

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

SCAN-NF: a Machine Learning System for Invoice
Product Trasaction Classification Through

Short-Text Processing.

Diego Santos Kieckbusch

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Orientador

Prof. Dr. Li Weigang

Brasília

2022

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

SCAN-NF: a Machine Learning System for Invoice

Product Trasaction Classification Through
Short-Text Processing.

Diego Santos Kieckbusch

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Prof. Dr. Li Weigang (Orientador)

CIC/UnB

Profa. Dra. Anne Magály de Paula Canuto Prof. Dr. Geraldo Pereira Rocha Filho

DIMAp/UFRN CIC/UNB

Prof. Dr. Ricardo Pezzuol Jacobi

Coordenador do Programa de Pós-graduação em Informática

Brasília, 10 de Novembro de 2022

iv

Dedicatória

Eu dedico esta obra a minha familia, meus pais Andrea e Rafael, por terem me mostrado o

valor do estudo, do trabalho duro e da busca por conhecimento e excelencia como um fim

em si mesmo. Dedico também a minha futura esposa, Katarine, por toda compreemsão,

suporte e por sempre acreditar que tudo daria certo.

v

Agradecimentos

Agradeço a todos aqueles que possibilitaram a realização desta pesquisa. Primeiramente a

meu orientador Professor Doutor Li Weigang pelas oportunidades fornecidas, ao Professor

Geraldo pela atenção no acompanhamento da escrita dos trabalhos. Agradeço também

aos colegas do Translab pelas recorrentes discussões. Agradeço aos colegas Sergio e Vini-

cius, cuja colaboração nos compartilhamentos dos dados e exposição do problema original

possibilitaram esta pesquisa.

Agradeço, novamente, minha família e amigos por todo o apoio, compreensão e paci-

ência. Por criarem o ambiente que me permitiu concluir este trabalho.

vi

SCAN-NF: Um Sistema De Aprendizado de Máquina
para Classificação de Notas fiscais de Transações de
Produtos Atráves do Processamento de Textos
Curtos.

Resumo

Nota Fiscal Eletrônica (NF-e) é um documento que reporta as transações de bens e ser-

viços de forma eletrônica, tanto na transferência quanto no armazenamento. A utilização

de notas fiscais eletrônicas é uma tendencia emergente e apresenta uma valiosa fonte de

informação para diversas áreas. No entanto, o processamento dessas notas é uma ta-

refa desafiadora. A informação reportada está geralmente incompleta ou apresenta erros.

Antes que qualquer processamento significativo possa ser feito, é necessária identificar o

produto representado em cada documento. A literatura disponível indica que são neces-

sárias arquiteturas especializadas para lidar com este tipo de informação. Este trabalho

propõe SCAN-NF, uma arquitetura para a classificação das transações de produtos con-

tidas em notas fiscais eletronicas. A arquitetura modela o problema de processamento

de notas ficais como um problema de processamento de textos curtos com o objetivo de

identificar o produto de cada transação. A solução tem o intuito de auxiliar as tarefas de

auditoria manual feita por auditores fiscais sobre grandes massas de dados não rotulados

ou mal rotulados presente no contexto de notas fiscais. Para validar a arquitetura pro-

posta, este trabalho apresenta tanto um framework contextual para o processamento de

notas fiscais quanto um caso de estudo utilizando dados reais de notas fiscais. Modelos

tradicionais baseados em frequência de termos foram comparados a modelos de classifi-

cação de sentenças baseado em redes convulsionais artificiais. Experimentos demonstram

que embora o texto presente em notas fiscais seja breve e apresente erros e falhas de

escrita, modelos simples baseados em frequência de termos apresentam bons resultados

para a etiquetagem de código de produtos, atingindo acurácia de até 98% entre as classes

de produtos estudadas. Mostramos ainda, que é possível a utilização de transferencia de

conhecimento entre os dados de notas fiscais destinadas ao consumidor e notas fiscais de

transações entre empresas.

Palavras-chave: Aprendizado Profundo, Redes Convolucionais, Classificação de textos

curtos

vii

Abstract

An electronic invoice (E-invoice) is a document that records the transactions of goods and

services electronically, both in storage and exchanges. E-invoice is an emerging practice

and presents a valuable source of information for many areas. Processing these invoices is

often a challenging task. Information reported is often incomplete or presents mistakes.

Before any meaningful processing of these invoices, it is necessary to identify the product

represented in each document. The available literature indicates that specialized architec-

tures are necessary to deal with this type of information. This work proposes SCAN-NF,

an architecture for invoice product transaction classification. The architecture models the

invoice classification problem as a short-text classification problem, in which the goal is to

identify the type of product in each transaction based on its short-text description. This

solution is intended to aid tax auditors in the analysis of large unlabeled or poorly labeled

invoice data. To validate the proposed architecture, this work provides both a contex-

tual framework for invoice processing and a study case utilizing real-world invoice data.

We compare traditional term frequency models to sentence classification models based

on convolutional neural networks. Experiments demonstrate that even though invoice

text descriptions are brief and present many mistakes and typos, simple term frequency

models can achieve high baseline results on product code assignment, reaching accuracy

scores up to 98% in studied product classes. We have also shown that it is possible to

utilize transfer learning between retail invoice data and business to business invoice data.

Keywords: Deep Learning, Convolutional Neural Networks, Short-text Classification,

Transfer Learning

viii

Contents

1 Introduction 1

 1.1 Motivation . 1

 1.2 Hypothesis . 4

 1.3 Objective . 5

 1.3.1 Specific Objectives . 5

 1.4 Additional Contributions of This Work . 5

 1.5 Dissertation Structure . 5

2 Fundamentals 7

 2.1 Text Mining . 7

 2.1.1 Pre-processing . 8

 2.1.2 Dimensionality Reduction . 10

 2.1.3 Classification . 10

 2.2 Short Text Processing . 12

 2.3 Deep Learning . 15

 2.3.1 Feedforward Neural Network . 15

 2.3.2 Convolutional Neural Network . 17

 2.3.3 RNN Based Models . 19

 2.3.4 Attention Mechanism . 22

 2.4 Word Embeddings . 23

 2.4.1 Word2vec . 24

 2.4.2 FastText . 25

 2.4.3 Glove . 26

 2.4.4 Evaluation . 27

 2.4.5 Meta Embedding . 28

 2.5 Transformers . 28

 2.6 Discussion and Review . 29

ix

3 Related Work 31

3.1 Non-neural Methods ... 31

3.2 Neural Based Methods ... 32

3.3 Invoice Classification .. 33

3.4 Comparison of Methodologies .. 34

4 SCAN-NF and Invoice Processing 37

4.1 Electronic Invoice Documents ... 37

4.1.1 Brazilian Electronic Invoices ... 38

4.2 Contextual Framework ... 41

4.2.1 Larger Context .. 43

4.3 Architecture of SCAN-NF ... 43

4.4 Case Study of Brazilian E-Invoices ... 44

4.4.1 Dataset .. 45

4.5 Discussion and Review ... 45

5 Experiments and Methods 47

5.1 Experimental Setup .. 47

5.1.1 Experiment .. 49

5.2 SVM .. 50

5.3 CNN architectures .. 51

5.3.1 Word-CNN .. 53

5.3.2 Char-CNN ... 56

5.4 Discussion and Review ... 59

6 Case Study on Brazilian Invoice Data 60

6.1 Classification of Invoices Based on Short Text Description 60

6.1.1 Individual Class results .. 61

6.2 Transfer Learning ... 62

6.3 Comparison between Classification Models .. 66

6.4 Discussion and Review ... 66

7 Conclusion and Future Work 67

7.1 List of Contributions: ... 68

7.2 Future Research: ... 69

Bibliography 70

x

List of Figures

1.1 Invoice Processing in a Nutshell .. 3

2.1 Example of K-NN classifier for k=3 and k=5 ... 11

2.2 Linear Support Vector Machine ... 12

2.3 Feedforward Neural Network ... 16

2.4 Back-Propagation of Error Signal .. 17

2.5 CNN for Sentence Classification ... 20

2.6 LSTM and GRU architecture .. 20

2.7 Bidirectional RNN ... 22

2.8 Illustration of Attention Mechanism .. 23

2.9 CBOW and Skip-Gram models. .. 25

2.10 Log Bi-linear Architectures .. 26

2.11 Original Transformer Architecture .. 29

2.12 Attention Mechanism ... 30

4.1 Diagram of information present in the NF-e ... 38

4.2 E-invoice Processing Framework .. 41

4.3 Architecture of Scan-NF .. 44

5.1 Experiment Flowchart .. 50

5.2 Results of Hyper-parameter Tunning of SVM model ... 52

5.3 Base CNN Architecture .. 53

5.4 Results of Hyper-parameter Tunning of Word CNN model 54

5.5 History of Word-Based CNN model. ... 55

5.6 Results on NFC-e Dataset sorted by Training Time .. 57

5.7 Training History of the Character-Based CNN Model. 58

xi

List of Tables

4.1 Fields contained in the product node of the NF-e .. 39

4.2 Number of samples and datasets used in experiments. Extracted from [1] . 46

5.1 Hyper-parameters for SVM training .. 51

5.2 Hyper-Parameters for the Word-based CNN models trained on each dataset.

Final parameters are presented in bold ... 56

5.3 Hyper-Parameters for the char-based CNN models trained on each dataset.

Final parameters are presented in bold ... 56

6.1 Summarized Experimental Results for each model and Dataset 61

6.2 Detailed Class Results for NF-e based on Individual models 62

6.3 Detailed Class Results for NFC-e based on Individual models 63

6.4 NFC-e dataset Results with models trained on NF-e data. 64

6.5 NF-e dataset Results with models trained on NFC-e data. 65

1

Chapter 1

Introduction

1.1 Motivation

Invoices document the transactions of goods and services between two parties. Invoicing

is a core component in daily commercial and financial operations. They are a rich source

of information for financial analysis, fraud detection [2], value chain analysis, product

tracking, and hazard alarms [3]. Extracting useful information from invoice documents

can lead to valuable applications. However, processing invoices is a difficult task due the

scale and nature of the data. Text in invoices is often brief and presents poor grammar.

This associated with the variety of products makes rule-based processing unfeasible. This

work tackles the problem on how to automatically identify the product in each transac-

tion contained in electronic invoices, based on a short text description present in each

transaction. We present SCAN-NF, a machine learning system to aid tax auditors in

processing information contained in electronic invoices.

The initial question presented was: how can we discover fraudulent behavior in brazil-

ian invoices? By consulting with tax auditors, it was noted that one of the main ways

in which issuers evade taxes is to purposely miss-classify the type of taxes to be applied

to each product transaction. The type of tax is closely tied to the type of product. If

the product type is known, the correct taxes can be identified trough additional business

rules. In retail invoices there is no auditing over the fulfillment and correctness of the

product code, which identifies the type of the product. The problem then becomes how to

correctly identify the NCM code for each product transaction. We framed the problem as

a short text classification problem and looked for Machine learning techniques that could

use the large amount of data stored in the state treasury office to create a intelligent

system to aid tax auditors.

Product code assigns each product to a specific class in a taxonomy based on the type

of product. In this work we utilize the Common Mercosur Nomenclature (NCM) to classify

2

each product. The NCM code is used as reference in assigned taxation and other policies

as wells as being a common reference on product classification. While NCM is particular

to countries in Mercosur, functionally taxonomy’s may be available in other countries.

Correctly assigning the NCM code is the first step towards more complex analysis. In

this work we provide a contextual framework to guide developers ans researchers through

the possible applications.

In Brazil, e-invoicing process started in 2008, first with NF-e, and latter with the

NFC-e, which is a nationwide transaction reporting integrated system for both business

to business (B2B) and retail operations. Similar measures have also been taken in Italy

and China [4][5]. As of 2022, every transaction of goods and services in Brazil should

emit electronic invoice in the form of a xml file to the corresponding treasure office. The

physical document that accompany many products is just a auxiliary document (DANFE),

the invoice itself is the xml file reported to the treasure office server. This makes Brazil

an excellent study case, as the schema for invoice data have already been standardized.

Recent emerging techniques in the field of Machine Learning (ML) and Natural Lan-

guage Processing (NLP) have allowed valuable applications. This methods allows the

models to learn how to do a particular task through training on data. This would solve

the problem of rule-based classification, as instead of the manually creating rules for a

large amount of classes taking hours of effort form specialists, models can be built on

available reported data. In this work we take a look at different forms of representation

as well ad different classification models. We train Support vector models on term based

representation and different Artificial Neural Network models on word-vector represen-

tation on NCM classification task. Models are trained and tested on real world data

provided by the state treasure office in a study case on Brazilian Electronic Invoice (NF-

e), and Brazilian Consumer Electronic Invoice (NFC-e). This documents report both B2B

transactions and retail transactions respectively.

While there is a wide array of possible tasks that can utilize invoices as input, in this

work, we assume the point of view of the treasure office. The treasure office has access

to a large stream of electronic invoices. One of its many tasks is to check for fraud in

collected taxes. Once a suspicious issuer is identified, an auditor is assigned to conduct a

deep look into that issuer finances. This process is costly and there is a balance between

the amount of effort and the amount of tax funds that could be recuperated. It would be

of great value if a automated process could point out suspicious or fraudulent invoices and

flag them for human review. This is expected to increase the productivity of tax auditors.

Figure 1.1 presents an overview of invoice processing in three phases. At the bottom,

Label 1, we have both retail and larger companies that issue invoices as part of their

day-to-day activities. In Figure 1, these invoices are represented by the NF-e and NFC-

3

Figure 1.1: Invoice Processing in a Nutshell

e documents, the Brazilian document for retail, and B2B invoices. These invoices are

reported to a centralized system through web applications. Once reported, these invoices

are processed to aid in a particular task. This process is depicted in Label 2, as an analyst

selects relevant data to the core problem (A), data is then cleaned (B), explored (C), and

used as the input to train a task-specific model, Label D. The trained model and analyzed

data set (F) is then used as input for other applications and to aid manual auditing of

other invoices, Label 3.

Modelling fraudulent behavior is a complex subject that may take input from many

indicators. While the are some automated routines for checking validity of reported fields

in the NF-e documents, there is still room for improvement, specially in the processing

of NFC-e. Retail invoices are not checked at creation and possess inconsistencies and

missing fields. Before any more complex tasks can be done, such as fraud detection [2],

value chain and health hazards triggers [3], we have to correctly identify what products

are represented in each invoice. The problem of invoice classification becomes correctly

identifying the product being referred to in that transaction.

According to the literature, electronic invoices are a particularly difficult problem for

short-text processing. Even compared to other short text, such as Twitter posts and news

headlines, the invoice product description is very brief, containing only a handful of words,

often not forming a complete sentence. Another difference, is that invoice classification is

not a natural language problem. Short texts are often produced by instant human com-

4

munication in the form of micro-blogs, tweets, and news. There is an intrinsic attempt at

creating a communication channel with others. Product descriptions are defined individ-

ually with no regard to how that message is perceived by the other end. This exacerbates

the problem of domain-specific vocabulary, abbreviations, and typos, as authors use their

individual logic.

In recent years, works on product-level invoice classification have concentrated in

China. Their solutions range from using hashing techniques to dealing with an unknown

number of features [4][5], semantic expansion trough external knowledge bases [5], clas-

sification of paragraph embedding by k-nearest-neighbors [6] to different artificial neural

network architectures [7][8]. Semantic expansion is prevalent not only on invoice classi-

fication but also on short-text classification [9],[10]. These works are not suited for the

Brazilian case either due to language differences or reliance on knowledge bases that are

often only available in English and Chinese [11]. In the literature, there are gaps in the

models suitable for classifying languages other than Chinese.

As the main contribution of this work, we present the architecture for SCAN-NF, a sys-

tem for labelling product according to the Mercosur Common Nomenclature (NCM) based

on the short text description present in product transactions. The system is intended to

aid tax auditors on invoice processing tasks, in which errors in reported transactions may

indicate fraud. In order to validate SCAN-NF’s approach, we present both a contex-

tual framework for invoice processing and a study case on product level classification of

invoices based on Brazilian invoice data. We present experiments using character-level,

word-level CNN and support vector machines. Character level representation could be

useful to tackle typos and abbreviations, such tokens would not be correctly represented

when using pre-trained word embedding. Support Vector machines trained over term

frequency-inverse document frequency representation act as an example of a term-count

model. Our case study focuses on invoices in Brazil, since case study data was obtained

through cooperation with the state treasury office.

1.2 Hypothesis

Text has been avoided in processing NF-e and NFC-e data. Product descriptions are

supposedly too brief and to poor to be used as input. We hypothesize that it is possible

to utilize short text processing and few-word classification techniques to classify each

product in regards to the Mercosur Common Nomenclature (NCM). This classification

method would allow a system to aid tax auditors by identifying the correct type of product

for each transaction.

5

1.3 Objective

In order to test our hypothesis, we will provide an architecture for a machine learning

system to aid tax auditors. This model will be utilize a machine learning model to classify

invoice product transactions. The model will take the product description field of the NF-e

and NFC-e documents as input and output the corresponding NCM code for that product.

Model will be tested on transfer learning based on how models trained with one type of

document could be used to support the other type of document.

1.3.1 Specific Objectives

• Provide an architecture for the classification of short texts with few words.

• Evaluate the proposed architecture on NFC-e product code classification task.

• Compare the architecture to state of the art NLP methods.

• Compare models on transfer learning task.

• Present a real use case for the trained model.

1.4 Additional Contributions of This Work

In addition to this document, this research has produced the following contributions to

the academic community:

• SCAN-NF: A CNN-based System for the Classification of Electronic Invoices through

Short-text Product Description [12].

• Towards Intelligent Processing of Electronic Invoices: the General Framework and

Case Study of Short Text Deep Learning in Brazil. Publication pending on Springer

Series: Lecture Notes in Business Information Processing.

1.5 Dissertation Structure

This document is organized as follows: chapter 2 presents to the reader the fundamen-

tal concepts of text mining, short text processing, Neural Networks and Transformers.

In chapter 3, related works on short text classification and invoice classification are dis-

cussed. Chapter 4 presents the overall system architecture, describes both NF-e and NFC-

e documents, the classification task, the architecture of the proposed model, and

6

the planned experiments. Chapter 5 presents our implementation of the models. In chap-

ter 6 experiment results are presented. In Chapter 7, we present conclusions and future

work.

7

Chapter 2

Fundamentals

The goal of the chapter is to present fundamental concepts for the understanding of

this work to the reader. Section 2.1 presents the concepts associated with text mining.

Section 2.2 describes the characteristics of short text and how early work attempted to

address the problem. Section 2.3 presents basic concepts in deep learning, with segments

for feed-forward artificial neural networks (ANN), convolutional neural networks (CNN),

and recurrent neural networks (RNN). We also present an explanation for the additive

attention mechanism. Section 2.4 presents popular word embedding algorithms such as

Word2vec, Glove, FastText, and how these embeddings can be evaluated and combined.

Finally, section 2.5 presents a brief overview of the transformer model.

2.1 Text Mining

Text mining refers to the extraction of useful information from text with the aid of various

statistical algorithms. It may also be referred to as text analytics and machine learning

for text [13]. Due to the large expansion of the internet and digital communications, the

field has increased in popularity. Modern sources of text data include digital libraries,

electronic news, web applications, and social media. Two possible feature representations

are popularly used in text mining applications: text as a bag of words and text as a

set of sequences. Bag-of-Words representation is based on the frequency of terms, disre-

garding grammar, and word order. When treating text as a set of sequences, language-

related properties are preserved. Text mining has traditionally focused on the first type

of representation, but advances in artificial intelligence have allowed for easier modeling

of language semantics, reasoning, and understanding through artificial neural networks.

Traditionally, these features were handcrafted and were task dependant, this made them

time-consuming and costly. Deep Learning allowed for automatic feature engineering of

multi-task language features through neural language models [14].

8

In the bag of words (BOW) representation, the corpus is represented by a document-

term matrix. Each row represents a document and each column represents the frequency

of a term in that document. Since only a small part of the vocabulary is present in each

document, the final representation is a sparse, non-negative, high dimensional matrix.

Many of the techniques applied in text mining aim at reducing the dimensions of the

document-term matrix through feature engineering or filtering. Topic model methods such

as Latent Dirichlet allocation (LDA), Latent Semantic Analysis (LSA) aim at clustering

features into topics based on the co-occurrence of terms.

Artificial neural networks (ANN) utilize a different approach for feature engineering.

In artificial neural networks, text is represented as a sequence of vectors. These vectors

are usually initiated through pre-trained word embeddings. Document representation is

learned in conjunction with the classifier through supervised learning. Neural based text

processing will be further discussed in section 2.3.

The typical pipeline for text mining includes the following steps: data collection,

data preprocessing, feature engineering/filtering, classification/clustering, and evaluation.

Text co-occurs with a lot of extraneous data such as tags, anchor text, and application-

related features. Furthermore, text needs to be converted from its unstructured form to

a structured and multidimensional representation.

2.1.1 Pre-processing

Text preprocessing includes text extraction, stop-word removal, stemming, case fold-

ing, and frequency-based normalization. Text is often created by human participants

in unstructured environments. It is often embedded in web documents, with application-

specific tags, misspellings, and ambiguous words. The goal in preprocessing is to extract

tokens from the original raw data.

Tokens are sequences of characters that are treated as indivisible units in text. For each

word in the document, a token is computed. After prepossessing, tokens are converted

into terms with specific frequencies that represent the collection. While a document can

have repetitions of the same token, terms consolidate these sets of tokens into a single

occurrence with an appropriate frequency.

Words with high frequency that are common across documents provide little infor-

mation about the document’s content. These words are called stop-words and can be

removed from the collection of terms. All articles, prepositions, pronouns, and conjunc-

tions are stop words. Any token that is too frequent can also be considered a stop-word if

its frequency surpasses a manually defined threshold. Language-specific dictionaries can

be used to identify stop words. An alternative to stop-word removal is through down-

weighing frequent words in the normalization step.

9

In most cases, words can be converted to their lowercase form. Nonetheless, capi-

talization may occur for different reasons, such as differentiation of proper nouns and

common nouns and verbs. The token "Rosa" could be related to a person’s name, while

’rosa’ would refer to the color or the flower. This would result in two different terms. A

collection of simple rule base heuristics can be utilized in casing, such as words at the

start of a sentence can always be converted to lower case, or words in titles and headers

can be converted to lower case. The case for all other words is retained.

In order to reduce variance in the data, small variations of the same token could be

represented by the same term. Stemming is the process of consolidating related words

with the same morphological root. For example, singular and plural forms of the same

noun can be consolidated into a single term. The same is true for verbs in multiple

tenses. Most common techniques for stemming include semi-automatic lookup tables,

suffix stripping, and lemmatization.

Lookup tables are created in advance through various heuristics, linking different to-

kens to a singular term. Suffix stripping stores a small list of rules in order to find the root

of a word by removing suffixes. Lemmatization goes beyond simple stripping rules and

uses morphological domain-specific knowledge to identify lemmas. Lemmatization also

requires part of speech tagging in order to produce the correct result. Python Natural

Language Toolkit 1 provides stemmers for several languages, including Portuguese.

Vector Space Representation and Normalization

The outputted terms from preprocessing form the lexicon that is used as the base set of

dimensions. However, not all terms provide the same amount of information. Normaliza-

tion allows us to identify the most significant terms instead of using the raw term count.

Tf-IDF(term frequency-inverse document frequency) is a popular form of normalization.

It normalizes the raw term frequency based on the inverse document frequency:

tfidf = tf · idf
n

(2.1)

idf = log()
ni

where tf is the term frequency, n is the total number of documents and ni is the

number of documents in which the term appears. At the limit, where n = ni, the value

of idf is 0. There are variations to tf-idf based on functions of tf , such as tf 2 and

log(1+tf). Although its common practice to utilize tf-idf normalization, some application

may perform better with raw frequencies or binary values [13].

1available at https://www.nltk.org/

http://www.nltk.org/

10

2.1.2 Dimensionality Reduction

A high number of dimensions leads to more data being needed to fit models. Furthermore,

many classification algorithms struggle with sparse data. This motivates efforts for the

creation of a lower dimensionality representation for text. In the document-term matrix,

term columns often correlate to one another and can be leveraged to generate a low

dimensional representation of data. These dimensionality reduction techniques are based

on low-rank factorization of the document-term matrix. Low rank factorization takes a

n × d document-term matrix D, with n documents and d terms, that can be expressed in

terms of k ≪ min{n, d} d−dimensional basis vectors. The value of k defines the number

of semantic concepts in the data. A d × k matrix V [vij] can be constructed, that links

individual d terms to the basis vectors. Furthermore, documents can also be expressed

in term of the basis vectors by a n × k matrix U = [uij]. Therefore the document-term

matrix can be represented by a factorized form:

D ≈ UV T (2.2)

The general idea of the factorization is that the remaining (d−k)-dimensional does not

have significant representation in the corpus at hand and its captured by the approximate

equality. The discovery of U and V aims to minimize residual error (D−UV T). Algorithms

differ in the objective function and the constraints applied to the UV matrices.

Latent Semantic Analysis (LSA) applies the constraint that the UV matrices should

be orthogonal, which facilitates computation through eigenvalue decomposition. Non-

negative matrix factorization and Probabilistic Latent Semantic Analysis constraint to

non-negative matrices, which improves the interpretability of the factorization. Latent

Dirilecht Allocation assumes that each document is a mixture of topics, and each topic,

in turn, is a mixture of other topics.

Another form of dimensionality reduction is through feature selection. Instead of

creating a new feature space, filtering selects a subset of available features through ranking

based on a score, such as raw term frequency or TF-IDF [15].

2.1.3 Classification

Classification is the process of assigning a document or item to a set of finite classes.

Supervised classification models utilize labeled data to learn a function that maps input

features to target classes. Each example is a tuple consisting of an input vector and the

desired output value. Models are evaluated on their ability to correctly classify unseen

data.

11

K-Nearest Neighbours

K-Nearest Neighbours is a non-parametric supervised learning model, in which new data

is classified by similarity to known data. Each new entry is classified based on the most

common class among k nearest observations. In figure 2.1, examples are shown for different

k values. For k = 3 the new white observation would be assigned to the blue class, if we

utilize k = 5 it would be assigned the red class. The choice parameter k is done through

hyper-parameter optimization and is data dependant.

Figure 2.1: Example of K-NN classifier for k=3 and k=5

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning model that works by maximizing

the margin that separates samples through a high dimensional hyperspace. Figure 2.2

presents a graphical representation of a linear SVM. The hyperplane that separates the

feature space is given by:

g(→−x) = →−w T →−x + ω0 (2.3)

where →−w T represents the weight vector, →−x is the coordinate vector and ω is a constant.

The goal of learning is to minimize ||→−w || in order to maximize the margin. Fitting the

support vector classifier involves minimizing the following expression:

minimize

Σ

max[0, 1 − yi(
→−w · →−xi − ω)] + λ||→−w ||2

(2.4)

where λ is a non-negativetuning parameter that dictates the tolerance of the model to

miss-classified observations. A high λ leads to a higher tolerance and a soft margin, while

a low lambda leads to a low tolerance a hard margin. SVM is able to handle nonlinear

12

classification through the use of kernel functions. Kernel function substitute the dot

product between coordinates by a similarity function. The kernel allows SVM to model

nonlinear functions by projecting the maximum-margin hyper plane in a transformed

feature space.

Figure 2.2: Linear Support Vector Machine

2.2 Short Text Processing

Short text is a type of text characterized primarily by its brevity. Traditional text mining

approaches presented in section 2.1 struggles with short text processing due to low term

count. Short text is deeply linked to Web 2.0, characterized by user-created content. Due

to the nature of its environment, short text is also characterized by poor grammar and

domain-specific vocabulary. Short text characterization can be done by [16]:

• Individual author contributions are very brief and data is sparse. It does not provide

enough word co-occurrence or shared context for good similarity measures. This

makes it more difficult to extract valid language features.

• Grammar used by authors is generally informal and unstructured, relative to a

particular domain. There are many misspellings, non-standard terms, and noise.

• Text is semi-structured by NLP definitions since it contains some metadata [17].

13

• Immediacy: short-text is often sent and received in real-time and in large quantity.

• Imbalanced Distribution: Background applications deal with large amounts of short-

text data. However, tasks often involve detecting a small number of objects. There-

fore, useful instances are limited and the distribution of short text classes is imbal-

anced.

• Large scale data and labeling bottlenecks: It is expensive to manually label all data.

How to better combine labeled and unlabeled instances is one key problem of text

classification.

.

Short texts exist in a variety of forms: SMS messages, e-commerce reviews, instant

message apps, online chat, bulletin board systems, Twitter [18]. Short text processing

allows for an array of applications, such as classifying news, search queries, identifying

and removing erotic content messages, classifying/clustering tweets, blog messages and

scientific abstracts and sentiment analysis [18]. Manual monitoring of online content is

tedious and expensive. Short text processing allows for better situational awareness for

industry, business, community, and military use [19].

Traditional text mining pipeline struggles with short text processing. Due to the

low word count, the document-term matrix is particularly sparse, with documents be-

ing represented only by the presence of few terms with low frequency. The abundance

of abbreviations, misspellings, and dialects makes it harder to breakdown the matrix

through dimensionality reduction. For the rest of this section, we will present non-neural

approaches to short text processing.

Under the nomenclature of microtext, Ellen [17] surveyed AI and NLP techniques

applied to military chat rooms, SMS, voice transcriptions, and micro-blogging. Early

techniques did not focus on the text but tried to leverage metadata in order to classify

short-text. The metadata utilized was:

• Source Attribution (Author, Screen Name, Originating Phone Number or Email

Address)

• Time stamp (Almost always with minute-level accuracy)

• Audience (Public, Room or Chat channel, source attribution)

• URL References (reply/threading mechanism, longer reference)

• Geo-location information (location tags, GPS)

• Other application-specific data (hashtags, mood, weather, user created and auto-

matically generated, such as whats-app status.)

14

On notable research, the author cites Twinner [20], a Twitter clustering based on

physical location and TweetMotif [21] that grouped tweets based on statistically unlikely

phrases that co-occur. Rosa [22] performed experiments on military chat posts with SVM’s

K-Nearest Neighbours, Rocchio, and Naive Bayes classifiers, using mutual information and

information gain as feature selection methods. However, these methodologies performed

poorly on binary and four-way classification tasks. So far, short text work could be

characterized by leveraging outside bodies of knowledge and non-traditional language

features to create task-specific solutions, with little effort to create generalized models for

short-text.

Rafeeque [18] surveyed short text analysis. The general framework for short text anal-

ysis included two steps before classification/clustering: expansion of the sparse features

with additional information from a linked long text or document, and a measure of short

text similarity. The document is fetched from an external source such as a database

repository, blog, file system, or the internet.

Web-based short text similarity used web documents returned by a search engine to

compute the similarity between two short texts or words. Web-kernel similarity[23] and

web relevance similarity [24] are computed using normalized term vectors extracted from

the collection of returned documents. These similarity measures were primarily used for

query suggestions, but they could also be used to create relationships between terms and

entities when there is no available taxonomy.

Sriram [25] used domain-specific features of Twitter to classify tweets into five generic

classes such as News, Events, Opinions, Deals, and Private Messages. A total of 8 features

were used: the author name, and seven tags representing the presence of slangs, time-

event phrases, opinionated words, emphasis, currency and percentage signs, usernames at

the beginning or middle of the text. The engineered features outperformed BOW in the

classification of 5407 random tweets of 684 authors using the Naive Bayes Classifier.

Alsmadi and Gan [15] conducted a review on short text classification. The author made

a distinction between feature selection and extraction. The most common feature was a

term vector with different weighting schemes, such as binary weights, term frequency,

log of term frequency, Tf-IDF, and probability term frequency. Classifiers were separated

between example-based, probabilistic, decision tree, and linear classifiers. Of the reviewed

articles, 89% utilized feature selection., while only 11% used feature engineering. Con-

cerning classifiers, 44% used linear classifiers, 21% used probabilistic classifiers, 14% used

decision Trees, 13% used ensemble classifiers and 8% used example based classifiers.

Qiang et al. [26] conducted a survey on topic modeling techniques for short text.

Traditional short text topic models such as LDA, LSA, and PLSA performed poorly on short-

text due to the low co-occurrence of words in short-text. The author was able to

15

identify three categories of topic models: Dirichlet multinomial mixture based models,

global word co-occurrence based methods, and self-aggregation methods.

2.3 Deep Learning

Roughly speaking, machine learning is the process of representing data in a computer-

oriented manner to interactively discover patterns through parameter optimization; be it

maximizing in-group similarity, while minimizing cross-group similarity in clustering; or

minimizing error function in classification. These techniques are limited in their ability to

process data in its raw form, requiring data representation techniques that able to extract

relevant information from available data for the task at hand.

The key aspect of deep learning is that these layers of features are not designed man-

ually. They are learned from data using a general purpose-learning procedure. Deep

Learning constructs a complex representation expressed in terms of other simpler repre-

sentations. While the overall model maps inputs to outputs, the function is formed by

composing many simpler mathematical functions of each layer. We can think of each

application of a different mathematical function as providing a new representation of the

input [27].

Deep Learning has been particularly useful in tasks that demanded good represen-

tations due to the high dimensionality of data, such as image and text processing [28]

[29]. Research in these fields has been traditionally oriented towards extracting features

that could capture meaningful information from raw data, such as filters for images and

POS tagging in text processing. Deep Learning has allowed advances in these fields and

produced many applications such as object detection and speech recognition [28].

2.3.1 Feedforward Neural Network

Feedforward neural networks, or multi-layer perceptrons, are the quintessential deep learn-

ing models. The goal of the feedforward network is to approximate some function f that

maps input x to a category y. A feedforward neural network defines a mapping y = f (x; θ)

and learns the value of the parameters θ that result in the best function approximation

[27].

Goodfellow provides explanations on feedforward neural networks as a function ap-

proximator. Each of the three terms is explained individually. Feedforward comes from

the fact that information flows from the input layer x, moves through the internal repre-

sentations used to define f , and generates the output y. There are no connections in which

information is fed back into itself. This contrasts with other models such as Recurrent

Neural Networks, which include feedback connections.

16

The network portion is based on the compositionality of the final learned function.

The model can be represented as an acyclic graph that describes how the functions are

composed together. A 3 layer network could be described as f (x) = f (3)(F (2)(f (1)(x))),

in which f (1) is the first layer, f (2) is the second and so forth. The number of layers in this

chain is called the depth. This is where the deep part of the terminology comes from and

serves to contrast with shallow linear models that do not possess the same representation

power.

The neural part comes from the fact that these networks are loosely related to neu-

roscience. Early developments can be traced to the creation of mathematical models

for pattern recognition of neurons in the perceptron algorithm and similar models [30].

The orientation of ANN research has changed through the years from an accurate repre-

sentation of the brain to function approximation machines guided by mathematical and

engineering techniques [27]. Nonetheless, there are still architectural decisions that are

inspired by how neurons work.

Each layer in a neural network is not a single vector to vector function, but a collection

of different units that take all the outputs from the previous layer and compute a single

scalar each. The output of said layer will in turn be used by the following layer. The

resulting scalar of each unit is bound by an activation function, similar to how neurons

work. Figure 2.3 presents a network with two hidden layers and the output of each layer.

Each node takes the weighted sum of the outputs of the last layer, represented by z, and

produces an output y based on the activation function f (z) that represents the neuron

activation.

Figure 2.3: Feedforward Neural Network. Adapted from [28]

The choice of activation function impacts the training of the neural network as the

cost of calculating the derivative impacts back-propagation. The slope of the activation

17

2

function is also linked to the vanishing gradient problem due to how the error signal

deteriorates the further it travels through the network. Figure 2.4 shows the flow of the

error signal backwards through the network. The partial derivative of the error functions

indicates the contribution of the term to the total error. In the example provided by

Figure 2.4, the error function is given by 1 (yl − ẏ)2, with yl being the network output, ẏ

the true value of the target variable. This leads to the partial derivative of the error in

the output layer presented in the example. For the hidden layers, the derivative of the

error is a weighted sum of the error propagated by latter nodes. The partial derivatives

can be calculated through the chain rule.

Figure 2.4: Back-Propagation of Error Signal. Adapted from [28]

Neural networks are usually trained through an iterative, gradient-based optimizer

that drives a cost function towards a very low value. The non-linearity of neural networks

cause loss functions to become non-convex. This means that there is no guarantee that

gradient descent will converge on a global minimum. Furthermore, there are several hyper-

parameters in neural network training that impact the final result, such as the learning

rate, the number of epochs of training, batch size, drop-out rate, and momentum.

Learning rate is the most important hyper-parameter. Learning rate dictates the rate

at which weights are updated. If the learning rate is too large, the model can converge too

quickly to a sub-optimal solution, while a low learning rate may get stuck. Optimizers,

such as Adam [31] and AdaGrad [32] can be employed to utilize per adaptive learning

rates per parameter.

2.3.2 Convolutional Neural Network

Convolutional neural networks (CNN) are a specialized kind of neural network for process-

ing data through convolutions operations. Convolutions is an operation on two functions

18

∞

of real-valued arguments, Goodfellow [27] provides an example as to how convolutions

can be understood in the context of neural networks. Imagine a sensor x(t) that gives the

position of an object at time t. This sensor is noisy. In order to prove a better estimate

of the position of the object, we can use the convolution of the signal x(t) and a weight-

ing function w(a) of the age of measurement a. In computation time is discrete and the

convolution can be given by:

s(t) = (x ∗ w)(t) =
a=

Σ

−∞

x(a)w(t − a) (2.5)

If the convolution is done over more than one axis, over an image I for example, we

can use a two-dimensional kernel K:

S(i, j) = (I ∗ K)(i, j)
Σ Σ

I(m, n)K(i − m, j − n) (2.6)
m n

Convolution is commutative so:

S(i, j) = (K ∗ I)(i, j)
Σ Σ

I(i − m, j − n)K(m, n) (2.7)

In order to obtain the commutative property the kernel is flipped. Many machine

Learning Algorithms do not flip the kernel, and instead utilize cross-correlation:

S(i, j) = (K ∗ I)(i, j)
Σ Σ

I(i + m, j + n)K(m, n) (2.8)

Convolutions leverage three important ideas that can help improve machine learn-

ing systems: sparse interactions, parameter sharing, and equivariant representations. In

feedforward neural networks, operations between layers are done through matrix multi-

plication. For every possible combination of input and output unit, there is a parameter.

In convolutional neural networks, this parameter interaction is sparse, since the kernel is

generally much smaller than the input, and the same kernel is applied several times over

the input.

This means that fewer parameters must be trained, which both reduces the memory

requirements of the model and improves statistical efficiency. If there are m inputs and n

outputs, matrix multiplication requires mxn parameters, then algorithms used in practice

have O(m × n) runtime. By limiting the number of connections, the sparse connections

require only kxn parameters and O(k × n) runtime, with k being the kernel size. In

practice, k is often orders of magnitude lower than m, resulting in a large improvement.

Sparse interactions are also related to parameter sharing. In traditional neural net-

works, every interaction is associated with a weight that is used only once. By reapplying

n m

n m

19

the same kernel multiple times over the input, weights associated with that kernel are

shared over multiple computations. This doesn’t affect the number of runtime operations

but reduces the number of parameters that must be stored.

In turn, parameter sharing is related to the property of equivariance to translation.

A function f (x) is equivariant to another function g if f (g(x)) = g(f (x)). Convolutions

are equivariant for translation. This means if the input is shifted, the transformation will

be shifted by the same amount. This is useful since the function of a small region of the

matrix can be applied to multiple locations. In image classification, this means that a

particular kernel that is able to detect vertical edges can be used all over the matrix to

identify those same edges. In subsequent layers, this results in a filter that is capable of

finding more complex patterns, such as a face, independently to where it appears in the

image. It is important to notice that while convolutions are equivariant to translation,

they are not equivariant to other transformations, such as rotation.

The typical convolutional layer includes the convolution stage, detector stage, and

pooling stage. The convolution stage is defined by the affine transformation done by

applying the kernel to the input. The detector stage is where an activation function

is applied, similar to that of feedforward neural networks. The final stage is pooling.

Pooling replaces the output of the network with a summary of the statistics at that

location. Pooling helps to make the representation invariant to small translations of the

input. This means that if we translate the input by a small amount, the values pooled do

not vary significantly change. Pooling also improves the computational efficiency of the

network because the next layers have fewer inputs to process.

When dealing with textual information, text is first converted to a sequence of vectors

by applying pre-trained word embedding. This results in a representation of size n × k, n

being the length of the sequence, and k the numbers of dimensions of the word embedding.

Figure 2.5 presents the CNN architecture propose by Kim [33] for sentence classification.

Unlike images, text is a one-dimensional representation. Convolutions in text processing

are 1-dimensional and slide through the sequence. Filters of different sizes are utilized in

order to learn multi-word features. Convolutions are followed by a max-over time pooling

that selects the maximum value of each feature over all positions in the sequence. In

practice, this means that the pooling layer summarizes whether or not that feature is

present in the sequence. The resulting feature vector is connected to a fully connected

neural network that will behave as the classifier.

2.3.3 RNN Based Models

While convolutional neural networks attempt to capture local patterns in data, recurrent

neural networks (RNN) attempt to capture sequential patterns. They are based on state

20

Figure 2.5: CNN For Word Classification. Extracted from [33]

machines, in which the current output of the node depends not only on the input but also

on the previous state of the node.

The most basic form of RNN used is based on Elman machines [34]. Elman machines

consist of input, hidden, and output layers. For the sake of comprehension, RNNs are

often represented in their unfolded format in order to explicitly express relationships

between variable time inputs

Since individual weight contribution is determined not only by the current input xt

but also based on previous step computed hidden layer ht−1, RNNs are particularly prone

to the vanishing gradient problem. This meant that RNN could not capture long term

relationships of sequences. In order to address this problem, models such as Long Short-

Term Memory (LSTM) and Gated Recurrent Unit (GRU) were created with the intent of

preserving long-term contextual information. Figure 2.6 presents the overall architectures

for these model’s units.

LSTM [35][29] introduced forget gates over simple RNN architecture in order to in-

definitely preserve signal. LSTM consist of three gates: input i, forget f, and output o

gates.

Figure 2.6: LSTM and GRU architecture, extracted from [29]

21

Signals in LSTM are defined by the following equations:

x =
ht−1

 (2.9)

xt

ft = σ(Wf · x + bf) (2.10)

it = σ(Wi · x + bi) (2.11)

ot = σ(Wo · x + bo) (2.12)

ct = ft
K

ct−1 + it
K

tanh(Wc · x + bc) (2.13)

ht = ot
K

tanh(ct) (2.14)

GRU [36] is a simpler variant of RNN based on reset and update gates. GRUs have

similar performance to that of LSTMs and there has been no consensus on which is the

best model [29]. GRUs are governed by the following equations, where at time t the unit

is presented with xt and produces output ht:

z = σ(U� · xt + W� · ht−1) (2.15)

r = σ(Ur · xt + Wr · ht−1) (2.16)

st = tanh(U� · xt + Ws · (ht−1
K

r)) (2.17)

ht = (1 − z)
K

st + z
K

ht−1 (2.18)

LSTMs have been used at multiple levels in the NLP field. At word level interactions,

LSTM allowed for better sentence representation by taking into account word order and

relationships between more distant words. This is particularly useful for resolving nega-

tion and transition words. Traditional methods for the creation of word embeddings are

based on distributional hypotheses [37] that terms with similar distribution have similar

meanings. This does not hold true for negation and transition words. In tasks that re-

quire natural language understanding, such as sentiment analysis, these distinctions are

important [38]. Bidirectional LSTM networks [39] utilize 2-layers of LSTM that process

22

data in opposite directions. Forwards states process the sequence from beginning to end,

while backward states process the sequence in reverse. The output of the network is

produced by the concatenation of both layers at each position. Figure 2.7 presents a

representation of bidirectional RNN. Essentially, any RNN based network, such as RNN,

LSTM, or GRU, can be made bidirectional.

Figure 2.7: Bidirectional RNN. Extracted from [39]

2.3.4 Attention Mechanism

Recurrent neural networks have been widely used in sequence to sequence modeling. The

overall architecture for this problem is based on the encode-decoder architecture. In

encoder-decoder architecture, the network can be divided in two segments: the encoder

part creates an embedding based on inputs and the decoder generates outputs based on

the embedding created. Common uses for this architecture include machine translation

and text generation.

While standard RNN architectures only utilize the last produced vector as sentence

representation, the attention mechanism leverages hidden states produced during the

processing of all time steps. The attention mechanism proposed by Bahdanau [40] creates

a context vector from hidden states as a weighted sum of hidden states. Figure 2.8 presents

an illustration for the attention mechanism over a bidirectional RNN. For a sentence of

length T :

23

Σ

Σ x

Tx

ci = αijhj (2.19)
j=1

The weight αij of each annotation is computed by:

 exp(eij)

where

αij = T
k=1 exp(eik)

(2.20)

eij = f (si−1, hj) (2.21)

is an alignment model that scores how well the inputs around position j and the output

at position i align. The score is based on the decoder last state si−1 and hidden state at

position j. This model is implemented as a feedforward neural network that is trained

in conjunction with other components. In practice, this means that the weight of each

hidden state is learned by a fully connected layer that takes the hidden states as input.

This generates dynamic weights across sentence positions that can track important words.

Figure 2.8: Illustration of attention mechanism on encode decode architecture. Extracted

from [40]

2.4 Word Embeddings

Word embeddings are a group of different methods that aim to represent words in dis-

tributed vector form. Traditional word representations often scale with vocabulary size,

24

as the document-term matrix grows. By representing a word in a continuous-distributed

representation, expansion of the vocabulary does not increase the representation size. At-

tempts at creating word representation through neural networks date back to the early

stages of neural networks [41]. These early attempts were limited by the availability of

data and computational capacity of the time. More recent models such as N-gram neural

language model [42] are trained over corpora of millions of words. In this section, we will

present popular word embeddings such as Word2vec, Glove, and fastText.

2.4.1 Word2vec

Word2vec is a C++ library for computing two different neural language models based

on the work of Mikolov [43][44]. Mikolov proposed both Continuous Bag of Words

model(CBOW) and the Skip-Gram model, represented in Figure 2.9. CBOW predicts

a word based on it’s surrounding, while skip-gram predicts the context of a center word.

Models were trained on the Google news dataset, containing 6 billion words, with vocab-

ulary restricted to the most frequent 1 million words. Training complexity is proportional

to:

O = E × T × Q (2.22)

where E is the number of training epochs, T is the number of words in the training set

and Q is related to each model. CBOW Q training complexity is given by:

Q = N × D + D × log2(V) (2.23)

Where N is the context length, V is vocabulary size and D is the number of nodes in

the projection layer. The projection layer differs from the traditional hidden layer used

in neural networks in the sense that it does not utilize an activation function. The idea is

that the reduced representation power is offset by lower computational cost. This allows

the model to be trained with a larger corpus that produces better results. These shallow

neural networks are referred as log-bilinear models and are represented in Figure 2.10

For the skip-gram model Q training complexity is given by:

Q = C × (D + D × log2(V)) (2.24)

where C is the maximum distance of prediction. In training, a R number in range

< 1; C > is selected, and the model makes predictions of the next and the former R words.

25

Figure 2.9: CBOW and Skip-Gram models. CBOW predicts words based on context and

Skip-gram predicts context based on a given word. Extracted from [43]

.

2.4.2 FastText

FastText is a word embedding library based on improvements over CBOW model [46].

Improvements involve: position dependant weighting, n-gram representation, and sub-

word information [47]. Position dependant weighting relates to the learning of weights

attributed to each position of the context window. In CBOW the context vector is simply

computed from the average of word vectors in the context.

FastText addresses n-grams during the pre-processing stage. during the pre-processing

stage the word2phrase tool from the word2vec project is used to merge 50% of occur-

rences of words with high mutual information. This process is repeated up to six times.

This way, words like "New" and "York" can be merged in n-grams like "New_York",

"New_York_University", and so on.

The most important difference is that fastText utilizes subword representation. Words

are represented as the combination of n-grams of characters. Each n-gram has its own

vector representation. The final word representation is a sum of the learned representation

and the n-grams vectors related to that word. This is particularly useful to treat misspells

and provide representation for morphological similar words.

For the English language, word vectors were trained using a 9.2 billion token Wikipedia

corpus and a 630 billion token Common Crawl corpus. These2 and word embeddings for

2https://fasttext.cc/docs/en/english-vectors.html

26

Σ

Figure 2.10: Word2vec architectures where based on shallow neural networks. Extracted

from [45]

other 157 languages were made available online3.

2.4.3 Glove

Since word2vec models are trained only on small context windows, Glove [48] aims to

incorporate global co-occurrence in the training of word vectors. The idea is that the

ratio of co-occurrences is more important than the raw number of co-occurrences. The

author provides examples for the words "Ice" and "Steam". While the co-occurrence of

both words to the word ’Solid’ is very small, the co-occurrence between (’Ice’, ’Solid’)

is several times that of (’Steam’, ’Solid’). In turn, the co-occurrence of ("Ice", "Gas")

is several times smaller than that of (’Steam’, ’Gas’). Only in the ratio, does the noise

from non-discriminate words cancel out. If we exchange "Gas" or "Solid" for words such

as "Water" or "Fashion", the ratio will be close to 1, as both of these words are equally

related or disconnected to "Ice" and "Steam".

Be X the word co-occurrence matrix, and Xij the number of times the word j occurs

in the context of word i. Xi = k Xik is the number of times any word appear in the

context of i and Pij = P (j|i) = Xij/Xi the probability that the word j appears in the

context of the word i.

The ratio between Pik e Pjk depends on the words i, j, k so the model must take the

form F (wi, wj, w̃). The model is trained resolving a least square regression problem in

the form of :

3https://fasttext.cc/docs/en/crawl-vectors.html

27

V

i

J =
Σ

f (Xij)(wT w̃j + bi + ̃bj − log Xij)
2 (2.25)

i,j=1

Like word2vec, word vectors created by Glove also manage to capture latent semantic

relationships between pairs of words through euclidean distance. While the distance

between two vectors does not equate to the same underlying semantic relationship, this

relationship can be contextualized by the distance of other word pairs. Such is the case

for the distance between "man" and "woman" being similar to the distance of "boy" and

"girl".

Glove was trained on five corpora of different sizes: 2010 Wikipedia dump of 1 billion

tokens, 2014 Wikipedia dump of 1.6 billion tokens, Gigaword 5 with 4.3 billion tokens,

the combination of Wikipedia and Gigaword for 6 billion tokens, and 42 billion tokens

from Common Crawl. Corpora were tokenized by the Stanford Tokenizer, with a vo-

cabulary of the 400,000 most frequent words. Training is split between populating the co-

occurrence matrix and training the model. These pre-trained embeddings were made

available, including additional embeddings based on Twitter 4.

2.4.4 Evaluation

Word embeddings can be evaluated in two ways: intrinsic and extrinsic evaluation [49].

Intrinsic evaluation utilizes human-annotated word pairs as a representation of words re-

lationship. Evaluation is done on how well word embeddings match these pairs. Extrinsic

evaluation utilizes performance metrics on downstream tasks to rank word embeddings.

A downstream task is any task that utilizes the representation provided for the word

embedding as input, e.g POS, chunking, or classification.

For a time, intrinsic representation was thought to be a good predictor of extrinsic

performance. Intrinsic evaluation is easier and faster to perform and doesn’t rely on task-

specific metrics. However, research showed that good performance on intrinsic evaluation

did not correlate to extrinsic performance [49].

Word embeddings trained as part of a supervised task capture semantic relationships

relevant to that particular task and may differ from the relationship captured by un-

supervised training. A word embedding trained on POS tagging may present similar

representations for words such as ’man’ and ’cat’ as they are both nouns. This same

embedding would be penalized by intrinsic evaluation [50].

The overall solution for word embedding evaluation has been to use extrinsic evalua-

tion. Extrinsic evaluation is task-dependant, this makes it difficult to generalize perfor-

4https://nlp.stanford.edu/projects/glove/

28

mance evaluation of word embeddings. Nevertheless, there have been efforts for creating

evaluation tool-kits in the pursuit of universal sentence representation [51].

2.4.5 Meta Embedding

The difference in the semantics captured by different embeddings motivated research on

how to combine these embeddings. Meta embeddings are not trained on a pre-selected

corpus; instead, they are created by the combination of different pre-trained embeddings.

The two main advantages of meta embeddings are performance enhancement and word

coverage [52].

Yin and Schütze [52] proposed 4 methods for meta-embedding computation in increas-

ing levels of complexity. First, there is the simple concatenation of word vectors, second

is the single value decomposition of the concatenated form of word vectors. The third

model, named 1toN, treats individual embeddings as projections of the meta embedding

vector. The meta embedding vector is randomly initiated and the learning objective is

to minimize the euclidean distance to the sum of projections. The fourth model, named

1toN+, is aimed at vocabulary filling of out of word vocabulary.

Despite its simplicity, simple concatenation of word embeddings proved to be a good

baseline for the performance of meta-embeddings [52]. Simple averaging of word em-

beddings also produced comparative good results and had better performance for word

analogy tasks [53].

Kiela et al [54] argue that instead of generic operations over word embedding, it is

simpler and more effective to allow neural networks to decide which embedding to use

based on performance on the downstream task. The author trained meta embeddings not

only on language inference tasks but also on multi-modal learning, based on both text

and image data. Aside from performance, the main benefit of dynamic embeddings is

that the individual performance of word vectors can be explained by the learned weights.

2.5 Transformers

Prior to transformers, RNN based architectures, such as LSTM and GRU, were the state

of the art for sequence modelling. However, due to the intrinsic cost of sequential com-

putation, there were an interest in models that could be better parallelized and take

advatange of GPUs.

Figure 2.11 presents the transformer architectur, Transformers follows the encode-

decode architecture, in which for a given sequence of symbols, the encode part generates

a continuous representation the encapsulates that sequence. The decode part of the

model utilizes this representation to generate a new sequence of symbols. Transformers

29

dk)

differs from other sequence transduction models by substituting the processing units in

the encode-decode architecture , such as convolutional layers and lstm cells, for attention

units. In order to model the sentence structure, model adds a positional embedding to

the input embedding.

Figure 2.11: Original Transformer Architecture. Extracted from [55]

The original transformer model employed two types of attention, as shown in figure

2.12. The attention function on a set of queries simultaneously, packed together into

a matrix Q. The keys and values are also packed together into matrices K and V. We

compute the matrix of outputs as Attention(Q, K, V) = sof tmax(Q√KT

V) . The self

attention units are processed in parallel though the multi-head attention unit.

2.6 Discussion and Review

This chapter presented the relevant concepts regarding text classification, short-text pro-

cessing, deep-learning, word-embedding and transformers. Traditional text classification

rely on term-frequency in order to create a vector representation for text. This represen-

30

Figure 2.12: Attention Mechanism in the transformer model. Extracted from [55]

tation is high dimensional and sparse due to each document using only a small portion

of the vocabulary. Short-text is a special type of text, it’s main characteristic is briefness

and poor quality. Due to its briefness, traditional term-frequency methods struggle with

short-text related tasks. Deep learning differs from traditional methods by preserving

the word order. In deep learning text is represented by a series of vectors and a rep-

resentation is learned from the sentence structure or vector sequence. It is possible to

initialize these vector with vectors pre-trained on a different task in order to provided

semantic information. This vector may be combined to provided different representation

for the same text. Transformer allowed for model pre-trained on a much larger corpus

by allowing parallelization of training. Transformer are able to preserve context infor-

mation for longer sentences than other sentence-based models. Due to the short-comings

of traditional methods, deep-learning based methods have been investigated as possible

solutions to invoice classification problem. The next chapter presents how different works

addressed short-text classification and invoice classification though both traditional and

deep-learning methodologies.

31

Chapter 3

Related Work

In this chapter, we highlight other works related to short text and invoice classification.

Short-text classification is a broader area and some solutions may not be suited for invoice

classification. In contrast, works aimed at invoice classification may not utilize short text

processing techniques.

This chapter is organized as follows: the first section presents non-neural method-

ologies for short text processing. Section 3.2 will focus on neural-based short-text clas-

sification architectures. In section 3.3, we present recent work on invoice classification.

We then summarize the approaches presented in this chapter based on a set of desirable

characteristics for short-text and invoice classification. Finally, we point out the intended

contributions of this work.

3.1 Non-neural Methods

Traditional methods rely on bag-of-words representation and matrix factorization to create

a representation for text processing. The low word count on short text documents leads

to low co-occurrence of terms across the document-term matrix, which invalidate matrix

factorization methods.

Early works attempted to address this problem by expanding available information

through auxiliary databases. Document expansion seeks to substitute the representation

of short text for the representation of a set of related documents. In query-based expan-

sion, these documents are returned by using short text as the input on a search engine

[23][24]. The problem with document expansion is that it increases computational cost

both on searching and processing a larger amount of data. This new data also introduces

noise to the model.

Phan [56] proposed a framework for short text classification that used an external

"universal dataset" to discover a set of hidden topics through Latent Semantic Analysis.

32

The discovered topics were used as a representation for short text. The framework was

evaluated on two different tasks: domain disambiguation for web search results and dis-

ease classification of medical abstracts. The framework is simple enough to be adapted to

different domains, with a "universal dataset" been utilized for multiple problems. Nonethe-

less, it is necessary to manually construct the dataset in a way that the hidden topics are

well represented.

Alsmadi [57] tackled short text problem by utilizing a supervised weighting scheme

to the document term matrix. Since the number of terms in short text representation is

lower than in those of longer length, representation schemes should have a bigger focus on

individual term strength. The models improved F-measure when compared to traditional

weighting schemes. Alsmadi [15] points out that even though many models perform well

on benchmark datasets, they struggle with real-world problems.

Wang [58] compared Naive Bayes(NB) models and SVM modes on varied topic clas-

sification and sentiment analysis. Based on the experiments, it was concluded that both

NB and SVM were useful baselines modes, with models outperforming one another based

on the task. Bi-grams were also shown to improve performance across multiple tasks.

3.2 Neural Based Methods

Neural based methods learn feature transformation on each of its layers. This allows non-

neural methods to learn representations from higher dimensions feature inputs and also

preserve sentence structure. Neural network generally use embedding vectors previoulsy

trained on a auxiliary self-suppervised task as inpyt . Convolutional neural networks learn

a new representation by passing filters through the input vector, caputuring the presence

of sub-structures. Reccurent neural netwokrs process the input in vectors in sequence,

creating a hidden state that is dependant on the order of inputs.

The architecture proposed by Kim [33] serves as the basis for most CNN based solu-

tions. Zhang [59] utilized a 12-layer CNN to learn features from character embeddings.

Character-based representation does not rely on pre-trained word embeddings and could

be used in any language. Wang [9] expanded the model proposed by Kim [33] by utilizing

concept expansion and character level features. The model utilized knowledge bases to

return related concepts and included them in the text before the embedding layer. Knowl-

edge bases included: YAGO, Probase, FreeBase, and DBpedia. A character-based CNN

was used in parallel to the word concept CNN. Representations learned by both networks

were concatenated before the final fully connected layer.

Naseem [10] proposed an expanded meta-embedding approach for sentiment analysis

of short-text that combined features provided by word embeddings, part of speech tagging,

33

and sentiment lexicons. The resulting compound vector was fed to a Bi-LSTM with an

attention network. The rationale behind the choice for an expanded meta-embedding is

that language is a complex system and each vector provides only a limited understanding

of the language. BiLSTM was used to address the semantic meaning of negation and

conjunctions that are based on word order.

Chen et al [60] proposed a 2-D TF-IDF feature representation as input to CNN and

LSTM models. These models were used to classify tweets based on verbal aggression.

In the experiments, 2D Tf-IDF outperformed Word2vec embeddings trained on problem

data. Due to the small dataset and shortness of each input, word embeddings trained

on domain data failed to capture word relationships such as positive words (successful,

happy), negative(worst, lose) and neutral (everyone). Regarding the architecture, while

a single layer of convolution produced the best results, as the number of convolutions

increased, the number of parameters dramatically decreased.

3.3 Invoice Classification

Electronic invoices are a special kind of short text. Invoices are particularly brief, being

composed of only a few words, not forming a complete sentence. Words are often ab-

breviated and domain-specific vocabulary is abundant. Invoice classification techniques

have ranged from traditional count-based methods to neural-based architectures. In 2017,

chinese invoice data was made public for chinese researchers, which motivated research in

the area. This leads to the prevalence of works dealing with the chinese invoice system.

Some works aimed to address data sparsity problem by utilizing hash trick for di-

mensionality reduction [4][5]. Yue [5] performed semantic expansion of features through

external knowledge bases before using the hash trick for dimensionality reduction. Tang

[6] utilized paragraph embedding to create a reduced representation and then applied K-

NN classifier. Yu [7] utilized a parallel RNN-CNN architecture, with the resulting vectors

being combined in a fully connected layer. Zhu [8] combined features selected through

filtering with representation learned through the LSTM model.

Unlike most western languages, in which text is expressed through words with white

spaces as separators, text in Chinese is expressed through characters without separa-

tors, with no clear boundary. Words are constructed based on the context. Most of

the cited works used jieba1 for word segmentation. Chinese invoice classification words

leaned towards RNN based architectures in a way to mitigate error produced in the word

segmentation step.

1available at: https://github.com/messense/jieba-rs

34

Chinese works aside, Paalman et al [61] worked on the reduction of feature space

through 2-step clustering. The first step was to reduce the number of terms through

filtering and then cluster the distributed semantic vector provided by different pre-trained

word embeddings. This method was compared to traditional representation schemes and

matrix factorization techniques. In the experiments, simple term frequency and TF-IDF

normalization performed better than LDA and LSA.

3.4 Comparison of Methodologies

Traditional methods mainly address the data sparsity problem of short text. Traditional

methods are based on filtering, semantic expansion, or dimensionality reduction through

the hash trick. The problem with filtering is that there is information loss in a context

where information is already poor. It is also vulnerable to typos, multi-word expressions,

domain-specific vocabulary, and does not account for new vocabulary as time passes. The

benefit of the hash trick over filtering is that no term, aside from stop words, is excluded

from the representation. This guarantees that there will be a corresponding representation

for every possible document. The downside is that there is no semantic meaning in the

collisions that occur in terms that are represented in the same bucket. Nonetheless, the

hash trick presents all the other downsides of filtering.

Semantic expansion can be done in conjunction with other methods and is based

on increasing available information by leveraging external knowledge bases and thesauri.

This increases processing cost and search-overhead. At the word-level, each word of

the document will trigger a search for synonyms or related concepts. Communication

with knowledge bases becomes the bottleneck of the system. The overhead in processing

makes it unsuited for invoice processing due to the amount of invoice data. Furthermore,

knowledge bases are language-specific, costly to build and maintain, and may not be

available in languages other than English and Chinese.

Phan’s approach [56] manages to circumvent the data sparsity problem without cre-

ating a processing overhead during training; instead, there is an increased effort at the

preprocessing stage in creating the universal dataset. The "universal dataset" also requires

domain expertise to correctly choose examples for each class.

Word embeddings serve two purposes in short-text processing. First, they provide a

vector representation in fixed size for each word. This bounds the dimensionality of the

representation based on embedding and sentence length. This contrasts with count-based

representation, in which the number of dimensions depends on vocabulary size. The

second benefit is that word embeddings capture semantic concepts between words based

on the distributional hypothesis. This property allows for similar words to have similar

35

vectors. In a way, this functions similarly to semantic expansion, in the sense of synonyms

expansion, without the drawback of processing overhead.

The limitation of word embeddings comes down to vocabulary coverage and word

sense. Word embeddings cover the vocabulary present in the dataset they were trained

on. During training, rare words are often dropped. Most architectures utilize pre-trained

embedding as lookup tables to extract vector representations for each word. If the word

is not covered by the embedding or if it is misspelled, the lookup table will fail to wield a

representation and that vector will be randomly initialized. The second limitation of word

embedding is that they capture the most common sense for each word based on the most

frequent use of that word in the training data [50]. This may harm the representation of

words with multiple senses.

These limitations of word embeddings are significant to invoice classification. Words

in invoices are often misspelled and abbreviated. Also, taxpayers often mix words of

multiple languages depending on the kind of product being reported. Finally, invoices

possess little to no context in order to disambiguate word sense.

The literature indicates that a invoice classification architecture must the address the

following issues:

• Character level representation: One of short-comings of word-base representation is

that words that are not in the indexed word embeddings lack a corresponding em-

bedding vector. This words are called out-of-vocabulary tokens, and are represented

by random initiate vectors. Character level representation allows for representation

of out of vocabulary words in the context of word embeddings due to new words

being a combination of previously seen characters. This covers both misspellings

and abbreviations, as the resulting representation of this words from the character

embeddings would be more similar to the original word embedding than a randomly

initiated vector.

• contextualized word vectors : In short-text classification, only few words are actu-

ally useful for classification. By using a convolutional layer with filters of different

window size and a single word slide, it is possible to generate features for each

word that take context in consideration. This is particularly useful for multi-word

expressions.

• Sequence modeling: Word order may play a significant role in semantics, mostly in

cases involving negation and conjunctions in the sentence. LSTM are also able to

leverage more distant relationships then CNN.

• meta-word embedding: improves both vocabulary coverage and sense expression.

Word representation learned by word embedding depends not only on the training

36

algorithm but also on the dataset in which it is trained. Invoice text differs in a

great deal to natural language, so both word similarity and word sense capture by

these embeddings may not reflect the characteristics of words present in the data.

By combining multiple word embededings we allow the model to learn which is

more useful for the task at hand. Pre-trained embeddings can also be combined

with domain specific embedding

• Knowledge Base Independence : Due to the overhead in communication with exter-

nal databases, knowledge base expansion may not be feasible for large scale datasets

,such as invoice data. Furthermore, these resources are expensive to build and main-

tain and may not be available in languages other than English and Chinese.

With this work we expect to provide the following contributions:

• A study on available machine learning classification models to assign the correct

NCM code based solely on the product description.

• The architecture for a Intelligent system to assist tax auditors.

• A contextual framework that organizes the possibilities in invoice processing based

on document aggregation and complexity, from product transaction to issuer pro-

cessing.

37

Chapter 4

SCAN-NF and Invoice Processing

The goal of this chapter is to present our approach to invoice classification that consists

of both a contextual framework to model the problem context and an architecture for a

system to aid tax auditors, named SCAN-NF. This chapter is organized as follows: first,

we present an explanation on the electronic invoice model is provided before a contextual

framework for invoice processing is presented. This framework addresses the purpose of

this field of research, the core concepts, research opportunities and how the present work

fits the larger context. The last sections are dedicated to presenting the architecture of

SCAN-NF, a system to aid tax auditors in identifying suspicious product transactions.

4.1 Electronic Invoice Documents

In the last 10 years, there has been an increased interest in electronically processing

invoices due to both an improvement on the available computational resources and tech-

niques, as the cost of processing large amounts of data have been decreasing year by year.

The emergence of e-commerce as a regular practice has also contributed to the populariza-

tion of e-invoicing. While technical implementations may differ form location to location,

the overall structure of this documents is the same. They will contain identification of

both parties, information about the products and services contained in the transaction,

and other general metadata such as date and type of transaction. Structuring this infor-

mation may prove to be difficult depending on the degree of e-invoicing maturity. For

mature landscapes, retrieving a semi-structured dataset may be as simple as providing

a SQL query to a data-warehouse, in other cases this means utilizing computer-vision

applications to extract information from a large amount of scanned physical documents.

Due to an availability of invoice data, this work will focus its on the Brazilian model.

Nonetheless, our work could be useful for similar languages due to the similarity in invoice

documents.

38

4.1.1 Brazilian Electronic Invoices

Brazil utilizes two types of electronic fiscal documents. The NF-e is the electronic fiscal

document, created to substitute physical invoices, providing judicial validity to the trans-

action and real-time tracking for the tax office [62]. The NFC-e is a special case of the

NF-e, issued by retailers for transactions with end-consumers. Some of the fields present

in the NF-e are not mandatory in the NFC-e.

Figure 4.1: Diagram of the information present in the NF-e. Extracted from [62]

Figure 4.1 presents the nested structured of the NF-e XML file. It contains detailed in-

formation about invoice identification, issuer identification, recipient identification, prod-

uct, transportation, and total values. In this work, we will focus on product information.

Table 4.1 presents the information contained in product XML node.

Our analysis will focus on learning a feature vector for the product description field. To

do so we will try to predict the NCM code. NCM is a regional standardized nomenclature

for products adopted in Brazil, Argentina, Paraguay and Uruguay. It is used in all external

commerce made by these countries. Once it has been known, the product is represented

by the NCM code in all future processing.

There are validations rules for the NCM field in the NF-e manual[62]. The NCM field

is obligatory and should contain all 8 digits, it should be a valid NCM code, and the NFC-

e can only contain certain types of products. According to a specialist working with tax

audition and the schedule published in the NF-e manual, the validation procedures

39

Field Description Observations

prod Xml parent node

cPROD Issuer Product Code
Product Id in the issuer system,

not to be confused with NCM code

cEAN Global trade item number

GTIN-8, GTIN-12, GTIN-13 or

GTIN-14, blank if the there is no

GTIN for the product

xPROD Product description

NCM NCM code
Must be complete 8 digits, or ’00’

for entries that do not constitute products

NVE NVE code Details certain NCM

EXTIPI exemption code

Some products may present

different taxes from those with

the same NCM due to tax exemption

CFOP CFOP code 4 digit code that describes the transaction

ucom Comercial unit E.g. kg, ml, L, un, etc

qCom Comercial quantity

vUnCom Individual value

vPROD Total value of the product

cEANTrib GTIN of the taxable unit

uTrib Taxable unit

qTrib Taxable quantity

vUnTrib Unitaty tax value

vFrete Shipping value

vSeg Insurance value

vDesc Discount value

vOutro Complementary expenses

indTot
Tag if the vProd sums to

the total value of the NF-e

Table 4.1: Fields contained in the product node of the NF-e. Adapted from [62]

40

for the NF-e documents are currently implemented, while the same procedures are yet

implemented for NFC-e documents. In the Federal District, NFC-e has only become

mandatory as of late 2017. This results in data of poor quality, with lots of missing fields

and no validation on whether or not the contained information is true.

The correct evaluation of the NCM is of great value in processing invoices. From

the NCM code, it is possible to retrieve the correct tax rate and better monitor the

circulation of products. This, in turn, can aid the decision making of the legislative and

executive branches. We can also cross the information contained in different fields of

the invoice to check if the values reported seem to be valid. When dealing with invoice

processing, we conceptualize different degrees of abstraction. From the bottom up, we can

address problems based on product transaction, invoice transaction and invoice issuers.

At product level we are dealing with the individual products being referred into each

invoice. The goal at this level is how to represent products and how address missing

information. Stepping up, we can deal with invoices. Each invoice invoice is a collection

of product transactions between two parties at a given date with additional meta-data.

When dealing with invoice data, new questions can be addressed such as product co-

occurrence, transaction frequency and invoice data consistency. At the upper level, we

can investigate business behavior by the flux of products described in the invoices. For

fraud analysis, we can conceptualize an analysis that that initiates from product analysis

up to issuer. In this indicator suspicious product description act as the basis. From

suspicious products we can tag suspicious invoices. Based on sum of values present in

suspicious invoices, we can decide if it is economically viable to audit issuers.

This works addresses invoice processing problem at product level for two reasons.

The first reason is that before higher level processing can be done, handling how to

represent product transaction is crucial. The second one is due to security reasons. When

dealing with a large amount of invoices from a particular region, it is possible, with clever

processing, to recreate economical behavior of key businesses. This kind of work would

require closer partnerships with the treasury office due to legal and ethical reasons.

Our goal is to use text description present in each invoice to identify the product

in that transaction. For this work, we will evaluate different text classification methods

on NCM classification. NCM codes are used to represent products in many transaction

processing steps. If the system learn how to correctly assign NCM code based on prod-

uct description, that means the system was able to extract a useful representation from

product description. Assigning NCM code is also useful for Tax auditors, since there is

no current audition of the NCM being reported. The reported code could be missing, out

of format or be wrongfully reported, either intentionally or not.

41

Our second goal is to verify if it is possible to leverage information presented in NF-

e data to address NFC-e data. Since there is an overlap in the products described by

both products, we raise the question if models pre-trained on NF-e data can be used on

NFC-e data, or if patterns learn by models trained on NF-e data could be leveraged for

NFC-e data. NF-e is historically issued by larger business with more mature audition

processes, which leads to better data quality. If we could perform transfer learning from

NF-e focused models to NFC-e model, this means that NFC-e models could be built from

already existing NF-e models.

4.2 Contextual Framework

In this section, we present a contextual framework to understand the landscape of invoice

processing. The framework is organized in a layered structure, with each layer representing

a sequential step in invoice processing. Figure 4.2 presents a visual representation of the

proposed framework. At the base level, there is the data structuring layer, followed by

different invoice abstraction layers.

Figure 4.2: E-invoice Processing Framework

Although electronic invoices have become more and more popular in recent years, in

many cases, useful documents only exist in physical forms or user-oriented digital files,

such as document pictures and PDFs. Before processing any meaningful information, we

need to extract data from these documents and store it in some semi-structured mode.

42

Related works have shown that computer vision solutions are useful for extracting useful

information from physical documents directly [63][64][65] [66][64]. These methods can

greatly reduce the costs and workload for generating invoice data sets. This task is

especially important in auditing, because it is necessary to cross the information reported

in invoices with sales records in other systems.

The remaining steps in our framework relate to different levels of abstraction that

can be applied to invoice modeling. These steps include product transaction processing,

invoice processing and issuer processing. Each level serves as the stepping stone for the

next. Product transaction is the first layer of processing, representing each individual

product or service transaction represented on every invoice in the data. At this level,

we are interested in extracting granular information such as product description, product

price, due taxes as well as other task-oriented attributes. The main form of input at this

level is the product description. Our work is situated at this level, as we treat product

description as a short-text classification problem to predict the correct product code for

each transaction. This exemplifies the main concern at this stage: we are interested in

creating a good representation for each product transaction in order to produce the input

for later tasks. It is much easier to analyze products transactions from a standardized

product taxonomy than processing text descriptions[67].

At the invoice processing level, individual product transactions are aggregated and

used to represent each invoice in conjunction to other meta-data. It is possible to track

the relationship between multiple products in the same invoice. For example, Paalman

[61] utilized two-step clustering to track fraudulent invoices. Auto-encoders have also been

employed in fraud detection by measuring the distance between the reported text and the

expected text produced by the model [68]. At this level, we can also model consumer

behavior by utilizing association rules based on common product transactions. Another

example is the usage of invoices issued by healthcare centers to extract association rules

between commonly used medication [69].

At the higher level of abstraction, the behavior of parties involved in transactions is

taken into account. One approach is to utilize previously known troubled issuers as a flag

in processing invoices. An example of this kind of procedure is Chang’s work [3], in which

information about companies involved in violations is used to select and mark invoices to

create an alarm system for safe edible oil. Another way to include issuer analysis in invoice

processing is through graph analysis. It would be possible to model an oriented graph,

each node representing an issuer with invoices being used to create the links between

issuers. From this structure, it would be possible to look for communities, cycles, and

other graph-oriented sub-structures and correlate them to real-world issues. At the time

of this work, we have not been able to find works that model invoice processing utilizing

43

graphs. We hope to address this tackle this problem in the future.

4.2.1 Larger Context

Invoice processing is also related to other concerns that are not directly related to extract-

ing information from invoice documents. Due to a large amount of data, invoice-based

systems require big data architecture [70]. This may lead to solutions in distributed

computing paradigm as storing and processing are more feasible in clusters than in single

machines. The adoption of e-invoicing from the get-go is also a key factor, as it streamlines

the data structuring layer, doing away with the need of using expensive image processing

techniques to create digital representations of invoices. A maturity model for e-invoicing

from the business perspective was provided by [71].

4.3 Architecture of SCAN-NF

We present an overview of the architecture of the SCAN-NF system and inner model

in Figure 3. The system’s goal is to feed additional information for tax auditors by

product code to each product transaction based on the product description. The labeled

transaction is then used as inputs for other analyses by Tax Auditors and Specialists.

The system works in two phases: a training phase and a prediction phase. During the

training phase, the system is fed audited data from tax office server to train a supervised

model. Two models are trained, one for the classification of NF-e Documents and another

for NFC-e Documents. After training, these models are used on new data during the

prediction phase. The system works as follows: Data is extracted from the tax office

server (Label 1 in Figure 3). At this point, data provided in by the server may not be in a

format compatible with the classification model. Product description and corresponding

NCM code for each product in each invoice are then extracted (Label 2 in Figure 3). Text

is then cleaned from irregularities (Label 3 in Figure 3). A training dataset is constructed

by balancing target classes samples and dropping duplicates (Label 4 in Figure 3). At this

point data is already modified to fit the model. The training set is then fed to a model

that learns to classify product descriptions (Label 5 in Figure 3). Outputs at the training

phase of the system are used to validate models before being put into production (Label

6 in Figure 3). During the Prediction Phase, trained models are utilized to classify new

data. These datasets may be composed of invoices issued by a suspected party or a large,

broad dataset used for exploratory analysis (Label 7 in Figure 3). Models trained in the

training phase are then employed for the task at hand (Label 8 in Figure 3). The final

output of the model is the classified set of products inputs (Label 9 in Figure 3). This set

44

of classified product transactions is then used in manual auditing by tax auditors (Label

10 in Figure 3).

Figure 4.3: Architecture of SCAN-NF. Extracted from [1].

The system is intended to aid tax auditors in auditioning invoices issued by already

suspicious parties to pinpoint inconsistencies and irregularities. Currently, NFC-e docu-

ments are not audited due to the amount of data, a more significant number of issuers,

and the nature of the data. Our solution helps auditors pinpoint inconsistencies in doc-

uments reported by an already suspicious party and allows for the automatic processing

of more data. We hope that this solution will improve the productivity of tax auditors

regarding NF-e processing and be the first step towards NFC-e processing.

4.4 Case Study of Brazilian E-Invoices

In order to validate SCAN-NF architecture, we aim to address the following questions:

• Is it possible to utilize product description to classify the NCM code of Brazilian

Electronic invoices by using State of the Art Text Classification methods?

• How does this methods compare to traditional Machine Learning Methods?

• Is it possible to train models work across different types of electronic invoice docu-

ments?

45

To answer this questions, we conducted a case study based on real NFC-e and NF-e

documents from the the state treasury office (SEFAZ). Data were separated into train-

ing and test sets, and different models were trained. Models were validated through cross-

validation. Hyper-parameter optimization was conducted based on the average per-

formance through all folders of cross-validations.

4.4.1 Dataset

In our experiments, we utilized data provided by the estate tax office of SEFAZ. Data pro-

vided included both NFC-e and NF-e documents. NF-e data consisted of a small curated

dataset that was previously used in manual analysis of product codes and description on

various products. This dataset contained information on the description and NCM code.

NFC-e data consisted of a larger dataset of products from multiple sectors, extracted from

a particular month over the transactions conducted by retail supermarkets.

Due the lower number of rows in the NF-e Dataset, we established a treshold based

on the number of unique rows of each class in the NF-e dataset, due its smaller size. We

selected all classes with a total of distinct product description over 2000 rows. In total

18 classes were selected from NF-e dataset to be used in the experiments. The same 18

classes were selected to create the experiment NFC-e Dataset. Our NFC-e dataset is not

labeled by tax auditors. From previous studies, tax auditors estimate that 5% of issuers

miss-classify products in NF-e documents. We assume that issuers behave similarly with

the NFC-e. Otherwise, if the majority of issuers presented fraudulent behavior, the task of

auditing would become trivial as auditors would have to simply pick issuers with sufficient

transactions to be cost effective to audit.

These datasets were kept separate and balanced individually. Due to disparity in mar-

ket share, preserving product frequency would bias the models toward larger issuers and

the most popular products. This could lead models to better classify invoices from large

companies or learn their representation as to the norm. Duplicate product descriptions

for each target class were drooped, even though they represented different transactions.

While there is a significant vocabulary overlap between NF-e and NFC-e documents re-

garding NF-e data, NFC-e presents a much more vast vocabulary. Table 4.2 presents

detailed information on the number of samples used in the experiment.

4.5 Discussion and Review

This chapter presented the modelling of the invoice classification problem as an short-text

classification problem. The presented framework establishes different levels of abstraction

for invoice processing. Each layer serves as the basis for the next layer. This work

46

Table 4.2: Number of samples and datasets used in experiments. Extracted from [1]

 NF-E NFC-E

Number of raw

product samples
198882 99637515

Number of samples

in balanced dataset
36234 49536

Number of balanced

classes
18 18

Vocabulary

Size
3646 15312

Shared Terms 2342

addresses invoice classification at the product transaction layer by presenting SCAN-NF,

a system to aid tax auditors identifying suspicious transactions by classifying product

transaction NCM code based on product descriptions. From the NCM code it is possible

to identify the correct taxation to be applied to each product. The output of this systems

could be used as input for more complex systems in order to identify fraudulent behavior.

Both the research questions and the study case used to address this questions are outlined.

In the next chapter, the methodology and experimental setup used in the study case is

presented.

47

Chapter 5

Experiments and Methods

Chapter 5 presents details about the methodology and implementation of experiments

aimed at answering the research questions presented in the last chapters. The questions

were: (1) Would it be possible to assign NCM code for product transactions based solely

on the product-description field ? (2) How dos the different machine learning models

compare to one another on this task? (3) Could models trained on one type document

perform well on the other type. Answering these questions allows us to validate SCAN-

NF architecture and also allows for other applications focused on aiding tax auditors and

public decision-makers. Furthermore, by comparing results between the chosen classifier

architectures, we can validate if invoice product description follows the same paradigm as

other short-text processing.

This chapter is organized as follows: In section 5.1, an explanation on experiments,

baseline models and metrics employed is given. A Flowchart of the experiment process is

presented and explained in detail. Section 5.2 and 5.3 present training details for SVM

and CNN architectures respectively.

5.1 Experimental Setup

As mentioned previously, two balanced datasets were constructed for both NF-e and

NFC-e invoices. Data is split between training and test sets with a ratio of 80 to 20.

Parameter tunning was done using 5-fold cross validation. We train different models on

each dataset to compare metrics between document types. Hyper-parameter optimization

was conducted based on the average performance through all folders of cross-validations.

The final result for each model is taken by averaging the result of several configurations

trained independently on the best parameters. Results are then analysed and compared

to a naive classifier that that guesses at random. This naive classifier serves as a baseline

48

for comparison and put in to perspective the metrics achieved by other models. Code

related to these experiments are publicly available 1.

To address whether or not it is possible to utilize invoice data to classify the other

type of invoice, we take the previously trained models and evaluate them on the dataset

composed of the other document type.

Baseline Models

Based on the literature and previous insights, SVM and CNN-based models were inves-

tigate as possible candidates to be used as the classification engine in SCAN-NF. SVM

serves as a baseline model and a example of traditional frequency based classification.

There is no consensus on the related literature whether or not frequency based model

should perform well on short text classification. Works based on short text classifica-

tion indicate that this type of model should struggle due to document-term matrix being

particularly sparse and the lack of sentence structure modelling present in other architec-

tures. Nonetheless, related work on invoice classification utilized frequency based model

with good results. SVM have also been cited as a reliable baseline model for both topic

classification and sentiment analysis.

In contrast with frequency methods, CNN and RNN based architectures were said to

better preserve sentence structure information. This is particularly important in short-

text, since it is expected for every input to have less information than larger documents.

Related work on CNN based short text classification seemed take the architecture pro-

posed by Kim as the base for the classification model and iterate over it with some form

of knowledge expansion. While CNN preserve local sentence structure based on the words

taken by each filter, there is no context representation.

Metrics

We evaluate models based on the following metrics: accuracy, precision, recall, and F1-

score. Metrics are calculated based on True Positives, True Negatives, False Negatives,

and False Positives.

Accuracy is given by the rate of correct predictions over all predictions, it can be

expressed as:

(TP + TN)/(TP + TN + FP + FN) (5.1)

Top k Accuracy represents how often the correct answer will be in the top k outputs

of the model. Accuracy is useful for getting an overall idea of model performance. In

1available at https://github.com/diegokieck/mestrado

49

unbalanced datasets, recall and precision can paint a better picture of how the model

behaves.

The recall represents the recovery rate of positive samples and is given by:

TP/(TP + FN) (5.2)

Precision evaluates the correct set of retrieved samples and is given by:

TP/(TP + FP) (5.3)

We utilize the F1-score, the harmonic mean of precision and recall, to get a balanced

assessment of model performance on imbalanced classification.

5.1.1 Experiment

Figure 5.1 presents a flowchart of the machine learning pipeline. After data was provided

by the state treasure office, research opportunities and solutions were identified through

exploratory data analysis. At this stage, prior experiences in the treasure office with

private consultants led to the belief that it wouldn’t be possible to utilize text descriptions

to classify invoice documents.

The idea that product description text is too poor to be used may have come due

to challenges in establishing rule-based algorithms for product description classification.

These studies were unavailable for the development of this work. While these rules could

be extracted from the NCM taxonomy structure, setting up and maintaining such rules

would be infeasible.

The problem was framed as a short text classification problem. Product description

fulfills all the criteria for short text: brief text with low term count; text with poor

grammar; the presence of meta-data, and individual author contribution being small.

From the target variable, NCM, it is possible to assign the correct taxation type based

on business rules.

Item description duplicates were dropped to not bias the study towards large-scale

businesses and frequently sold products. The selection of which classes should be used in

the case study was based on the constraints of the provided NF-e dataset. Classes had

to present at least 2000 distinc product descriptions. 18 classes met this criteria in the NF-

e dataset. The NFC-e dataset was created by sampling distinct transactions for the same

18 classes. Data preprocessing consisted of lower casing, removing punctuation and

accentuation, and tagging numbers and metrics.

50

Figure 5.1: Experiment Flowchart

Train test split was done at an 80-20 ratio, with test data being set aside for the

final model evaluation. Training Data needed to be prepared differently based on each

model. Hyper-parameter optimization was conducted both on model and data preparation

parameters. Records of each parameter trial were kept and used to select the final pipeline

for each model. The average of the metrics over the set of ten experiment runs constructed

the final results. For each experiment run, models were initialized, trained, and evaluated.

5.2 SVM

The Support Vector Machine implementation used was provided by the Sklearn library.

For the initial evaluation, the model was presented with different kernel functions and

different parameters for the selection of features. Text was vectorized through Sklearn

TF-IDF vectorizer. Different parameters for maximal an minimal document frequency was

used, as well as n_gram combinations from 1 up to 3. Maximal and minimal document

frequency establish thresholds for the frequency for terms to be added to the vocabulary.If

a term is present in more documents than the maximal document frequency threshold it

is not added to the vocabulary, the same is true if the term is present in less documents

than the minimal frequency. N-grams define the length of terms combinations to be added

51

to the vocabulary. N gram is defined as a range that includes all n-grams between the

limits.

Parameter NF-e Dataset Values NFC-e Dataset Values

Kernel type [’linear’, ’poly’, ’rbf’, ’sigmoid’]) [’linear’, ’poly’, ’rbf’, ’sigmoid’])

max_df [1.0, 0.5, 0.75] [1.0, 0.5, 0.75]

min_df [1,0.1, 0.01, 0.001,0.0001] [1,0.1, 0.01, 0.001,0.0001]

n_gram [(1,1), (1,2), (1,3)] [(1,1), (1,2), (1,3)]

Table 5.1: Hyper-parameters for SVM training

Table 5.1 presents the hyper-parameters used in optimization, with the best results in

bold. Figure ref presents results across trials. The best parameter over all trials was used

to train the final model. Hypeopt package was used to search for the best parameters.

Hyperopt applies Bayesian inference to predict most likely best parameter in exploratory

manner, converging to the best parameters over iterations.

Figures 5.2a and 5.2b present Accuracy over all trials for each dataset over iterations

of Hyperopt trials. We can see that models peaked at around 0.9 accuracy-score on the

NF-e dataset and 0.8 accuracy-score on the NFC-e database. We can see three clusters

with different ranges of accuracy. On the bottom figures 5.2c and 5.2d, we have trial

results ordered by training time, in which the y axis represents accuracy metric and x

axis represents time to train that configuration. By looking at the left bottom side of

theses two graphics we can see that the worst performing configurations had the least

training time. This is explained by their choice of vocabulary. A lower vocabulary size

generates a lower number of dimensions in TF-IDF, witch facilitates SVM convergences

due to a lower number of kernel transformations. However, less information is presented

to the model. In contrast, at the right side of the graphics we have configurations that

took significantly more time to train but performed no better than faster configurations.

This indicates that there is a limit to the relevancy of information that is useful for the

model, including more terms or high n-grams to the vocabulary only slows the model and

does not provide better.

5.3 CNN architectures

The Keras API for the TensorFlow library was used to implement the CNN models. The

architecture consists of three channels with different kernel sizes concatenated and fed to

a dense layer. Hyperopt optimized the mean validation accuracy over 10 folds. Optimized

parameters consist of: the number of filters in each channel, the size of the dense layer,

the dropout rate, the size of the second dense layer, and the optimizer.

52

(a) Accuracy over each Trial for the NF-e

dataset.

(b) Accuracy over each Trial for the NFC-e

dataset.

(c) Trials sorted by training Time for NF-e

dataset.

(d) Trials sorted by training Time for NF-e

dataset.

Figure 5.2: Results of Hyper-parameter Tunning of SVM model

Figure 5.3 presents the base CNN architecture used for CNN models. The input

sentence is fed to a embedding layer. In the embedding layer each token is replaced by

the corresponding word embedding. After that, input is reshaped to fit the next layers.

The input is fed to 3 different channels that will apply 1D convolutional kernels followed

by max pooling. Each kernel functions as a filter that detects a relevant substructure in

the sentence. Max pooling layers verify if the learned kernels were activated anywhere

on the input sentence and pass on the information to the next layer. At this point each

feature in the feature vector corresponds to the output of a learned filter applied to the

sentence. The feature vector is flattened and passed through a dropout layer before being

fed to a fully connected layer that will work as the classifier.

53

5.3.1 Word-CNN

Figure 5.3: Base CNN Architecture

The Word-CNN architecture splits the input sentence based on white space. Each word

is substituted by a word vector with random values. 1-D convolutions go through the

resulting sentence matrix computing filters of sizes 3,5, and 7.

Figure 5.4 presents trial results for hyper-parameter optimization for the word-based

CNN architecture over Hyperopt trials. We can see in Figure 5.4a and 5.4b that there is

a lack of intermediate results in both datasets. Models either performed very similarly,

around 0.85 accuracy score on the NF-e dataset and 0.8 accuracy score on the NFC-e

dataset, or failed to learn, with accuracy lower than 0.2 accuracy score.

When visualizing accuracy over training time for the models in Figures 5.4c and 5.4d,

we can see that models with a good performance, top left, trained faster than those that

performed poorly, bottom right. Models may be too complex for the given task. Table

5.2 presents the hyper-parameters used during training. The best results are presented in

bold.

In Figure 5.5, sub-figures 5.5a and 5.5b present the training history and loss function

for a model trained using the best hyper-parameter over the trials on the NF-e dataset

and NFC-e dataset respectively. Accuracy on the NF-e dataset peaked at around 85%

accuracy and 80% at the NFC-e dataset. From the graphs, we can see that the models

54

(a) Accuracy over trials results for the NF-e

dataset.

(b) Accuracy over trials results for the NFC-e

dataset.

(c) Accuracy over time spent for each trial in

NF-e dataset.

(d) Accuracy over time spent for each trial in

NFC-e dataset.

Figure 5.4: Results of Hyper-parameter Tunning of Word CNN model

are overfitting from the second epoch onwards and may be too complex for the given task.

We can see by comparing the curves of the training set and the validation set, loss on the

training set continues to drop after the second epoch and starts to rise on the validation

set. This indicates that the model is losing its ability to generalize its output. Either

the architecture is too complex for the task or the amount of data for a convolutional

modes was too small. This conflicts with the idea that short text classification requires

specialized architectures. This raises the question if simpler models are more suited to

the task.

55

(a) Training History of Word-Based CNN model on NF-e dataset.

(b) Training History of Word-Based CNN model on NF-e dataset.

Figure 5.5: History of Word-Based CNN model.

56

Parameter Values For NF-e Dataset Values for the NFC-e dataset

Number of Filters on

1D Convolution #1
{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

Number of Filters on

1D Convolution #2

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

Number of Filters on

1D Convolution #3

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

#1 Dense Layer [100, 300, 600, 1000] [100, 300, 600, 1000]

#2 Dense Layer [0, 100, 300, 600] [0,100, 300, 600]

Dropout Rate [0.0, 0.38, 0.5] [0.0,0.27, 0.5]

Optimizer
[’Adam’, ’Adagrad’,

’Adadelta’, ’Nadam’]
[’Adam’, ’Adagrad’,

’Adadelta’, ’Nadam’]

Table 5.2: Hyper-Parameters for the Word-based CNN models trained on each dataset.

Final parameters are presented in bold

5.3.2 Char-CNN

In the Char-CNN architecture, tokens are generated from individual characters and as-

signed random initiated vectors. These vectors are fed to channels of different kernel sizes.

Hyper-parameter optimization is aimed at finding the best size of neural network layers

and whether or not the model could benefit from an extra dense layer.

Parameter Values For NF-e Dataset Values for the NFC-e dataset

Number of Filters on

1D Convolution #1
{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

Number of Filters on

1D Convolution #2

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

Number of Filters on

1D Convolution #3

{0,300, 600, 900, 1800} {0,300, 600, 900, 1800}

#1 Dense Layer [100, 300, 600, 1000] [100, 300, 600, 1000]

#2 Dense Layer [0, 100, 300, 600] [0,100, 300, 600]

Dropout Rate [0.0,0.13, 0.5] [0.0,0.37 , 0.5]

Optimizer
[’Adam’, ’Adagrad’,

’Adadelta’, ’Nadam’]
[’Adam’, ’Adagrad’,

’Adadelta’, ’Nadam’]

Table 5.3: Hyper-Parameters for the char-based CNN models trained on each dataset.

Final parameters are presented in bold

Figure 5.6 presents results metrics over Hyperopt trials. Similarly to the word-based

CNN, we can see the models performed better on the NF-e dataset than on the NFC-e

57

(a) Results of the Character-Based Model on

NF-e Dataset

(c) Results on NF-e Dataset sorted by Train-

ing Time

(b) Results of the Character-Based Model on

NF-e Dataset

(d) Results of the Character-Based Model on

NF-e Dataset

Figure 5.6: Results on NFC-e Dataset sorted by Training Time

database, with around 85% and 80% accuracy respectively. Similarly, when sorting results

based on training time, configurations with higher accuracy had lower training time than

configurations with higher training time. One possible cause for this phenomenon again is

that increasing the model complexity had a detrimental effect on performance, increasing

training time and lowering accuracy. Hyper-parameter values are shown in table 5.3.

In Figure 5.7, sub-figures 5.7a and 5.7b present the training history and loss function

for a model trained using the best hyper-parameter over the trials on the NF-e dataset

and NFC-e dataset respectively. Accuracy on the NF-e dataset peaked at around 85%

accuracy and 80% at the NFC-e dataset. Similarly to what we have seen in the Word-

Based CNN, models are over-fitting from the second epoch on-wards and may be too

complex for the given task.

58

(a) Training History of the Character-Based CNN Model on NF-e Dataset.

(b) Training History of the Character-Based CNN Model on NFC-e Dataset.

Figure 5.7: Training History of the Character-Based CNN Model.

59

5.4 Discussion and Review

This chapter presented the methodology and experimental setup used to train the ma-

chine learning models that could power SCAN-NF. Models were trained on two different

datasets, each representing one type of brazilian invoice document, NF-e and NFC-e. The

chosen classification models were SVM classifier, Word-based CNN and Character-Based

CNN. These models were chosen based on related literature. For each type of model,

hyper-parameter optimization was conducted on both datasets separately. Convolutional

models easily overfitted on both datasets from the second epoch onwards. During model

optimization, models tended to either perform very well or very badly, with large gaps

in performance between the best hyper-parameters and the worst. Models that took the

longest to train failed to learn relevant patterns. The next chapter will present experi-

mental test result of models trained on the best hyperparametes found in optimization.

60

Chapter 6

Case Study on Brazilian Invoice

Data

This chapter presents results of experiment conducted in the study case using real world

invoice data provided by the state treasury office. Experiments were conducted as de-

scribed in the previous chapter. Section 6.1 addresses the question if its possible to identify

the NCM code for a product based solely on product-description field. This is done by

comparing model performance to a dummy baseline. In section 6.2, comparison between

different approaches is further detailed. Section 6.3 presents the results of models trained

on one type of document and applied in the other. The chapter concludes with an review

and discussion of findings.

6.1 Classification of Invoices Based on Short Text

Description

In this section, we explore experimental results. Table 6.1 presents the results of all

models on both datasets together with a baseline for a naive classifier. Models had to

assign one of 18 possible labels to each product, representing the correct NCM code. The

naive classifier represents a model that does not look at the data and simply randomly

predicts a target label. Results for each model are calculated based on the mean average

of 10 runs, in which the model trains on the entire training dataset. Metrics are taken

based on results of the test set.

This experiment aimed to address several questions. The first one was if it was possi-

ble to create a classifier that correctly assigns the NCM code for each product transaction

based on product description. In order to prove that these models learned useful informa-

tion from a text description, we compare them to a dummy model that ignores features.

61

Model Base Accuracy

Accuracy

STD

Prediction

Time (s)

Prediction

Time

STD (s)

Training

Time (s)

Training

Time

STD (s)

Baseline

Table 6.1: Summarized Experimental Results for each model and Dataset

From the comparison is clear that the models learned to perform the task, with every

model presenting an average accuracy over 0.75, which significantly higher than the naive

prediction of 0.05.

Another point of interest was the performance of the term-based model on the short-

text classification. The low term count in each document led to the conception that term-

frequency representation such as TF-IDF should struggle with short-text problems, such

as invoice product descriptions. Models that also learned from the text structure were

expected to outperform term count methods. This did not occur in our experiments. While

models presented good results for both datasets, the SVM model outperformed both

neural network approaches on accuracy,a t the cost of longer training and prediction

times.

The argument for a character-based CNN was the possibility that it could positively

impact NFC-e classification based on the capacity to better respond to typos and out- of-

vocabulary terms. However, either the model failed at addressing these points or they did

not matter enough to offset the performance drop due to the increased complexity of the

model. On the other side, both CNN models took less time to train and predict than the

SVM model.

6.1.1 Individual Class results

In this section, individual class results are further explored. Table 6.2 presents the F1-

score for randomly sampled models trained on the NF-e dataset, the best results across

the three models are presented in bold. The number of samples of each class present in

the support column. Performance ranged from 0.68 to 0.99, with at least 10 of the 18

SVM NF-e 0.8823 0.0 18.1544 1.5430 81.5964 3.9396

SVM NFC-e 0.8027 0.0 32.4233 0.5984 145.6682 2.9140

WCNN NF-e 0.8604 0.0022 0.6491 0.0833 23.0331 21.7462

WCNN NFC-e 0.7791 0.0050 0.9744 0.2996 19.9329 2.4455

CCNN NF-e 0.8505 0.0043 1.4879 0.4604 123.0699 10.6410

CCNN NFC-e 0.7664 0.0116 2.5909 0.2220 442.9317 1.86595

Naive
-

0,0555 - - - - -

62

classes presenting scores above 0.9 and only 2 classes presenting scores below 0.75. SVM

outperformed both CNN models in most classes.

Class
SVM

F1-SCORE

WCNN

F1-SCORE

CCNN

F1-SCORE
support

33030010 0.8555 0.8620 0.6127 413.0000

33030020 0.7960 0.7823 0.6673 410.0000

33041000 0.9398 0.9233 0.8936 419.0000

33042010 0.9277 0.9237 0.8656 374.0000

33043000 0.9658 0.9609 0.9221 404.0000

33049100 0.9237 0.9148 0.8967 399.0000

33049910 0.6836 0.6648 0.6002 387.0000

33049990 0.7481 0.7220 0.6416 418.0000

33051000 0.9523 0.9368 0.9325 427.0000

33059000 0.8533 0.8472 0.7594 401.0000

33061000 0.9664 0.9602 0.9603 397.0000

33069000 0.9694 0.9603 0.9366 429.0000

33072010 0.8214 0.7732 0.7455 375.0000

33072090 0.7672 0.7509 0.6503 416.0000

34011190 0.9064 0.8558 0.8245 408.0000

34013000 0.8430 0.7949 0.7544 393.0000

39249000 0.9908 0.9921 0.9778 381.0000

96032100 0.9760 0.9785 0.9595 396.0000

accuracy 0.8823 0.8684 0.8116 -

macro avg 0.8826 0.8669 0.8111 7247.0000

weighted avg 0.8827 0.8671 0.8109 7247.0000

Table 6.2: Detailed Class Results for NF-e based on Individual models

Table 6.3 presents F1-Score for randomly sampled models trained on the NFC-e

dataset. Performance ranged from 0.52 to 0.94, with 5 classes presenting scores above

0.9 and 5 classes presenting scores below 0.75. Similarly to the NF-e dataset, the SVM

model outperformed both CNN models in most classes.

It is possible to notice that the distance in model performance between both datasets

varied between classes. This may indicate that the difficulty in classifying NFC-e prod-

uct descriptions varies with the type of product being described. For certain classes of

products, model performance dropped significantly, while for others stayed the same.

6.2 Transfer Learning

The goal of this experiment was to validate if it would be possible to utilize a model

trained on one type of document to predict the NCM code for the other type. Since there

63

Class
SVM

F1-SCORE

WCNN

F1-SCORE

CCNN

F1-SCORE
support

33030010 0.6948 0.6673 0.6108 504.0000

33030020 0.7839 0.7234 0.7492 563.0000

33041000 0.8137 0.8125 0.7875 555.0000

33042010 0.7892 0.7869 0.7410 510.0000

33043000 0.9227 0.9127 0.9064 562.0000

33049100 0.7970 0.7832 0.7638 529.0000

33049910 0.5281 0.4927 0.4875 528.0000

33049990 0.6667 0.6217 0.5725 581.0000

33051000 0.8585 0.8483 0.8406 536.0000

33059000 0.7545 0.7273 0.6955 555.0000

33061000 0.9232 0.9094 0.9093 522.0000

33069000 0.9194 0.9060 0.8873 579.0000

33072010 0.7279 0.7079 0.6600 537.0000

33072090 0.6317 0.6157 0.5720 560.0000

34011190 0.9127 0.9125 0.9186 558.0000

34013000 0.8781 0.8712 0.8668 624.0000

39249000 0.8660 0.8939 0.8522 549.0000

96032100 0.9481 0.9331 0.9396 556.0000

accuracy 0.8027 0.7829 0.7677 -

macro avg 0.8009 0.7847 0.7645 9908.0000

weighted avg 0.8023 0.7862 0.7662 9908.0000

Table 6.3: Detailed Class Results for NFC-e based on Individual models

64

are different availability and processing costs related to each type of document, models

that could operate interchangeably could provide a greater degree of freedom to auditors.

Also if the model is able to perform well between both types of documents, we have

indications that the underlying text representation of that class between these documents

is similar.

Class
SVM

F1-SCORE

WCNN

F1-SCORE

CCNN

F1-SCORE
support

33030010 0.5179 0.0500 0.0720 504

33030020 0.6138 0.0313 0.3439 563

33041000 0.7508 0.0459 0.0603 555

33042010 0.6803 0.0352 0.1256 510

33043000 0.8928 0.0069 0.0355 562

33049100 0.7229 0.0626 0.0679 529

33049910 0.3814 0.0600 0.0734 528

33049990 0.4927 0.1156 0.1181 581

33051000 0.8287 0.0297 0.0120 536

33059000 0.6229 0.1073 0.0673 555

33061000 0.8692 0.0834 0.0273 522

33069000 0.8547 0.0780 0.0187 579

33072010 0.6797 0.0252 0.2122 537

33072090 0.5189 0.0535 0.0273 560

34011190 0.8326 0.1398 0.0035 558

34013000 0.7818 0.0527 0.2085 624

39249000 0.2897 0.0117 0.0000 549

96032100 0.9199 0.0171 0.2113 556

accuracy 0.6837 0.0593 0.1194 -

macro avg 0.6806 0.0559 0.0936 9908

weighted avg 0.6822 0.0562 0.0947 9908

Table 6.4: NFC-e dataset Results with models trained on NF-e data.

Table 6.4 presents results in the NFC-e data using models trained on NF-e data. It

is important to notice that from all models, only the SVM model managed to preserve

its function in this endeavor, with results for both CNN models being similar to random

guesses. Regarding the SVM model, there was a considerable drop in scores over all the

classes. This can be seen in the accuracy drop of 0.80 to 0.68 over all classes. Nonetheless,

this issue was not shared among all classes. Out of the 5 classes with scores above 0.9,

only one remained. 2 classes that previously presented scores above 0.75 dropped below

0.4, with one managing to drop from 0.9 to 0.28. 10 out of the 18 classes presented results

below 0.75.

65

This drop in performance may indicate that it is much more difficult to classify retail

product descriptions based on the B2B transactions contained in the NF-e data. Classes

that dropped harshly in score indicate a mismatch in representation between datasets. It

is possible that in one dataset, that class may be represented by a small number of terms

shared between training and test sets. The same class is represented by a greater number

of terms in the other dataset. This behavior may be explained by the real-world scenario

in which a large group of retailers buys from a smaller number of companies. When these

retailers resell these products, they describe the same product in new ways. Classes that

maintained a good score may indicate that for certain classes the gap between retail and

B2B product description is very little.

Class
SVM

F1-SCORE

WCNN

F1-SCORE

CCNN

F1-SCORE
support

33030010 0.5527 0.0383 0.3203 413.0

33030020 0.6082 0.0402 0.4504 410.0

33041000 0.8742 0.0246 0.0993 419.0

33042010 0.8182 0.0116 0.0827 374.0

33043000 0.9389 0.0194 0.0498 404.0

33049100 0.8281 0.3219 0.1274 399.0

33049910 0.4936 0.1089 0.1020 387.0

33049990 0.5788 0.1102 0.1078 418.0

33051000 0.9229 0.0416 0.0000 427.0

33059000 0.7236 0.0860 0.0729 401.0

33061000 0.9300 0.0190 0.0351 397.0

33069000 0.8418 0.0982 0.0442 429.0

33072010 0.6742 0.0244 0.0000 375.0

33072090 0.5441 0.1076 0.0000 416.0

34011190 0.8444 0.1927 0.0000 408.0

34013000 0.7311 0.0382 0.0301 393.0

39249000 0.7581 0.0692 0.0397 381.0

96032100 0.9575 0.0041 0.1288 396.0

accuracy 0.7538 0.0791 0.1006 -

macro avg 0.7567 0.0753 0.0939 7247.0

weighted avg 0.7570 0.0757 0.0945 7247.0

Table 6.5: NF-e dataset Results with models trained on NFC-e data.

Table 6.5 presents results in NF-e data for models trained on NFC-e data. This

arrangement also presents a drop in scores throughout all classes. 4 classes maintained

a score above 0.9 and only one class presented a drop in score to below 0.5. When

comparing results in both datasets, it is possible to see that model this configuration

presented better overall scores in all classes than in the previous configuration. No classes

66

presented drops in the score as sharp as those presented in table 6.4. This may indicate,

that NF-e product classification is an easier task than NFC-e product classification and

that classifying business transactions using retail data may be easier than the other way

around. Retail data presents a larger vocabulary that may contain formal Business terms.

Nonetheless, results presented in tables 6.5 and 6.4 provide evidence that, for certain

classes, invoice data can be used interchangeably to train NCM classification models.

6.3 Comparison between Classification Models

By comparing this models in greater detail, it was possible to see that SVM classifier

outperformed their counterparts in nearly all classes. This diverges from the related

literature that indicates that term-count based methods should struggle with short-text

classification. It was shown that invoice documents can be classified by only a handful of

terms and this offsets the challenges of short-text processing.

Transfer Learning results showed that SVM classifier was able to retain the ability of

correctly classifying the NCM code for products even when trained with documents of a

different type. It was shown that this behavior was common to both datasets, even though

there were some loss in performance. Some classes presented a larger drop in performance

due to a mismatch in vocabulary between different document uses. The prevalence of

SVM may be due to the size of CNN kernels. All kernel sizes were larger than one. This

may indicate that while the two types of documents share the same vocabulary, they are

worded differently.

Character based models were expected to outperform word-based representation due

to its supposed ability to model typos and morphologically similar words. The trade-off

would be a increased training time due to a larger network. However, character-based

model did not outperform word-based models.

6.4 Discussion and Review

This chapter presented experiments results that managed to answer the previously pre-

sented questions. It was shown that it is possible to predict the correct NCM code base

solely on product description. Models that presented an average accuracy of 88% and

78% on NF-e and NFC-e datasets respectively were successively shown.

67

Chapter 7

Conclusion and Future Work

This work addressed the emerging problem of processing electronic invoice data. E-

invoicing is emerging practice with valuable applications and many challenges. In this

work, we provided a study on how invoice processing could be tackled. The architecture for

SCAN-NF, a invoice classification system to aid tax auditors, was presented and validate

through a study case on real world invoice data, in which possible text classification

models were tested.

Product-transaction classification was framed as a short-text classification problem,

in which the model takes a brief text contained in the product description field of the

invoice, and uses this data to assign the NCM code for that product. The NCM code

being a standardized code form products and Services in the Mercosur.

In order to guide both studies and development in the field, this work presented a

general framework for invoice classification. This framework established a layered struc-

ture to invoice processing, in which the output of the previous layer is fed to the next,

while also serving as input for valuable applications. Further contributions of this work

are contextualized in the presented framework as a product-transaction work. The results

of this work could latter be used in both invoice and issuer classification and analysis.

This work present the architecture for SCAN-NF, a system to aid tax auditors by

assigning the correct NCM code to product transactions. In order to validate the proposed

architecture we outline different research questions: (1) Could the Correct NCM code for

a product transaction be predicted solely on product description? (2) How does the

available models compare in this task? (3) Can one type of invoice document be used in

predicting the other?

In the case study using data provided by the state treasure office it was possible answer

these questions. It was confirmed that it was possible to assign NCM code based solely on

text description for several classes. Even for the classes that models struggled, accuracy

score was superior to the dummy random classifier. Comparisons between models results

68

showed that while word-based CNN trained and predicted faster than the SVM classifier,

the latter performed better on most classes across both datasets. SVM classifiers also

managed to preserve knowledge between both types of documents.

The conclusion of this work is that while at product-transaction level invoice classifica-

tion could be framed as short-text, NCM classification does not share the same challenges

as other short-text classification problems. Simple Term-Frequency models outperformed

the more complex CNN models on both datasets. This work argues that while product

description is brief in invoice documents, the type of product in each invoice can be iden-

tified by the presence of a handful of words. Supervised model are valuable resource in

this context for being able to leverage the large amount of issuer-labeled documents to

create models that are able to identify these words. These models are easier to train and

maintain than large rule-base systems.

7.1 List of Contributions:

This works contributions may be summarized as :

• Presented a review of invoice processing literature: invoice processing is an emerging

subject for many valuable applications, this work presented several related work on

how to handle invoice processing in many levels.

• Presented modeling of Invoice Processing as short-text problem: This work pre-

sented the characteristics of short-text processing and how classification based on

individual product description could be framed as a short-text problem.

• Presented a contextual framework of invoice processing different challenges and

opportunities: Since invoice processing is an emerging subject, this work presented

and organized, layered framework to guide future research and developments. Main

challenges and opportunities for each layer are also presented.

• Presented the architecture for SCAN-NF, a product transaction system to aid tax

auditors: this work presented how a NCM classifier could be used by tax-auditors

in identifying suspicious transactions and how this model could fit in a larger archi-

tecture.

• Presented a study case on real world invoice data on two types of documents: Re-

search questions were validate through experiments made on real world data pro-

vided by the state treasury office. These datasets were made public through this

work.

69

• Presented a comparison of different machine learning models over different datasets:

different machine learning models were evaluated during experimentation in order

to identify different characteristics of these models as well as NCM product Classi-

fication.

7.2 Future Research:

Future Research could tackle the following points:

• Utilizing mismatches between reported NCM code and predicted NCM code in order

to estimate recoverable taxes: While this work provided ways to classify the NCM

code, there is still room to evaluate how much could be recovered from a given

transaction. This would require a better modelling between the relationship of the

NCM code and taxation, the calculation of the range of recoverable taxes and the

agent policy for auditing a particular issuer based on the aggregate value of all

recoverable taxes over a period o time.

• Aggregate analysis at the invoice level: This work addressed invoice classification

at disassociated product transaction level. By leveraging invoice level processing,

relationship between different products could be used to track unusual transactions

as well as establishing economic agents behavior.

• Create a stack of classification methods to identify ill-intended issuers: while many

of the proposed themes address invoice documents at more granular levels, real

world application of these resources aim at identifying issuers that have intentionally

commit irregularities. Profiling these issuers would probably take an ensemble of

multiple classification model to predict different attributes and also graph analysis

to study the links between suspicious issuers and other business.

• Model real world transaction operations: While the presented models only took

reported invoice data as input, there are several aspects of business operations that

could be used to model issuer behavior such as storage and transformation.

• Further explore the classification of particularly important classes: Performance

varied between experimental classes. Specialized models could be further trained to

handle this classes with the aid of knowledge Bases.

• Utilize product description to reconstruct the pathway of merchandise: As men-

tioned before, business often transform the merchandise as part of its day-to-day

operations. By comparing the input and outputs of transactions of businesses could

be used to map outliers.

70

Bibliography

[1] Kieckbusch, Diego S., Geraldo P. R. Filho, Vinicius Di Oliveira e Li Weigang: SCAN-

NF: A CNN-based System for the Classification of Electronic Invoices through Short-

text Product Description. Em Mayo, Francisco José Domínguez, Massimo Marchiori

e Joaquim Filipe (editores): Proceedings of the 17th International Conference on Web

Information Systems and Technologies, WEBIST 2021, October 26-28, 2021, páginas

501–508. SCITEPRESS, 2021. https://doi.org/10.5220/0010715200003058. xi,

44, 46

[2] He, Y, C Wang, N Li e Z Zeng: Attention and Memory-Augmented Networks for

Dual-View Sequential Learning. Em Proceedings of the ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, páginas 125–134, 2020. 1, 3

[3] Chang, W. T., Y. P. Yeh, H. Y. Wu, Y. F. Lin, T S Dinh e I Lian: An automated

alarm system for food safety by using electronic invoices. PLoS ONE, 15(1), 2020.

1, 3, 42

[4] Zhou, M, X Hu, Y Zhu e P Li: A novel classification method for short texts with

few words. Em Proceedings of 2019 IEEE 3rd Information Technology, Networking,

Electronic and Automation Control Conference, ITNEC 2019, páginas 861–865, 2019.

2, 4, 33

[5] Yue, Y, Y Zhang, X Hu e P Li: Extremely Short Chinese Text Classification Method

Based on Bidirectional Semantic Extension. Em Journal of Physics: Conference

Series, volume 1437, 2020. 2, 4, 33

[6] Tang, X, Y Zhu, X Hu e P Li: An integrated classification model for massive short

texts with few words. Em ACM International Conference Proceeding Series, páginas

14–20, 2019. 4, 33

[7] Yu, J, Y Qiao, N Shu, K Sun, S Zhou e J Yang: Neural Network Based Transaction

Classification System for Chinese Transaction Behavior Analysis. Em Proceedings -

2019 IEEE International Congress on Big Data, BigData Congress 2019 - Part of

the 2019 IEEE World Congress on Services, páginas 64–71, 2019. 4, 33

[8] Zhu, Y, Y Li, Y Yue, J Qiang e Y Yuan: A Hybrid Classification Method via Character

Embedding in Chinese Short Text with Few Words. IEEE Access, 8:92120–92128,

2020. 4, 33

[9] Wang, Jin, Zhongyuan Wang, Dawei Zhang e Jun Yan: Combining knowledge with

deep convolutional neural networks for short text classification. IJCAI International

71

Joint Conference on Artificial Intelligence, páginas 2915–2921, 2017, ISSN 10450823.

4, 32

[10] Naseem, Usman, Imran Razzak, Katarzyna Musial e Muhammad Imran: Transformer

based Deep Intelligent Contextual Embedding for Twitter sentiment analysis. Future

Generation Computer Systems, 113:58–69, 2020, ISSN 0167739X. https://doi.

org/10.1016/j.future.2020.06.050. 4, 32

[11] Grida, Mohamed, Hasnaa Soliman e Mohamed Hassan: Short Text Mining: State of

the Art and Research Opportunities. Journal of Computer Science, 15(10):1450–1460,

Oct 2019. https://thescipub.com/abstract/jcssp.2019.1450.1460. 4

[12] Kieckbusch., Diego, Geraldo Filho., Vinicius Di Oliveira. e Li Weigang.: SCAN-NF:

A CNN-based System for the Classification of Electronic Invoices through Short-text

Product Description. Em Proceedings of the 17th International Conference on Web

Information Systems and Technologies - WEBIST,, páginas 501–508. INSTICC, Sci-

TePress, 2021, ISBN 978-989-758-536-4. 5

[13] Aggarwal, Charu C. e Charu C. Aggarwal: Machine Learning for Text. 2018. 7, 9

[14] Collobert, Ronan, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu e

Pavel Kuksa: Natural language processing (almost) from scratch. Journal of Machine

Learning Research, 12:2493–2537, 2011, ISSN 15324435. 7

[15] Alsmadi, Issa e Keng Hoon Gan: Review of short-text classification. International

Journal of Web Information Systems, 15(2):155–182, 2019, ISSN 17440092. 10, 14,

32

[16] Song, Ge, Yunming Ye, Xiaolin Du, Xiaohui Huang e Shifu Bie: Short Text Clas-

sification: A Survey. Journal of Multimedia, 9(5):635–643, 2014, ISSN 1796-2048.

12

[17] Ellen, Jeffrey: ALL ABOUT MICROTEXT - A Working Definition and a Survey

of Current Microtext Research within Artificial Intelligence and Natural Language

Processing. Proceedings of the 3rd International Conference on Agents and Artificial

Intelligence (ICAART-2011), páginas 329–336, 2011. 12, 13

[18] Rafeeque, P. C. e S. Sendhilkumar: A survey on Short text analysis in Web. 3rd

International Conference on Advanced Computing, ICoAC 2011, páginas 365–370,

2011. 13, 14

[19] Ellen, Jeffrey: Contrasting machine learning approaches for microtext classification.

Proceedings of the 2011 International Conference on Artificial Intelligence, ICAI

2011, 2:543–548, 2011. 13

[20] Abrol, Satyen e Latifur Khan: TWinner: Understanding news queries with geo-

content using Twitter. Proceedings of the 6th Workshop on Geographic Information

Retrieval, GIR’10, páginas 18–19, 2010. 14

72

[21] O’Connor, Brendan, Michel Krieger e David Ahn: TweetMotif: Exploratory search

and topic summarization for Twitter. ICWSM 2010 - Proceedings of the 4th In-

ternational AAAI Conference on Weblogs and Social Media, (May):384–385, 2010.

14

[22] Dela Rosa, Kevin e Jeffrey Ellen: Text classification methodologies applied to micro-

text in military chat. 8th International Conference on Machine Learning and Appli-

cations, ICMLA 2009, páginas 710–714, 2009. 14

[23] Sahami, Mehran e Timothy D. Heilman: A web-based kernel function for measuring

the similarity of short text snippets. Proceedings of the 15th International Conference

on World Wide Web, páginas 377–386, 2006. 14, 31

[24] Yih, Wen Tau e Christopher Meek: Improving similarity measures for short segments

of text. Proceedings of the National Conference on Artificial Intelligence, 2:1489–

1494, 2007. 14, 31

[25] Sriram, Bharath, David Fuhry, Engin Demir, Hakan Ferhatosmanoglu e Murat De-

mirbas: Short text classification in twitter to improve information filtering. SIGIR

2010 Proceedings - 33rd Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, (January 2010):841–842, 2010. 14

[26] Qiang, Jipeng, Zhenyu Qian, Yun Li, Yunhao Yuan e Xindong Wu: Short Text Topic

Modeling Techniques, Applications, and Performance: A Survey. IEEE Transactions

on Knowledge and Data Engineering, 14(8):1–1, 2020, ISSN 1041-4347. 14

[27] Goodfellow, Ian, Yoshua Bengio e Aaron Courville. 2016. 15, 16, 18

[28] Lecun, Yann, Yoshua Bengio e Geoffrey Hinton: Deep learning. Nature,

521(7553):436–444, 2015, ISSN 14764687. 15, 16, 17

[29] Young, Tom, Devamanyu Hazarika, Soujanya Poria e Erik Cambria: Recent trends

in deep learning based natural language processing [Review Article]. IEEE Computa-

tional Intelligence Magazine, 13(3):55–75, 2018, ISSN 15566048. 15, 20, 21

[30] Widrow, Bernard e Michael A. Lehr: 30 Years of Adaptive Neural Networks: Per-

ceptron, Madaline, and Backpropagation. Proceedings of the IEEE, 78(9):1415–1442,

1990, ISSN 15582256. 16

[31] Kingma, Diederik P e Jimmy Lei Ba: ADAM. Iclr, páginas 1–15, 2015. https:
//arxiv.org/pdf/1412.6980.pdf{%}22entiredocument. 17

[32] Duchi, John, Elad Hazan e Yoram Singer: Adaptive subgradient methods for online

learning and stochastic optimization. COLT 2010 - The 23rd Conference on Learning

Theory, 12:257–269, 2010. 17

[33] Kim, Yoon: Convolutional neural networks for sentence classification. EMNLP 2014 -

2014 Conference on Empirical Methods in Natural Language Processing, Proceedings

of the Conference, (2011):1746–1751, 2014. 19, 20, 32

73

[34] Elman, Jeffrey L.: Finding structure in time. Cognitive Science, 14(2):179–211, 1990,

ISSN 03640213. 20

[35] Hochreiter, Sepp e Jürgen Schmidhuber: Long Short-Term Memory. Neural Compu-

tation, 9(8):1735–1780, 1997, ISSN 08997667. 20

[36] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk e Yoshua Bengio: Learning phrase representations using

RNN encoder-decoder for statistical machine translation. EMNLP 2014 - 2014 Con-

ference on Empirical Methods in Natural Language Processing, Proceedings of the

Conference, páginas 1724–1734, 2014. 21

[37] Harris, Zellig S.: Distributional Structure. WORD, 10(2-3):146–162, 1954,

ISSN 0043-7956. 21

[38] Wang, Xin, Yuanchao Liu, Chengjie Sun, Baoxun Wang e Xiaolong Wang: Predic-

ting polarities of tweets by composing word embeddings with long short-Term memory.

ACL-IJCNLP 2015 - 53rd Annual Meeting of the Association for Computational Lin-

guistics and the 7th International Joint Conference on Natural Language Processing

of the Asian Federation of Natural Language Processing, Proceedings of the Confe-

rence, 1:1343–1353, 2015. 21

[39] Graves, Alex, Abdel Rahman Mohamed e Geoffrey Hinton: Speech recognition

with deep recurrent neural networks. ICASSP, IEEE International Conference

on Acoustics, Speech and Signal Processing - Proceedings, (3):6645–6649, 2013,

ISSN 15206149. 21, 22

[40] Bahdanau, Dzmitry, Kyung Hyun Cho e Yoshua Bengio: Neural machine translation

by jointly learning to align and translate. 3rd International Conference on Learning

Representations, ICLR 2015 - Conference Track Proceedings, páginas 1–15, 2015. 22,

23

[41] Rumelhart, D. E., G. E. Hinton e R. J. Williams: Learning Representations by Error

Propagating Errors. Nature, (323):533–536, 1986. 24

[42] Bengio, Yoshua, Réjean Ducharme e Pascal Vincent: A neural probabilistic language

model. Advances in Neural Information Processing Systems, 3:1137–1155, 2001,

ISSN 10495258. 24

[43] Mikolov, Tomas, Kai Chen, Greg Corrado e Jeffrey Dean: Efficient Estimation of

Word Representations in Vector Space. páginas 1–12, 2013. http://arxiv.org/
abs/1301.3781. 24, 25

[44] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg Corrado e Jeffrey Dean: Distributed

representations ofwords and phrases and their compositionality. Advances in Neural

Information Processing Systems, (October 2013), 2013, ISSN 10495258. 24

[45] Mikolov, Tomáš, Jiří Kopecký, Lukáš Burget, Ondřej Glembek e Jan Honza Čer-

nocký: Neural network based language models for highly inflective languages. ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing - Proce-

edings, páginas 4725–4728, 2009, ISSN 15206149. 26

http://arxiv.org/

74

[46] Mikolov, Tomas, Edouard Grave, Piotr Bojanowski, Christian Puhrsch e Armand

Joulin: Advances in pre-training distributed word representations. LREC 2018 - 11th

International Conference on Language Resources and Evaluation, (1):52–55, 2019.

25

[47] Bojanowski, Piotr, Edouard Grave, Armand Joulin e Tomas Mikolov: Enriching Word

Vectors with Subword Information. Transactions of the Association for Computatio-

nal Linguistics, 5:135–146, 2017, ISSN 2307-387X. 25

[48] Pennington, Jeffrey, Richard Socher e Christopher D. Manning: GloVe: Global Vec-
tors for Word Representation. Em Empirical Methods in Natural Language Pro-

cessing (EMNLP), páginas 1532–1543, 2014. http://www.aclweb.org/anthology/

D14-1162. 26

[49] Chiu, Billy, Anna Korhonen e Sampo Pyysalo: Intrinsic Evaluation of Word Vectors

Fails to Predict Extrinsic Performance. páginas 1–6, 2016. 27

[50] Faruqui, Manaal, Yulia Tsvetkov, Pushpendre Rastogi e Chris Dyer: Problems With

Evaluation of Word Embeddings Using Word Similarity Tasks. páginas 30–35, 2016.

27, 35

[51] Conneau, Alexis e Douwe Kiela: SentEval: An evaluation toolkit for universal sen-

tence representations. LREC 2018 - 11th International Conference on Language

Resources and Evaluation, páginas 1699–1704, 2019. 28

[52] Yin, Wenpeng e Hinrich Schütze: Learning Meta-Embeddings by Using Ensembles of

Embedding Sets. (2013), 2015. http://arxiv.org/abs/1508.04257. 28

[53] Coates, Joshua N. e Danushka Bollegala: Frustratingly easy meta-embedding-

computing meta-embeddings by averaging source word embeddings. NAACL HLT 2018

- 2018 Conference of the North American Chapter of the Association for Computa-

tional Linguistics: Human Language Technologies - Proceedings of the Conference,

2:194–198, 2018. 28

[54] Kiela, Douwe, Changhan Wang e Kyunghyun Cho: Dynamic Meta-Embeddings for

Improved Sentence Representations. https://arxiv.org/abs/1804.07983. 28

[55] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Ai-

dan N. Gomez, Łukasz Kaiser e Illia Polosukhin: Attention is all you need. Advan-

ces in Neural Information Processing Systems, 2017-Decem(Nips):5999–6009, 2017,

ISSN 10495258. 29, 30

[56] Phan, Xuan Hieu, Le Minh Nguyen e Susumu Horiguchi: Learning to classify short

and sparse text & web with hidden topics from large-scale data collections. Proce-

eding of the 17th International Conference on World Wide Web 2008, WWW’08,

(January):91–99, 2008. 31, 34

[57] Alsmadi, I e G K Hoon: Term weighting scheme for short-text classification: Twitter

corpuses. Neural Computing and Applications, 31(8):3819–3831, 2019. 32

http://www.aclweb.org/anthology/
http://arxiv.org/abs/1508.04257

75

[58] Wang, Sida e Christopher D. Manning: Baselines and bigrams: Simple, good senti-

ment and topic classification. 50th Annual Meeting of the Association for Computa-

tional Linguistics, ACL 2012 - Proceedings of the Conference, 2(July):90–94, 2012.

32

[59] Zhang, Xiang e Yann LeCun: Text Understanding from Scratch, 2016. http://
arxiv.org/abs/1502.01710. 32

[60] Chen, J, S Yan e K. C. Wong: Verbal aggression detection on Twitter comments:

convolutional neural network for short-text sentiment analysis. Neural Computing

and Applications, 32(15):10809–10818, 2020. 33

[61] Paalman, J, S Mullick, K Zervanou e Y Zhang: Term based semantic clusters for very

short text classification. Em International Conference Recent Advances in Natural

Language Processing, RANLP, volume 2019-Septe, páginas 878–887, 2019. 34, 42

[62] ENCAT: Manual de Orientação do Contribuinte - Padrões Técnicos de Comunicação.

38, 39

[63] Feng, Yanhui, Peng Jiang, Zhenyu Gu e Yonghui Dai: Study of recognition of elec-

tronic invoice image. IEEE Information Technology, Networking, Electronic and

Automation Control Conference, ITNEC 2021, páginas 1582–1586, 2021. 42

[64] Zhang, H, B Dong, B Feng, F Yang e B Xu: Classification of Financial Tickets
Using Weakly Supervised Fine-Grained Networks. IEEE Access, 8:129469–

129477, 2020. https://www.scopus.com/inward/record.uri?eid=2-s2.

0-85089215581{&}doi=10.1109{%}2FACCESS.2020.3007528{&}partnerID=

40{&}md5=9fffb4e8a98ac64be2fa28de21f4e632. 42

[65] Palm, R B, F Laws e O Winther: Attend, copy, parse end-to-end information extrac-
tion from documents. Em Proceedings of the International Conference on Document

Analysis and Recognition, ICDAR, páginas 329–336, 2019. https://www.scopus.

com/inward/record.uri?eid=2-s2.0-85079851980{&}doi=10.1109{%}2FICDAR.

2019.00060{&}partnerID=40{&}md5=29b092a6c8a3c0caf86779867d63d202. 42

[66] Tang, Peng, Weidong Qiu, Zheng Huang, Shuang Chen, Min Yan, Huijuan Lian e

Zhe Li: Anomaly detection in electronic invoice systems based on machine learning.

Information Sciences, 535:172–186, 2020, ISSN 00200255. https://doi.org/10.

1016/j.ins.2020.03.089. 42

[67] Marinho, Mayara C., Vinicius Di Oliveira, Sérgio A. P. B. Neto, Li Weigang e Vinícius

R. P. Borges: Visual Analysis of Electronic Invoices to Identify Suspicious Cases

of Tax Frauds. Em Rocha, Álvaro, Carlos Ferrás, Abel Méndez Porras e Efren

Jimenez Delgado (editores): Information Technology and Systems, páginas 185–195,

Cham, 2022. Springer International Publishing, ISBN 978-3-030-96293-7. 42

[68] Schulte, Johannes P., Felipe T. Giuntini, Renato A. Nobre, Khalil C. do Nascimento,

Rodolfo I. Meneguette, Weigang Li, Vinícius P. Gonçalves e Geraldo P. Rocha Filho:

ELINAC: Autoencoder Approach for Electronic Invoices Data Clustering. Applied

http://www.scopus.com/inward/record.uri?eid=2-s2

76

Sciences, 12(6), 2022, ISSN 2076-3417. https://www.mdpi.com/2076-3417/12/6/
3008. 42

[69] Agapito, Giuseppe, Barbara Calabrese, Pietro Hiram Guzzi, Sabrina Graziano e

Mario Cannataro: Association Rule Mining from large datasets of clinical invoices

document. Proceedings - 2019 IEEE International Conference on Bioinformatics and

Biomedicine, BIBM 2019, páginas 2232–2238, 2019. 42

[70] Da Rocha, Cristiano Cortez, Márcio Parise Boufleur, Leandro Da Silva Fornasier,

Júlio César Narciso, Andrea Schwertner Charão, Vinícius Maran, João Carlos D.

Lima e Benhur O. Stein: SQL query performance on hadoop: An analysis focused on

large databases of brazilian electronic invoices. ICEIS 2018 - Proceedings of the 20th

International Conference on Enterprise Information Systems, 1(Iceis):29–37, 2018.

43

[71] Cuylen, Angelica, Lubov Kosch e Michael H. Breitner: Development of a matu-

rity model for electronic invoice processes. Electronic Markets, 26(2):115–127, 2016,

ISSN 14228890. 43

http://www.mdpi.com/2076-3417/12/6/

