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Resumo

Recentemente, os sistemas Ciber-Físicos (CPS) têm se tornado cada vez mais relevantes
em nossa vida cotidiana, o que demanda maiores níveis de confiabilidade. A área de
Runtime Verification endereça esse ponto por meio de monitores em tempo de execução
que verificam a satisfatibilidade de propriedades do sistema formalizadas. Quando uma
violação é identificada, o sistema pode alertar o usuário ou executar alguma rotina prede-
finida para manter a operação regular do sistema. Ao final, o analista pode diagnosticar
o problema e realizar as medidas necessárias para a correção

No entanto, a complexidade inerente a estes domínios suscita alguns desafios, como
por exemplo a imprevisibilidade de certos acontecimentos, dificuldades em representar os
processos cibernéticos ou físicos, e o conhecimento incompleto dos contextos do ambiente.
Tudo isso pode fazer com que os monitores se comportem de forma inesperada, ou que
eles não monitorem algum aspecto que deveria ser considerado.

Procurar inspiração em processos de outros campos é uma atividade muito comum
na Informática. O Algoritmo de Seleção Negativa, por exemplo, é uma técnica de base
imunológica com múltiplas aplicações bem sucedidas em CPS, principalmente no campo
do diagnóstico de falhas para a identificação de comportamentos anômalos. A explicabi-
lidade do algoritmo pode trazer benefícios expressivos para a concepção e verificação de
CPS, ajudando a compreender os padrões de violação de propriedade, e assim melhorar
a verificação do sistema.

Neste trabalho, propõe-se uma metodologia que visa aumentar a confiabilidade de
CPS. Isto é feito através de um diagnóstico sistemático das violações das propriedades do
sistema baseado em dados gerados por um protótipo. O algoritmo de Seleção Negativa
(NSA) serve como método de redundância analítica para isolar e identificar fatores que
contribuem para a violação de propriedade no sistema. É possível que, através do arra-
zoamento sobre tais fatores, as razões pelas quais as violações de propriedade acontecem,
os monitores possam ser refinados e mecanismos tolerantes a falhas possam ser criados
permitindo, assim, o desenvolvimento de aplicações mais seguras e melhores.
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Abstract

Recently, Cyber-physical systems are becoming more relevant in our day-to-day lives, thus
demanding higher reliability. The Runtime Verification field addresses this by relying on
runtime monitors to verify the satisfiability of formalized system properties. When a
violation is spotted, the system can alert the user, or run some predefined process in
order to maintain the regular operation. Afterwards, the analyst can take a closer look
and perform the proper correction measures.

Nevertheless, the complexity inherent of these domains raises some challenges like
unforeseen events, difficulties in depicting either the cyber or the physical processes, and
the incomplete knowledge of the environment contexts, for example. All of that may
cause the monitors to misbehave or miss out on some important aspects that should be
considered when monitoring a property.

Seeking inspiration in processes from other fields is a very common activity in Com-
puter Science. The Negative Selection Algorithm, for example, is an immuno-based tech-
nique with multiple successful applications in the field of CPS, primarily in the field of
fault diagnostics for the identification of anomalous behavior. The algorithm’s explain-
ability may bring expressive benefits for the design and verification of CPS by helping
understand the property violation patterns, and thus enhance the system verification.

In this work, we propose a methodology that aims at increasing the reliability of CPSs.
This is achieved by a systematical diagnosis of system properties violations based on data
generated by a prototype, performed in the early stages of development. An immuno-
inspired algorithm called Negative Selection (NSA) serves as an analytical redundancy
method to isolate and identify the cause for property violation in the system. We be-
lieve that, by reasoning about why the property violations happen, the runtime monitors
may be refined, fault-tolerant mechanisms may be added, and, thus, safer and better
applications might be written.

Keywords: Cyber-physical Systems, Property Specification, Negative Selection, Fault
Diagnosis, Verification
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Chapter 1

Introduction

1.1 Problem Definition

Cyber-physical systems are systems that integrate software components with physical
processes [6]. They are a definite reality in our day-to-day lives, especially in the recent
years. It is fair to say that the development of autonomous systems and the Internet of
Things have taken us quite near to the future visions we had a few decades ago. Flying
cars, for example, were supplanted by unmanned aircraft and autonomous drones, for
instance, although these technologies are now used for a variety of applications rather than
just passenger transportation. The usage of CPSs is also increasing amongst sophisticated
applications, whose domains include self-driving vehicles, smart homes, smart cities, and
more.

Nevertheless, the complexity inherent of these domains raises some challanges. Un-
foreseen events, for example, might make the CPS unreliable at runtime, which could
have disastrous effects. This is a fact, particularly for safety-critical systems, which are
subject to strict safety rules, time limitations, and performance requirements, and whose
malfunctions might potentially endanger the user’s life. Such systems demand the provi-
sion of assurances to guarantee that the system’s goals are met during its entire lifespan,
from conception to operation.

The Runtime Verification field [7] tries to address this problem. One of its techiniques
relies on deriving a set of properties from the specification that formally describe how the
system should behave. Then, runtime monitors are developed as a means to verify the
satisfiability of each property while the CPS is being executed. The so called observers
are state machines capable of performing the verification task by reading the log files, or
the signals sent between the system modules. When a violation is spotted, an error state
is reached. When that happens, the system can alert the user, or run some predefined
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process in order to maintain the regular operation. Afterwards, the analyst can take a
closer look and perform the proper correction measures.

Nevertheless, in some cases, it might not be possible to wait for the CPS to be deployed
and realize the verification afterwards, since it may potentially be costly or even harmful.
A possible solution is to develop a prototype of the system before its deployment [8].
In this case, the CPS would be modeled in a simulation environment, while still in the
early stages of development, with the Runtime Verification monitors acting as observers to
analyze the properties during the simulation. Several simulations may be executed, with
varying configurations to account for the different scenarios that may happen in runtime.
Such scenarios may include failures in components, physical processes that may impact
the CPS’ behavior, crashes in the system and so on.

However, the CPS verification task is a difficult undertaking yet to be perfectly
achieved [9]. One of the reasons is that, when applications are first designed, the knowl-
edge about the environment in which they will be deployed may be incomplete, and also
subject to continuous change over the application’s lifetime [10]. This fact may affect
the quality aspects of CPSs operation both at a physical and at a logical level, such as a
freezing temperature affecting a sensor’s capacity to deliver reliable data. Besides that,
the complex relation between the cyber and physical aspects of the CPS contributes to
the challenging task of monitoring such systems. While the physical process are modeled
by time-continuous equations, the discrete behavior of software components can be de-
scribed as state machines [11]. Other complexities are related to the dynamic behavior of
the physical components, i.e. deterioration and malfunctioning, for instance.

All of that may cause the observers to misbehave or miss out on some important aspects
that should be considered when monitoring a property. In face of a faulty scenario, the
system analyst might wonder "what caused the property violation?" or "which components
or behaviors are related to violations of the property?". The intricate relation between
the cybernetic and physical natures of CPS creates obstacles when obtaining the set of
configurations or behaviors that lead the system to anomalous behavior. Trying to address
this problem by debbuging the prototype can be a very time-consuming task, whithout
any guarantees of solving it.

Hence there is a need for an approach that increases the reliability of Cyber-physical
systems by enhancing the runtime monitors. This technique should support the system
analyst in the understanding of the context variabilities that provoke the violation of the
system’s properties, in a way that accounts for the complexities of the CPS. In summary,
the goal of this study can be condensed in the following research question:
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RQ: How to enhance runtime monitors accurately and systematically to account for the
complex interaction between the physical and cybernetic nature of CPS?

1.2 Proposed Solution

Seeking inspiration in processes from other fields is a very common activity in Computer
Science. Nature, especially biology, has long served as a fruitfull source of methodologies
like artificial intelligence approaches. Artificial Neural Networks (ANN) are inspired by
the functioning of the nervous system [12], Evolutionary Algorithms (EA) were based on
the model of natural evolution [13], and the biologic immune system led to the creation of
Artificial Immune Systems (AIS) [14]. These new developing soft computing approaches
have already been employed in a variety of disciplines since the early 1990s.

The Negative Selection Algorithm [14], for example, is an immuno-based technique
with multiple successful applications in the field of CPS, primarily in the field of fault
diagnostics for the identification of anomalous behavior. This one-class method works by
developing detectors aimed at classifying data that corresponds to abnormal behavior. A
carefull study of these detectors may lead to explanations about the patterns that generate
such behaviors and the isolation of the fault and the enabling of the development of fault-
tolerant mechanisms that increase the runtime montioring of CPSs. This algorithm may
bring several benefits for the field of CPS verification. By defining as abnormal behavior
situations where the formalised system properties are not met, the patterns that define
violations could be assessed and, hence, the system properties could be enhanced.

In this work, we propose a methodology that aims at increasing the reliability of CPSs.
This is achieved by a systematical diagnosis of system properties violations based on data
generated by a protoype, performed in the early stages of development. The immuno-
inspired algorithm called Negative Selection (NSA) serves as an analytical redundancy
method to indicate the features or behaviors that account for property violations in the
system. We believe that, by reasoning about why the property violations happen, the
runtime monitors may be refined, fault-tolerant mechanisms may be added, and, thus,
safer and better applications might be written.

The methodology is comprised of two main phases. In the first phase, a prototype of
the system is implemented based on the specification of the system and a set of properties
derived from it. The observers are also implemented in the prototype for the verification
of the properties satisfiability during the simulantions. After that, several simulations are
performed with varying configurations, input data and parameters in order to account for
the context variability that may arise at runtime.
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In the second phase we perform the analysis of property violations in the data extracted
from the prototype. Initially, a feature engineering process takes place to derive a set
of boolean features to describe the behavior of the CPS. Then, based on the intended
behavior of the observers, the rows are labeled as self or nonself, meaning regular data
traces or faulty traces that incur in violation. Next, each row is formatted as binary
strings. Then, the NSA is executed on the self data: new binary strings are generated,
which go through a censoring process, in which they are tested against the self data,
based on a similarity function, and are discarded if matched. The resulting set contains
detectors specialized in matching nonself data which are carefully examined so that the
patterns discovered can be comprehended. This process shares some similarities with the
Analytical Redundancy Method [15], since the pre-knowledge of a healthy system are the
properties being verified against the prototype data. Hence, it allows for the reasoning
about the causes of such violations, which can be used by the Analyst to enhance the
sytem’s specification, properties and the observers.

The Biological immune system (BIS) not only provides the NSA technique, but also
acts as a metaphore for the entire methodology. The initial phase can be related to
the Innate Immunity response, since it is the first line of defense of the body. The
prototype with the "naive" observers face the simulated runtime scenarios without a refined
knowledge, just as the nonspecific process of the human body. The antigens are seen here
as the execution traces that incur in property violation. The operation data from the
simulation follows to the second phase of our approach, which can be compared to the
Adaptive Immunity response of the BIS. The biological system produces T cells, which
are matured in the Thymus by a censoring process called Negative Selection, in which
the lymphocytes are discarded if they strongly bind to proteins of the body. These
matured white blood cells are then used by the body to combat pathogens. Analogously,
the framework we are proposing uses the Negative Selection algorithm to create a set
of random detectors, which are "matured" by being tested against the operation dataset
from the prototype. These detectors, in turn, are used to enhance observer automata
capable of acting with a more refined knowledge of the environment.

1.3 Evaluation

We experimentally assess our strategy by designing a version of the Body Sensor Net-
work (BSN) [16]. Its Contextual Goal Model specifies a set of modules and resources,
like sensors, battery and patient’s sensed data, that will allow us to represent it as a
Cyber-Physical system. A system prototype of the CPS will be implemented in a simula-
tion environment called OpenModelica [17], which is a well known graphic modeling tool
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for the development of CPS prototypes in the Modelica language [18]. The simulations
were performed by using a dataset of 1,000 randomly generated patient data. The fea-
ture engineering process and the Negative Selection Algorithm were both implemented in
the Python programming language, which was also used in the causality analysis of the
detectors.

The NSA was evaluated regarding its generalization to unseen data. In this matter, all
of the execution segments that the model identified as property violations found were, in
fact, violations, accounting for a precision of 100%. Nevertheless, some patterns were not
detected by the algorithm, resulting in a recall rate of 0.9958. In addition, the analysis
of the efficiency of the technique was performed based on the number of patterns found.
The generated nonself detectors resulted in the discovery of 49 unveiled patterns related
to faulty segments, which were grouped into 11 clusters based on similarity.

Our approach was also compared with other Machine Learning algorithms. Two popu-
lar state-of-the-art semi-supervised anomaly detection algorithms, namely the One-Class
SVM and the Isolation Forest [19], were run on the same data, achieving a precision of
41.8% and 29.2%, respectively. This shows the strength of the NSA for this task. Besides
that, the algorithms Decision Tree, Random Forest and Gradient Boosting [20, 21] were
also tested, with similar performance when compared with the NSA. The advantage of
the Negati Selection Algorithm lies on the generated strings that are capable of match-
ing with nonself data. Those strings can be further analyzed to understand the patterns
that may cause vaiolations in the system. In the meanwhile, the Random Forest and the
Gradient Boosting provide only the importance of each feature, but not the relationship
between them in such cases. On the other hand, the Decision tree outputs a tree from
which patterns can be visualized, although it provided way less patterns in comparison
with the proposed methodology.

1.4 Organization

The rest of the document is organized as follows. Chapter 2 introduces some concepts that
are useful for the understanding of the framework. In Chapter 4 introduces the case study
that will be followed along the work. Chapter 5 futher details the proposed approach.
Chapter 3 shows some works that are strongly related to our proposed methodology.
Chapter 6 presents the results of the work after the evaluation, while Chapter 7 concludes
and provides the directions for future works.
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Chapter 2

Background

2.1 Cyber-Physical Systems (CPS)

Cyber-Physical Systems (CPS) can be defined as systems that integrate physical processes
and software components [6]. This is done by embedded computers and networks which
are capable of monitoring and controlling physical processes, tipically with feedback loops,
which affects the physical environment while they are operating [22].

It’s not new for physical and digital processes to be integrated into the same system.
The notion of engineered systems that combine computer softwares with physical processes
have been refered to as "embedded systems" for some time [6]. Car electronics, games,
weapons systems, household appliances, and toys can be mentioned as a few successful
examples. In order to delineate the distinction, Schatz [23] states that, even though
CPSs encompasses embedded systems, the cyber-physical integration in CPSs happens
both on a local and a global scale. Lee [6] and Jadzi [24] goes in a similar direction by
distinguishing CPSs and embedded systems in terms of networking and outsourcing of
computational power. Jadzi [24] goes beyond by alluding the data exchange as its most
important feature, while defining CPSs in terms of embedded systems that are "able to
send and receive data over a network." In turn, Dowdeswell et. al [25] adds that, in this
sense, CPSs can be seen as seamless entities that form entire systems.

A CPS comprises three main modules [24]: a control unit, which relates to the com-
putational aspect; a set of sensors and actuators, which refer to the physical processes
and are controled by the control unit; and a collection of microcontrollers, that interfaces
the two. Besides that, a communication interface is also required for the data exchange
with other CPSs, a central unit or a cloud.

Aleksandrowicz et al. [1] further divide the Cyber part of the CPS as a four-layered
architecture, as depicted in Figure 2.1. First, the analog/mixed-signal (AMS) layer focuses
on the design’s aging behavior and simulates the low level components, particularly sensors
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and actuators. Second, the digital hardware layer abstracts the AMS layer’s signals as
binary values. Thirdly, the architectural layer sees the CPS as a collection of computing
units with varying capacities, a communication network connecting those computational
units, and a collection of high-level-of-abstraction activities that should be completed on
the system. Finally, the behavioral layer addresses the CPS’s functional behavior and
tasks by representing the behavioral aspects of the system’s functioning implemented in
either software or hardware.

Figure 2.1: The stack of layers of the Cyber nature of CPS [1] (with adaptations)

Automotive systems, avionics systems, defense systems, manufacturing systems, pro-
cess control systems, traffic control systems, robotics, smart medical devices, smart house-
hold applications, and marine systems are just a few of the application areas where CPSs
have been utilized and developed [26]. Banerjee et al. [22] review the literature and
group a non-exaustive list of representatives: the usage of physiological sensors that allow
for continuous health monitoring, the quick identification of medical situations, and the
administration of treatments; Data centers (DCs) that count on renewable energy for
cooling reasons; smart buildings that sense tenant absence and turn off the cooling unit
to improve energy efficiency; and unmanned aerial vehicles (UAVs) that surveils an area
based on a picture of the landscape.

Another distinctive aspect of CPSs worth mentioning is their complexity. Schatz [23]
divides it into three dimensions: (i) the "cross-dimension", which relates to process of com-
puting and physical natures being related to different domains, technologies, organizations
and so on; (ii) the "live-dimension", referring to the support of critical systems which can-
not be turned off, and thus require updates at runtime; and (iii) the "self-dimension",
which includes autonomous capabilities, like adaptation, healing monitoring and others.
Bolbot et al [26], however, segments the CPSs complexity as structural, dynamic and

7



organisational, according to the literature of system design and development. The first,
called structural complexity, refers to systems with many components and unexpected
interactions between them. Next, the dynamic complexity occurs when it is difficult to
understand how a system behaves and changes through time. Finally, the organizational
complexity relates to the configuration of the team in charge of the complex system’s
design and operation.

2.2 System Verification

The inherent complexity permeating cyber-physical systems create the need of evidence
to prove that the system is capable of meeting its requirements during its entire lifetime
[10]. This evidence, also known as assurances, can be defined as "the collection, analysis
and synthesis of evidence for building arguments which demonstrate that the system
satisfies its functional and non-functional requirements during operation". This is specially
important for safety-critical systems because of its safety restrictions and strict guidelines.

System verification is an approach for the provision of assurances that can be used
in cyber-physical system. Instead of relying on identification of hazards, it focuses on
stablishing that the CPS satisfies certain properties [27]. These properties are derived
from the system’s specification, which prescribes what the system should and should not
do. In this case, faults are related to the nonfulfillment of properties, and the system is
considered "correct" only when all properties are satisfied.

Formal methods are considered by the state-of-the-art approaches as the most promis-
ing way of providing such guarantees [10]. Nevertheless, some uncertainties might be faced
only during the system’s operation, which makes the off-line solutions insufficient. To ad-
dress this matter, Weyns et al. [28] introduce the concept of perpetual assurances, which
consists of a continuous process performed by both humans and the system to derive
and incorporate new evidences. To this end, two types of assurance must be consistently
updated [10]. First, the evidence that concerns the parts of the system that are little
affected by uncertainties and, thus, can be acquired by traditional off-line methods. Sec-
ond, the evidence regarding the modules that are considerably impacted by uncertainties.
This type of assurance should be synthesized during the handling of the uncertainty, at
runtime.

The methods that provide the perpetual assurances can be divided in three categories:
the human-driven, the system-driven and the hybrid approaches. Next, one sample strat-
egy from each group will be described.

• Formal Proof: A human-driven approach that relies on mathematical calculations
performed by automatic theorem provers to demonstrate a set of related theorems
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based on a formal description of a system. It requires from the developer a thorough
domain knowledge of the system and a vast mathematical experience, but provides
a reliable and unambiguous evidence.

• Model Checking: A hybrid method that verifies if a property is satisfied by
checking all the reachable states in the system. It is typically run offline, but can
also be applied online, and can both verify properties in the entire system (a high
level abstraction) or just in some specific module.

• Runtime Verification: A system-driven lightweight procedure that relies on gath-
ering data from an active system to determine whether specific properties are being
violated.

2.2.1 Model Checking

One of the techniques used in the area is called Model Checking, in which a timed-
automata model of the system goes through a reachability analysis in order to verify the
satisfiability of the properties [27]. It works by exploring the whole range of states that
are possible to occur in the system in a brute-force manner to check that the specified
properties are satisfied

If a state is encountered that violates the property under consideration, the model
checker provides a counterexample that indicates how the model could reach the undesired
state. The counterexample describes an execution path that leads from the initial system
state to a state that violates the property being verified

The process of model checking comprises three phases:

• Modeling phase: the system is modeled according to its specification in terms of
the description language of the tool that will run it. Such models must accurately
and unambiguously reflect the system’s intended behavior. They are typically mod-
eled using finite-state automata, meaning that they myst have a finite collection of
states and of transitions. States include information about variable values, previ-
ously run statements, and so on. Transitions illustrate how a system transitions
between states.

• Running phase: In this phase, the model checking tool is executed given the model
and the properties to be verfied. The checker exhaustively checks all the reachable
system states to determine the validity of the properties.

• Analysis phase: After running the checker, if no violations are found, the process
is concluded. If that is not the case, the cause of the result must be identified. It
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might be a modeling error or a property specification error. In both cases, upon
making the required fixes, a new verification is required.

2.2.2 Property Specification

In order to run the system verification process in a correct manner, the properties must
be specified in a precise and unambiguous way [27]. Differently from the system model,
which describes the behavior of the system, properties determine what the system should
and should not do.

To allow for thorough verification, properties must be stated precisely and unambigu-
ously. A property specification language is often used for this. In order to represent
significant properties of Cyber-physical systems, temporal logic is often used. This lan-
guage is essentially an extension of regular propositional logic with operators that relate
to the behavior of the system across time. It enables the specification of a wide range of
relevant system properties, including functional correctness, reachability, safety, liveness,
fairness, and real-time properties.

However, there are some intrinsic problems that permeate the probess of property
specification. These problems are related to the difficulty in ensuring that a given specifi-
cation corresponds to a software engineer’s understanding about the system. To address
that issue, Autili et al. [29] proposed a property specification framework and a pattern
catalog. Their work aims at the simplification of the process of system property specifi-
cation. Initially, the property is written by using a Structured English Grammar, which
consists of phrases in plain English limited to temporal logics denotable terms. Then, the
property is mapped to instance patterns in the pattern catalog. Finally, the corresponding
temporal logic formula is derived from the pattern.

2.2.3 Runtime Verification (RV)

Verification is task performed in a CPS that relates to the assessment performed to check
the compliance of the system with the specification [30]. It can be performed while the
system is being run (runtime) or after its execution through the reading of the system’s
logs [7]. Leucker defines RV as a discipline in Computer Science that "that deals with the
study, development, and application of those verification techniques that allow checking
whether a run of a system under scrutiny (SUS) satisfies or violates a given correctness
property" [31].

Colombo et al. [7] describe divide this activity into 7 steps:

• 1. Selecting a language for the specification of the property;
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• 2. Defining the behavior of the system

• 3. Development of a monitor capable of listening the events of the system related
to the desired property;

• 4. Deriving an algorithm from the monitor;

• 5. Implementing the algorithm into the system;

• 6. Analysing the results of the monitoring;

• 7. Performing a response.

One of the ways that this monitors can be implemented is through Observers. This
components are capable of collecting information from the CPS, by reading the system’s
logs or the signals that are sent by the modules of the system. They help the system
analyst to identify faults, security issues, measure statistics and so on. This technique
consists of the translation of the TCTL formulas to finite-state automata that are added
the model to be verified. These state machines are engineered to reach error states only
when the observed property in the system model is violated [32].

Observers can be derived from the properties of the system with the help of a specifi-
cation pattern catalog, as the one proposed by Vogel et al. [33]. In their work, patterns
in the properties are used to automatically map them to timed-automata. They have
designed templates that account for all the specification patterns described by Autili et
al. [29], which can be translated into UPPAAL [34] autotama for the execution of the
Model Checking process, allowing for an end-to-end verification. This approach is utilized
in the checker to allow the verification of properties that go beyond simple reachability
[35].

End-to-end Verification

An end-to-end verification process, that goes from the CGM specification to runtime mon-
itoring, can really benefit the provision of assurances for Cyber-physical systems, since
the guarantees provided would help increase the reliability of such systems. This can be
achieved by initially modeling the core architectural elements, along with their behav-
ior, then by specifying a set of properties of interest, and then, by conducting a model
checking process in a verification tool like UPPAAL [34], and finally by implementing the
observers into the deployed to assert the system’s correctness and the satisfiability of the
properties in runtime. Figure 2.2 illustrates the modeling of the system and the derivation
of properties and observers until the Model Checking process.

First, the model is derived directly from the CGM, the input for this process. The
intended behavior of the leaf-tasks are modeled as timed automata, according to the
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Figure 2.2: Verification Process until Model Checking

system architecture. The automata denote module templates, meaning that they might
be reused if two instances share the same behavior. One of the possible modeling strategies
is to use guard conditions and different locations in the model to portray the progression
of the module’s behavior, and thus, its life cycle. Hence, the progress and fulfillment of
the CGM task’s behavior may be depicted in the UPPAAL model as reachable states or
locations, enabling the usage of reachability properties when verifying the correctness of
the system.

Second, with the formalized model in hand, the next activity is to specify the set of
properties that will be verified. In this sense, the Autili et al. [29] property specification
pattern catalog and framework (PSPFramework) can be used to define the CGM proper-
ties. Property specification patterns have been effectively utilized to bypass the pragmatic
hurdles of specification formalism, while still maintaining syntactic correctness and a true
reflection of the system’s intuition. As described earlier, this catalog comprises a list
of property patterns, or categories, each relying on a set of structured English phrases,
composed of terms that are denotable in temporal logics.

Each system property is specified in the PSPFramework in a top-down manner. A
property category is first chosen from the catalog patterns list by the software developer,
who then refines it with the specific scope and complementary attributes, like time or
probability constraints. As a consequence, a sentence in structured English is created,
which will then be mapped to an appropriate logic formalism. The mapping rule takes
into account the property category and scope defined earlier to match a logic formula
template from the catalog, which is written in a target language, like CSL or TCTL.
Finally, the given time and probability constraints are inserted into the formula using an
attribute assessment mechanism. The result is a formally expressed property, ready to be
verified. The resultant property set may be written in Timed Computational Tree Logic
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(TCTL) [36], since that is the language used by UPPAAL when verifying the formalized
model’s real-time features.

The Observer Technique can also be leverage as an additional step towards providing
evidence that the system behaves as expected. The translation is performed by using
an Observer Template catalog [33], as describe earlier, designed for model checking real-
time systems in UPPAAL. Analogously to the property specification process, the property
pattern and its corresponding scope are mapped to Observer UPPAAL template models
in the catalog. As a result, each monitorable property will have a corresponding observer
automata in the system model.

Afterwards, the generated formulas are be verified for reachability, safety or liveness in
the modeled system, by a Model Checking process. The TCTL model-checking problem
is to determine for a particular timed automaton TA and TCTL formula ϕ whether TA
⊨ ϕ [27]. A tool named UPPAAL [34] can be used to solve this problem by algorithmi-
cally assessing if the specified set of properties hold true for each possible state of the
system model. If that is not the case, the model, the system specification and the system
properties must be revised for a reverification.

Finally, after the assurances are provided in design time, the observers are implemented
as algorithms as a means to monitor the CPS during its execution. The algorithm is
deployed with in the system and reads the signals sent by the modules in order to verify
the satisfaction of the designed properties in runtime. Whenever a violation occurs, an
error state is reached, triggering a suitable response.

2.3 Biological Immune Systems (BIS)

As mentioned previously, the Artificial Immune System is a model inspired by its biological
counterpart in order to solve computational problems. Therefore, there is a need to
introduce the main concepts and processes found in the Biological Immune System so
that the analogies and metaphors implemented by the AIS might be better understood.
This subsection focuses on providing the reader with the foundational knowledge on the
BIS.

2.3.1 Main Concepts

Immunity can be defined as the ability to respond to unknown substances [14]. In this
sense, the Biological Immune System (BIS) comprises a set of structures and mecha-
nisms which are capable of distinguishing the body’s cells from foreign substances and
responding adequately. It includes specific organs, cells and molecules. It is a complex,
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fault-tolerant and distributed multilevel defense mechanism composed of two main layers,
namely the innate immunity and the adaptive immunity [2].

The primary goal of the BIS is to protect the body from potentially harmful material
[37]. It is composed by a multilevel defense mechanism that is capable of distinguishing
between molecules from the body itself and foreign ones, selecting a specific response to a
threat, and enacting an inflammatory reaction in order to maintain the health and safety
of the body. All of these activities are capable of evolving through time since they rely
on aspects of learning and memory, which are present in the BIS.

The innate immunity is the body’s first line of defense. Inherited from the host’s
progenitors, it is responsible for a quick or immediate response against infections. It is
achieved through physical and chemical barriers or through cellular responses. The bar-
riers are considered nonspecific mechanisms that work as shields against pathogens by
blocking them from entering the body. They comprise the skin, mucous membranes on
the body’s openings and the secretions of both. The low pH of the skin, for instance, in-
hibits the proliferation and growth of bacteria, while the antimicrobial substances present
in saliva and tears keep the antigens from invading through the membranes [14]. The
cellular response, on the other hand, focus on perceiving the pathogens that were able
to surpass the barriers and activating a variety of cellular responses, which include: the
ingestion of the substance (phagocytosis), the induction of an inflammatory response and
the triggering of the adaptive immunity for a tailor made response.

The adaptive immunity is an immunological mechanism that is capable of "specifically
recognize and selectively eliminate foreign microorganisms and molecules" [14]. In contrast
with the innate immunity, it has a high level of specificity when dealing with the antigens,
meaning that the response is customized and based on the particularities of the foreign
substance. The downside is that the response can take days to be performed. Nevertheless,
the information from previous infections is persisted in order to achieve a faster response
when a similar antigen is detected. In the literature, the adaptive immunity responses
is divided into two distinct, but overlapping, categories: the humoral immunity and the
cellular immunity.

The first kind of response, called humoral immunity, relies on the interaction between
the antigen and B lymphocytes, a specific type of white blood cell also known as B Cell.
These cells are created in the bone marrow and, when activated, are able to produce
antibodies, which bind to the antigen during the immunological response as a means to
destroy it. This can only happen if there is a match between the antibody and the surface
of the foreign material. Humans are thought to have 107 to 108 different antibodies with
distinct chemical compositions [38] that account for the possible variations of antigens
that one may find during the course of a lifetime.
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The second kind of adaptive response is called cellular immunity and is mediated by
lymphocytes called T cells. These cells are also produced in the bone marrow, but are
matured in an organ named Thymus. They are responsible for killing tumor cells and
cells from the body that were infected by the pathogen (altered self-cells).

2.3.2 Overview of the Immune Response

Figure 2.3: Main Processes of an Immune Response [2] (with adaptations)

Figure 2.3 shows an overview of the main activities that may happen during an immune
response. The whole process starts with an infection caused by an antigen that was
capable of passing through the physical and chemical barriers of the body (1). After
that, when the pathogen is detected by the front line phagocytic cells, a hormone-like
protein called cytokine is released by them as to induce a local inflammatory response (2).
Besides that, these cells are capable of engulfing the antigen and transporting it through
the lymphatic vessels with the objective of enacting the adaptive immune response (3).

In the meanwhile, both B and T lymphocytes are derived in the Bone marrow via
a process called hematopoiesis. The receptors of these cells undergo a pseudo-random
genetic rearrangement process during their creation that account for the variety of cells,
and thus the ability to bind with unseen substances [39]. While the B cells flow directly
through the blood flow into secondary lymphoid organs, the T cells stop at the Thymus
to be matured, and then follow the same path as the B cells (4). The maturation of
the T cells is a censoring process in which the lymphocytes are tested against proteins
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of the body. If a T-cell strongly binds to some self-protein, it is discarded. Hence, only
the T-cells that did not have a strong bind are allowed to flow through the bloodstream
and be used against the pathogen. This process is called Negative Selection and aims at
avoiding autoimmune responses.

The adaptive immune response starts at a secondary lymphoid organ, with the arrival
of the phagocytic cell carrying the antigen. In this step, a mechanism called Clonal
Selection is performed (5). The B and T lymphocytes with a high level of engagement
with the pathogen proliferate and mutate (somatic hypermutation) as a means to grow
in number and to improve the affinity with the foreign substance. Afterwards, these
differentiated cells leave the lymphoid organ and are pumped throughout the circulatory
system by the heart (6) until reaching the local of the inflammatory response (7). Finally,
the specialized lymphocytes act on the antigens in order to destroy the residual of the
invasion (8). These cells are kept as memory cells so that, in the case of a future similar
threat, allow for a faster response.

2.4 Artificial Immune Systems and the Negative Se-
lection Algorithm

In 1986, Farmer et al. [38] sought inspiration in the properties and theories of this
biological system to propose a computational model, named Artificial Immune System
(AIS). It was built in such a way that the immunological concepts and processes are
distilled into algorithms that can be simulated by a computer in order to solve all sorts
of problems from the real world. The idea behind it is that, since this system is able to
protect us, it might also be computationally useful [40]. Nevertheless, by that time, the
resources available were not powerful enough to allow its usage in real systems [41].

Recently, the advances in technology enabled complex tasks to be performed in a
fast and efficient way. This provided the researchers the tools needed to implement and
further improve the application of the immunological concepts into a wide range of prob-
lems. For example, AIS techniques have been used in problems like anomaly detection,
optimization, classification and clustering [37]. The Negative Selection, along with the
Clonal Selection, Immune Network Theory and the Danger Theory are amongst the most
researched approaches in the literature [3].

One of the fundamental skills of the BIS is the ability to differentiate between the
body’s own cells and the foreign material. It is called self/nonself discrimination [3] and
helps to protect the body from attacking itself whilst building a strong defense against
foreigners.
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As described in the previous subsection, T-cells are created in the bone marrow, where
they have their receptors differentiated by a pseudo-random genetic rearrangement pro-
cess. Later, in the Thymus, they are maturated by being tested with self cells. Lympho-
cytes that have a strong binding with self cells are discarded, in a censoring fashion. The
result of the process is a set of diverse T cells specialized in binding with nonself cells.

In 1994, Forrest et al. introduced an algorithm inspired by this process that is used
in the field of change/anomaly detection [42]. They have abstracted the concepts of
self and nonself so that the process of Negative Selection could be used in more general
problems. They have used a file authentication system as an example to instantiate one
of the possible applications. In their work, data from legitimate users trying to access
a file were thought as the body’s own cells, while non-authorized accesses were seen as
nonself material, or pathogens. Both types of data were translated into binaty strings,
and T-cell detectors were generated as binary strings of the same size which, during the
censoring phase, did not match the self data. A change was considered whenever there
was a match between some detector and the new data in the monitoring phase.

Since then, even though the main idea of the algorithm was kept, several implementa-
tions and adaptations were made to improve its performance and allow for the application
it in different scenarios. Dasgupta [3], in a recent work, reviewed the literature on this
matter and classified the algorithms found based on the following characteristics: data
type, data representation, distance function, detector size and initialization.

• Data Type: Refers to the type of the data that is used by the algorithm. It can
be binary or real-valued.

• Data Representation: Related to how the data is structured or formatted. If the
data type is binary, it can be shaped as a string or a grid. If it is a real value, the
formats are grid and vector.

• Distance function: Also called "affinity" or "matching" Function, it is a function
that identifies how strong is the bind between the self and nonself data. In the case
of binary strings, the most common are the r-chunk, r-continuous bits and hamming
distance with its variations. When talking about real valued types, the functions are
usually the distance between vectors, like the manhattan, euclidean or minkowski
distance. This section will provide more details about this topic latter on.

• Detector Initialization: Describes how the detectors are generated. In both data
types it can be in a random, semi random or adaptive fashion. Further details are
provided below.
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• Detector Size: It is usually fixed, but in some real valued algorithms the detectors’
size may vary in size in the generation process.

Even though different implementations may fall in different buckets, Ji and Dasgupta
[43] have distilled the three aspects that must be present in an algorithm so that it may
be considered a Negative Selection Algorithm. They are:

1. The goal is to identify the self-set counterpart.

2. Change/anomaly detection is performed by using some form of detector.

3. The algorithm makes use of only the self-samples during the detector generation.

Some discussion has been made over the Data Type and Representation characteristics
since they limit all the others [43] [3] [14]. The advantages of using bit strings are that
(1) any data can be presented as a binary string, (2) it facilitates the analysis of the
result and (3) categorical data are well represented in this form, even though they have a
scalability issue that comes with the increased string size.

All in all, to achieve the goals of this work, the binary data type will be used as
the string representation. Even though the Binary Negative Selection (BNSA) is well-
known for its performance and completeness issues [44], modeling the behavior of the
CPS as boolean features allows for simplicity and this format provide a great level of
interpretability, since the binary detectors can be reverse mapped to the original features,
thus, unveiling the discovered patterns.

The next subsections provide a more in depth view of the algorithm for the binary data
type, by showing its overall structure, detailing how the comparisons with the monitored
data are made and how the detectors are generated.

2.4.1 Algorithm Description

The Negative Selection Algorithm (NSA) can be divided in two steps: the generation of
the detectors, and the actual process of detection of the nonself. These steps are similar
to most supervised algorithms, in which there is a training and a test phase [3].

Figure 2.4 helps to shed some light on both phases. On the left-hand side, the gener-
ation of the detectors is illustrated. In this "training" step, a set of random candidates is
generated by some predefined process and undergo a censoring process based on the self
samples. The candidates that match the self samples, measured by the distance function,
are discarded, while the ones that do not match are added to the nonself detector set.
On the right-hand side of the figure, the detection, or "test", phase is shown. The nonself
detector set obtained in the first step is tested against the data that is being monitored.
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Figure 2.4: The two steps of the NSA [3] (with Adaptations)

The same distance function is utilized here to check whether the new data matches with
some of the detectors in the set. In the case of a match, the data is considered abnormal.

For a complete understanding of the inner workings of the algorithm, two important
pieces are missing: a description of how the random detector candidates are generated
and the definition of the matching function that will account for the affinity measurement.

2.4.2 Distance Function

First, the Distance function, or matching rule, is an operation that relies on the compar-
ison of characters (or bits) between two strings and provides a score telling how similar
(or different) the strings are. Three rules are the most widely used in the literature [45]:
the Hamming Distance, the R-Contiguous and the R-Chunk matching rules.

• Hamming Distance (HD): This function measures the number of characters
that differ between two strings [14]. Let X be a string of lenght n such that X =
x1x2x3...xn and let D be a dectector with the same lenght, so that D = d1d2d3...dn.
The Hamming Distance can be formally defined as:

HD =
∑

i

(xi ⊕ di)

where ⊕ is the XOR operation. In this case, a match between X and D is said
to have happened when the HD score is below a predefined threshold. Figure 2.5
shows how the comparison is made. The characters at each position are compared
and, if they are different, a unit is added to the final score. Therefore, two strigs
must have a low score to be considered similar.

• R-Contiguous: Let again X be a string of lenght n such that X = x1x2x3...xn

and let D be a dectector with the same lenght, so that D = d1d2d3...dn. Let also r

be an integer, such that 0 > r >= n. This rule defines a match between X and D

whenever the two strings have at least r consecutive identical characters starting at
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Figure 2.5: Illustration of the Hamming Distance Matching Rule

any position. This rule was mainly used in the first implementations of the NSA,
in which the detectors were created in a generate-and-test fashion [45].

Figure 2.6: Illustration of the R-Contiguous Matching Rule

Figure 2.6 illustrates this concept. A window of size r slides searching for a region
where the substrings match. If at least one region is found, then X and D are
considered a match.

• R-Chunk: Let X be a string of lenght n such that X = x1x2x3...xn and let D be
a dectector of size m so that D = d1d2d3...dm, with m ≤ n. Similarly to the R-
Continuous rule, the string and the detector are considered a match if, at a position
p, all bits of D are identical to the bits X in a window of size m, with 0 ≤ p ≤ n−r.
Hence, the detector is characterized by a chunk of size r and a starting position p,
and can be uniquely identified as tp,D. The practical difference between this rule
and the previous one is that this function allows for detectors of any size, which
improves the self-space coverage [14].

Figure 2.7: Illustration of the R-Chunk Matching Rule

Figure 2.7 shows an example of this rule. The detector t6,01011 has size 5 and was
a match in the sixth position of the string. The "*" represents irrelevant positions
meaning that any character can be matched.

The R-chunk is said to enhance the accuracy and performance of the NSA [45] because
the same generated string can be used as a detector in several positions. Therefore, one
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can say that lower sized detectors comprise an optimal detector set, since more abnormal
data can be detected. Nevertheless, as cited by Wierzchon and Chmielewski [46], a study
performed by Stibor showed that strings generated with low values of r are less likely
to become detectors. This probability highly increases in the middle range, and is close
to 1 for large string sizes. Hence, there is a sweet spot when trying to find the size of
the string, which is usually for middle values of r, that aligns accuracy and coverability
with efficiency. In our work, the R-chunk will be used as the distance function in the
NSA due to its advantages and since the matched region is isolated, allowing for a better
interpretability of the pattern found.

2.4.3 Detector Generation

Both Ayara et al. [47] and Dasgupta and Niño [14] provide a thorough detailing of the
different methods found in literature for the generation of the detectors set for binary data.
The most basic approach is the exhaustive detector generation, which was introduced in
the original NSA paper [42]. The idea is to exhaustively generate random candidates until
a big enough set of detectors is achieved. It was reported to be very time-consuming, since
the amount of candidates grows exponentially with the size of the self-set [4].

Figure 2.8: Example of the Exhaustive Detector Generation Process [4] (with adapta-
tions)

This generate-and-test method can be further explained with Figure 2.8 in which
random binary strings are generated and compose the Candidate Detectors set. Then,
each candidate is tested for a match with the self-set S by using one of the functions
described earlier. In the figure, if the compared strings have at least 2 matching contiguous
bits, the candidate is rejected, otherwise it is accepted as a valid detector and joins set R.
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The problem with the exhaustive detector generation is that a great number of candi-
dates are rejected during the censoring, making it inneficient [44], and costly in terms of
the computational use of resources [47]. To tackle that, two other approaches arose: the
linear and the greedy algorithms, both based on the r-countinuous distance method.

The linear time algorithm is a two-phase process named after its complexity introduced
by D’haeseleer et al. [44]. Initially, all the strings that are unmatched by the self-set have
their recurrence counted. Then, this counting recurrence is used to naturally number the
unmatched strings and allow for the picking of random detectors, according to the desired
size of the detector’s set. Even though this algorithm runs in linear time according to
the detector’s set and self-set sizes, the recurrence counting requires the storage of all the
possible matches two strings can have by using the r-contiguous distance. This means
that, although its complexity is linear in terms of time, it is exponential with regard to
space.

The Greedy algorithm is yet another algorithm introduced by D’haeseleer et al. [44],
which tries to provide a better coverage of the string space without increasing the amount
of detectors. It does so by slightly modificating the construction of the array of possible
matches. It also relies on two arrays, one that stores the candidates picked by the algo-
rithm and other keeps track of the strings that still were not matched with any picked
detector. New detectors are generated based on the unmatched strings that have the
highest recurrence value [14]. This algorithm provides an optimal set of detectors but
has a higher time complexity when compared with the Linear algorithm. This happens
because of the upDateType of the two arrays that happens whenever a new detector is
generated. Time complexity is kept, though.

Even though these two algorithms are proven to provide a better detector generation,
they were designed specifically for the R-contiguous distance function. For this reason,
the Generate-and-test method will be used in our work as the main algorithm for the
generation of such detectors.
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Chapter 3

Related work

This chapter discusses relevant work related to the themes discussed in this document.
The first one is related to verification methods in Cyber-Physical Systems. The second
topic deals with the usage of the Negative Selection Algorithm in fault diagnosis of CPSs.

3.1 Verification Methods in Cyber-Physical Systems

Formal Methods are widely applied the analysis of CPS because of their expanding ap-
plication in many safety and financial-critical sectors. Model Checking, for example, is
particularly popular since it addresses multiple aspects found in CPSs [30].

Nevertheless, the complexity found in CPSs can bring problems to the design of such
systems. Representing both the cyber and physical aspects of any CPS challenges the
task of modeling such systems, since we are combining discrete and continuous models.
Aside from the complexity of representing the real environment, a CPS has only a limited
understanding of its surroundings. Sensing constraints induced by sensor blindspots and
sensor interference complicate the modeling process [48]. Hence, oversimplified models
may be invalidated for not anticipating failures dependant on the two layers [30].

Akella et al. [49], for instance, addresses this problem by trying to simplify the physical
model. This was done by discretizing the events that cause flow change and to represent-
ing the CPS as a deterministic state model with discrete flow values inside its physical
components. Model checking is then utilized to formally test insecure interactions be-
tween all conceivable behaviors of the specified CPS. Botaschanjan et al. [50] provide
a sucessfull attempt to close this gap in automotive systems by combining the model
checking verification of the lower layers of the system with the simulation of the upper
layers.

Formal methods can also be used to perform anomaly detection. Jones et al. [51]
uses formal methods to an anomaly detection framework to determine whether or not a
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particular CPS is under attack. They build STL properties based on the normal behavior
of the system and flag the abnormal behavior. Then, a one-class SVM model is used to
detect deviations. Our approach share some similarities with Jone’s. Nonself data, i.e.
anomalies, are flagged according to system properties and a one-class machine learning
algorithm (NSA) is performed to understand the patterns based on the self data. Al-
though in our work the properties are specified by the stakeholders and undergo a process
of formalism. Besides that, we leverage the detectors generated to gain insight on the
violations, which is used to enhance the specification. Webster [52] also integrates model
checking and simulation in order to ensure safe operations for autonomous unmanned
aircrafts. They argue that the high level of assurance provided by the formal method
would increase the accuracy of the simulation model.

Another issue with model checking is that some of the system properties of the CPSs
may not be thoroughly verified and tested during the design and building phases. An
alternative is performing the verification task after the system is deployed, in what is
called Runtime Verification. This technique is considered to be a lightweight dynamic
formal method in the sense that it is performed during the CPS’s execution and relies on
the verification of real data for the assurance of safety properties [7]. One of the ways
in which it can be realized is by using Observers, which are a reification of the property
in the form of state machines. They are responsible for reading the signals and messages
that are shared among the modules of the system, checking the system’s logs and so on,
in order to perform statistics, identify faults and so on. They can be derived from the
specified system properties through pattern catalogs [33].

In the proposed framework, the model checking process will be integrated with simu-
lation. This will be done by implementing a prototype in Modelica [18], which is a tool
that allows for writing algorithms and physical equations, for the modeling of the cyber
and physical aspects of the system. Observers will also be modeled as timed automata
for the model checking phase, as well as implemented as components in the prototype.
This will allow for a seamless transition from runtime and design time.

3.2 Fault Analysis and the Negative Selection

Another method for increasing the reliability of CPSs is fault detection, diagnosis and
isolation (FDDI), which is conceptually similar to the assessment of property violations.
Both are looking for techniques to determine whether and why the system is not operating
as planned. In this sense, understanding which approaches are being utilized in the FDDI
field may help us to better evaluate our methodology.
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Zhang et al. [53] suggests a model-based detection, isolation, and system reconfigura-
tion techinque for induction motor drives dependant on extended EKF, as well as strong
current and DC-link voltage observers, which allows the systems to continue its operation
even under sensor faults. Poon et al. [54] also relies on models to present a fault detection
and identification (FDI) technique for switching power converters utilizing a model-based
state estimator methodology, which boosts fault tolerance and awareness in power elec-
tronics systems. Garcia et al. [55] provides a real-time monitoring and preventive fault
diagnosis method for solar panel strings in real-world installations, through the identifi-
cation and parametric separation of fault symptoms using Voc-Isc curve analysis. In this
strategy, identification and isolation occur with sufficient leeway to notify and stop the
deterioration phenomena and its cumulative impact, which would potentialy result in the
formation of irreversible failure via automated disconnection.

However, the success of traditional fault detection systems is determined by a number
of elements, including prior knowledge of defective responses, an accurate system model,
and a vast amount of data-history patterns. Furthermore, typical fault detection algo-
rithms are often developed for a single system, thereby addressing a restricted number of
defect types [56].

These limitations motivated the adoption of new approaches, which make use of ma-
chine learning techniques. Chopdar and Koshti [57], for instance, address the problem
of faults in the growing number of power grid transmission lines via an Artificial Neural
Network method that efficiently detects and classifies faults to keep the performance of
the power system. The model was trained with data taken from simulation software,
which reduced the demand for historical data.

Nevertheless, there is still a critical necessity for the development of efficient fault
detection systems that are less domain-specific. In this sense, Artificial immune systems
(AIS) have recently captured the interest of the scientific community, specially for the pur-
pose of anomaly detection. The Negative Selection Algorithm (NSA), which is inspired by
the self/nonself discrimination process performed by the body during an immune response
[2], has emerged as a viable alternative [56].

Gupta and Dasgupta [3] provide a detailed assessment of the literature, demonstrating
how the approach has evolved through time, highlighting the most notable variations and
comparing with similar alternatives. They come to the conclusion that NSA outperforms
most other approaches for nonlinear representation, and it can perform better than neural-
based models in computing time.

Govender and Mensah [58] propose the usage of the NSA in modern manufacturing
settings, in order to minimize the production lossess related to equipment malfuctioning.
They simulate an automobile hub pressing machine using Matlab that has a programmable

25



logic controller (PLC) connected to sensors, switches and safety curtains, and a module
hosting the AIS. The self-set training data comes from the execution of the system under
error free operations and are represented in the Hamming space as binary strings. Nonself
detectors are randomly generated in the censoring phase of the algorithm by using the
Hamming distance for the comparisons. Finally, the detectors are used in runtime to
determine the anomalies in a hierachical fashion. They state that the representation of
the data as binary strings allow for the reverse map of the resulting detectors back into
the real nature of the equipment, even though the paper does not further explore this
aspect.

Our approach makes use of the NSA in a similar way. The Hamming space is leveraged
as a means to reverse map the detectors into system states during the pattern analysis
process. However, we consider this idea paramount for the increase of the reliability of
CPSs, since the explainability it provides enables the identification of design failures, the
creation of fault tolerant mechanisms and the refinement of the system properties.

Two other works are worth mentioning in this section. The first, Alizadeh et al. [59]
suggested a wind turbine defect diagnostic system that relies on real-valued NSA to boost
nonself-space coverage. V-detectors are used for representing the detectors, the Euclidean
distance is utilized for matching, and data are represented as spheres. The detection
phase proceeds as default, but the isolation phase relies on the training of new instances
of the NSA for each pre-defined fault, which are employed in a hierarchical manner to
better describe identified faults. The second was proposed by Ren et al. [60] a different
algorithm for fault discovery and isolation. In this paper, V-detectors are created in such
a way that the detector’s coverage is increased while the overlap is reduced. The detection
phase contains no surprises, but the isolation phase relies on an algorithm that attempts
to match the defect at hand with a collection of pre-identified fault representatives.

Both frameworks use more advanced Negative Selection algorithms, that rely on real-
valued data representation, while our approach still represents the data as binary strings.
Nevertheless, even with the well-knwon shortcommings of the binary NSA, the explainabil-
ity provided by the detectors eliminates the need for any prior knowledge of the system’s
probable faults.

3.3 Final Considerations on Related Works

Our work lies in the line that unites design time and runtime. we aim at enhancing
the CPSs reliability by improving the process of specification of system properties. In
that sense, a model checking process is performed based on a timed-automata model of
the system and a set of system properties derived from the specification. To account
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for the complexities found in the relation between computing and physical process [30], a
prototype of the system will be implemented in a tool designed to simulate Cyber-physical
Systems, named Modelica. It provides both a cyber and a model interface, which allows
for the simulation of physical equations integrated with algorithms [61].

Additionally, observer automata will be derived from the properties and implemented
in the prototype. This will enable the usage of runtime verification techniques while still
in design time. A dataset will be extracted from simulation containing the execution
logs, which will then be used in the Negative Selection Algorithm [3] for the discovery of
patterns that are related to the violation of the specified properties. The patterns will
be analyzed and used to enhance the properties, the system specification itself and make
room for the development of fault-tolerant mechanisms and runtime monitors. We believe
that these measures will account for the enhancing of the overall reliability of the system.
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Chapter 4

Running Example: Body Sensor
Network

Without loss of generality, the fundamentals of our methodology will be exemplified by a
Cyber Physical System from the healthcare domain throughout this work. This chapter
provides an overview of the system and its inner workings.

4.1 Overview

The Body Sensor Network (BSN) [62] is a pervasive platform designed to monitor and
evaluate individual patient health statuses using a network of sensors and a centralized
processing unit [16]. The system works as follows: the patient wears several physiological
sensors, responsible for frequently measuring her vital signs, like the temperature, blood
pressure, blood oxigenation and so on. These sensors are wirelessly liked to the Central
node, a Personal Digital Assistant (PDA), which is capable of fusing the multi-sensor
data and filtering the clinically significant events [63]. When an emergency is identified,
the Central node sends out an alarm, either locally or remotely, so that the patient may
receive the necessary treatment.

Figure 4.1 depicts the sensors attached to the patient as well as the wireless data
transfer to the Central node. In our work, the set sensors comprises a thermometer, an
oximeter, a heart rate monitor and an ABP for measuring both the diastolic and systolic
artery blood pressure.The patient’s health risk can be classified into three levels: low,
normal, and high. When a high risk is detected, the Central node signals the individual
or a third party about the emergency. The ranges of the sensors were defined by a health
expert [62] and their relation with the risk levels are displayed in Table 4.1. The patient’s
health state is considered as high risk if at least one of the sensors measurements is in the
high range. If that is not the case, and one or more resources gauge is within textitnormal
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Figure 4.1: Visual representation of the BSN

limits, the patient’s health state is classified as normal risk. Otherwise, the patient’s
health state is classified as low risk.

Sensor High Moderate Low Moderate High
Oximeter [0, 55] (55, 65] (65, 100] - -

Heart Rate [0, 70] (70, 85] (85, 97] (97, 115] (115, 300]
Thermometer [0, 35] (35, 36.5] (36.5, 37.5] (37.5, 38.3] (38.3, 50]

ABPD - - [0, 80] (80, 90] (90, 300]
ABPS - - [0, 120] (120, 140] (140, 300]

Table 4.1: Ranges of the Sensors

4.2 Contextual Goal Model

Figure 4.2 shows the Contextual Goal Model (CGM) that represents the Body Sensor
Network. It was inspired by the BSN specification from Rodrigues et al. [5], with a few
added sensors and a new soft goal to indicate the time restriction of goal G2. This model
provides a powerful way of understanding the needs of the stakeholders besides figuring
out the motives behind the development of the CPS, by laying out user goals and ways to
meet them [64]. The main goal of the BSN [62], also called root goal, is "G1: Emergency
is detected". It is fulfilled by two other goals: "G2: Patient Status is monitored" and "G3:
Sampling rate is adjusted". In turn, the goal G2 is achieved when "G4: Vital signs are
processed" is achieved. G4 is divided into two other goals: "G5: Vital signs are monitored"
and "G6: Vital signs are analyzed". Following the decomposition of the goals, a series of
executable tasks are elicited to satisfy them. The context condition IC can be set to "low
risk", "normal risk" and "high risk" and is utilized in the fulfillment of T3.
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Figure 4.2: Contextual Goal Model of the BSN [5]

4.3 System Properties

Another important aspect of the BSN that need to be addressed for the verification process
is the definition of the system properties. Rodrigues et al. [5], by using a CGM for the
BSN very similar to the one adopted here, derived a series of properties for the BSN
in Timed Computational Tree Logic (TCTL) [65] to verify the satisfiability of the goals
modeled through Model Checking. Their work bring the sufficient TCTL-like properties
to ensure the correct behavior of the CPS by satisfying all the goals specified in the CGM.

Properties P1 and P2 relate to general aspects of the system behavior by accounting
for problems that are common in distributed systems, like deadlocks and the execution
of all modules within a cycle, respectively. P3 is related to the root goal and addresses
the soft goal G0, which presents a time bound for the execution of a cycle. P4, P5 and
P6 were designed to assess Goal G3 in relation to the context variability that it possess.
Property P7, in turn, relates to G2 and was slightly modified here with the addition of the
soft goal G0.1. This was done to better clarify some of the processes that are performed
during the data processing step of our approach. Besides that, for the verification of the
property using an obsever suring the simulation, a time bound needed to be added so
that the error state could be reached whithin a cycle. Finally, properties P8, P9 and P10
ensure that the goals G4 and G5 are met and that the data is whithin the expected range.

Moreover, Vogel et al. [66] modeled some of the properties defined above as timed-
automata observers by using a pattern catalog. Their work intends to use these observers
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during the Model Checking process, but in our work we will implement them as state
machines in the BSN prototype for the verification of the properties during the simulation.
The process of creation of the observers based on the properties is thoroughly described
in their paper, and referred in Section 2.2.2, whilst the observers that were utilized here
can be found in their GitHub repository [33].

In our work, a slightly modified version of property P7 will be implemented, since it
will suffice to showcase the strength of the approach. The property P7 will be modified
by adding a time restriction, as a way to better account for the different possibilities
of the approach. Hence, the property reads as follows: "Whenever a sensor node has
collected data, in within at most 2 seconds, the Central Node will process it." It was
chosen because it focuses on the reliability of the system, since its satisfaction guarantees
that the collected data will be processed in a reasonable time. Besides that, the Oximeter
was the sensor chosen to reify the analysis.
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Chapter 5

Enhancing Runtime Monitors of
Cyber-Physical Systems using
Negative Selection

In this work, we provide a paradigm to aid in the creation of Cyber-physical systems that
uses the Negative Selection Algorithm to reveal operational circumstances of the CPS
that may effect the fulfillment of non-functional requirements and real-time properties.
Our proposed technique has two primary objectives. The first is to aid the analyst in
the verification process during the early phases of system development by discovering
patterns in simulated execution data linked to property violations. The secondary goal,
a byproduct of the first, focuses on increasing the ability to confidently and systemati-
cally monitor and analyze CPSs. The methodology combines simulation frameworks with
learning techniques to help address the complexity associated with CPS verification.

This chapter is structured as follows: First, we provide an overview of the framework,
explaining in high level each step. Next, each step is further detailed in the subsequent
sections.

5.1 Overview

The framework comprises two main steps, as depicted in Figure 5.1. The fist step uses as
input the Contextual Goal Model (CGM) specification of the CPS to be developed, the
system properties that were specified based on the CGM and the observers derived from
them. With that in hand, we implement a prototype of the system, based on the expected
behavior and environment conditions. The prototype will be composed of the modules
of the system, the physical processes that may impact the operationalization, and some
"naive" observers, for the purpose of monitoring the system properties during the execu-
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tion. Next, the prototype is executed, and the operation dataset is extracted, containing
the traces of execution, the consumption of resources and the context conditions at each
moment of the execution.

Figure 5.1: Overview of the proposed Methodology

The second step is performed individually for each property in the real-time property
set. Initially, the operation data goes through a feature engineering process aiming at the
labeling and characterization of the data traces in relation to the particular property being
examined. Then, the labeled data is analyzed, and the Negative Selection Algorithm is
used with the dataset. A collection of R-chunk detectors are produced as a result of
this operation. These detectors, specialized in matching the property violation data, are
carefully examined so that the patterns discovered can be comprehended.

The outcome of this process is the identification of relevant environment conditions
and system behavior that were not initially considered when designing the property. This
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information is, then, used to refine the property, and thus, enhance or create new ob-
servers.

5.2 Innate Immunity through Assurances

The initial step of our approach addresses the complex relation between the cybernetic
and physical natures of the CPS through the implementation of a prototype of the system.
The major purpose is to replicate the system’s behavior in order to generate reliable data
for the analysis phase. Multiple runs of the simulation with varying configurations will be
performed as a means to generate an operation dataset that accounts for the variability
that will be faced in runtime. This dataset will be passed on to the next stage of our
framework to convey the patterns in the anomalous executions by means of artificial
intelligence.

The execution of the prototype can be easily related to the innate immunity, during
the immunological response. The running simulation will be the first to face the variability
in the environment, just as the innate immunity is the first line of defense against the
pathogens [2]. In the biological system, the nonspecific immunological mechanism is
responsible for triggering the adaptive immunity by phagocyting the antigen and sending
it to better enhance the lymphocytes. Similarly, our prototype is assured by "naive"
observers, who may not be specific enough to account for all of the scenarios that may
happen. The operation dataset derived from the simulation is sent to the next phase to
trigger an adaptive response, that learns from the property violation cases and provides the
analyst the knowledge needed to enhance the observers for a better response in runtime.

The prototype can be implemented by following a state-of-the-art approach that at-
tempts to assess the complexity of the task. Baras [67], for example, uses a Model-Based
System Engineering (MBSE) approach that integrates several tools and languages for
this purpose. SysML [68], a system architecture language, is first used for describing the
system’s structure and behavior. This tool is combined with Modelica [18], a language
that allows for the physical processes, i.e. the continuous time modeling of the physical
phenomena and the linking of modules that are regulated by mathematical equations. In
order to graphically edit and explore a Modelica model, as well as run model simulations
and other analyses, an open-source modeling and simulation environment for the Model-
ica language called OpenModelica [17] can be utilized. Baras also uses MATLAB [69] as
a means to describe the software nature of the CPS, meaning the control and signal pro-
cessing components. The integration of such technologies is done through the Functional
Mock-up Interface (FMI) [70], which is a standard for the interchange of dynamic models
and co-simulation.
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Fei [71], in turn, proposes a less tool-dense modeling guide for CPSs that comprises the
4 layers of abstraction mentioned in Section 2.1, which are modeled in SysML and simu-
lated using only Modelica. Bouskela et al. [72] goes in a similar direction by simulating
the system with Modelica and verifying the requirements using the FOrmal Requirements
Modeling Language (FORM-L) [73].

To achieve the purpose of this work, a simpler framework for the implementation of
the prototype will suffice. Since Modelica is one of the most often used tools in the
MBSE field [8], the prototype is written in this language and runs in the OpenModelica
simulation environment. Each module is designed to mirror the expected behavior of the
system to be, based on the designed software architecture. The naive observers are also
implemented so that the execution of the simulation may be monitored for the provision
of assurances.

With the prototype in place, many simulations with varying inputs, settings, and
setups may be conducted to account for as much context variability as feasible. Each
experiment will yield a dataset comprising the execution traces, resource usage, and con-
text conditions at each stage of the execution. In the end, the generated datasets will be
stored for the execution of the next step.

5.3 Adaptive Immunity Through Learning

Our framework’s next phase tries to diagnose property violations using learning ap-
proaches. It is performed for each monitorable property of the system. The data created
in the preceding stage, goes through a feature engineering process for reshaping and la-
beling the rows regarding the property satisfiability. Following that, the set of rows in
which the property is met (self-set) is run through the Negative Selection Algorithm to
build detectors for the complementary set (nonself-set). These detectors are evaluated in
order to uncover patterns in the execution segments that violate the property at hand,
which are then utilized to improve the observers.

We relate this step to the Adaptive Immunity mechanism that happens in our Bio-
logical Immune System, described in Section 2.3.1, specially with the cellular immunity
response. T-lymphocytes are used in this adaptive response, which are created in the
bone marrow by a pseudo-random genetic rearrangement process and then matured in
the Thymus by being tested against own cells [39]. Similarly, our process randomly gen-
erates candidate strings that are tested for match against the operation dataset’s self-set,
and, just as only T-cells that do not bind strongly with the self-cells are allowed to flow
through the blood stream [2], only the strings that do not match the self-set are used in
the pattern analysis step, later on.
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This process can be further divided into two phases: the feature engineering phase,
in which the operation dataset is reshaped and labeled, and the learning phase, where
the Negative Selection algorithm generates nonself-detectors that are used to enhance the
observers.

5.3.1 Feature Engineering

This phase focuses on the shaping of the operation dataset in order to better adjust itself
to the learning algorithm. This is accomplished by first segmenting the data, then creat-
ing features to define individually a single segment, and lastly classifying the execution
fragments as property violations (nonself) or not (self).

Depending on the simulation environment, the operation dataset is retrieved from the
simulation as a collection of files, each of which is associated with a single simulation run
in the previous step. A simulation file presents the data in a tabular manner, with the
columns representing the values of the model’s components, resources, signals and so on
at every timestamp. The activities of segmentation, feature generation, and labeling are
carried out for each individual file, and then concatenated in a resultant dataset.

Initially, the data is split based on the attributes or time constraints of the property
being analyzed. For example, suppose the following property from the BSN is being
analyzed: "Whenever a sensor node has collected data, the central node will eventually
process it". In this scenario, the attribute that indicates when the data has been collected
will be used to segment the dataset. An execution segment will start when the collect
signal is sent until right before the next signal. However, if the property is time-bounded,
the execution segment will begin when the collect signal is transmitted and last for the
duration of the constraint. Figure 5.2 illustrates this process. The first column indicates
the timestamp, whilst the others show the signals that were sent, with the thick blue box
highlighting when the data was collected. On the one hand, the blue bracket alludes to
the length of a property time-bounded by 2 seconds, while, on the other hand, the grey
bracket indicates the length of the execution segment if only the signal is considered.

Next, new features will be derived to characterize the behavior of the CPS in that
particular execution segment, resulting in a single row per segment. For instance, in the
abovementioned figure, it would be possible to create features for each signal, indicanting
if the data was processed, transfered and if it was processed by the central node, or
another that identifies if the context was true at all times. Continuous features could also
be created, like one that stores the amount of time between processing and transfering
the data, or how long it took for the central node to process the data, and so on.

The quality and relevance of the features produced are essential for the development
of the patterns that characterize the property violations, making this activity key to the
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Figure 5.2: Segmentation based on attribute or on time restrictions

effectiveness of our strategy. Additionally, it heavily depends on the domain knowledge of
the software developer conducting the activity. The outcome is a new dataset, in which
every row uniquely identifies and extracts the main features of an execution segment.

Finally, the classification phase will make use of the recently derived dataset. The
rows will be examined in accordance with the observer state transitions and signals, and
a label indicating whether the row describes a violation or can be regarded as a regular
execution will be issued. Let again the property at hand be: "Whenever a sensor node
has collected data, the central node will eventually process it". The execution segment
should take into account whether the data was obtained and if the central node processed
it by looking at the signals received by the observer. These two behaviors have been
mapped during the feature engineering stage and could be utilized in this instance for
data labeling. If there is a boolean column with the value True for a given segment,
indicating that the data has been collected, and another boolean column with the value
False, indicating that the central node did not process the data, then it can be assumed
that the given row, associated with the execution segment, violated the property.

Figure 5.3 displays what would be the row associated with the time-restricted segment
from Figure 5.2. The observer starts in the initial state and moves forward if the data
is collected. In the next state, it waits for the signal indicating that the Central Node
processed the data to return back to the first state. In the example, since 2 seconds were
not enough time for the central node to process the data, it was considered not done
whithin the time window of the property. Hence, the column "Central Node processed" is
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Figure 5.3: Example of a feature engineered execution segment

zero, and "Time until Central Node processed" is null, and therefore the row is labeled 1,
meaning that this segment does violate the property.

5.3.2 Negative Selection Algorithm

This step is the heart of the framework. It aims at using the Negative Selection Algorithm
to try and find patterns in the nonself-set, in order to find patterns in the execution
segments related to property violations that were not considered at first, and thus enhace
the system’s observers. This will be done in five steps. First, (i) the data obtained in
the last step will be analyzed so that the least relevant features may be discarded. Then,
(ii) the remaining features will compose a string that will be used in the NSA. Next,
(iii) the NSA will be performed and the nonself detectors will be generated and matured.
Following that, (iv) the detector set will be thoroughly examined for the discovery of new
context variability. Finally, (v) the information obtained will be used to refine both the
system’s properties and observers.

i. Exploratory Data Analysis

This initial step focuses on checking the integrity of the dataset and exploring the gen-
erated features to verify their relation with the property violation label. Another goal
of this step is the selection of the features that will be used in the Negative Selection
Algorithm.
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Here, a series of dataset validations are conducted as part of a sanity check and
preliminar analysis. First, the missing data are taken care of, and the required data
types and ranges are adhered to the expected. The columns are then examined both
individually and collectively to confirm that the simulated system behaves as expected.
For instance, if data wasn’t collected, it couldn’t be processed. Thus, cases where the
opposite happens are handled by either removing the faulty occurrences or by refining
the simulation model. Besides that, this analysis helps to decrease the number of features
in the dataset by eliminating the columns that provide little or no information, based on
their variance or the percentage of missing data.

Next, a correlation analysis takes place. Initially, the correlation matrix is computed,
pairing the features and scoring their relationship. High correlations between two features
indicate that both provide the same information and, thus, one of them can be removed.

Finally, the features that will be used in the NSA are selected. Our work uses the
binary version of the Negative Selection Algorithm, as described in Section 2.4, meaning
that only binary features can be used, at first. This being said, the boolean features are
set apart and have their relation with the label measured. Since it does not matter much
if the feature is positively or negatively correlated, only the absolute value is taken into
account. Then, the features are sorted based on the strenght of the relationship and the
ones that are below a certain threshold are discarded.

It is noteworthy to bring the reason why the columns were sorted. We shall employ
the R-chunk as a matching rule in our work, which indicates that the detector candidate
is often shorter than the string from the self-set. It is possible that relevant patterns
are not seen by a single detector if the columns are arranged randomly. This happens
because the important bits might be positioned far apart and the chunk may be too short
to consider all of them at once. The likelihood of this happening is reduced when the
columns are arranged according to how strongly they relate to the label. Besides that,
measuring the correlation allows us to filter out noisy features and, thus, enhance the
result of the experiment.

The output of this step are the adjusted execution segment dataset and the ordered
list of boolean features that will be used in the Negative Selection Algorithm.

ii. String formatting

As detailed in Section 2.4.2, the process of generation of detectors happens by measuring
the similarity between the detector candidates and the dataset. In the binary version of
the Negative Selection Algorithm, this assessment is usually performed by the means of a
distance function, which compares the characters in two strings and returns a similarity
score.
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In order to leverage the simplicity and efficiency of distance funcions in our work,
this step will focus of formatting the dataset as binary strings. The input of this process
will be the adjusted dataset created in the previous step, with only the boolean features
selected after the correlation analysis, and ordered by the strength of the relationship
with the label. The bits of the binary string for each row are made up of the contents of
each column, with the leftmost bit coming from the column that is most correlated to the
label, and the least significant bit comming from the column with the weakest relationship
with the label.

Figure 5.4: Formatting the dataset as binary strings

Figure 5.4 illustrates this process in the execution segment that is being used as an
example throughout this section. To present the results of the correlation study from
the previous phase, the columns have been sorted, the continuous features have been
eliminated, and certain boolean columns have also been deleted.

iii. NSA execution

After gathering the data, preparing the dataset and formatting the strings, the dataset
is ready to go through the Negative Selection Algorithm. This subsection will explain
the implementation of the training phase of the algorithm, based on the theoretical back-
ground in Section 2.4.

Our implementation of the NSA will meet the three requirements listed by Ji and
Dasgupta [43] in order to be categorized as a Negative Selection Algorithm. It will make
use only of the self-set (i) to randomly generate binary string detectors (ii) in order to
identify the self-set counterpart (iii).

The use of only the self-set dataset is the first aspect to be taken into consideration.
All rows with the label 1, meaning all rows that indicate a violation of the property of
interest will be filtered out of the refined dataset, leaving just the self-set, or the set
associated with the typical operation of the system. The idea is that the patterns of the
nonself data will be derived from the examination of the self-set alone.

The second aspect considered in the NSA is the usage of detectors. Let X be a
string from the self-set with size n, such that X = x1x2x3...xn. A candidate r-sized
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detector D is another binary string, with D = d1d2d3...dr, with r ≤ n. The generate-
and-test technique, which is further described in Section 2.4.3, will be used to construct
the candidates. Simply put, as the name implies, this method generates random binary
strings with a size of r to be compared with the strings in the self-set.

The third and final aspect relates to the identification of the self-set counterpart. This
will be done by comparing the candidate detectors to the set of self-strings, and discarding
the ones that match. In our approach, we will use the R-Chunk distance function for the
comparisons (refer to Section 2.4.2 for details). The candidates generated will be tested
for each position p, with 0 ≤ p ≤ n−r. If there’s a match, the candidate is discarded. The
remaining ones will be uniquely identified as tp,D and stored for latter analysis. Therefore,
the set of detectors will comprise only the candidates that did not match any self-set data.

The algorithm is greatly influenced by two hyperparameters: the size of the detector
and the length of the detectors set. As mentioned before, too-short detectors could miss
some significant patterns if the relevant features are placed far apart in the string. Long
candidates, on the other hand, reduce the algorithm’s efficiency since the number of
potential strings that may be created at random rises exponentially with the chunk size.
Additionally, lengthy detectors suffer from a loss of generalization since they have more
fixed bits and, thus, detect less nonself data. The size of the detectors set also have a
great impact on the final result, since sets with smaller lenghts may not cover the entire
nonself-space and larger sets may increase the time needed to finish the execution.

In this regard, we included a third hyperparameter to workaround the cases when the
algorithm takes longer to converge. This parameter indicates the acceptable amount of
failed attempts to add new candidates to the detectors set. If this value is reached, the
algorithm will exit earlier.

The training of the algorithm will be performed as follows. First, the whole dataset
will be split in two: one for the actual training and detector generation, and other for
measuring the results and checking how well the detectors perform with unseen data.
Second, the training set will have the nonself rows filtered out. Third, random strings of
size r will be generated and tested against the self-strings in the training data in all possible
positions. If there’s a match, the detector candidate is discarded for that particular
position. Otherwise, the string is stored along with the position in the detectors set. The
third process is repeated until the length of the detectors set reaches a predefined size,
or until no new detectors are added to the set after a fixed amount of attempts. Finally,
the result of the learning phase is measured by using the detectors to predict property
violations in the test set, which contains both self and nonself-data. The actual values are
compared with the predicted values and the metrics of precision and recall are evaluated.
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iv. Detector Analysis

This step will be responsible for looking at the detectors that were created and under-
standing the patterns found. The R-Chunk detectors are identified in the set as tp,D, with
p being the starting position and D the detector string of length r. If step (ii) included
mapping boolean features to bits in a string, here the mapping will be done in reverse.

The detectors are sorted based on how many violations are matched. The most relevant
ones go through this mapping to perform this analysis.

Figure 5.5: Mapping the Detectors to the features

Figure 5.5 shows how the mapping is done. The detector t2,101 of size r = 3 indicates
a property violation pattern in position 2 with the values 101. By looking at the table
with the corresponding features and positions, we can see that this pattern identifies the
violations that happen when the data is collected, processed, but is not processed by the
central node.

One of the three features of the set may already account for a variability that was not
yet considered. In this case, the next step could be performed right away. Otherwise, the
remaining features that were not used in the generation of the detectors may come into
play, like the weakly related booleans and the continuous variables that did not fit the
algorithm. These features are analyzed specifically in the rows that were matched by the
detector as an attempt to discover new hidden context combinations.

Another possible analysis that can be performed relates to the coverage of the detec-
tors. It is possible that all the nonself-data matched by a detector (i) is also matched
by another detector (ii). Therefore, two possible scenarios may arise. First, detectors (i)
and (ii) match exactly the same nonself-data. In this case, they are related to the same
pattern of anomaly and, thus, can be aglutinated into a single detector. Second, one
of the detectors, let’s say (i), matches all of the nonself-data matched by (ii) and more.
Hence, it is possible to state that (ii) is a specialization of the pattern found in (i), i.e.
part of the violations detected by the pattern in (i) can be better detailed by looking at
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the pattern in (ii). This fact can be useful for the segmentation of the violation patterns
found into clusters.

v. Property Refinement

Finally, after the patterns have been unveiled, the system’s specification and properties
are revisited. Initially, new contexts found are properly elicited and returned to the
Contextual Goal Model by a human analyst. Then, we iteratively map them to either
existing or newly discovered system properties as well as to system model components.
This means that, once we get to the final end of our approach, the updated CGM obtained
as a result, can be used as an input for a new execution of the whole methodology.

This stage is comparable to the conclusion of the BIS’s adaptive immune response. In
the human body, the T-lymphocytes that have undergone differentiation and maturation
and have a high affinity for an antigen at hand are pumped via the bloodstream to the site
of the inflammation. Whereas in our framework, the collection of NSA detectors triggers
the development and improvement of observers, which are then put back into the system
model to constantly check out for property violations while monitoring the newly revealed
contexts.
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Chapter 6

Evaluation

In this chapter, our framework will be evaluated using a variation of the Goal-QuestionMetric
(GQM) technique [74]. The GQM plan has been slightly modified by the addition of a
new column with the results. The questions pertinent to evaluating our strategy and
its outcomes are separated into two primary sections: the first related to the algorithm
utilized in the pattern analysis process itself, and the other about the method’s overall
efficacy. Table 6.1 details the study questions.

Goal 1: Property Violation Identification process
Question Metric Results

How well does our model
generalize to unseen data?

Precision and
Recall Rates

Precision: 1.0
Recall: 0.9958

Goal 2: Method’s contribuition
Question Metric Results

How effective is our approach
in the discovery of patterns

in property violation scenarios?

Number of
patterns found

49 patterns
11 Groups

Table 6.1: GQM Plan

6.1 Experimental Setup

The evaluation of our proposed solution will rely on a implementation of the Body Sensor
Network described in Section 4. Our version of this CPS includes a Central Node and
five sensors: an oximeter, a thermometer, a heart rate monitor, and an APBD and APBS
blood pressure sensors. The patient’s readings are assessed within each sensor node, where
the health risk percentage of the monitored vital sign is calculated. Subsequently, the risk
percentage is relayed to the Central Node, which, in turn, is in charge of collecting and
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fusing the data from the sensors, assessing the patient’s overall risk, and indicating an
emergency if one is discovered.

6.1.1 Innate Immunity through Assurances

Prototype Implementation

Figure 6.1: BSN Prototype Implemented in OpenModelica

The first part of our technique requires the implementation of a CPS prototype. This is
done to anticipate problems that may occur during runtime by modeling and simulating
both the system’s software components and physical processes. Despite the fact that
there are several state-of-the-art approaches for designing such models [67] [71] [72], and
since the focus of this work is to elaborate on the property violation patterns using the
NSA, a simpler framewrok for the simulation was selected. The Modelica language [18],
hence, will be used as the main tool in this process. This language is powerfull enough to
represent the acausal continuous-time physical processes of the CPS through equations.
It also comprises several built-in libraries for the modeling of circuits, batteries, fluids,
noise, equipment deterioration and so on. At the same time, software components can
also be described by defining algorithms and functions that account for the behavior of
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such modules. The graphical aid is achieved by the OpenModelica [17] modeling tool,
in which the components and their interactions can be visually modeled as blocks and
connectors.

Figure 6.1 depicts the prototype that was implemented in OpenModelica, using the
Modelica language. The green blocks account for the sensors, while the blue illustrates
the Central Node. In the left lower side, a parameter defines a fixed frequency for data
collection that is utilized by every sensor, and above it there is a reference for an external
csv file that contains the measurements of the sensors at every second. Around the system,
there are some blocks with question marks whose function is to generate random binary
numbers to indicate whether the sensor was active. The goal of these blocks is to simulate
cases when the sensor stopped responding, or was too far away to transmit reliable data,
or had some malfunctioning of sorts that may account for faults in runtime. Next to the
sensors there are some gray boxes that are used to indicate when the sensor is plugged into
the outlet. Besides that, there are also small rounded blocks that represent the observers,
that are modeled to monitor properties of the system associated with each sensor.

Figure 6.2: The model of a sensor implemented in OpenModelica

By going one step deeper into the model, it is possible to describe how the inner
workings of the sensors and the Central Node were implemented. One of the advantages of
the Modelica language is its object-oriented character that allows for the reuse of modules
throughout the simulation. The sensor described in Figure 6.2 is a good example of this
aspect, since the same block is used to model all five sensors. The physical components
represented here comprise: a mechanism for sampling a measurement based on a triggered
signal, a set of bitwise operators that are often used in microcontroller programming, and
a battery. This battery was modeled based on a built-in Modelica library that allows for
the modeling of electric circuits, and is composed of a set of switches, a memory cell, and
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a signal current converter that receives signals from the sensor whenever some process
occur to decrease the charge of the memory cell. The magnitude of the charge decrease
is multiplied by a randomly generated real number in a way that simulates the decrease
that would happen in a real environment. Meanwhile, software components of the sensor
are also modeled, like the Process block, which recieves a real valued sensor measurement
as an input and relies on an algorithm for determining the health risk percentage of the
patient.

The Central Node, illustrated in Figure 6.3, was implemented in a similar fashion.
It also makes use of bitwise operations for handling the signals sent, and of an instance
of the same battery model as the one found in the sensors. The software components
encapsulate functions that fuse the data from the sensors and compute the overall health
risk of the patient.

Figure 6.3: The model of the Central Node implemented in OpenModelica

Both the sensors and the Central Node are instrumented through a set of signals that
are sent each time a process or a specfic behavior occur, like when the data is collected or
transfered for instance. These signals are used by the observers to monitor the properties
of interest, and will be used later for the characterization of a execution segment, during
the pattern analysis phase. Observers can be easily modeled in Modelica via a built-in
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library developed for the desing of state graphs. Both the states of the automata and its
transitions are described as blocks, with the difference being that the transitions receive
signals as input to indicate the passing through the states.

Without loss of generality, to meet the proposed goals of the GQM plan, it will suffice
to evaluate the accuracy and efficiency of our technique based on the analysis of a single
property. Therefore, Property P7, from Section 4 was chosen to guide the next phase of
the methodology, since it is related to all the different modules of the CPS. The property
states as follows: "Whenever a sensor node has collected data, in within at most 2 seconds,
the Central Node will process it." It focuses on the reliability of the system, since its
satisfaction guarantees that the collected data will be processed in a reasonable time.
Besides that, the Oximeter was the sensor chosen to reify the analysis.

With that being said, the observer related to P7, implemented in the work of Carwehl
et al. [33], will be deployed in this simulation. The states of the automata were modeled as
blocks and the transitions as instances of the TransitionWithSignal class of the StateGraph
library of Modelica. The signals used in the transitions are provided by the sensor and
the Central Node, while a timer is set every time the monitor enters the CollectedReached
state and if it does not transition back to the initial state, by the time when the timer
runs out, the error state is reached.

Prototype Simulation

With the prototype of the BSN in place, several simulations were executed with varying
configurations, patient profiles and environment variables so that the complexities of
runtime could be assessed earlier.

As noted in the preceding section, one of the simulation’s inputs is a csv file holding
the sensors’ readings at each second. The patient profile given by these files is constructed
using a randomized approach in the Python language in order to be as neutral as feasi-
ble. Three functions for generating random points within a range were created: one for
indicating a rising tendency, another for indicating a decreasing tendency, and a third for
keeping the data trend steady. Initially, a random point is created within the sensor’s
range of data. Then, one of the three functions and a second value that accounts for
the "destination" are randomly picked. The function is then run for the generation of
data points starting from the initial value and ending in the destination value, with the
selected tendency. For large datasets, the process can be repeated with the destination
value becoming the initial value of the new cycle. For example, suppose we are generating
the data for the thermometer. The initial value is 36.5C, the destination value generated
is 38C and the selected function is the rising tendency. Then a set of datapoints will be
randomly genereated in a way that it starts from the initial value and rises until reaching
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Figure 6.4: The model of the Observer implemented in OpenModelica

38C. This process was performed for each of the five sensors and repeated until the desired
data set size.

After the creation of the dataset, the simulation was run. Even though OpenModelica
makes it realy easy to perform simulations, it does not scale well, since the csv files and
the system configurations must be set manually at each run. To address this problem, a
python library named OMPython was used [75]. It is a Python-based interactive session
handler for Modelica scripting that is free, open source, and extremely portable. It was
utilized to programatically load the modules, alter the parameters and configurations and
run the simulation.

To account for as much variability as possible, 1,000 patient profiles were randomly
generated and, the same amount of simulations were performed. The operation dataset
of each run was extracted and saved as csv files. The simulation was processed in an
Intel(R) Core(TM) i5-10210U, 2.10 GHz, 16GB.

6.1.2 Adaptive Immunity Through Learning

After the simulations were run, the extraction of the operation dataset triggered the next
phase of the methodology. Tightly related to the adaptive immune response of the BIS,
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the data was processed and inputed into the Negative Selection algorithm to allow for a
more specific response in face of anomalous behavior.

Feature engineering

Initially, a data pipeline was built in the Python language for the processing of the opera-
tion dataset. The data was divided into execution segments based on the time constraints
of the property P7 using the procedure outlined in Section 5.3.1. The segments were then
summarized into single rows using domain knowledge, and features were extracted from
the segment to better characterize it. For example, we created boolean features based on
the signals sent between the modules of the system, which may indicate that the data was
properly transfered to the Central Node, or that the sensor ceased operating during the
computation of the health risk percentage. Other engineered features are related to the
description of specific behaviors that might have happened, like the battery running out,
or an emergency being detected. Finally, we have also developed real-valued features that
reflect, for instance, how long it took to perform some task, or the measurement collected
by the sensor.

The labeling task was performed by the development of an algorithm that mimics the
behavior of the observer. The observer itself could have been used for this task, by simply
looking at its state in the end of the segment. Nevertheless, the error state is a dead end
since there are no transitions outside from it. This means that, if this state is reached in
the middle of a simulation, all subsequent segments will be also accounted as faulty, even
if the system properly handles the situation and goes back to its regular execution. Thus,
some adjustments would be required in order to use the observer to pinpoint the traces
where property violations happened, which could risk the correctness of the process. This
tension was handled by implementing an algorithm that reads the engineered features and
replicates the verification that would be performed by the observer. For example, the P7
observer from Figure 6.4 checks if the sensor collected data and if the Central Node has
processed it. Since the execution segments are split based on the time restriction, if the
Central Node does not execute, i.e. the boolean feature related to this behavior is set to
False, then we have found a property violation segment.

Negative Selection Algorithm

For the NSA to be run on the operation dataset, first an Exploratory Data Analysis was
performed. For that matter, a sanity check was realized to assess the quality of the data
that was generated. Each feature was carefully inspected to see if any faults in the design
or in the feature engineering process could be spotted. Examples included columns with
an unexpected amount of missing values, wrong data types, and strange behaviors, like
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data being transfered without the sensor having collected it. After that, the correlation
between each pair of features was computed as a means to remove any multicolinearity
in the dataset. The idea behind it was that, since highly correlated features bring similar
information, one of them can be discarded.

Next, a new correlation analysis took place, but this time only considering the re-
lationship between the boolean features and the property violation label. As explained
in Section 5.3.2, only the boolean variables were considered for they would compose the
binary string in the Negative Selection Algorithm. The Matthews correlation coefficient
(MCC) was utilized for this task [76] since it provides a truthfull and informative de-
scription of the relationship between two boolean features. The columns were sorted in a
descending way based on the absolute value of the correlation rate, and a threshold of 0.1
was the basis for removing features that were not correlated with the label. The features
based on the signals that the observer uses to identify violations, were also removed, since
they were used in the making of the label. Table 6.2 shows the 13 features that resulted
from this process and their respective position related to the absolute value of the MCC
rate. It can be noted that the last 4 features are related to other sensors and have a
correlation close to 0.1, which could be easily removed. We, however, have decided to
keep them to assess the performance of our model in the presence of noise in the data.

Position Feature MCC
(Absolute)

0 Oximeter was available during the data transference 0.927324
1 Oximeter transfered data 0.923101
2 Oximeter was available during Central Node data processing 0.849276
3 Oximeter Battery became unavailable at some point 0.508921
4 Oximeter became unavailable during trace 0.462366
5 Oximeter battery became unavailable during data collection 0.300302
6 Oximeter processed data 0.300302
7 Oximeter battery became unavailable during data processing 0.296026
8 Oximeter became unavailable during data transference 0.269047
9 The battery of the ABPD sensor became unavailable 0.136670
10 The battery of the ABPS sensor became unavailable 0.133274
11 The battery of the Heart Rate monitor became unavailable 0.129930
12 The battery of the thermometer became unavailable 0.126224

Table 6.2: Selected Features and their respective positions

Finally, the Negative Selection Algorithm was run, based on the simulation generated
dataset and on the selected features. The training phase aims at generating the nonself
detectors that will hold the patterns of the anomalous segments. First, the nonself-
data, i.e. the rows labeled as property violations, were removed from the set. Then,
Afterwards, the execution segments were modeled as binary strings, following the features
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and positions from Table 6.2. Next, while the desired number of detectors was not reached,
a binary string of length r = 5 would be generated and tested against the execution
segment strings for matching. In the case of a match, the detector candidate would
be discarded. Otherwise, it was appended in a list of nonself detectors. The matching
function works as follows: for each position p, with 0 ≤ p ≤ 8, the algorithm would check
if there was a substring of length l = r = 5 in the self-set, starting in position p, that
was equal to the candidate detector. If the algorithm unsuccessfully attempts to generate
a viable detector for a predefined number of times, then the algorithm goes through an
early stop.

6.2 Goal 1: Property Violation Identification process

Question: How well does our model generalizes to unseen data? To answer this
question propertly, the operation dataset extracted from the simulations was splitted into
two: 75% of the set was used for the detector’s generation, and the other 25% was set
apart to account for the unseen data. The entire dataset had 19868 rows, with 16493
(83%) related to regular operation and 3375 (17%) of the execution segments violated
property P7. Hence, the split resulted in 14901 rows being utilized in the training phase,
but only 12370 rows were used for the generation of the nonself detectors, since the process
only makes use of the self-set, i.e. the majority class.

Figure 6.5: NSA’s Confusion Matrix

We are using the metrics of precision and recall to assess the performance of the model,
since they provide a good summary of the confusion matrix. The recall rate is computed
as True Positives / (True Positives + False Positives), i.e. how many of the relevant
property violations were found, while the precision rate is calculated as True Positives
/ (True Positives + False Negatives), and is the same as asking "how many property
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violations found were relevant." Our main interest was in having a high precision rate,
since we wanted to have the lowest value of False positives as possible. This happens
because the goal was to study the generated detectors to understand the patterns found,
and having False positives could impact in this task. On the other hand, having False
Negatives would not have such impact, once they would be related to the patterns that
were not discovered by the detectors, thus causing less harm to the overall approach.
Figure 6.5 depicts the confusion matrix of the results of the model. No self-data was
considered as faulty, meaning that there were no False Positives, as desired. Nevertheless,
only 2 violations were not assessed by the NSA, which is within an acceptable range.

Table 6.3 shows the precision and recall rates of our approach using the Negative
Selection Algorithm over the simulation dataset in relation to the property P7 for the
Oximeter sensor. The accuracy and MCC rates were also computed as a way to have a
complementary view on the performance. Besides that, the same labeled dataset was also
used as input for some well known Machine Learning algorithms. The One-class SVM
and the Isolation Forest were brought to this comparison since they are popular state-
of-the-art semi-supervised anomaly detection algorithms [19], and because the One-class
SVM is usually compared with the NSA for they both use only one of the classes during
the training phase [3]. The Decision tree, the Random Forest and the Gradient Boost-
ing algorithms [20, 21] were also compared for its broad usage in the Machine Learning
comunity.

Model Accuracy Precision Recall MCC
Negative Selection 0.9995 1.0 0.9976 0.9985

One-Class SVM 0.7634 0.4180 1.0 0.5467
Isolation Forest 0.7173 0.2928 0.4691 0.2002
Decision Tree 0.9995 1.0 0.9976 0.9985

Random Forest 0.9995 1.0 0.9976 0.9985
Gradient Boosting 0.9995 1.0 0.9976 0.9985

Table 6.3: NSA Performance comparison

From the table, it is clear that the NSA performed way better than its counteparts
in the anomaly detection field. Athough it had a very similar performance compared
to Random Forest ant Gradient Boosting, the interpretability provided by the algorithm
through the observers is paramount to handle not only the detection of property violations,
but also to provinding relevant information for the analyst to enhance the verification of
the CPS. This will be much more clear in the evaluation of Goal 2.

53



Figure 6.6: Top 20 Detectors with most matches

6.3 Goal 2: Method’s contribution

Question: How effective is our approach in the discovery of patterns in prop-
erty violation scenarios? This question will be assessed by delving deeper on the
Detector Analysis step of the proposed methodology. As illustrated in Figure 5.5, the
detector’s string are reverse mapped to the features by using the values from Table 6.2
and the detector’s position.

After running the Negative Selection Algorithm, 229 binary strings were created that
did not match with any data from the self-set. Hence, these detectors were designed to
cover the self-set complimentary space. However, this does not mean that a detector must
match with a faulty execution segment, i.e. not all detectors generated are usefull. With
that being said, the detectors that did not match nonself data were considered of less
importance and, thus, discarded from the analysis. Therefore, from the 229 detectors, we
were left with only 68 usefull binary strings.

The bar chart in Figure 6.6 displays the amount of nonself data that were matched
by the top 20 detectors. This chart provides the analyst a better understanding of which
are the most common and relevant patterns that were found by the algorithm.

By looking at the chart from Figure 6.6, one can easily see that the first two detectors
match the same amount of nonself data. Besides that, their patterns seem to overlap,
since if they were placed next to each other, considering their position, the difference
between the two is the leftmost bit on the first one and the rightmost bit on the second
one. This raised the possibility of two or more detectors having detected the same pattern
but, because of the fixed size of the R-chunk, they were separated. In order to verify this
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Figure 6.7: Coverage of Nonself data matched by detectors

situation, the MCC rate was computed for each pair of detectors. In the case of a pair
being perfectly correlated, we could infer that they had matched the exact same nonself
data, thus, they could be seen as the same pattern stored in different detectors. The idea
was to agglutinate such pairs in order to have more robust patterns. For example, the first
two detectors from Figure 6.6 became a single 6-bit string detector, starting in position
0, with the bits 000010. After identifying and agglutinating all the identified cases, the
total amount of detectors became 49.

Another aspect that need to be considered is the fact that the sum of matches is still
greater than the amount of property violation cases in the dataset. Figure 6.7 depicts the
percentage of nonself data covered with the addition of the detectors one by one, sorted
by relevance. From the chart, we see that only 9 detectors are capable of detecting all
the anomalous behavior of the system.

This information raises a relevant fact. The set of nonself data matched by some
detectors may comprise the entire set of other detectors with less matches. Another
way of looking at it is to think that the patterns found by some detectors are part, or
even specializations, of greater patterns of nonself data. Figure 6.8 attempts to illustrate
this concept. By analyzing the detectors, we saw that all of the patterns matched by
the detector (1,’00111000’) were also matched by (0,’00011’). Moreover, the detector
(0,’00011’) also matched all the nonself data matched by (1,’001101100’). Therefore, it
is possible to state that the pattern (0,’00011’) is specialized into the two other patterns,
meaning that the bigger pattern can happen under two different circumstances, accounted
by the two other patterns.

Figure 6.9 shows the reverse mapping of the highlighted patterns. The detectors were
placed in their respective positions, side by side, and the relevat rows from Table 6.2 were
brought for a better understanding of the patterns found. The leftmost pattern is the one
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Figure 6.8: Specialization of Patterns

that is specialized in the other two. By the boolean values and the positions, we see that
it is related to the violations that happen when the data transference from the sensor
to the Central Node did not happen (signal 0 in position 1) and the battery ran out at
some point during the trace (signal 1 in position 3). The observer in the middle share
this same pattern, but specifies the cases when the battery ran out during the processing
of the data (signal 1 in position 7). In the meanwhile, the righmost observer points to the
scenarios when the battery ran out while the sensor was acquiring the patient’s vital signs.
In summary, this group of detectors indentified the cases where the violation happened
because the data was not transfered due to the battery running out either during the
collection or the processing of the data.

Figure 6.9: Reverse Mapping of the Specialized Patterns

Finally, the patterns and their specializations were all computed and are laid out in
Figure 6.10. The Sankey chart helps us not only to understand the relationship amongst
the detectors, but it also provides a visual aid for identifying the strength of the relation.
In the figure, the most relevant detectors are placed on the left side of the pair, and
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Figure 6.10: Groups of Detectors identified based on the similarity of patterns

their specialization are displayed in the right side. The strength of the relation can be
seen by the line that connects them. The larger the line connecting two points is, the
more nonself data are detected by the pair. Some relations are simple as the exemple
from Figure 6.8, but others can bring more complex structures, like the group formed
by detector (5, ’01011). The pattern groups were named and further divided into two
clusters, based on their instrinsic characteristics.

Table 6.4 elaborates on the sankey chart from Figure 6.10. It provides more informa-
tion on the pattern that was identified by each detector group, along with the respective
percentage of nonself data matched within each set. Cluster 1 comprises the patterns
that matched the most, with the positions closer to 0. This points to the relevance of
these patterns, since they include the features that are more related to the violation data.
A total of 63% of the nonself set matched with the detector from Group E, the highest
value. From the description, we can see that it accounts for the cases when the sensor
stopped responding because it was too far away to transmit reliable data, or it had some
malfunctioning that may account for faults in runtime. Nevertheless, the absency of the
sensor was already addressed in the specification of the BSN [5], and thus is not a novelty
that would impact the design of the observer.

Differently, Group A matches the cases in which the data was not transmitted due to
the battery running out either during the data collection, processing or transfering. It was
the second in percentage of matches, accounting for near 21% of the total of anomalous
data. Even though the detectors were positioned on lower bits, Group B goes in a similar
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Pattern
Group Detector 1 Detector 2 Detector 3 Pattern Description Percentage

matched

A
(0, ’00010’) (1,’00101000’) Lack of battery

during data collection 7,61%

(0, ’00010’) (1,’00100110’) (2,’01001’) Lack of battery
during data processing 7,70%

(2,’01001’) (0,’110100101’) Lack of battery
during data transfering 7,26%

B (5,’100000’) (6,’00000’) Lack of battery
during data collection

4,41%
(5,’100000’) (6,’00001’) 1,78%

C
(0,’00011’) (1,’00111000’) Lack of battery

during data collection 3,05%

(0,’00011’) (1,00110110’) (2,’01101’) Lack of battery
during data processing 2,67%

(2,’01101’) (0,’110110101’) Sensor absent
during transfer 1,33%

D (2,’00001’) (0,’110000’) Sensor absent during
Central Node processing

2,90%
(2,’00001’) (0,’000000’) 2,79%

E (0,’000010’) Sensor absent
at some point 63,59%

F (0,’01001’) Sensor absent during
Central Node processing 0,68%

G (5,’10001’) (6,’00011’) Lack of battery
during data collection

2,84%
(5,’10001’) (6,’00010’) 1,63%

H

(5,’01100’) (6,’11000’) (7,’10000’)
Lack of battery

during data processing

2,58%
(5,’01100’) (6,’11000’) (7,’10001’) 0,95%
(5,’01100’) (6,’11001’) (7,’10010’) 0,92%
(5,’01100’) (6,’11001’) (7,’10011’) 0,83%

I

(5,’01101’) (6,’11011’) (7,’10111’)
Lack of battery

during data processing

2,16%
(5,’01101’) (6,’11011’) (7,’10110’) 0,89%
(5,’01101’) (6,’11010’) (7,’10101’) 1,10%
(5,’01101’) (6,’11010’) (7,’10100’) 0,95%

J

(5,’01011’) (6,’10111’) (7,’01111’)
Lack of battery

during data transfering

2,28%
(5,’01011’) (6,’10111’) (7,’01110’) 0,50%
(5,’01011’) (6,’10110’) (7,’01101’) 0,77%
(5,’01011’) (6,’10110’) (7,’01100’) 0,71%

K

(5,’01010’) (6,’10100’) (7,’01000’)
Lack of battery

during data transfering

1,99%
(5,’01010’) (6,’10100’) (7,’01001’) 1,01%
(5,’01010’) (6,’10101’) (7,’01011’) 0,80%
(5,’01010’) (6,’10101’) (7,’01010’) 0,53%

Table 6.4: Description of the patterns found in each Detector Group
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Figure 6.11: P7’s Observer updated

direction, by matching violations related to the lack of battery during the acquisition of
data, though the bits in the mid-region of the string. Group C, in turn, defined a set
of mixed patterns that account for both the battery running out and the malfunctioning
of the sensor. Therefore, from these three, it is possible to infer that the charge of the
battery is key for the fulfillment of the property P7.

Nevertheless, not all the unveiled patterns were informative. Groups D and F, for
example, describe scenarios where some further details would be required. For some
reason, the absence of the sensor was related to the Central Node not being able to
process the data transmitted, which is not very intuitive.

On the other hand, Cluster 2, comprised of groups G through K, represents just a few
portion of the nonself dataset, and have a very similar description to groups A, B and
C. By looking closely at the detectors, it is possible to verify that the changes happen
mainly in the lower bits, which are related to the other sensors’ batteries (refer to table
6.2). Based on the domain knowledge, those features are identified as noise since they
should not impact directly in the violation of the property for a specific sensor. The
threshold defined during the feature selection step brought to the analysis some features
that describe the battery of other sensors, which may have caused some unneeded patterns
to be formed. Hence, the patterns from this cluster did not add much to the analysis.
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All in all, this analysis should provide the CPS analyst with substantial information
to address the anomalous situations. By looking at scenarios unveiled by the groups,
it is possible to understand that the battery is key for the satisfaction of the property
P7. This happens since the cell may run out during the collection, the processing, or the
transfering of the data, making it impossible for the Central Node to process it within the
time restriction. Therefore, it could be the case for the analyst to update this observer, so
that it would consider this newly unveiled variability. Figure 6.11 illustrates the changes
that could be made to the observer of the property P7, based on the Observer catalog
from [33]. A new state related to the battery being off would be created so that, if
this component runs out after the data was acquired, then the error state would not be
reached.

Figure 6.12: Number of Detectors at each step

Therefore, these violation-related detector groups generated from our technique ac-
count for the effectiveness of the approach in the discovering of patterns in the simulated
data since they were shown to be relevant for the refinement of property P7 runtime
monitor. Figure 6.12 illustrates the overall process of finding relevant patterns. From
the 229 detectors generated by the Negative Selection Algorithm, only 68 have matched
with nonself data. From those, we concluded that some of them were actually the same
pattern, splitted into two or more detectors due to the size limitation of the R-chunk,
and thus, could be agglutinated. After merging them, the resultant 49 detectors were
grouped into 11 clusters of patters that share a common behavior. These cluster were
further analyzed by reverse mapping the strings into features, resulting in the extraction
of relevant information about the violation scenarios, and the refinement of the runtime
monitor related to the property at hand.

Lastly, the Decision Tree algorithm (DT) was performed in order to compare our
approach to another technique. The same data served as input, and the output is a tree
depicted in Figure 6.13. Each node of the tree is related to one of the features, with
their position is related to its importance. By analyzing it, it is noteworthy that the
there is a whole subtree related only to the other sensor’s battery, which we already made
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Figure 6.13: Comparison - Patterns found by using a Decision Tree

the case that it accounts for noise in the data, and thus can be discarded. Therefore,
only three remaining patters are left, which can be related to groups E, for the one in
the highest level of the three; groups A, B and C for the second highest; and groups
D and F for the lowest one. The subtree with the noise found is related to groups
G through K. In comparison, our approach was able to identify a greater number of
patterns, besides find specializations of each. For example, the DT identified a pattern in
which the violation happened because the battery was unavailable at some point during
the execution segment. In the meanwhile, our proposed methodology not only found
that, but also pointed that this could happen during the data collection, processing and
transfering, with the relevance for each scenario. Therefore, even though the precision
and recall rates were similar between the two approaches, the explainability provided by
ours allows for a better assessment of the reasons behind the property violations.

6.4 Discussion

Even though there are several methods for verifying a system for assurance purposes, such
as Model Checking or runtime verification, the structural, dynamic, and organizational
complexities of Cyber-Physical systems may become an impediment in this process, both
in modeling and in defining the set of properties that will be assessed. The technique
proposed in this paper seeks to fill this gap by utilizing well-studied frameworks for mod-
eling the complex link between the discrete-time behavior of software components and
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the continuous-time acausal equations that govern the physical processes of such systems.
Furthermore, the simulated data analysis enables the detection of patterns in data that
could not have been accounted for when the system properties were initially elicited.
Thus, our technique provides a better understanding of the context in which the CPS will
be introduced, allowing the verification process to be enhanced.

Our technique’s quantitative evaluation yielded satisfactory results. The use of the
Negative Selection Algorithm resulted in performance that was quite close to that of
other proeminent Machine Learning algorithms, including those specialized in anomaly
detection. The NSA gave a low False Positive rate in the presence of unseen data, meaning
that no mistakes that could harm the proposed technique occurred. Aside from that, the
examination of the patterns discovered by the detectors was also quite good. We were
able to select 49 detectors from the 229 produced detectors that were truly important
for characterizing property violations that may occur at runtime. Those detectors were
also distributed into 11 clusters based on the similarity of the discovered patterns, further
assisting the software analyst by displaying the components that are closely connected to
the source of the anomalous behavior.

6.5 Threats to validity

• Construct validity: We relied on a documented case study (BSN) and its publicly
accessible data to ensure that we present a valid and sound input for our evaluation.
The specification of the system, in the form of a CGM, as well as the properties
derived from it and the observers utilized were all taken from literature. Besides
that, the patient profiles were generated based on a randomized process in order to
minimize as much as possible bias in the data. However, in spite of our efforts to
avoid generating inaccurate data, we were not able to guarantee that the created
data represents accurately a real-world circumstance. Further research is required
to validate such representation.

• Internal validity: Our evaluation relies significantly on the BSN prototype imple-
mented in Modelica, since the patterns discovered are only as good as the dataset
used to find them. Therefore, a correct abstraction of the behavior of the BSN
into a model for simulation is paramount. The model must account for as much
variability as possibile, according to what will be faced during the execution of the
CPS. Nevertheless, it is of our understanding that this is not an easy task. Even
with the right tools and state-of-the-art framework, the expert’s knowledge of the
system is highly required, since several aspects of the system are specific for the
medical domain. Besides that, differential equations are used to model the behavior
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of the physical components, which would also need a more specialized opinion. As
stated by Baier and Katoen [27], "Any verification using model-based techniques is
only as good as the model of the system."

Moreover, the choice for the binary version of the Negative Selection Algorithm also
comes with its disadivantages. Even though modeling the behavior of the CPS as
boolean features allows for simplicity and the reverse mapping of binary detectors
provide a great level of interpretability, the Binary Negative Selection (BNSA) is
well-known for its performance and completeness issues. D’haeseleer et al. [44]
pointed out that the generation of binary detectors is a very time-conusming task,
that rises exponentially with the size of the self-set. They also state the possible
existence of "holes", which are strings for which is impossible to generate valid
detectors. This would account for property violation patterns impossible to be
unveiled, thus, decreasing the efficiency of our approach. Finally, they also say that
an accurate and stable definition of self is key for the success of the BNSA, which
is not always the case due to the dynamic complexities of CPS.

• External validity: Even though our technique is not domain specific, we under-
stand the evaluation’s limitations because it was applied in single example of the
medical field. Further study of the technique is required to determine the approach’s
true usefulness for generalization goals. To assess the technique’s real applicability
for purposes of generalization, more examination of the technique must be done.
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Chapter 7

Conclusion and future work

In this work, we proposed a methodology to systematically enhance the verification task
performed by runtime monitors in Cyber-physical systems. The inherent complexities in
the relation between the cybernetic and the physical natures may increase the challenge
of verifying such systems. The runtime monitors initially designed may suffer from the
lack of knowledge of the runtime environment, which might impact in the ability of the
system analyst to understand the set of features or behaviors responsible for the anomalous
executions.

To address that, we propose the implementation of a prototype of the system, by
using a set of tools that are specifically designed to model CPS. Several simulations are
performed in the prototype, generating an operation dataset. This set will be reshaped,
labeled as property violations or as regular executions, and inputed into the NSA. This
immune-based algorithm is capable of generating a set of detectors specialized in iden-
tifying property violations. This detectors are then studied as a means to extract the
patterns related to the anomalous behavior. Finally, these patterns are used to enhance
the runtime monitors, providing the CPS with a more robust verification and, thus, reli-
able execution.

Our approach was evaluated using the Body Sensor Network. The overall result of the
NSA was very satisfactory, with high values of precision and recall, very similar to other
machine learning techniques. The advantage of the NSA concerns the generated detectors,
which provide the methodology with a high interpretability of the patterns found. In the
end, 49 patterns were found, which were distributed in 11 groups based on similarity.

In future works, we plan to expand the analysis of the patterns by using the formalism
found in the causality analysis research field to identify the root cause of the property
violation. The design of the CPS would greatly benefit from this, since the analyst would
be provided with the tools needed to tackle the actual source of the problem, and not
only the indicative of where the problem might be.
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Even though we tried to be as unbiased as possible, our evaluation relied much on
data that was randomly generated. Thus, in a near future, we intend to check how our
methodology performs in a real wold scenario, by leveraging data from patients with
varying diseases, ages and other important aspects. In this opportunity, we also plan
to evaluate our methodology not only for specific properties, but also for each specific
problem. This happens because our approach perform well for young patients with heart
diseases, but not for older patients with lung cancer, for instance. This may happen also
for the variability in the configuration of the simulation. On the one hand, we may find
that the NSA performs well for identifying the battery, but not so much for unreliable
sensor mesurements, for example. Hence, a thorough evaluation based on predefined
scenarios would help us better understand the strenght of the methodology.

Since the evaluation was performed on a single study case, there is a need for broad-
ening the reach of our approach to other domains. Hence, other plans are related to the
implementation of study cases with more complex CPS. We see the BSN as a simple,
yet powerfull, proof that the concept holds. Nevertheless, modeling a CPS consisting of
several different modules, conected through networks, with a set of dynamic complexities
and so on would be a interesting way of stressing the proposed solution and seeing if it
still holds.

We also see the need for provinding a deeper evaluation of our methodoly by using a
more robust and complex example of CPS. Due to time limitations, we have restricted
ourselves to a limited number of variabilities that could be found in the BSN environment.
Maybe using a real world application, with a prototype designed with industrial standards
would help us to assess better the complex relations between the physical and cybernetic
aspects and, thus, provide a better understanding of the performance of the approach.

Finally, in this work we made use of the binary version of the NSA in order to leverage
its high interpretability. Nevertheless, there can be found in the literature more advanced
versions of the algorithm [3], which represent the data as real values and whose detectors
are complex strucutres that solve many of the shortcommings found in the binary version.
In the future, we intend to look for ways to utilize these state-of-the-art versions of the
NSA in our approach, without losing in interpretability.
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