000 

33072090 0.6317 0.6157 0.5720 560.0000 

34011190 0.9127 0.9125 0.9186 558.0000 

34013000 0.8781 0.8712 0.8668 624.0000 

39249000 0.8660 0.8939 0.8522 549.0000 

96032100 0.9481 0.9331 0.9396 556.0000 

accuracy 0.8027 0.7829 0.7677 - 

macro avg 0.8009 0.7847 0.7645 9908.0000 

weighted avg 0.8023 0.7862 0.7662 9908.0000 

Table 6.3: Detailed Class Results for NFC-e based on Individual models 
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are different availability and processing costs related to each type of document, models 

that could operate interchangeably could provide a greater degree of freedom to auditors. 

Also if the model is able to perform well between both types of documents, we have 

indications that the underlying text representation of that class between these documents 

is similar. 
 

Class 
SVM 

F1-SCORE 

WCNN 

F1-SCORE 

CCNN 

F1-SCORE 
support 

33030010 0.5179 0.0500 0.0720 504 

33030020 0.6138 0.0313 0.3439 563 

33041000 0.7508 0.0459 0.0603 555 

33042010 0.6803 0.0352 0.1256 510 

33043000 0.8928 0.0069 0.0355 562 

33049100 0.7229 0.0626 0.0679 529 

33049910 0.3814 0.0600 0.0734 528 

33049990 0.4927 0.1156 0.1181 581 

33051000 0.8287 0.0297 0.0120 536 

33059000 0.6229 0.1073 0.0673 555 

33061000 0.8692 0.0834 0.0273 522 

33069000 0.8547 0.0780 0.0187 579 

33072010 0.6797 0.0252 0.2122 537 

33072090 0.5189 0.0535 0.0273 560 

34011190 0.8326 0.1398 0.0035 558 

34013000 0.7818 0.0527 0.2085 624 

39249000 0.2897 0.0117 0.0000 549 

96032100 0.9199 0.0171 0.2113 556 

accuracy 0.6837 0.0593 0.1194 - 

macro avg 0.6806 0.0559 0.0936 9908 

weighted avg 0.6822 0.0562 0.0947 9908 

Table 6.4: NFC-e dataset Results with models trained on NF-e data. 

 
 

Table 6.4 presents results in the NFC-e data using models trained on NF-e data. It 

is important to notice that from all models, only the SVM model managed to preserve 

its function in this endeavor, with results for both CNN models being similar to random 

guesses. Regarding the SVM model, there was a considerable drop in scores over all the 

classes. This can be seen in the accuracy drop of 0.80 to 0.68 over all classes. Nonetheless, 

this issue was not shared among all classes. Out of the 5 classes with scores above 0.9, 

only one remained. 2 classes that previously presented scores above 0.75 dropped below 

0.4, with one managing to drop from 0.9 to 0.28. 10 out of the 18 classes presented results 

below 0.75. 



65  

This drop in performance may indicate that it is much more difficult to classify retail 

product descriptions based on the B2B transactions contained in the NF-e data. Classes 

that dropped harshly in score indicate a mismatch in representation between datasets. It 

is possible that in one dataset, that class may be represented by a small number of terms 

shared between training and test sets. The same class is represented by a greater number 

of terms in the other dataset.  This behavior may be explained by the real-world scenario 

in which a large group of retailers buys from a smaller number of companies. When these 

retailers resell these products, they describe the same product in new ways. Classes that 

maintained a good score may indicate that for certain classes the gap between retail and 

B2B product description is very little. 

 

Class 
SVM 

F1-SCORE 

WCNN 

F1-SCORE 

CCNN 

F1-SCORE 
support 

33030010 0.5527 0.0383 0.3203 413.0 

33030020 0.6082 0.0402 0.4504 410.0 

33041000 0.8742 0.0246 0.0993 419.0 

33042010 0.8182 0.0116 0.0827 374.0 

33043000 0.9389 0.0194 0.0498 404.0 

33049100 0.8281 0.3219 0.1274 399.0 

33049910 0.4936 0.1089 0.1020 387.0 

33049990 0.5788 0.1102 0.1078 418.0 

33051000 0.9229 0.0416 0.0000 427.0 

33059000 0.7236 0.0860 0.0729 401.0 

33061000 0.9300 0.0190 0.0351 397.0 

33069000 0.8418 0.0982 0.0442 429.0 

33072010 0.6742 0.0244 0.0000 375.0 

33072090 0.5441 0.1076 0.0000 416.0 

34011190 0.8444 0.1927 0.0000 408.0 

34013000 0.7311 0.0382 0.0301 393.0 

39249000 0.7581 0.0692 0.0397 381.0 

96032100 0.9575 0.0041 0.1288 396.0 

accuracy 0.7538 0.0791 0.1006 - 

macro avg 0.7567 0.0753 0.0939 7247.0 

weighted avg 0.7570 0.0757 0.0945 7247.0 

Table 6.5: NF-e dataset Results with models trained on NFC-e data. 

 

Table 6.5 presents results in NF-e data for models trained on NFC-e data. This 

arrangement also presents a drop in scores throughout all classes. 4 classes maintained 

a score above 0.9 and only one class presented a drop in score to below 0.5. When 

comparing results in both datasets, it is possible to see that model this configuration 

presented better overall scores in all classes than in the previous configuration. No classes 
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presented drops in the score as sharp as those presented in table 6.4. This may indicate, 

that NF-e product classification is an easier task than NFC-e product classification and 

that classifying business transactions using retail data may be easier than the other way 

around. Retail data presents a larger vocabulary that may contain formal Business terms. 

Nonetheless, results presented in tables 6.5 and 6.4 provide evidence that, for certain 

classes, invoice data can be used interchangeably to train NCM classification models. 

 
6.3 Comparison between Classification Models 

By comparing this models in greater detail, it was possible to see that SVM classifier 

outperformed their counterparts in nearly all classes. This diverges from the related 

literature that indicates that term-count based methods should struggle with short-text 

classification. It was shown that invoice documents can be classified by only a handful of 

terms and this offsets the challenges of short-text processing. 

Transfer Learning results showed that SVM classifier was able to retain the ability of 

correctly classifying the NCM code for products even when trained with documents of a 

different type. It was shown that this behavior was common to both datasets, even though 

there were some loss in performance. Some classes presented a larger drop in performance 

due to a mismatch in vocabulary between different document uses. The prevalence of 

SVM may be due to the size of CNN kernels. All kernel sizes were larger than one. This 

may indicate that while the two types of documents share the same vocabulary, they are 

worded differently. 

Character based models were expected to outperform word-based representation due 

to its supposed ability to model typos and morphologically similar words. The trade-off 

would be a increased training time due to a larger network. However, character-based 

model did not outperform word-based models. 

 
6.4 Discussion and Review 

This chapter presented experiments results that managed to answer the previously pre- 

sented questions. It was shown that it is possible to predict the correct NCM code base 

solely on product description.  Models that presented an average accuracy of 88% and 

78% on NF-e and NFC-e datasets respectively were successively shown. 
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Chapter 7 

Conclusion and Future Work 

 
This work addressed the emerging problem of processing electronic invoice data. E- 

invoicing is emerging practice with valuable applications and many challenges. In this 

work, we provided a study on how invoice processing could be tackled. The architecture for 

SCAN-NF, a invoice classification system to aid tax auditors, was presented and validate 

through a study case on real world invoice data, in which possible text classification 

models were tested. 

Product-transaction classification was framed as a short-text classification problem, 

in which the model takes a brief text contained in the product description field of the 

invoice, and uses this data to assign the NCM code for that product. The NCM code 

being a standardized code form products and Services in the Mercosur. 

In order to guide both studies and development in the field, this work presented a 

general framework for invoice classification. This framework established a layered struc- 

ture to invoice processing, in which the output of the previous layer is fed to the next, 

while also serving as input for valuable applications. Further contributions of this work 

are contextualized in the presented framework as a product-transaction work. The results 

of this work could latter be used in both invoice and issuer classification and analysis. 

This work present the architecture for SCAN-NF, a system to aid tax auditors by 

assigning the correct NCM code to product transactions. In order to validate the proposed 

architecture we outline different research questions: (1) Could the Correct NCM code for 

a product transaction be predicted solely on product description? (2) How does the 

available models compare in this task? (3) Can one type of invoice document be used in 

predicting the other? 

In the case study using data provided by the state treasure office it was possible answer 

these questions. It was confirmed that it was possible to assign NCM code based solely on 

text description for several classes. Even for the classes that models struggled, accuracy 

score was superior to the dummy random classifier. Comparisons between models results 
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showed that while word-based CNN trained and predicted faster than the SVM classifier, 

the latter performed better on most classes across both datasets. SVM classifiers also 

managed to preserve knowledge between both types of documents. 

The conclusion of this work is that while at product-transaction level invoice classifica- 

tion could be framed as short-text, NCM classification does not share the same challenges 

as other short-text classification problems. Simple Term-Frequency models outperformed 

the more complex CNN models on both datasets. This work argues that while product 

description is brief in invoice documents, the type of product in each invoice can be iden- 

tified by the presence of a handful of words. Supervised model are valuable resource in 

this context for being able to leverage the large amount of issuer-labeled documents to 

create models that are able to identify these words. These models are easier to train and 

maintain than large rule-base systems. 

 
7.1 List of Contributions: 

This works contributions may be summarized as : 

• Presented a review of invoice processing literature: invoice processing is an emerging 

subject for many valuable applications, this work presented several related work on 

how to handle invoice processing in many levels. 

• Presented modeling of Invoice Processing as short-text problem: This work pre- 

sented the characteristics of short-text processing and how classification based on 

individual product description could be framed as a short-text problem. 

• Presented a contextual framework of invoice processing different challenges and 

opportunities: Since invoice processing is an emerging subject, this work presented 

and organized, layered framework to guide future research and developments. Main 

challenges and opportunities for each layer are also presented. 

• Presented the architecture for SCAN-NF, a product transaction system to aid tax 

auditors: this work presented how a NCM classifier could be used by tax-auditors 

in identifying suspicious transactions and how this model could fit in a larger archi- 

tecture. 

• Presented a study case on real world invoice data on two types of documents: Re- 

search questions were validate through experiments made on real world data pro- 

vided by the state treasury office. These datasets were made public through this 

work. 
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• Presented a comparison of different machine learning models over different datasets: 

different machine learning models were evaluated during experimentation in order 

to identify different characteristics of these models as well as NCM product Classi- 

fication. 

 
7.2 Future Research: 

Future Research could tackle the following points: 

• Utilizing mismatches between reported NCM code and predicted NCM code in order 

to estimate recoverable taxes: While this work provided ways to classify the NCM 

code, there is still room to evaluate how much could be recovered from a given 

transaction. This would require a better modelling between the relationship of the 

NCM code and taxation, the calculation of the range of recoverable taxes and the 

agent policy for auditing a particular issuer based on the aggregate value of all 

recoverable taxes over a period o time. 

• Aggregate analysis at the invoice level: This work addressed invoice classification 

at disassociated product transaction level. By leveraging invoice level processing, 

relationship between different products could be used to track unusual transactions 

as well as establishing economic agents behavior. 

• Create a stack of classification methods to identify ill-intended issuers: while many 

of the proposed themes address invoice documents at more granular levels, real 

world application of these resources aim at identifying issuers that have intentionally 

commit irregularities. Profiling these issuers would probably take an ensemble of 

multiple classification model to predict different attributes and also graph analysis 

to study the links between suspicious issuers and other business. 

• Model real world transaction operations: While the presented models only took 

reported invoice data as input, there are several aspects of business operations that 

could be used to model issuer behavior such as storage and transformation. 

• Further explore the classification of particularly important classes: Performance 

varied between experimental classes. Specialized models could be further trained to 

handle this classes with the aid of knowledge Bases. 

• Utilize product description to reconstruct the pathway of merchandise: As men- 

tioned before, business often transform the merchandise as part of its day-to-day 

operations. By comparing the input and outputs of transactions of businesses could 

be used to map outliers. 
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