
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

What Could the Source Code History Tell UsAbout
Errors

Luis Henrique Vieira Amaral

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Orientador
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2020

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

What Could the Source Code History Tell UsAbout
Errors

Luis Henrique Vieira Amaral

Dissertação apresentada como requisito parcial para
conclusão do Mestrado em Informática

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador)
CIC/UnB

Prof. Dr. Uirá Kulesza Prof. Dr. Paulo Meirelles
DIMAp/UFRN FGA/UnB

Prof. Dr. Bruno Macchiavello
Coordenador do Programa de Pós-graduação em Informática

Brasília, 18 de Fevereiro de 2020

Dedicatória

Dedico este trabalho à minha família e aos meus amigos que sempre me apoiaram de
forma incondicional e que estiveram presentes em todos os momentos dessa jornada.

iii

Agradecimentos

Primeiramente, quero agradecer ao meu Orientador, Professor Rodrigo Bonifácio, pela
dedicação, apoio incondicional e principalmente pela paciência que teve durante este tra-
balho. Se não fosse por você, eu teria desistido em vários momentos de dificuldades. Além
de Orientador e professor, você foi meu amigo, meu parceiro de viagem, um irmão que
sempre me apoiou e que tenho gratidão imensurável. Também desejo agradecer a pro-
fessora Edna Dias Canedo que me ajudou de todas as maneiras ao longo dessa jornada.
Muito obrigado pelos projetos de pesquisa, pelas experiências compartilhadas, pelos me-
lhores bolos de chocolate e pelo feijão que você fazia pra gente. Pessoas como vocês me
fazem acreditar que é possível mudar o mundo, melhorar a educação e a pesquisa do Brasil
e que é importante ajudar as pessoas que estão em nossa volta.

Não menos importante, agradeço a minha mãe Maria Cleide V. Amaral. A pessoa
mais importante da minha vida, que me ensinou a ler e escrever quando eu estava no
Jardim. Que deixou de fazer muitas coisas ao longo da vida para investir na educação dos
filhos. Que não me deixou desistir do mestrado quando estava sem rumo e perspectiva de
vida. Uma mulher que sempre segura a barra quando as coisas estão difíceis e que tem
um coração gigante. Espero que um dia eu possa retribuir pelo menos 10% do que você
proporcionou na minha vida. Obrigado por ser a melhor mãe do mundo.

Agradeço ao meu pai, Antônio dos Reis Amaral e meu irmão, Gustavo Henrique V.
Amaral. Sem dúvida, vocês foram essenciais para que este trabalho fosse concluído. Sem-
pre estavam presentes quando eu precisei e sempre me apoiaram em minhas escolhas
pessoais. Agradeço à Delícia, que estava comigo em quase todos os momentos e que
aguentou meus estresses, dramas e a insegurança. Você é uma menina de ouro, que me
ensinou a ver o mundo com outra perspectiva e que tenho muito orgulho de ter namo-
rado. Por fim, agradeço aos meus amigos Walter Lucas, Leomar Camargo e Ranielson
por estarem comigo durante todo o programa.

iv

Resumo

Quase todos os desenvolvedores criam software usando uma abordagem de desenvolvi-
mento colaborativo. Nesse cenário, após concluir a tarefa, desenvolvedores submetem
suas contribuições a um repositório remoto— disponibilizando-os para outros colabora-
dores. Enquanto sequências de revisões e trabalho paralelo aumentam a produtividade
do software, por outro lado, alterações simultâneas podem causar conflitos de mescla-
gem. Além disso, quando duas entidades de software (por exemplo, classes, métodos,
campos) são mudados frequentemente de forma simultânea, eles se tornam dependentes
de co-alteração um do outro— um tipo de dependência que geralmente está oculta dos de-
senvolvedores. Alguns estudos investigam como reduzir as dependências de co-alterações
e de conflitos sintáticos em operações de mesclagem, mas existem algumas questões em
aberto sobre esse tipo específico de dependência e se conflitos de mesclagem introduzem
bugs. Neste trabalho, esclarecemos essas questões e apresentamos os resultados de uma
avaliação empírica que explora os dados históricos de 34 projetos Apache, para verificar se
as alterações que introduziram erros (BIC) se correlacionam com cenários de mesclagem
conflitantes e commits que levam a dependências de co-alterações. Nosso estudo apresenta
que o SZZ - um algoritmo para encontrar os commits que introduziram erros - rotulou
3,62 % dos cenários de mesclagem em conflito como um commit de introdução de erros e
18,77 % dos commits levam a dependências de co-alterações . Nossos resultados trazem
várias implicações para pesquisadores e profissionais. Entre eles, evidenciamos que os
desenvolvedores não devem ter medo de resolver conflitos, já que apenas uma pequena
porcentagem de os cenários de mesclagem em conflito foi suspeita de ter introduzido bugs.

Palavras-chave: evolução de código-fonte, errors de software, SZZ, conflitos de mescla-
gem, dependências de co-alterações

v

Abstract

Almost all developers build software using a collaborative development approach. In
this scenario, after concluding a task, developers commit their contributions to a remote
repository—making them available to other contributors. While sequences of revisions
and parallel working increase software productivity, on the other hand, concurrent changes
might cause merge conflicts. Moreover, when two software entities (e.g. classes, methods,
fields) are frequently changed together, they become co-change dependent on each other—
a kind of dependency that is often hidden from the developers. Some studies investigate
how to reduce co-change dependencies and syntactic conflicts in merge operations, but
there are some open questions about whether this particular kind of dependency and
merge conflicts introduce bugs. In this work, we shed light upon these questions and
present the results of an empirical assessment that mine the historical data of 39 Apache
projects, to verify if bug-introducing changes (BIC) correlate with conflicted merge sce-
narios and commits that lead to co-change dependencies. Our study presents that SZZ
— an algorithm to find bug introducing commits — labeled 3.62% of conflicted merge
scenarios as being a bug-introducing commit and 18.77% of the commits that lead to
co-change dependencies. Our results bring several implications for both researchers and
practitioners. Among them, we give evidence that developers should not be afraid of solv-
ing conflicts since just a small percentage of the conflicted merge scenarios are suspicious
of having introduced bugs.

Keywords: source-code evolution, Mining Software Repositories, SZZ, merge conflicts,
Co-change Dependencies

vi

Contents

1 Introduction 1
1.1 Problem Statement and Research Questions 2
1.2 Objectives . 3
1.3 Document Organization . 4

2 Background 5
2.1 Version Control Systems . 5
2.2 Bug Tracking Systems . 8
2.3 The SZZ Algorithm . 9
2.4 Co-change evolution . 12

3 Methodology 14
3.1 Project Selection Criteria . 14
3.2 Finding Bug-introducing commits . 15
3.3 Re-playing merge scenarios and collecting their characteristics 17
3.4 Tool support for collecting merge scenarios 19

3.4.1 Computing Co-change Dependencies 19

4 Results 23
4.1 Exploratory data Analysis . 23
4.2 Disclosing conflicting merge scenarios linked to BICs 29

4.2.1 R.Q.1: To what extent conflicting merge scenarios correspond to
the bug introduction contributions? 33

4.2.2 What are the characteristics of the conflicted merge scenarios that
introduced error? . 36

4.3 RQ2 How to predict bugs on conflicted merge scenarios? 39
4.4 RQ3 To what extent commits with co-change dependencies relate to bug-

introducing changes? . 43

vii

5 Conclusions 49
5.1 Contributions . 50
5.2 Threats to Validity . 50
5.3 Future Works . 51

6 Related Works 52
6.1 Research on Merge conflicts . 52
6.2 Research on Co-change Dependencies . 54

References 56

viii

List of Figures

2.1 Example of Three-way line-based textual merge scenario [41] 7
2.2 Jira Issue Tracking System . 9
2.3 Phase I of SZZ workflow.[8] . 10
2.4 Overview of the SZZ-Unleashed workflow [8] 10
2.5 Table with the SZZ limitations collected from [49] 11
2.6 Draco refactoring approach overview [17] 13

3.1 Number of projects selected. 15
3.2 Workflow of SZZ-Unleashed [8] . 16
3.3 Sample of git merge operation. 17

4.1 Log-scale box-plot with the number of closed bug issues and linked bug-
fixing commits per project . 24

4.2 Rate of the linked fixes over the number of issues per project 25
4.3 Log-scale box-plot with the number of BFC and BIC per project 25
4.4 Histogram with the rate value of (BFC - BIC) / BFC per project 26
4.5 Histogram with the rate value of BFCs that fixed errors introduced by BICs 27
4.6 Log-scale histograms with the number of merge scenarios before(left), and

after filtering the set of projects (right) . 28
4.7 Log-scale histograms with the number of conflicted merge scenarios before

(left), and after filtering the set of projects (right) 28
4.8 Histograms with the rate value (Conflicts/Merges) before (left), and after

filtering the set of projects (right)) . 28
4.9 Rate of the linked BFCs over the total number of issues (labeled as bugs)

per project . 31
4.10 Log-scale box-plot with the number of all commits, merge scenarios, and

conflicted merge scenarios per project . 32
4.11 Histogram with the rate value of merges over commits per project 32
4.12 Histogram with the rate value of conflicted merge scenarios per project . . 33

ix

4.13 Histogram with the rate value of bug-induced commits over all commits
per project . 34

4.14 Conflicting merge commits linked to BICs 34
4.15 Histogram with the log-scale number of files changed by the right branches

of the conflicted merge commits linked to bug-introducing commits 37
4.16 Histogram with the log-scale number of files changed by the left branches

of the conflicted merge commits linked to bug-introducing commits 38
4.17 Histogram with the log-scale number of lines additions by the right branches

of the conflicted merge commits linked to bug-introducing commits 39
4.18 Histogram with the log-scale number of lines additions by the left branches

of the conflicted merge commits linked to bug-introducing commits 40
4.19 Histogram with the log-scale number of lines removals by the right branches

of the conflicted merge commits linked to bug-introducing commits 41
4.20 Histogram with the log-scale number of lines removals by the left branches

of the conflicted merge commits linked to bug-introducing commits 42
4.21 Histogram with the log-scale number of active authors on the right branches

of the conflicted merge commits linked to bug-introducing commits 43
4.22 Histogram with the log-scale number of active authors on the left branches

of the conflicted merge commits linked to bug-introducing commits 44
4.23 Histogram with the log-scale number of commits on the right branches of

the conflicted merge commits linked to bug-introducing commits 45
4.24 Histogram with the log-scale number of commits on the left branches of

the conflicted merge commits linked to bug-introducing commits 46
4.25 (Log-scale) Histogram with the log-scale number of files in conflict for the

induced merge commits . 47
4.26 (Log-scale) Frequency of conflicted merge commits that introduced bugs

over the week . 47
4.27 Spearman correlation of the features collected from conflicted merge scenarios 48

x

List of Tables

3.1 Features collected from merge scenarios. 18
3.2 Collected values from the Induced merge commits of the project Spark. . . 19
3.3 Summary of the number of merges, conflicted merges, and conflicted rate . 20

4.1 Phase I of SZZ-Unleashed . 23
4.2 Phase II of SZZ-Unleashed . 24
4.3 Summary of the number of merges, conflicted merges, and conflicted rate

for the filtered projects . 27
4.4 Initial results of merge scenarios that Induced errors 29
4.5 Summary of projects with more than 5% of conflicting merge scenarios

linked to BICs. #CM means number of conflicting merge scenarios, #BICs
means the number of BICs related to conflicting merge scenarios, and Rate
stands for the percentage of #CM over #BICs. 35

4.6 Summary of the characteristcs of our dataset with simple merge scenarios . 36
4.7 Number of files changed, lines additions and lines removals for both Right

and Left branches of induced conflicted merges. 39
4.8 Performance of the training classifiers — all conflicting merge scenarios,

simple merge scenarios, and complex merge scenarios 42
4.9 Summary of the metrics NOCC, SOMC, . 45
4.10 Simple linear regression of buggy ratio on NOCC 46
4.11 Simple linear regression of buggy ratio on SOCC 46

xi

Chapter 1

Introduction

Almost every software is built in a collaborative development environment, in which tasks
are distributed to the developers, who work separately, on their local machine. After con-
cluding a task, the project is updated and pushed to the remote repository to be available
for other contributors. Even though modern Version Control Systems (VCS) are used to
help the code integration, conflicts usually emerge due to concurrent work and become
more complex as further developments are made without being integrated [28]. Earlier
studies reported that such conflicts appear frequently and that developers need to spend
a considerable amount of time and effort to solve them, considering that understanding
integration conflicts might be a complicated and error-prone task. Regrettably, merging
is burdensome and interrupts programming flow. Consequently, some developers do not
merge as often as desired. Teams used to avoid parallel work because of complicated
merges [27, 45], and developers rush their tasks to avoid being the ones responsible for
the merge [19].

An important field of research in software engineering is to identify a bug or defect
before it is pushed to the repository, and thus specialists in industry have proposed many
best practices to control merge conflicts. For instance, code reviewing in pull-based devel-
opment is a well-established practice where developers make pull requests after changing
anything in the code, and other developers review and accept or reject them. Furthermore,
Continuous Integration [23, 21] recommends frequent merges and check-ins to avoid con-
flicts staying undetected for too long. Finally, developer teams use code integration tools
with automated tests to prevent bugs injection. Most development teams work around an
issue tracking system. Bugs are recorded using an issue report, where each bug is often
detailed using a description (name and summary), a severity (normal, critical, blocker),
and a report date. A common approach to linking the code contributions to a specific
issue (a bug report or a feature request), is to specify the id of the issue in the commit
message after applying any change related to it to the software. Substantially issues are

1

reported as bugs after some changes are concluded. In this case, they are classified as
bug introduction changes [52]. Previous studies relate that developers spend half of their
time in bugs [36]. Thus software bugs are costly to be fixed [37]. Sliwerski et al. [52]
have proposed a well-known approach to identify a bug-introducing change, named latter
as SZZ framework [35]. Rodriguez et al. [50] points out that around 65%-77% of the
Bug-Fixing commit (BFC) were caused by a Bug-Introducing Commit (BIC). Also, 10%
of bug-fixes in ElasticSearch and 24% in Nova were caused by co-evolution, compatibility
issues, or bugs in external API [50]. Software modularity is essential in order to be modi-
fied and get improvements and might be compromised if the developer does not take care
of crosscutting patterns [18]. According to Cesar et al. [17], a special kind of dependency,
is motivated by a set of co-changes between two software elements, assuming there is
no static dependency between them. Besides, they implemented a framework that find
co-change dependencies and suggest code refactoring to avoid them.

Even using all available tools to avoid bugs, after mining any Issue Tracking System
(ITS) such as JIRA, it is possible to perceive that not all changes made in the past have
been beneficial. Altogether, there are still some relevant research questions that require
further investigation. What if these merge conflicts and co-change dependencies were
responsible for introducing new bugs to the software? Can we predict and avoid them?
If the answer is no, can we at least aware developers depending on some characteristics
of their merge conflicts?

1.1 Problem Statement and Research Questions

Even though there are several studies related to merging conflicts and bug prediction,
only a few works correlate these conflicts with bug introduction changes. Therefore, it is
still not clear whether or not the merge conflicts induce bugs. Answering this question is
important to characterize how the occurrence of merge conflicts could damage the overall
quality of a system. Also, this work aims to investigate a related research topic, about
the impact of co-change dependencies on the introduction of bugs. Altogether, we aim to
answer the following general research questions:

(RQ1) To what extent conflicting merge scenarios correspond to the bug introduction con-
tributions? Answering this research question is crucial because it reveals the im-
pact of merging operations in the quality of the systems.

(RQ2) How to predict bugs on conflicting merge scenarios? Answering this research ques-
tion is relevant because it brings a better understanding of the properties of merge

2

scenarios, as well might reveal how to explore the previous research questions fur-
ther.

(RQ3) To what extent commits with co-change dependencies relate to bug-introducing
changes? Answering this research question is essential because it could reveal a
negative side of co-change dependencies, which has not been explored before.

1.2 Objectives

The main goal of this study was to build a general understanding of the effect of merge
operations and co-change dependencies during the source code evolution, in terms of
introducing new bugs. More specifically, in order to achieve the goal of this research, we
have accomplished several more specific goals. For instance,

• Research Question 1 is related to an essential problem of software engineering re-
search (verify which commits introduce bug during the software development). We
used a well-known algorithm of automatic identification of bug-introducing changes
named SZZ [52] with some adaptions. We built a dataset with the source-code his-
tory of open-source projects, which we used as input of SZZ-Unleashed [8], and as
a result, we obtain the commits blamed to be a BIC, by verifying if SZZ-Unleashed
blamed the id of the merge commit for being a Bug-introducing commit.

• Answering question RQ.2 is challenging because it involves a sophisticated study set-
ting, in particular, because there are several approaches to analyze merge operation
strategies and conflicts prediction. First of all, it is necessary to get a good compre-
hension of merge strategies, merge conflicts, attributes that might induce conflicts,
and how to treat and analyze this information. Then, we conducted an empirical
study on open-source projects, reproducing all merges from them and computing
metrics of size of the commits (e.g., number of contributors, number of days, num-
ber of files in change). We applied some methodologies of Machine Learning and
Statistics in a data set containing several merges from these projects. This stage
aims to build a model to extract information and possible predictions about when
a merge scenario will introduce bugs, when resolving the conflicts, which will allow
us to answer additional questions, such as “do the number of commits involved in a
merge scenario induce bugs?”

• We answered Research Question 3 by checking if the entities in commits that lead
to co-change dependencies were also changed when fixing the bug. We used the
framework Draco [17] to collect co-change dependencies over the same open-source
projects we answered 2.

3

1.3 Document Organization

This Chapter briefly motivates the covered problems through this research. Then, Chap-
ter 2 detail and review the essential concepts used throughout this work. Furthermore,
chapter 3 presents related works. We described the study settings and performed pro-
cedures in Chapter 4. Moreover, in Chapter 5, we present the results of our research.
Finally, in Chapter 6, we present the conclusions, threats to validity, and future works.

4

Chapter 2

Background

In this chapter we describe and explain concepts forming the basis to understand this
work. First of all, in Section 2.1, we introduce Version Control Systems and explains
an overview of merge techniques and merge conflicts. The SZZ, algorithm to find bug
introducing change, is explained in section 3.2. Basic concepts of co-change evolution,
necessary to answer 2, are presented in section 2.4.

2.1 Version Control Systems

Version Control Systems (VCS) and Issue Tracking Systems (ITS) contain huge volumes
of historical information that can give deep perception of the software project evolution
[22]. During development and maintenance of any codebase, bugs and regressions might
happen frequently. In order to be solved, the developer may need to revert some code or
configuration to earlier versions. In addition, it will be hard to see who is contributing
with a patch and is almost impossible to avoid that developers break each other’s code if
there is no version control and all developers can work in only on one version [53]. Version
Control Systems record file and or a set of files trough the time, being possible to return
to a previous version if it is necessary. This is an approach widely used not only in soft-
ware development environment but also in any projects context, where the possibility to
tracking updates and to reverse something wrong is crucial for loosing nothing important.
These systems were improved over the time and according to the GIT documentation [11]
(a well known VCS), they are classified in three types: Local, Centralized and Distributed
Version Control Systems.

Usually developers used to create new folder in their local machine to backup a project
or to save previous versions of them. Nevertheless, doing so could be an error-prone
strategy when the project is getting bigger and some mistakes could happen by overwriting
old files and replacing functional version of it by a variant with bugs. In order to solve

5

this problem, Local VCSs were created, where a log with the changes in a project were
saved in a local database. In addition, all files were under revision and could be traceable
anytime. According to git1 documentation [11], Revision Control System (RCS) was the
most popular tool of LVCS and it is still available in many computers nowadays. The
next major problem begins when more developers needed to contribute in a same project.
To deal with this, CVCS (such as CVS, Subversion2, and Perforce) was created, where a
centralized server contained all the versioned files and the development contributors could
check out the latest snapshots or files from the central place. This methodology was the
standard of Version Control Systems for years [11].

The trouble here begin when the central server is down or if the hard drive containing
the system has been corrupted. Maintaining a big system centralized without the properly
backup means that it is possible to lose everything if the server fails. Distributed Version
Control Systems (such as GIT, Mercurial, Bazaar or Darcs) arise to mitigate this issue.
Instead of just checkout the latest updates or files, each client mirror the entire repository
project, including all the historical versions and changes trough the time. Using this
approach, it is possible to create several workflows such as hierarchical model that is not
possible in centralized VCS [11].

The advantage of using a distributed version control system is that each developer
mirror the entire project repository creating his/her personal copy. Parallel development
increases the project efficiency and decreases external issues such as server breakdown or
the requirement of working in a specific place and or machine. But there is no free lunch
and the price of this approach is the necessity of conducting merge operations frequently,
integrating the personal copies into a new version of the shared repository. Even though
VCS generally have integration functionality for merging different versions, usually the
merging of source code proceeds automatically, but if there are conflicts, it is necessary
to be resolved manually. During the merge process, conflicts of parallel changes might
occur and must be resolved at this moment as Tom Mens reported in his paper "A state-
of-the-art Survey on Software Merging" [41, 40, 45]. As stated by him, a merge operation
can be classified according to the approach that was used.

Two-way merge is in essence a diff operation between left-side and right-side commits,
comparing all lines of each file and computing the differences between them. Differently,
The three-way merge approach consider the base file that originate the both side commits,
comparing them with the original one (see Figure 2.1). Depending on how software
artifacts are represented and treated by the merging tools, it is possible to be categorized
as following.

1https://git-scm.com/
2https://subversion.apache.org/

6

https://git-scm.com/
https://subversion.apache.org/

text-based when the software treats the source code as flat text files; and

structure-based when the software considers the parse tree of the files when performing
the merge operations and sometimes also consider the programming language.

Figure 2.1: Example of Three-way line-based textual merge scenario [41]

Developers generally modify private working copies of the system avoiding them from
knowing what part of the system are being modified by the co-workers at the same time.
When two concurrent works are combined, merge conflicts might appear. These conflict
can be textual or higher-order. Textual conflict appear when two developers make changes
at the same chunk of the code. VCS allow the first developer to publish the change but
in order to avoid overwriting, it prevents the second one, until the code integration have
been completed [9].

According to Mens [41], a merge conflict do not necessarily need two developers to
make changes in the same software file. It also could happen if one developer make changes
in a specific part of the software that is reused by other parts of the software. In addition,
Brun et al. says that "more damaging conflicts arise when the VCS can integrate the
developers’ textual changes, but the changes are semantically incompatible and can cause
compilation errors, test failures, or other problems" [9].

It is harder to resolve conflicts that were later detected because they are no longer
fresh in developers’ minds [23, 6]. The number of software defects increases with parallel

7

work, which was found to be substantially and inadequately supported by merge tools,
according to the conclusion of Perry et al. [47]. Their conclusion remains today, since
a most recently studied [9, 40, 2, 45] affirmed that the current tools, the processes, and
project management supported, is still insufficient for the high level of parallelism degree.
In addition, Brun et al. [9] point out that merge conflicts “appear not only as overlapping
textual edits but also as subsequent build and test failures”.

To support developers to detect conflicts earlier, awareness [20] helps by informing
where in the code the co-workers are currently making changes. However, while pro-
gramming, it is very tough for developers to identify conflicts by themselves, because of
the complex semantics of the programming languages. Besides that, awareness may
overload developers with excessively information being more difficult to early detect con-
flicts [20, 16, 24]. Even with numerous merge techniques and tools, it has been stated
that between 10% 20% of the merges operation results in conflicts that need to be man-
ually revised [26]. This means that none of the tools can completely automate the merge
processes.

2.2 Bug Tracking Systems

According to Just et al [33], a Bug tracking systems are the main tools for the users to
communicate with the developers, reporting bugs and suggesting new features implemen-
tation. These systems work as the central repository for handling the progress of bug
reports, where developers can track unresolved bugs, discuss potential solutions for fixing
them and request more information from the users [57]. In addition, developers use the
information provided from bug reports to identify the possible cause of the defects and
the plausible files that needed to be fixed.

As stated by Jalbert et al. [31] in some projects, 25% of the bug reports are duplicated
and this situation hamper the use of ITS because developers need to manually identify
them. This identification process is time-consuming and increase the already high-cost
software maintenance. Bettenburg et al. [7] argue that often, duplicated reports are
closed and some valuable information are discarded and this is a bad practice. Instead,
this important information should be merged to the master report that are chosen by the
developers. As a result, they provided recommendations to improve efficiency for a better
bug tracking system.

8

Figure 2.2: Jira Issue Tracking System

2.3 The SZZ Algorithm

The purpose of SZZ algorithm is to identify commits that introduce bugs by combining
software repositories, version control systems (VCS) such as GIT, with bug tracking sys-
tems (BTS) such as Jira. It was created by Sliwerski et al. [52] and its name was given
later by using the first letters of the last name of the authors (Sliwerski, Zimmermann, and
Zeller). According to Kim et al. [35], in contrast to bug-fixes that are relatively easy to ob-
tain, the extraction of bug-introducing changes is challenging. They call bug-introducing
change the modification in which a bug was injected into the software. By getting this
information means to discover when does it happen, who made this modification to the
code, and possibly prevent some similar bugs injection.

Basically the SZZ algorithm is divided in two steps. First of all, the issue in bug
tracking system or BTS is linked to the bug fix commit. This is done by using regular
expressions to search commit messages for references with the BTS issues. In case there
is no BTS or it is poorly maintained, commits with messages containing the word “fix”
or similar are defined as a bug-fix commit. Using a diff command it is possible to extract
the changed lines known as hunks from these bug-fixes commits.

Secondly, SZZ uses these changed lines extracted previously to trace down all commits
that also have changed the same lines previously than the bug-fix commit. This is possible,
for instance, thanks to the Blame GIT functionality that is a way to track down which
commit has made the last change in a specific line of code. By doing this, it is possible to
discover which commit potentially introduced a bug. The date of the “blamed commits”

9

Figure 2.3: Phase I of SZZ workflow.[8]

is checked and compared with the date when the bug was reported. It is labeled as a
bug-introducing commit when it happens before the report date. If the date is after the
report, this commit could only be labeled as bug-introducing if it is a partial fix or if it is
possibly responsible for a new bug 2.4.

Figure 2.4: Overview of the SZZ-Unleashed workflow [8]

The first SZZ [52] has several problems. For instance, it considers stylish modifica-
tions as indentation, blank lines, comments, as possible bug-introducing change. This is
incoherent because stylish changes do not modify the software behavior. For this reason,
some versions with improvements of SZZ were implemented. According to Willans et al
[55], a major remaining open question about SZZ is to guarantee that the lines indicated
as fix-induces by SZZ algorithm are actually the source of defects. Costa et al. [13] pro-
posed a framework to evaluate and compare five different versions of SZZ including their
own version. The main idea was to generate a means for exploring the SZZ-generated
data highlighting subsets that are more inaccurate, and suggesting manual inspection to
them. In addition, they explains it is really difficult to have a perfect SZZ algorithim
since there is no ground truth dataset to train and validate a model. This ground truth
dataset should be manually created by specialists and would demand a lot of effort.

In a case study based on Systematic literature Review (SLR), Rodriguez-Perez et al
[49] analyzed 187 papers that made use of the SZZ algorithm to evaluate the reproducibil-
ity and credibility of these publications in Empirical Software Engineering. Significant

10

contributions were presented in this study, such as, an overview of the impact that SZZ
has had so far in ESE, an analysis of how these studies manage the limitations of this
algorithm and how their addresses the reproducibility in their research work. Despite
SZZ being largely used in ESE to locate bugs, it suffers from multiple limitations which
make it error prone as reported in SLR. Considering the first part of the algorithm, the
limitation relies in how bug reports are linked to commits, i.e., if the bug fix is not iden-
tified, the bug commit cannot been determined and this cause a false negative. False
positive happens when a bug report does not describe a real bug, but a fixing commit is
is linked to it. As reported by early studies 33.8% [29] to 40% [48] of the bugs in issue
tracking system are miss-classified. The Second part of the algorithm, which is concerned
with the identification of the bug-introducing commit(s), can also produce false positives
and negatives, and addressing these limitations requires a manual and tedious validation
process [49]. A summary of the SZZ limitations presented in SLR study is in figure 2.5:

Figure 2.5: Table with the SZZ limitations collected from [49]

Even thought there are limitations in the algorithm, the impact of SZZ is significant
since 458 publications cite SZZ and their variations and some of them are often been
published in high quality conferences and top journals. A problem presented in the SLR
is that only 13% of the SZZ publications provide a replication package and carefully
describe each step that might contribute to make reproduction feasible.

To mitigate this replication problem, Borg et al. introduced SZZ Unleashed, an open
implementation of SZZ algorithm, and made it available on GitHub under MIT license
since June 2018 [8]. This is a Java implementation with some supporting Python scripts

11

to collect bug records from Issue Tracking Systems and use JGit library to facilitate
interaction with git repositories. It is based on the seminal paper by Sliwerski et al. [52]
and later enhancements by Williams and Spacco [55]. The workflow of SZZ Unleashed is
based in three steps. Fist we should extract from issue tracker records stated as bugs and
status of fixed and or closed. Than, we need to verify which of these records are linked
with real bug-fixing commits. Finally we need to identify bug-introducing commits for
the fixing commits. The steps related to the phase of finding bug-introducing commits
of the SZZ Unleashed is show in figure 2.4. The output of the SZZ Unleashed was used
as a ground truth of a classification training set to indicate commits that might require
particularly careful code reviews. As a result this study found a classification score with
accuracy F1 of 15% and they discussed about the small number, relating it with the
necessity of oversampling for imbalanced classes and the solely use of cross validation that
is not appropriate to evaluate classifiers in software engineering data with timestamps.

In a framework to evaluate the results of the SZZ Approach, da Costa et al. [13]
provided a systematic mean for evaluating the data that is generated by a given SZZ
Implementation. They compared five SZZ implementation using data from 10 open source
projects by doing an evaluation considering three criteria: realism of bug introduction, the
impact in future changes and the earliest bug appearance. In addition, they founded that
the proposed improvements to SZZ tends to inflate the number of incorrectly identified
bug-introducing changes. The results demonstrated that SZZ implementations still lack
of mechanisms to identify bug-introducing commits in a more precisely method. In a
recent empirical study, Neto et al. evaluate the impact of refactoring changes on the SZZ
Algorithm. They founded that 6.5% of the lines that were flagged to be a bug-introducing
change were in fact refactoring changes [44].

2.4 Co-change evolution

David Parnas, in the paper "On the Criteria To Be Used in Decomposing Systems into
Modules" [46], explains the advantage of the design module implementation and define
module as a work assignment unit that is flexible and could be changed without interfering
other modules. Murphy et al. [43] presents another idea of module, in which it is expected
to be rebuild the modularity in terms of work assignments instead of treating software
decomposition considering language structures such as Java packages, classes, and inter-
faces. We considered in this study that software decomposition is a problem of graph
partitioning. By Mitchell et al. [42] definition, the software are represented as a graph
named Module Dependency Graph (MDG), where the vertices represent the source-code
entities and the edges represent the dependencies between them. Existing techniques that

12

recommend software decomposition change refactorings, (such as a move method) usually
do not explore co-change dependencies [17]. Oliveira et al. [18] considered that two enti-
ties are co-change dependents when they frequently change together and there is no static
dependency, leading to a hidden dependency between them. In addition they report the
advantages of adding co-change dependencies to a coarse-grained MDG. In Figure 2.6 it is
presented how the framework recommend a refactoring based on co-change dependencies.

Figure 2.6: Draco refactoring approach overview [17]

13

Chapter 3

Methodology

In this chapter, we discuss the settings of our study. The main goal of this dissertation
is to answer whether conflicts in merge operations can be held responsible for introduc-
ing defects in software along with the source code evolution. Considering the taxonomy
detailed by Gerhardt et al. [25], we classify our research as a quantitative study, with
applied nature, exploratory objectives, and experimental procedures. In the exploratory
stage, we conduct a literature review to increase our knowledge and the background nec-
essary to conduct the research. Furthermore, in the problem stage, we collected and read
related works to see what research questions have not been answered yet. By completing
this step, we defined our research questions, hypotheses, and started to construct the
analysis models to answer them. Besides answering the research questions defined in the
first chapter, we organized the approach in three subgroups. Data collection is a crucial
stage that was necessary to conduct the study and investigate the research questions.

3.1 Project Selection Criteria

We searched for popular real-world open-source projects hosted on GitHub [12], with a
large number of commits and that use JIRA [39] as its issue tracking system (ITS). More
specifically, we collected Java Apache projects that meet these specifications. The decision
about Java projects was because we found several tools that reproduce merge scenarios
and reduce the occurrence of merge conflicts in Java projects [3, 4, 10]. Besides, we opted
for the JIRA issue tracking system because the SZZ Unleashed was developed with some
python scripts to collect issues from JIRA, and several Apache projects have moved from
Bugzilla to JIRA. As a result, we cloned 101 most popular Java Apache projects hosted on
GitHub to use in both exploratory studies. Figure 3.1 shows the number of projects that
we use in each part of the study and the intersection of both studies, with 39 projects.

14

Figure 3.1: Number of projects selected.

3.2 Finding Bug-introducing commits

We conducted an activity of mining software repositories in order to detect bug intro-
duction commits that happened during the evolution of the selected projects. By doing
so, we used SZZ-Unleashed [8]. Some reasons support this choice. Fist of all, there is a
lack of SZZ implementations publicly available [49], and the work of Borg et al. [8] is
one of that we consider stable and well documented. Besides that, this implementation
supports Git repositories, and being relatively simple to replicate their study and check
its usage scenarios and features. Finally, that work also made available scripts to prepare
the data to be used as input of SZZ-Unleashed. Therefore, we collect the information from
SZZ-Unleashed to populate a dataset with commits that are likely to introduce bugs.

In order to validate the approach and experiment with the SZZ-Unleashed tool, we
conduct a pilot study. This pilot study also allows us to detail our research methodology,
based on the SZZ-Unleashed, using a more concrete example. We chose the Apache Spark
project to run this pilot study, in which it is hosted on GitHub and uses Jira as the issue
tracking system. We follow the following steps (see Figure 3.2 [8]):

Step (1) Fetch bugs issues: The first step is to collect bugs issues from Jira, using the
REST API and filtering the issues using the issue type = bug, the status either
resolved or closed, and the resolution = fixed. As an output, we collected
6907 issues from Apache Spark in 7 JSON files (because there is a limit of 1000
issues per page).

15

Step (2) Convert Git-log to an array: The second step is to clone the project repos-
itory and convert the Git log to an array. The result is a JSON file with all
source-code history of the project.

Step (3) Find Bug Issues: The third step is to use the resulting files from previous
steps to link bug fixes commits to issues. In this case, it necessary to specify
how a bug fix looks like in a commit, and the framework tries to find some
patterns, such as the word "fixed" and the issue number, to decide whether or
not a commit is a bug-fix. As a result, we obtain a file containing all bug-fixes
commits necessary as input to the second Phase of SZZ-Unleashed. For the pilot
study, we found 6424 bug-fixes commits, meaning that in this stage, we mapped
93% of the issues from Jira to bug-fix commits on Git-log.

Step (4) Run SZZ-Unleashed: Finally, after preparing all the necessary files, we ran
the SZZ-Unleashed for project Spark. As a result, we obtained 6835 pairs of bug-
fixes commits and their respective bug introducing commits (BFC-BIC). Notice
that a bug-introducing commit might be responsible for causing more than one
bug-fix commit, and one bug-fix commit might have more the one BIC.

Figure 3.2: Workflow of SZZ-Unleashed [8]

From SZZ-Unleashed on Apache Spark, we got 1802 bug-fix commits that fixed changes
from 2382 bug-introducing commits. In summary, using SZZ-Unleashed, we found 6424
fixes (out of 6907 issues). The analysis reveals 6835 pairs of BFC-BIC (bug fix commits
and bug introducing commits)— having 1802 unique BFCs and 2382 unique BICs.

The first stage of our pilot study validate our approach, so we created python scripts
to replicate the same study, running SZZ-Unleashed for the remaining 100 project repos-
itories. The results of this study are presented in Section 4.1.

16

3.3 Re-playing merge scenarios and collecting their
characteristics

The goal of this study is to collect different merge scenarios from Open Source Project
repositories, in order to better understand the possible causes of conflicts in merge scenar-
ios and the induction of errors. Based on some characteristics of the merge, the idea is to
build a model that can be used to aware developers of the possibility of bug introduction
when concluding a merge operation. To get this information, it was necessary to check all
merges scenarios to know when a conflict has happened. Since Git does not record merge
conflicts, in order to get this information, we need to recreate each merge scenario for all
projects and analyze some patterns in the data.

Considering we are interested in verifying the relation of bug-introduction—the data
collected in the previous section- with conflicted merge scenarios, we needed to collect the
merge scenarios for the same projects. In the second phase of our pilot study, we mined
the labeled merge commits from Git history of the Apache Spark project. Despite this,
not all information about the merge is available in a Git repository’s log data. Since we
are interested in conflicted merges, we needed to get this information by re-playing the
merge to discover additional properties (e.g., number of files in conflict and number of
days). Also, we used our pilot study with Project Apache Spark to collect the information
about each commit and re-create merge scenarios.

Figure 3.3: Sample of git merge operation.

Figure 3.3 presents an example of a three-way merge scenario that we considered in
this study, and the steps performed with Apache Spark are presented below:

17

Step (1) Get all commits: The first step, is to collect the hash value, the date, and the
author’s name of all commits. We collected this information using the following
git command in the terminal: git log –pretty=format:%H,%cd,%cn;

Step (2) Get merge commits: The second step is to collect the Hash of all merge
commits and their respective parents’ Hash as shown on Figure 3.3: git log
–merges –pretty=format:%H,%P; This command brings the Hash of merge
commits followed by a pair of two hashes: Parent Left and Parent Right

Step (3) Find the Base: After finding the hash of the parents commits, we are able
to find the common ancestor, Base commit number 1 of figure 3.3 using the git
command: git merge-base –all ’leftP’ ’rightP’; We avoided octopus merge
commits, by using only the first hash of the ancestor.

Step (4) Re-play merge commits: We can verify if there were files in conflict by hard
resetting git to the base commit: git reset –hard "Base_Hash", merge the
base with parent right: git merge "rightP_Hash", and merge the results with
the parent left: git merge "leftP_Hash".

Step (5) Record the outcome: Finally, when a conflict occurs, we collect and treat the
outcome of Step 4 to get the number of files in conflict.

In the end, we recreated 1641 Merges scenarios for Apache Spark, from which, 231 let
to conflicts (14,08%). By merging the dataset of bug introducing commits with the dataset
containing the conflicting merge scenarios, we found that 8 conflicted merge scenarios were
blamed by SZZ-Unleashed (that is, they are Bug-Introducing changes). Table 3.1 presents
the features we collected from the merge scenarios, and Table 3.2 presents the features
and their respective values that we collected from the induced merge commits of project
Apache Spark.

Features collected from merges For both Right and left branches
1. Files changed 4. Number of Commits
2. Lines Additions 5. Number of active Authors
3. Lines Removals 6. Files in Conflict

Table 3.1: Features collected from merge scenarios.

Our second stage of the pilot study with Apache Spark was validated and we were
ready to replicate the approach for the complete set of projects.

18

rFiles rAdd rRem lFiles lAdd lRem rCom rAuth lCom lAuth Conf
571 20859 3069 2 9 1 557 43 4 1 1
138 2854 2287 1056 75210 57891 54 5 745 51 86
10 109 42 1058 71559 69579 2 1 52 5 4
4 144 160 256 7801 4571 34 1 402 40 1
14 95 89 2 7 2 1 1 4 3 1
50 1529 515 53 649 453 35 1 14 7 1
28 1202 164 316 4905 3480 24 2 243 21 5
9 183 2 374 17720 8208 9 1 631 56 2

Table 3.2: Collected values from the Induced merge commits of the project Spark.

3.4 Tool support for collecting merge scenarios

We developed some Python scripts to analyze the history of commits of projects reposi-
tories using GitPython API and extract information from merge scenarios. Our idea is to
use only features that could be easily collected using git commands that were supported
by previous studies. The input of our program is the path of the directory containing
target repositories. As an output, we generated four csv files per project.

(File 1) All commits: The first file contains all commits with the respective dates and
authors;

(File 2) Merge commits: The second file is a CSV containing all merge scenarios with
their respective features;

(File 3) Between right Merge commits: The third file contains the right side of
commits between two merges. Commit number 4 of Figure 3.3 is an example of
between right commit.

(File 4) Between left Merge commits: The fourth file contains the left side of com-
mits between merges. Commits number 2 and 3 of Figure 3.3 are examples of
between left commit.

After running our scripts for the 100 Java Apache projects, we verify that it was
possible to obtain information for 91, since 10 of them did not contain any merging
scenario. We recreated 59 503 merge scenarios from which, 9410 (15.81%) led to a conflict,
see Table 3.3.

3.4.1 Computing Co-change Dependencies

A co-change dependency arises when two source-code entities, such as classes, interfaces,
methods, or fields, frequently change together. When two source-code entities are co-

19

Projects: 91 Merges Conflicted Rate
Min. : 1.0 0.0 0.00000

1st Qu.: 26.0 1.5 0.03989
Median : 110.0 12.0 0.09924
Mean : 653.9 103.4 0.14614

3rd Qu.: 595.0 48.0 0.18237
Max. : 10143.0 4137.0 1.00000
Total: 59503.0 9410.0 0.15814

Table 3.3: Summary of the number of merges, conflicted merges, and conflicted rate

change dependent on each other, we refer to the set of commits that modified both entities
as “commits related to the co-change dependency.” In this study, we are interested in find-
ing commits related to co-change dependencies that also introduced bugs. In particular,
we are interested in co-change dependencies between fine-grained entities (e.g., methods
or fields), since the bug detection tool informs the lines changed by the bug introducing
commit, and we want to detect which method or field contains the bug.

Popular VCSs such as GIT maintain the evolution of source-code artifacts (typically
files). The history of changes submitted to a VCS can be described as a sequence of
commits H = (c1, c2, . . . , cn), where each commit contains a subset of artifacts in the
form ci ⊆ A. Since in this work, we are interested in the change history of fine-grained
source-code entities (e.g., methods or fields), instead of coarse-grained entities (e.g., files
or classes), here we first have to preprocess the original change history to produce a more
detailed one (which we call fine-grained change history). This detailed change history can
be described as a sequence H ′ = (c′

1, c′
2, . . . , c′

n), where each commit is a subset of fine-
grained source-code entities c′

i ⊆ F that changed together. To transform a change history
(H) into a fine-grained change history (H ′), we analyze each source-code artifact of a
commit to discover which fine-grained entities have been modified. We take advantage of
Kenja1, a software utility that produces fine-grained change history from git repositories.

As discussed before, two source-code entities are co-change dependent upon each other
when they frequently change together. Certainly, the precise definition of frequently de-
pends upon how often these two entities changed together, and we compute this informa-
tion considering the fine-grained change history. More specifically, we use two metrics to
determine if two entities ea and eb change frequently together: support count and confi-
dence. The first counts the number of commits in which both ea and eb appear together;
while the second corresponds to the ratio of the support count between ea and eb and the
number of commits containing ea. Note that, while the support count is commutative,
i.e., the support count between ea and eb is the same of the support count between eb

1https://github.com/niyaton/kenja

20

https://github.com/niyaton/kenja

and ea, the confidence is not, i.e., the confidence between ea and eb can be different from
the confidence between eb and ea. We consider that ea and eb change frequently if their
support count and confidence are above the threshold for supporting count Smin and con-
fidence Cmin at least in one direction. Several studies on co-change dependencies use the
values Smin = 2 and 0.4 ≤ Cmin ≤ 0.5 (e.g., [5, 18, 51]). Finally, we list the commits
related to each co-change dependency.

In our running example with project Apache Spark, we demonstrate our methodology
to collect commits that lead to co-change dependencies and how to correlate these commits
whit bug-introducing commits.

(S1) Clone the repository and create a destination repo for the fine-grained
commits: After cloning the Spark repository, we need to create the destination
folder to the converted repository.

git clone https://github.com/apache/spark
mkdir spark-hr
cd spark-hr
git init --bare
cd ..

(S2) Convert to fine-grained repository: The second step is to convert all commits to
fine-grained using the docker image and specifying the origin and destiny directory
paths. This procedure took around 16 hours to be completed for the project Spark
in a regular computer.

docker run --rm -v $PWD/spark:/source -v $PWD/spark-hr:/dest

projectdraco/g2h converter.sh /source /dest

(S3) Get all commits for both repositories: After converting the repository, we
can collect the hash value and the date of all commits of the origin and destiny
repositories using git log command. This information is relevant because Kenja
creates new hashes when converting the commits and we need to link the timestamp
to correlate them.

cd spark

git log --pretty=format:\%H,\%cd > spark-commits.csv

cd ../spark-hr

git log --pretty=format:\%H,\%cd > conv-spark-commits.csv

21

(S4) Collect the commits that lead to co-change dependencies: Using another
Docker image we can collect all commits that lead to co-change dependencies for
Apache Spark (using the command bellow). This operation took 5 hours to be
completed in a regular computer.

docker run -it --rm -v $PWD:/repo projectdraco/mining-cochange

--output=rules-and-commits > spark-cochange.mdg

(S5) Treat the output file: Finally, we have collected all necessary data from Apache
Spark. The columns of the output file are:

1. Field representing the origin vertex of the edge;

2. Field representing the destination vertex of the edge;

3. Support count;

4. Confidence;

5. --

6. Total of commits;

7. Commits hashes.

In this study, we filtered for co-change dependencies with support count greater than
one and confidence greater or equal to 0.5. For Apache Spark, 1293 commits meet these
requirements (support count from 2 to 22 and confidence from 0.5 to 1). By combining
the commits that leads to co-change dependencies with commits that SZZ-Unleashed
blamed to introduce bugs, we found that 13.76% of commits that contribute to co-change
dependencies are related to bug-introducing commits. With this initial result, we created
bash scripts to replicate our data collection all over the projects.

22

Chapter 4

Results

In this chapter, we present the results of our empirical study. We first report the outcomes
of an exploratory data analysis 4.1, and then we answer our research questions using either
hypothesis

4.1 Exploratory data Analysis

We first report the results of income and outcomes of SZZ-Unleashed, which contains
information about the number of issues, bug-fix commits, and bug-introducing commits
over the set of projects of the section 3.2. In phase I of SZZ (collecting bug issues from
Jira), we verified that it was not possible to find a relevant number of closed issues for
some projects. Then we filtered for projects in which it was possible to collect at least
200 closed bug-issues, first quartile, to guarantee that we would have linked a substantial
number of issues to Bug-Fixing commits. Table 4.1 shows the number of projects that
were possible to collect at least 200 issues to run SZZ-Unleashed.

Projects Issues Fixes Rate
63 131044 104636 76.49%

Table 4.1: Phase I of SZZ-Unleashed

In Figure 4.1, we present a log-scale of the number of collected issues, and the number
of linked bug-fixes commits over the projects. The mean of collected issues is 2080.063,
and the mean of bug-fix commits is 1660.889 per project – while in Apache Ambari, we
have mined 15,465 closed bug issues and linked 14,333 to a bug-fix commit, in Apache
Fineract we got 158 bug-fix commits for 203 issues collected from Jira. We removed
project Apache Log4j 2 because it was possible to link only 2 BFCs over the 794 issues
collected from JIRA.

23

Fixes

Issues

5 6 7 8 9

SZZ Phase I: Issues and Fixes (log scale)

Figure 4.1: Log-scale box-plot with the number of closed bug issues and linked bug-fixing
commits per project

Figure 4.9 shows a histogram that considers the rate of bug-fix commits over the
number of issues per project. Overall, SZZ Phase I have linked 80.33% of the issues to
bug-fix commits. In 14 projects, we have more than 90% of linked issues. Nonetheless, in
project Apache Cordova-Android, only 508 linked bug-fixes over 4709 issues (which repre-
sents 10.79%). This situation occur because Apache Cordova has different repositories on
GitHub, such as Cordova-Windows, Cordova-IOS, Cordova-browser, and all of them use
the same pattern on Jira.

Table 4.2 presents the outcome of the second phase of SZZ-Unleashed. We found
339,252 pairs of BFC-BIC in 62 Java projects, composed by a set of 72,072 bug-fix commits
and 69,616 bug-introducing commits. It is important to remember that a bug-introducing
commit might introduce bugs in more than one place, and a BFCmight fix bugs introduced
by multiple BICs.

Projects Pair(BFC-BIC) BFC BIC
63 339,250 72,072 69,616

Table 4.2: Phase II of SZZ-Unleashed

24

Figure 4.2: Rate of the linked fixes over the number of issues per project

Figure 4.3: Log-scale box-plot with the number of BFC and BIC per project

25

As a result of phase II of SZZ-unleashed, Figure 4.3 shows a log-scale box-plot of
the distribution of bug-fix commits and bug-introducing commits over the projects. As
expected, Apache Ambari is the project with more BICs, (7,051) introduced errors in
12,227 BFCs. By comparing with Phase I, where we found 14,333 bug-fixes commits, it
means that SZZ-Unleashed could not find BICs for 2,106 BFCs. On the other hand, the
same does not occur with the project with less BICs: In the project Netbeans, 70 BIC
introduced errors in 218 bug-fix commits while 178 BICs were responsible for introducing
errors in 89 BFCs on project Apache Collections.

Figure 4.4: Histogram with the rate value of (BFC - BIC) / BFC per project

Figure 4.4 presents the rate of the difference between BFCs and BICs per project.
33 projects have more BICs than BFCs (negative value) and 29 have more BFCs than
BICs (positive Value). SZZ-Unleashed blamed 417 BICs for introducing error(s) solved
by 138 BFCs in project Apache Fineract and blamed 2152 BICs for 986 BFCs in project
Apache Beam. Nonetheless, in Apache Bigtop, 853 bug-fix commits fixed the errors of 367
bug-introducing commits.

The histogram 4.5 shows the rate of bug-fix commits that the outcome of SZZ Phase
II linked to bug-introducing commits over all bug-fix commits (outcome of Phase I of
SZZ). Overall, 68.88% of BFCs fixed errors caused by Bug-Introducing commits, with a
rate higher than 0.8 on 30 projects, such as project Apache Tinkerpop had 229 BFCs as
outcome of SZZ and 260 as income (88.08%). The lowest rate value occurred in Apache
Hadoop, in which only 420 BFCs were linked to BICs when it has 4163 as input (10.09%).
Other causes of bugs induction are co-evolution, compatibility issues, or bugs in external
APIs, but we cannot guarantee that this has happened in the five projects with a rate

26

Figure 4.5: Histogram with the rate value of BFCs that fixed errors introduced by BICs

lower than 0.4. To avoid bias in our merge scenarios dataset and errors in our analysis
results, we removed projects that did not have conflicted merge scenarios. Furthermore,
we eliminated projects that have not a significant number of merge scenarios, filtering for
projects that have more than 26 (first quartile), according to the table 3.3. We present
the summary of filtered projects in Table 4.3:

Projects: 63 Merges Conflicted Rate
Min. : 27.0 1.0 0.003774
1st Qu.: 65.0 11.0 0.065201
Median : 327.0 28.0 0.104737
Mean : 894.0 148.8 0.141374
3rd Qu.: 804.5 98.0 0.187843
Max. : 10143.0 4137.0 0.545454
Total: 56322.0 9377.0 0.166489

Table 4.3: Summary of the number of merges, conflicted merges, and conflicted rate for
the filtered projects

Figures 4.6, 4.7, and 4.8 present the distribution of the merge scenarios, conflicted
merge scenarios and the rate of conflicted merge scenarios before and after we applied the
filters. We observed interesting things here: project Apache Cassandra has 10146 merge
commits in which 4137 of those were conflicted (40.79%) while project Apache Beam has
7367 with only 45 conflicted ones (0.61%). Moreover, project Apache ActiveMQ Artemis
has 2619 merge scenarios and none of those had conflicts.

Some questions come to our mind after this step:

27

Figure 4.6: Log-scale histograms with the number of merge scenarios before(left), and
after filtering the set of projects (right)

Figure 4.7: Log-scale histograms with the number of conflicted merge scenarios before
(left), and after filtering the set of projects (right)

Figure 4.8: Histograms with the rate value (Conflicts/Merges) before (left), and after
filtering the set of projects (right))

28

1. In 9 projects, we did not find any merge commit and, another 7, have less than
three merges commits. Is there any agreement not to use merge approaches on
these projects?

2. What are the best-practices the developers use in order to drastically reduce or even
eliminate the rate of conflicted merges scenarios?

When we first merged the output of SZZ-Unleashed with our recreated merge scenarios,
we found that SZZ blamed 288 merge commits for introducing errors into 26 different
projects. At this point, we discovered that 21 of the merge commits blamed by SZZ
did not have textual conflict, which contrast the intuition that a merge commit needed
to introduce new code to be labeled as bug-introducing commit. By analyzing these
particular cases, in 2 specific scenarios, the left or right parent were also blamed for
introducing error, and SZZ might have propagated this information to the merge commit.
Nonetheless, in the other 19 not-conflicted merge scenarios or 6.597%, SZZ-Unleashed
blamed the merge commit but did not blame the right nor the left parent commits. This
mislabeling were probably caused by limitations of SZZ algorithm, since we used depth
search with 3 levels in this study and, in some cases, the part of the code that the bug-fix
commit changed, might be introduced by commits with higher level of depth.

Blamed Merge Commits With conflicted files Without conflicted files
288 267 21

Table 4.4: Initial results of merge scenarios that Induced errors

4.2 Disclosing conflicting merge scenarios linked to
BICs

We conduct an exploratory data analysis to get a general understanding about the fre-
quency of merge scenarios and conflicting merge scenarios, as well as to build a curated
dataset. That is, our goal is to avoid bias in our merge scenarios dataset that could lead to
errors in our analysis results. Accordingly, we removed projects that did not have either
merge scenarios or conflicted merge scenarios. Interesting, in 9 projects, we did not find
any merge commit (e.g., Commons-IO). It is still not clear to us why some projects do not
employ merge operations. Furthermore, we eliminated projects that do not have at least
26 (first quartile) merge scenarios and filtered out projects in which it was not possible to
collect at least 200 (first quartile) closed bug-issues, in order to guarantee that we would
have linked a substantial number of issues to bug-introducing commits. Finally, we clas-
sified the merge scenarios either as simple or complex. To this end, we defined a rough

29

estimation for the complexity of a merge scenario (Cm) as the geometric mean between
the number of changed files from its parents (left and right). In our dataset, complex
merge scenarios are those scenarios with Cm > 32.296 (third quartile). This separation is
necessary because we found many scenarios changing a huge number of files. For instance,
the merge scenario with commit ID 3b21d1db4109939450dc400faebe568222ab4758 from
Netbeans changed more than 70 000 files. Altogether, our curate dataset, which is the in-
tersection of the outcomes generated by our three studies (see Sections 3.2, 3.3, and 3.4.1),
contains information about 40 092 merge scenarios of 34 Java Apache projects, from which
we collected 49 678 bug-introducing commits and 38 752 commits that lead to co-change
dependencies. In Figure 4.1, we present the number of closed issues (bugs) and the num-
ber of linked bug-fixing commits over the projects (using a log-scale). The average number
of issues and bug-fixing commits per project is 2661 and 2134.2, respectively. While in
Apache Ambari, we have mined 15 465 closed bug issues and linked 14 333 bug-fixing
commits, in Apache Fineract we got 158 bug-fixing commits for 203 closed bug issues
collected from JIRA.

Figure 4.9 shows a histogram that considers the rate of bug-fixing commits over the
number of issues per project. Overall, the first phase of SZZ linked 77.28% of the issues
to bug-fixing commits. In 9 projects, SZZ linked more 90% of the issues to BFCs (e.g.,
Accumulo and Lucene-sorl). Nonetheless, in project Apache Cordova-Android,
SZZ linked only 508 bug-fixing commits to a total of 4709 issues (which represents 10.79%).
This situation occurs because Apache Cordova-Android is a submodule of Apache
Cordova, which shares the same JIRA repository with other modules. Nonetheless, in
our analysis we only considered Apache Cordova-Android.

The outcomes of the second phase of SZZ revealed 249 041 pairs of BFC-BIC over
the projects, composed by a set of 50 925 bug-fixing commits and 49 678 bug-introducing
commits. It is important to remember that a bug-introducing commit might introduce
bugs in more than one place, and a bug-fixing commit might fix bugs introduced by
multiple BICs.

For instance, Apache Ambari is the project with more BICs—SZZ blamed 7051
commits for 12 227 BFCs. By comparing with its first phase, where SZZ linked 14 333
bug-fixing commits for Apache Ambari, it means that SZZ could not find BICs for
2106 BFCs. Considering the Netbeans project, SZZ revealed 70 BICs for 218 bug-fixing
commits while 178 BICs were responsible for introducing errors in 89 BFCs on project
Apache Collections. Overall, 83.42% of BFCs fixed errors caused by bug-introducing
commits, with a rate higher than 0.8 on 15 projects, such as Fineract and Beam. The
lowest rate value happened in Apache Spark, in which SZZ linked only 1802 BFCs to
bug-introducing commits (26.07% of the total number of BFCs).

30

Distribution of BFC over Issues per project

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

Figure 4.9: Rate of the linked BFCs over the total number of issues (labeled as bugs) per
project

We found 7453 conflicting merge scenarios (18.58% of the total number of merge sce-
narios). Figure 4.10 presents the log-scale distribution of merge commits and conflicting
merge commits over the 34 projects. Considering the merge scenarios, Apache Avro has
47 (the lowest) and Cassandra has 10 143 (the highest). Finally, Apache James has
only one conflicting merge scenario, while Cassandra presents 4137 conflicting merge
scenarios. More than 40% of the merge scenarios of Cassandra led to a conflict. Con-
sidering the rate of conflicted merge scenarios over the number of merges, Figure 4.12
shows that, in most of the projects (79.41%), conflicts occur in less than 20% of merge
scenarios.

Most of the projects have low rate of merge scenarios over the total number of commits,
21 projects with rate less than 5%. However, in project Apache Cassandra, 40.19% over all
commits are merge scenarios and other two projects have percentages between 30 and 35
of merge scenarios over the number of commits, as showed in Figure 4.11. Considering the
rate of conflicted merge scenarios over the number of merges, Figure 4.12 demonstrates
that the percentages of conflicted merge scenarios are lower than 15% in 27 projects
(which represents 69.23% of the number of analyzed projects). On the other hand, two
projects had conflicted merge scenarios in values between 40% to 50% over the number

31

● ●

●

M
er

ge
s

C
on

fli
ct

ed

0 2 4 6 8

Log−Scale of the number of conflicting merge scenarios and merge scenarios

Figure 4.10: Log-scale box-plot with the number of all commits, merge scenarios, and
conflicted merge scenarios per project

Figure 4.11: Histogram with the rate value of merges over commits per project

of merges, and this is not a good approach, since some errors might occur when resolving
these conflicts.

Figure 4.13 shows the rate of bug-introducing commits over the total of commits

32

Figure 4.12: Histogram with the rate value of conflicted merge scenarios per project

per project. Considering all projects, SZZ-unleashed blamed 12.02% over all commits
for being responsible for introducing errors. The project Apache Calcite presented the
highest percentage of bug-introducing commits (SZZ blamed 35.54% of the commits for
introducing errors). The second is Ambari with 28.69% of commits that introduced errors,
and third, Apache Hive with 26.28%. On the other side, we found that Apache Netbeans,
Apache Jena, and Apache Ofbiz contain less than 5% of the commits introduced bugs.

4.2.1 R.Q.1: To what extent conflicting merge scenarios corre-
spond to the bug introduction contributions?

From the conflicting merges scenarios (7453 observations), SZZ blamed 265 commits
(3.56%) as bug-introducing; introducing errors in 22 projects. Figure 4.14 shows the
distribution of BICs linked to conflicting merge scenarios over the projects. Apache
Cassandra is the project with the highest number of bug-introducing commits linked
to merge scenarios (137), followed by Apache Accumulo with 25 conflicting merge
commits that introduced errors. SZZ did not blame any conflicting merge scenario in
12 projects, and other five projects have only one blamed merge commit. Most of the
projects (64%) had less than 5% of BICs linked to conflicting merge scenarios—even in
Cassandra, the one with highest value of bug-introducing commits linked to conflict-
ing merge scenarios, the rate is 3.31%. Moreover, 12 projects have a rate value greater
than 5% (see Table 4.5), and 2 projects presented values greater 15%. Project Apache

33

Figure 4.13: Histogram with the rate value of bug-induced commits over all commits per
project

Phoenix presents the highest rate value, SZZ blamed 2 conflicting commits over a total
of 6 (33.33%) followed by Apache Mahout with 2 over 12 (16.67%).

● ●

0 20 40 60 80 100 120 140

BICs linked to conflicting merge scenarios

Figure 4.14: Conflicting merge commits linked to BICs

34

Project #Commits #Merges #CM #BICs Rate

phoenix 2917 63 6 2.00 33.33%
mahout 4116 62 12 2.00 16.67%
geode 8131 412 75 11.00 14.67%
jena 7963 630 32 4.00 12.50%
groovy 16129 787 105 12.00 11.43%
nifi 5197 369 32 3.00 9.38 %
ambari 24580 509 66 6.00 9.09%
lucene-solr 32156 627 134 11.00 8.21%
kylin 7859 828 112 9.00 8.04%
camel 38634 214 16 1.00 6.25%
storm 10071 2713 241 14.00 5.81%
hive 13625 327 159 8.00 5.03%

Table 4.5: Summary of projects with more than 5% of conflicting merge scenarios linked
to BICs. #CM means number of conflicting merge scenarios, #BICs means the number of
BICs related to conflicting merge scenarios, and Rate stands for the percentage of #CM
over #BICs.

The contribution of conflicting merge scenarios represents 1.78% of the total number
of commits. In the same way, the contribution of conflicting merge scenarios that were
blamed by SZZ represents 0.53% when considering all bug-introducing commits. These
percentages indicate that the occurrence of a bug introduced by a conflicting merge sce-
nario is approximately three times lower than the occurrence of a conflicted merge commit.
We applied the paired t-test over the sample of conflicting merge scenarios compared
to the sample of all commits (after checking all assumptions necessary to run this test),
where observations in both samples are the percentage of bug-introducing commits for
each project. According to the analysis, we found that conflict merge scenarios are 7.59%
less likely to introduce bugs than usual commits (between 5.04% and 10.13% with confi-
dence interval of 95% and p-value = 8.233e-07).

We also replicated our analyzes considering only simple merge scenarios and com-
plex merge scenarios, separately. Interesting, when considering only simple merge
scenarios—which corresponds to 70% of our curated dataset of merge scenarios, the num-
ber of bug-introducing commits linked to conflicting merge scenarios drops from 264 to
28, 10.57% of all BICs linked to conflicting merge scenarios. This suggests that almost
90% of conflicting merge scenarios linked to bug-introducing commits are caused by com-
plex merge scenarios. Nonetheless, it is important to note that even the simple dataset
contains merge scenarios involving more than 97 files on the average, with contributions
made by more than 7 authors (also on average). Table 4.6 summarizes some features of
the simple merge scenarios. Finally, since the number of BICs linked to conflicting merge
scenarios appears more frequently in complex scenarios, we ran a new hypothesis testing

35

on this group. The results of the paired t-test over this sample compared to the sample
of all commits, show that conflicting merge scenarios (the complex ones) are 6.38% less
likely to introduce bugs than usual commits (between 3.41% and 9.35% with confidence
interval of 95%.

Statistic Mean St. Dev. Min Max
Number of files changed 97.744 310.892 0 25,142
Number of contributors 7.852 9.626 2 175
Number of commits 101.855 257.169 2 2,776

Table 4.6: Summary of the characteristcs of our dataset with simple merge scenarios

Summary of R.Q.1: According to the outcomes of the SZZ algorithm, conflict-
ing merge scenarios rarely introduce bugs—that is, only 3.56% of the conflicting
merge scenarios introduce bugs—representing 0.53% of all bug-introducing com-
mits.

Although our results suggest that only a small number of bug-introducing commits
arise from merge conflict resolution, it is worth to investigate new methods to detect
and avoid conflicts—since the source of these errors only relate to the tasks of resolving
conflicting merge scenarios.

4.2.2 What are the characteristics of the conflicted merge sce-
narios that introduced error?

Here we demonstrate some characteristics of the 267 conflicted merge scenarios that SZZ-
Unleashed blamed to introduce bugs, such as, number of developers, files changed, files
in conflict. In Table 3.1, the features 1 to 5 are in a branch-level granularity, with values
for both right and left branches, while feature 6 is in a merge-level. Some studies tried to
investigate if these features correlate with safe versus conflicted merge scenarios. We also
try to perceive some patterns of these commits to verify if it would be possible to prevent
the error(s) based on their characteristics. We first present the collected results for the
branch-level features, with the right branch on the top histogram and left branch on the
bottom histogram of each figure, all histograms are in log-scale.

In Figures 4.15 and 4.16, we present two histograms that show the log-scale of files
changed by the right and the left branches. In most of the right branches, the number of
files changed was between 400 and 3000, and the summation is 200,525 files changed over
the 267 entities. Nonetheless, most of the left branches changed between 1 to 20 files, with

36

Figure 4.15: Histogram with the log-scale number of files changed by the right branches
of the conflicted merge commits linked to bug-introducing commits

86,427 files changed by the 267 entities. Figures 4.17 and 4.18 present the distribution
of lines additions for both sides over the branches. It is possible to perceive that more
than a half of the merge commits that introduce errors had contributions between 22,000
to 162,000 lines additions on the right branches, while had contributions between 20 to
1000 lines additions on the left sides. The same pattern occur with lines removals, Figures
4.19 and 4.20, where more than a half of the right branches contributed between 8,000 to
22,000 of removed lines, while the majority of the left sides contribute with less than
1,000 lines removals. Totally, the right sides contributed with 15,725,329 lines additions
and 8,861,187 lines removals, while the left branches contributed with 6,104,363 lines
additions and 3,341,356 lines removals on the 267 conflicted merge scenarios that were
blamed by SZZ-Unleashed to introduce error(s).

Figures 4.21 and 4.22 show the log distribution of the number of active authors over
the branches of the both sides. In the right branches 4.21, there are a considerably well
distribution between 1 to 112 contributors, 40 branches with only 1 developer, 40 branches
with 7–12 developers, and 48 branches with 20–33 contributors. On the other hand,
most of the left sides 4.22 had only one contributor (143 branches) and only 13 branches
had more that 20 developers. At the same way, Figures 4.23 and 4.24 presents the log
distribution of the number of commits of the branches of both sides, emphasizing the

37

Figure 4.16: Histogram with the log-scale number of files changed by the left branches of
the conflicted merge commits linked to bug-introducing commits

differences between the right and the left sides. Four branches of the right side presented
only 1 commit and more than 140 branches had contribution grater than 400 commits
while, in the left side, 140 branches had only one commit and only 8 branches had more
than 400 commits of contribution.

Figure 4.25 represents the merge-level feature Files in conflict and, according to our
intuition, the one that possibly has a higher value of correlation with the introduction of
bug by a conflicted merge commit. From the conflicted merge commits that introduced
bugs, 69 had only one file in conflict (25.843%), and 40 merges had two files in conflict
(14.981%). Furthermore, 67 have three or four conflicted files (25.094%), and 38 had
five, six, or seven files in conflict (14.232%). Finally, seven merges had more than 100
conflicted files, ten merges with values between 30 and 100, and 25 merges with values
between 10 and 30. In Figure 4.26, we demonstrate that the conflicted merge commits
blamed by SZZ-Unleashed to introduce errors were well distributed over the weekdays
with few representation on weekends. The table 4.7 present the summary of the features
Files changed, lines additions, and lines removals for the both sides of merge commits
that introduced errors.

38

Figure 4.17: Histogram with the log-scale number of lines additions by the right branches
of the conflicted merge commits linked to bug-introducing commits

Right branches Left branches
Metric Files Additions Removals Files Additions Removals
Min. : 1 3 1 1.0 1.0 0
1st Qu.: 142 6730 2245 4.0 51.5 13
Median : 650 41085 18848 8.0 215.0 70
Mean : 751 58896 33188 323.7 22862.8 12514
3rd Qu.: 1105 73838 38892 100.0 2898.5 777
Max. : 4432 653754 368349 7903.0 961094.0 738069

Table 4.7: Number of files changed, lines additions and lines removals for both Right and
Left branches of induced conflicted merges.

4.3 RQ2 How to predict bugs on conflicted merge
scenarios?

In our second research question, our goal is to identify the most important characteristics
to predict when a conflict merge scenario is more likely to introduce bugs (according to
SZZ algorithm).

Method. To this end, we first filter out the non-conflicting merge scenarios of our
curated dataset and selected a couple of features from the literature [1, 38, 45] (as follows)
to use as predictors of bugs using data from merge scenarios.

39

Figure 4.18: Histogram with the log-scale number of lines additions by the left branches
of the conflicted merge commits linked to bug-introducing commits

• Total of files changed in both branches

• Total number of contributors in both branches

• Total number of commits in both branches

• Total number of conflicting files

As mentioned before, we compute these features by replaying all merge scenarios. We
then investigate the Spearman correlation among these (see the results in Figure 4.27.
Similar to previews studies [2], the number of changed files have a extremely low corre-
lation coefficient (p-value = 0.11) while the number of active authors and the number of
commits do not have correlation with the number of conflicting files (p-value <= 0.05).
Otherwise, we found a strong correlation (coefficients >= 0.75) among the other features
number of changed files, contributors, and commits.

In the process of data preparation and feature engineering, we explore our dataset to
treat skewness on the predictors, and we decided to run the classification models for each
class of merge scenarios (one for simple merge scenarios and other for complex merge
scenarios). According to the curated dataset, SZZ linked 1.87% of simple merge scenarios
to BICs and linked 4.15% of bug-introducing commits to complex merge scenarios. Finally,
we experiment with different classifiers (e.g., Logistic Regression, Decision Trees, and

40

Figure 4.19: Histogram with the log-scale number of lines removals by the right branches
of the conflicted merge commits linked to bug-introducing commits

Random Forest), considering all merge scenarios, simple merge scenarios, and complex
merge scenarios.

Results. Table 4.8 shows the performance results of the classifiers we trained to an-
swer 2. The results show that, overall, based on the outcomes of the three classifiers,
it is hard to predict if a conflicting merge scenario will be responsible for introducing
bugs. That is, when considering all conflicting merge scenarios, the Random Forest clas-
sifier presented the best performance with a f1-score of 0.1286, followed by Decision Trees
(f1-score = 0.1151). On simple merge scenarios, Random Forest also presented the best
performance (0.5 of recall and f1-score = 0.1739), but now, followed by Logistic Regres-
sion, with higher precision (0.125) and recall = 0.25. Finally, Decision Trees led to a
best performance when considering the complex merge scenarios (f1-score = 0.20833 and
precision = 0.17045), while Random forest presented higher recall (46.43) with almost the
same f1-score (0.208).

41

Figure 4.20: Histogram with the log-scale number of lines removals by the left branches
of the conflicted merge commits linked to bug-introducing commits

Classifier Accuracy Precision Recall f1-score
Logistic Regression 0.9383 0.0606 0.03333 0.04161
Decision Trees 0.7122 0.06601 0.45 0.11514
Random Forest 0.7275 0.07417 0.48333 0.1286
Simple Merges Scenarios
Logistic Regression 0.9699 0.125 0.25 0.16667
Decision Trees 0.7892 0.028571 0.5 0.05105
Random Forest 0.9428 0.10526 0.5 0.1739
Complex Merges Scenarios
Logistic Regression 0.5369 0.07593 0.73214 0.13758
Decision Trees 0.8973 0.17045 0.26786 0.20833
Random Forest 0.8216 0.13402 0.46429 0.208

Table 4.8: Performance of the training classifiers — all conflicting merge scenarios, simple
merge scenarios, and complex merge scenarios

42

Figure 4.21: Histogram with the log-scale number of active authors on the right branches
of the conflicted merge commits linked to bug-introducing commits

4.4 RQ3 To what extent commits with co-change de-
pendencies relate to bug-introducing changes?

The goal of this research question is to investigate if we can explain bug incidence us-
ing co-change dependencies. This question has been investigated before by [14], though
using a smaller number of systems and applying a different method for relating bugs to
components. According to their findings, bug predictions models can be improved with
change-coupling (co-change dependencies) information.

Method. To answer this research question, we first use the change history of a
system to compute the co-change dependencies between software components (see Sec-
tion 3.4.1)—either at the coarse-grained level (e.g., classes) or at the fine-grained level
(e.g., methods). From the co-change dependencies, we compute two additional met-
rics [14]: Number of Coupled Classes (NOCC) and Sum of Class Coupling (SOCC). The
first computes the number of classes n-coupled with a given class—where n specifies a
dependency threshold corresponding to the minimum number of changes between two
components. The second is the sum of the shared transactions between a given class c
and all the classes n-coupled with c, and thus SOCC considers the strength of the cou-
pling between two components. When working with fine-grained components, we have

43

Figure 4.22: Histogram with the log-scale number of active authors on the left branches
of the conflicted merge commits linked to bug-introducing commits

the corresponding Number of Coupled Methods (NOCM) and Sum of Method Coupling
(SOMC).

We build two datasets with the co-change data (one for coarse-grained components and
one for fine-grained components), consisting of the name of the component and the metrics
NOCC (NOCM) and SOCC (SOMC). We also compute, using a historage repository,
datasets with the change history of all components—where each row corresponds to an
observation that a commit changed a given component. We use the first phase of the SZZ
algorithm to compute all bug-introducing commits. We then merge the datasets with
the change history of all components with the dataset with all BFCs, and computed the
number of non bug-fixing (NBC) and bug-fixing commits (BC) of a given component.
After that, we estimate the buggy ratio (Br) of a component c using Eq. (1). .

Br(c) = BC(c)
NBC(c) + BC(c) (4.1)

Finally, we use simple linear regression analysis to estimate the strength of the relation-
ship between NOCC (NOCM) and SOCC (SOMC), with the buggy rate of a component.
Simple linear regression allow us to answer the questions (a) Is there a relationship be-

44

Figure 4.23: Histogram with the log-scale number of commits on the right branches of
the conflicted merge commits linked to bug-introducing commits

tween NOCC (NOCM) and SOCC (SOMC) with buggy ratio? and (b) How strong is the
relationship between these features and the buggy ratio? [32]

Metric Min. 1st Qu. Median Mean 3rd Qu. Max.
NOCC 1 2 5 37.77 22 780
SOCC 5 14 40 270.3 156 5003

Table 4.9: Summary of the metrics NOCC, SOMC, . . .

Results. Table 4.9 shows some descriptive statistics from the co-change metrics obser-
vations. Interesting, considering the coarse-grained scenario (NOCC and SOCC), most
of the observations rely on the interval from 2 (1st Qu.) to 22 (3rd Qu.) co-change
dependencies—although we found a specific component with 780 co-change dependencies.
Since these unusual observations are increasing the mean value of NOCC, we decided to
remove the components having NOCC > 22 from our coarse grained dataset. Tables 4.10
and 4.10 show the results of the simple linear regression analysis. These results suggest
that there is a small relationship between NOCC and SOCC with the buggy ra-
tio of a class. We also compute the Spearman correlation between NOCC and SOCC
with the number of BFCs related to a component, leading to a p-value = 0.26 and 0.28,
respectively. These findings contrast with the results of a previous research [14].

45

Figure 4.24: Histogram with the log-scale number of commits on the left branches of the
conflicted merge commits linked to bug-introducing commits

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0689608 0.0005255 131.237 <2e-16 (*)
NOCC 0.0003501 0.0001559 2.245 0.0247

Table 4.10: Simple linear regression of buggy ratio on NOCC

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.871e-02 5.200e-04 132.144 < 2e-16 (*)
SOCC 7.515e-05 1.803e-05 4.168 3.08e-05 (*)

Table 4.11: Simple linear regression of buggy ratio on SOCC

46

Figure 4.25: (Log-scale) Histogram with the log-scale number of files in conflict for the
induced merge commits

Figure 4.26: (Log-scale) Frequency of conflicted merge commits that introduced bugs over
the week

47

0.76 0.75 0.11

0.84 0.02

0.01

files

authors

commits

au
th

or
s

co
m

m
its

co
nf

lic
ts

−1.0

−0.5

0.0

0.5

1.0
Corr

Figure 4.27: Spearman correlation of the features collected from conflicted merge scenarios

48

Chapter 5

Conclusions

In this work, our goals were to investigate the relationship between different merge sce-
narios with bug-introducing commits and also verify if we could explain the bug incidence
by using co-change dependencies. For doing so, we first conducted an empirical study
with a set of Java Apache projects and collected information about bug-fix commits and
bug-introducing commits — using SZZ Algorithm. Then, we recreated all merge scenar-
ios of these projects to get conflicting merge scenarios and some characteristics of them
— such as the number of changed files, the number of active developers, number of files
with conflicts. Moreover, we collected the entities with co-change dependencies for both
coarse-grained repositories (in which an entity is a file or a Java class) and fine-grained
repositories (e.g., methods or fields). According to the analysis in our set of projects,
SZZ-Unleashed blamed 3.62% of conflicting merge scenarios of being responsible for in-
troducing bugs. Moreover, our results indicate that the occurrence of a bug introduced
by a conflicting merge scenario is approximately three times lower than the occurrence
of a conflicted merge commit. Although our results suggest that only a small number
of bug-introducing commits arise from merge conflict resolution, it is worth investigating
new methods to detect and avoid conflicts—since the source of these errors only relates
to the tasks of resolving conflicting merge scenarios. Furthermore, the framework that
recreates merge scenarios and the infrastructure we developed for the quantitative study
could be used, for instance, to derive more advanced conflict and bug-introducing pre-
diction models. Practitioners can benefit from these results by worrying less about the
bug introduction when resolving merge conflicts and not postpone merge-operations. Dif-
ferently from previous studies that considered only few study cases, When considering a
large set of projects, our study shows that there are not a relation between the metrics of
co-change dependencies and the bug introduction changes.

49

5.1 Contributions

We summarize our contributions as follows:

• Empirical evidence that conflicting merge scenarios are less likely associated with
bug-introducing commits occurrence;

• Empirical evidence that it is difficult to predict the introduction of bugs when
resolving conflicting merge scenarios based on characteristics extracted from GIT;

• Quantitative evidence that suggests that there is a small relationship between
NOCC and SOCC with the buggy ratio of a class, contrasting with the results of
a previous research [14];

• A Framework to collect all merge scenarios and their characteristics;

• We provide the infrastructure we developed for the quantitative study online, al-
lowing its replication.

5.2 Threats to Validity

The main limitation of our work is related to the SZZ-Unleashed framework. First, since
Borg et al. [8] developed it to be language-independent, it does not treat cosmetic changes
such as comments and blank spaces. This possibly increased the number of false-positives,
but it does not implicate in changing our conclusion that conflicting merge scenarios are
less likely associated with bug-introducing commits than other commits. Secondly, in
the first phase of SZZ, some bug issues might not be linked correctly with the commits
associated with them — perhaps developers might have forgotten to mention the related
issue to the changes they were fixing. Even by not collecting all bug issues and linking some
of them correctly, we believe that this situation would not change our findings because
we collected a massive number of issues, and more than 75% of them were linked to bug-
fixing commits. Considering the merge scenarios, we probably did not collect all of them
because, in some cases, developers might be used git rebase, and some historical changes
were lost. In order to avoid threats related replaying merge scenarios, we cross-validated
our results with previous work and tool [45], [4]. Finally, we cannot generalize our results
because we have limited our study to Java Apache projects, and further investigation
should be necessary with other programming languages.

50

5.3 Future Works

We aim to cross-validate the output of SZZ-Unleashed with other SZZ implementations
[13] and also perform manual verification in a sample of bug-introducing commits to check
the reliability of the framework. In addition, we will implement some improvements to
SZZ-Unleashed and make it available to help the community with a replication studies.
Another possibility, is to investigate the contribution of all kinds of merge conflicts, besides
textual, with bug-introducing changes.

51

Chapter 6

Related Works

6.1 Research on Merge conflicts

Leßenich et al. [38] inferred seven potential indicators to predict merge conflicts based
on a survey of 41 developers, in which they shared their typical problem during merge
operations and the reasons for conflicts in their projects. Almost all developers agreed
that late merging is one of the most causes that lead to negative implications and merge
conflicts. Moreover, 38% of them stated that sometimes, they avoid synchronization,
leading to late merging, because they fear to face conflicts. Also, the responses suggest
that merge conflicts are still a common problem in software development. Some of the
indicators that formed the basis for the analysis of the empirical study are: "branches
with more commits, larger commits, and more scattered changes are more likely to cause
merge conflicts," since more developers are working in parallel. This study aims to ver-
ify if merge conflict prediction based on these indicators can be used to help developers
during the concurrent code integration. In this study, they analyzed 21,488 real merge
scenarios of 163 open-source Java projects in order to test the predictive power and the
usability of these indicators to predict challenging merge scenarios. As a result of the
empirical analysis, they found that none of the seven indicators that have been suggested
by the developers’ survey have a predictive power concerning the number of conflicts. By
analyzing the correlation of the indicators per project, they found that, for 14 projects,
the number of changed lines shows a strong correlation. Similarly, the number of simulta-
neously changed files has a strong correlation for five projects and a medium correlation
for 86 projects. Finally, even this overall negative result, their study formed a solid basis
for replication and follow-up studies such as conflict-avoidance strategies (e.g., speculative
merging), and the results serve as a warning to practitioners and researchers when making
assumptions about merge conflicts.

In the paper "Predicting merge conflicts in Collaborative Software Development,"

52

Owhadi-Kareshk et al. [45] built some classifiers to decrease the cost of speculative merg-
ing running in the background, by avoiding to perform speculative merging in the safe
scenarios. They have found this opportunity because proactive conflict detection is based
on speculative merging, by pulled and combining all available branches and merging them
in background. While it is cheap to perform a single textual merge operation, the cost
can increase exponentially according to the number of active branches. Differently of the
previous study that measured the correlation between merge conflicts and the features
collected from Git, they argue that a lack of correlation does not mean that it is not
possible to classify safe versus conflicting merge scenarios. In this study, they collected
267,657 merge scenarios from 744 well-engineered repositories of 7 different programming
language, and build separate classifiers for repositories from each programming language.
Their results confirmed the lack of a significant correlation between the features and the
number of conflicts, but their prediction results show that their classifiers did not perform
poorly. While the predictors can detect conflict merge scenarios with a precision of 0.48
to 0.63 and a recall of 0.68 to 0.83 over the programming languages, the safe scenarios
presented a precision of 0.97 to 0.98 and recall between 0.93 to 0.96. Even with not
so good performance to predict conflict merge scenarios, the results are useful to check
safe merge scenarios and reduce the costs of proactive speculative merging, reducing the
computational costs.

Accioly et al. [2], conducted an empirical study that analyzes 5,647 merge scenar-
ios from 45 Java-maven-Travis projects from GitHub to collect textual, build, and test
conflicts in order to analyze how frequently a predictor occurrence is associated with a
conflict occurrence and if they could be considered good predictors. For this, they con-
sidered two predictors: EditSameMC (editions to the same method) and EditDepMC
(editions to directly dependent methods). In order to reproduce all merge scenarios and
collect their information, they used the Conflict Analyzer tool and FSTMerge tool —
a semi-structured merge tool that automatically resolves ordering conflicts and spuri-
ous conflicts often reported by unstructured merge tools [1]. In the sample, 290 merge
scenarios presented merge conflicts, and 508 have conflict predictors — when removing
spacing instances, they had 251 merges with conflicts and 469 merges containing the
predictors. When they crossed both datasets, there were 286 merge conflicts with at
least one predictor and 272 when removing spacing predictors – 45 with EditDepMC and
266 with EditSameMC instances. As a result of the conflict awareness tool considering
EditSameMC and EditDepMC, the precision indicates that the tool triggered the alarm
57.99% of the merge scenarios. Moreover, the recall indicates they have captured 82.67%
of the merge scenarios with conflicts (merge, build, or test) when considering both pre-
dictors. Also, they did not find many build and test conflicts, because they started to

53

collect data after the implementation of Travis CI on their set of projects — according
to the previous study [56], the adoption of CI practices improve the quality of software
and developers resolve most of the conflicts locally. For this reason, when analyzing the
predictors individually, EditSameMC has a precision of 56.71% and EditDepMC, only
8.85%, and recall of 80.85% and 13.15% respectively. As a conclusion, they say that their
study is useful to guide conflict awareness strategies and provide a better notion of the
real frequency of merge conflicts.

In the paper "An Empirical Examination of the Relationship Between Code Smells and
Merge Conflicts", Ahmed et al. [3] analyzed 143 open source java projects with a total
of 36111 merges where 6979 scenarios caused conflicts and 7467 code smell instances in
the scope. They also investigated whether there were a connection between entities that
contains code smells, the code smells they contain, and the merge conflicts surrounded by
smelly entities with the purpose to obtain metrics about code changes and conflicts. First,
they divided conflict merge scenarios into two categories — semantic conflicts, (requires
to understand the logic of the program to resolve, such as variable name changed), and
non-semantic, (easier and less risky to resolve, such as comments and white space). As a
result they founded that on average, elements involved in merge conflicts presents three
times more code smell than elements not involved in merge conflicts. The mean number of
smells in conflicting scenarios is 6.54 while the mean of smells on non-conflicting scenarios
is 1.92 — statistically significant with Mann-Whitney test for population not normally
distributed. Furthermore, not all code smells are equally correlated to merge conflicts,
and the precense of code smells on the lines of code in a merge conflict has a significant
impact on its bugginess. Since code smells are more expected to be related with bugs
in the future [34], they concludes that entities involving code smells and merge conflicts
were more likely to be buggy, and practitioners should pay more attention on code smells
to reduce the number of merge conflicts.

6.2 Research on Co-change Dependencies

Marco D’Ambros et al. [15] defined several measures of change coupling to verify their
correlations with software defects. In an empirical study with three large Java software
systems, they provide evidence that change coupling correlates with defects extracted
from the issue tracking system. Moreover, they have investigated, based on the severity of
the reported bugs, the relationship between co-change dependencies and software defects.
Furthermore, they found a better correlation connecting coupling changes and defects than
complexity metrics. Finally, they showed that it is possible to improve the performance of
defect prediction models based on complexity metrics by adding co-change information.

54

In this work, they considered an entity as a class, meaning that each entity received change
coupling measures coarse-grained — they defined the measures concerning the coupling
of a class with the entire system. As a result, they say that change coupling correlates
with defects, more than object-oriented metrics, but less than the number of changes.
Another result is that regression models based on objected-oriented metrics, and change
coupling information have greater explanatory and predictive than models based only on
metrics. As threats to validity, they considered that using a coarse-grained analysis is
not the best option because they cannot consider inner classes. Finally, considering the
commit messages to find bug-fix commits cannot guarantee that all bug fixing information
was collected.

Wise et al. [54] empirically investigated the relationship between strong change cou-
pling, defined by them using historical and social metrics, and the number of defects
associated with them. More than 50% of the releases with more change couplings were
associated with the defect, and 3/4 of the change couplings are associated with at least one
defect. Based on historical and social metrics, they build classification models to identify
strong change couplings with 70-99% F-measure and 88-99% AUC. Also, they have built
a defect prediction model based on strong change dependencies and correctly predicted
45.7% of the defects. They have defined change coupling as strong for all couplings with
support higher than the third quartile, and, otherwise, defined as weak. They have con-
sidered as a dataset, the six releases of the project Apache Aries, collecting the number
of issues and the number of change coupling per release. As threats to validity, the first
concern to generalize the results, since they have analyzed only one case study. Another
one is the possibility of tangled code changes [30] in the commits they have mined.

55

References

[1] P. Accioly, P. Borba, and G. Cavalcanti. Understanding semi-structured merge con-
flict characteristics in open-source java projects. Empirical Software Engineering,
23(4):2051–2085, 2018. 39, 53

[2] P. Accioly, P. Borba, L. Silva, and G. Cavalcanti. Analyzing conflict predictors in
open-source java projects. In Proceedings of the 15th International Conference on
Mining Software Repositories, pages 576–586, 2018. 8, 40, 53

[3] I. Ahmed, C. Brindescu, U. A. Mannan, C. Jensen, and A. Sarma. An empirical
examination of the relationship between code smells and merge conflicts. In 2017
ACM/IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pages 58–67. IEEE, 2017. 14, 54

[4] S. Apel, O. Leßenich, and C. Lengauer. Structured merge with auto-tuning: balanc-
ing precision and performance. In Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages 120–129. ACM, 2012. 14, 50

[5] F. Beck and S. Diehl. On the impact of software evolution on software clustering.
Empirical Software Engineering, 18(5):970–1004, 2013. 21

[6] S. P. Berczuk and B. Appleton. Software configuration management patterns: effec-
tive teamwork, practical integration. Addison-Wesley Longman Publishing Co., Inc.,
2002. 7

[7] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug reports
considered harmful. . . really? In 2008 IEEE International Conference on Software
Maintenance, pages 337–345. IEEE, 2008. 8

[8] M. Borg, O. Svensson, K. Berg, and D. Hansson. Szz unleashed: An open implemen-
tation of the szz algorithm-featuring example usage in a study of just-in-time bug
prediction for the jenkins project. arXiv preprint arXiv:1903.01742, 2019. ix, 3, 10,
11, 15, 16, 50

[9] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive detection of collabora-
tion conflicts. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software engineering, pages 168–178. ACM,
2011. 7, 8

[10] G. Cavalcanti, P. Borba, and P. Accioly. Evaluating and improving semistructured
merge. Proceedings of the ACM on Programming Languages, 1(OOPSLA):59, 2017.
14

56

[11] S. Chacon and B. Straub. Pro git. Apress, 2014. 5, 6

[12] P. Charles. Project title. https://github.com/charlespwd/project-title, 2013.
14

[13] D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E. Has-
san. A framework for evaluating the results of the szz approach for identifying bug-
introducing changes. IEEE Transactions on Software Engineering, 43(7):641–657,
2017. 10, 12, 51

[14] M. D’Ambros, M. Lanza, and R. Robbes. On the relationship between change cou-
pling and software defects. In 2009 16th Working Conference on Reverse Engineering,
pages 135–144, Oct 2009. 43, 45, 50

[15] M. D’Ambros, M. Lanza, and R. Robbes. On the relationship between change cou-
pling and software defects. In 2009 16th Working Conference on Reverse Engineering,
pages 135–144. IEEE, 2009. 54

[16] D. Damian, L. Izquierdo, J. Singer, and I. Kwan. Awareness in the wild: Why
communication breakdowns occur. In International Conference on Global Software
Engineering (ICGSE 2007), pages 81–90. IEEE, 2007. 8

[17] M. C. de Oliveira, R. Bonifácio, D. Freitas, G. Pinto, and D. Lo. Finding needles
in a haystack: Leveraging co-change dependencies to recommend refactorings. 2019.
ix, 2, 3, 13

[18] M. C. de Oliveira, R. Bonifácio, G. N. Ramos, and M. Ribeiro. Unveiling and
reasoning about co-change dependencies. In Proceedings of the 15th International
Conference on Modularity, pages 25–36. ACM, 2016. 2, 13, 21

[19] C. R. De Souza, D. Redmiles, and P. Dourish. Breaking the code, moving between
private and public work in collaborative software development. In Proceedings of the
2003 International ACM SIGGROUP conference on Supporting group work, pages
105–114. ACM, 2003. 1

[20] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces. In
CSCW, volume 92, pages 107–114, 1992. 8

[21] P. M. Duvall, S. Matyas, and A. Glover. Continuous integration: improving software
quality and reducing risk. Pearson Education, 2007. 1

[22] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. In International Conference on Software
Maintenance, 2003. ICSM 2003. Proceedings., pages 23–32. IEEE, 2003. 5

[23] M. Fowler and M. Foemmel. Continuous integration. Thought-Works) http://www.
thoughtworks. com/Continuous Integration. pdf, 122:14, 2006. 1, 7

[24] S. R. Fussell, R. E. Kraut, F. J. Lerch, W. L. Scherlis, M. M. McNally, and J. J.
Cadiz. Coordination, overload and team performance: effects of team communica-
tion strategies. In Proceedings of the 1998 ACM conference on Computer supported
cooperative work, pages 275–284. ACM, 1998. 8

57

https://github.com/charlespwd/project-title

[25] T. E. Gerhardt and D. T. Silveira. Métodos de pesquisa. Plageder, 2009. 14

[26] G. Ghiotto, L. Murta, M. Barros, and A. van der Hoek. On the nature of merge con-
flicts: a study of 2,731 open source java projects hosted by github. IEEE Transactions
on Software Engineering. IEEE, 2018. 8

[27] R. E. Grinter. Using a configuration management tool to coordinate software devel-
opment. In Proceedings of conference on Organizational computing systems, pages
168–177. ACM, 1995. 1

[28] M. L. Guimarães and A. R. Silva. Improving early detection of software merge con-
flicts. In Proceedings of the 34th International Conference on Software Engineering,
pages 342–352. IEEE Press, 2012. 1

[29] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: how misclassifica-
tion impacts bug prediction. In Proceedings of the 2013 international conference on
software engineering, pages 392–401. IEEE Press, 2013. 11

[30] K. Herzig and A. Zeller. The impact of tangled code changes. In 2013 10th Working
Conference on Mining Software Repositories (MSR), pages 121–130. IEEE, 2013. 55

[31] N. Jalbert and W. Weimer. Automated duplicate detection for bug tracking systems.
In 2008 IEEE International Conference on Dependable Systems and Networks With
FTCS and DCC (DSN), pages 52–61. IEEE, 2008. 8

[32] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated,
2014. 45

[33] S. Just, R. Premraj, and T. Zimmermann. Towards the next generation of bug
tracking systems. In 2008 IEEE Symposium on Visual Languages and Human-Centric
Computing, pages 82–85. IEEE, 2008. 8

[34] F. Khomh, M. Di Penta, Y.-G. Guéhéneuc, and G. Antoniol. An exploratory study of
the impact of antipatterns on class change-and fault-proneness. Empirical Software
Engineering, 17(3):243–275, 2012. 54

[35] S. Kim, T. Zimmermann, K. Pan, E. James Jr, et al. Automatic identification of bug-
introducing changes. In 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), pages 81–90. IEEE, 2006. 2, 9

[36] T. D. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a study
of developer work habits. In Proceedings of the 28th international conference on
Software engineering, pages 492–501. ACM, 2006. 2

[37] M. Lerner. Software maintenance crisis resolution: The new ieee standard. Software
Development, 2(8):65–72, 1994. 2

[38] O. Leßenich, J. Siegmund, S. Apel, C. Kästner, and C. Hunsen. Indicators for merge
conflicts in the wild: survey and empirical study. Automated Software Engineering,
25(2):279–313, 2018. 39, 52

58

[39] P. Li. JIRA 5.2 Essentials. Packt Publishing Ltd, 2013. 14

[40] S. McKee, N. Nelson, A. Sarma, and D. Dig. Software practitioner perspectives on
merge conflicts and resolutions. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 467–478. IEEE, 2017. 6, 8

[41] T. Mens. A state-of-the-art survey on software merging. IEEE transactions on
software engineering, 28(5):449–462, 2002. ix, 6, 7

[42] B. S. Mitchell and S. Mancoridis. On the automatic modularization of software sys-
tems using the bunch tool. IEEE Transactions on Software Engineering, 32(3):193–
208, 2006. 12

[43] G. C. Murphy, M. Kersten, M. P. Robillard, and D. Čubranić. The emergent structure
of development tasks. In European Conference on Object-Oriented Programming,
pages 33–48. Springer, 2005. 12

[44] E. C. Neto, D. A. da Costa, and U. Kulesza. The impact of refactoring changes on
the szz algorithm: An empirical study. In 2018 IEEE 25th International Conference
on Software Analysis, Evolution and Reengineering (SANER), pages 380–390. IEEE,
2018. 12

[45] M. Owhadi-Kareshk, S. Nadi, and J. Rubin. Predicting merge conflicts in collab-
orative software development. In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), pages 1–11. IEEE, 2019.
1, 6, 8, 39, 50, 53

[46] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. 12

[47] D. E. Perry, H. P. Siy, and L. G. Votta. Parallel changes in large-scale software de-
velopment: an observational case study. ACM Transactions on Software Engineering
and Methodology (TOSEM), 10(3):308–337, 2001. 8

[48] G. Rodríguez-Pérez, J. M. Gonzalez-Barahona, G. Robles, D. Dalipaj, and N. Sek-
itoleko. Bugtracking: A tool to assist in the identification of bug reports. In IFIP
International Conference on Open Source Systems, pages 192–198. Springer, 2016.
11

[49] G. Rodríguez-Pérez, G. Robles, and J. M. González-Barahona. Reproducibility and
credibility in empirical software engineering: A case study based on a systematic lit-
erature review of the use of the szz algorithm. Information and Software Technology,
99:164–176, 2018. ix, 10, 11, 15

[50] G. Rodríguez-Pérez, A. Zaidman, A. Serebrenik, G. Robles, and J. M. González-
Barahona. What if a bug has a different origin?: making sense of bugs without an
explicit bug introducing change. In Proceedings of the 12th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement, page 52. ACM,
2018. 2

59

[51] L. L. Silva, M. T. Valente, and M. d. A. Maia. Co-change clusters: Extraction and
application on assessing software modularity. In Transactions on Aspect-Oriented
Software Development XII, pages 96–131. Springer, 2015. 21

[52] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce fixes? In ACM
sigsoft software engineering notes, volume 30, pages 1–5. ACM, 2005. 2, 3, 9, 10, 12

[53] J. Visser, S. Rigal, G. Wijnholds, and Z. Lubsen. Building Software Teams: Ten Best
Practices for Effective Software Development. " O’Reilly Media, Inc.", 2016. 5

[54] I. S. Wiese, R. T. Kuroda, R. Re, G. A. Oliva, and M. A. Gerosa. An empirical
study of the relation between strong change coupling and defects using history and
social metrics in the apache aries project. In IFIP International Conference on Open
Source Systems, pages 3–12. Springer, 2015. 55

[55] C. Williams and J. Spacco. Szz revisited: Verifying when changes induce fixes. In
Proceedings of the 2008 Workshop on Defects in Large Software Systems, DEFECTS
’08, pages 32–36, New York, NY, USA, 2008. ACM. 10, 12

[56] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and B. Vasilescu. The impact of con-
tinuous integration on other software development practices: a large-scale empirical
study. In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 60–71. IEEE, 2017. 54

[57] T. Zimmermann, R. Premraj, J. Sillito, and S. Breu. Improving bug tracking systems.
In 2009 31st International Conference on Software Engineering-Companion Volume,
pages 247–250. IEEE, 2009. 8

60

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Problem Statement and Research Questions
	Objectives
	Document Organization

	Background
	Version Control Systems
	Bug Tracking Systems
	The SZZ Algorithm
	Co-change evolution

	Methodology
	Project Selection Criteria
	Finding Bug-introducing commits
	Re-playing merge scenarios and collecting their characteristics
	Tool support for collecting merge scenarios
	Computing Co-change Dependencies

	Results
	Exploratory data Analysis
	Disclosing conflicting merge scenarios linked to BICs
	R.Q.1: To what extent conflicting merge scenarios correspond to the bug introduction contributions?
	What are the characteristics of the conflicted merge scenarios that introduced error?

	RQ2 How to predict bugs on conflicted merge scenarios?
	RQ3 To what extent commits with co-change dependencies relate to bug-introducing changes?

	Conclusions
	Contributions
	Threats to Validity
	Future Works

	Related Works
	Research on Merge conflicts
	Research on Co-change Dependencies

	References

