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Resumo

Sintese de alto nivel é considerada o préximo passo logico em design de hardware, mas
os resultados, em geral, ainda nao sao tao bons quanto ao que a industria necessita.
Conjecturamos que a falta de uma representacao de hardware adequada, criada espe-
cificamente para analise automatica de hardware, é um dos principais motivos pelos
quais os resultados sao dificeis de otimizar. Apresentamos o calculo-h, calculo tipado
que usa tipos de sessao temporal para bem-definicao e analise de hardware. Intro-
duzimos os conceitos principais, formalizamos suas defini¢oes, demonstramos como a

analise por meio de tipos funciona, e discutimos sua utilidade na sintese de alto nivel.

Palavras-chave: Design de Hardware, Sistemas de Tipos, Tipos de Sessao, Calculo de

Processos
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Abstract

High-Level Synthesis has been considered the next logical step for hardware design,
but results are, in general, still not as good as the industry requires. We conjecture
that the lack of a proper hardware representation crafted specifically for automatic
hardware analysis is one of the key reasons why results are hard to optimize. We
present the h-calculus, typed calculus that uses temporal session types for hardware
well-definedness and analysis. We introduce the key concepts, formalize their defi-
nitions, demonstrate how analysis through types works, and discuss its utility within
High-Level Synthesis.

Keywords: Hardware Design, Type System, Session Types, Process Calculi
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Capitulo 1

Introduction

1.1 The Hardware Design Challenge

The current hardware industry demands optimized designs [1, 2, 3, 4]. This demand
comes from two contrasting factors: the limitations of transistor technology and the
increasing demand for computational power. The limitations of digital systems come
from the end of Dennard Scaling, which effectively caps transistors’ maximum fre-
quency, and the current struggle to keep up with Moore’s law. The demand for more
computational power comes from the growing usage of techniques, such as Machine
Learning and Digital Signal Processing, that require a high amount of calculations.

For projects depending on high throughput, CPUs and GPUs are often not enough
to meet efficiency constraints. That is why there is an increasing demand for custom,
application-specific hardware designs. However, designing custom hardware, especi-
ally when they need to be optimal according to application-specific constraints, is, in
general, an arduous task that requires long development times and significant deve-
lopment costs.

Most of the challenges in designing optimal custom hardware come from the need
for efficient Design Space Exploration (DSE). DSE is the step in which a designer, or an
automated system, explores distinct designs — verifying their correctness, analyzing
their efficiency parameters, applying transformations, and comparing them analyti-

cally — until it finds an optimal, or good enough, one (Fig 1.1).
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Figura 1.1: Design Space Exploration Schematics

A primary challenge in current hardware design is that there is no good automatic
solution for DSE. In traditional hardware design flows, the designers are responsible
for DSE. Semi-automatic tools help but do not perform DSE automatically. Humans,
however, are notoriously bad at solving problems such as DSE that involve extensive
search and analysis of different cases. Giving the responsibility of DSE to developers

results in long, iterative, and error-prone development cycles.

1.2 High Level Synthesis

High-Level Synthesis (HLS) [5, 6,7, 8,9, 4, 10, 1, 2, 3] is an interesting attempt to in-
crease automation in hardware design flows. HLS is based on the idea of transforming
a high-level description of hardware, written in a High-Level Language (HLL), into a
low-level Register Transfer Level (RTL) specification. Since this transformation is the
responsibility of the HLS tool, it moves the responsibility of DSE away from the desig-

ner, allowing for a more automated design flow (Fig. 1.2).
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Figura 1.2: High-Level Synthesis Flow

However, HLS does not currently provide all the optimization demanded by cur-
rent hardware applications [1, 2, 3, 5]. As a consequence, HLS tools do not take com-
plete control of DSE. Instead, current HLS improves the traditional hardware design
flow, focusing on being interactive rather than a complete automated solution.

Ideally, HLS should produce good enough results without the need for human in-
teraction, but it turns out, reaching an ideal HLS poses complex challenges. HLS stra-
tegies defined as a predefined sequence of transformations (as traditional HLS theory,
composed of scheduling — resource allocation— binding — control generation [4]) are
not enough to provide the efficiency demanded by the post-Dennard-scaling hardware
industry. Instead, DSE is required, something that traditional HLS techniques and
datatypes are not suitable.

To understand why HLS fails to implement efficient hardware, we need to unders-
tand its grounds. Conceptually, we can divide HLS into three steps (Fig. 1.3), each
with a well-defined concern. The translation step transforms the high-level specifi-
cation into an intermediate representation (IR) of hardware. The output of translation
does not need to be efficient or optimized; it just needs to represent the computa-
tion described in the input specification correctly. The DSE step performs analysis,
transformations, and comparisons on IR definitions until it finds one that meets all
the design constraints. The synthesis step transforms the hardware IR into the target
result, be it an HDL description (VHDL or Verilog) or a netlist.
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Figura 1.3: Simplified High-Level Synthesis Flow

1.3 An Ideal Intermediate Representation

Although the effectiveness of DSE depends on multiple factors — including the strate-

gies applied and computational power (in case the strategy depends on it) — the most

fundamental one is the IR choice.

The IR choice either allows or breaks the effectiveness of DSE by either enabling or

disabling the feasibility of specific exploration strategies. For example, an IR without

time representation does not enable an analysis (and optimization) of time-sensitive

parameters; and an IR unaware of resource usage cannot optimize resource sharing

effectively. Although an ideal IR is not enough for effective DSE, the effectiveness of
DSE is limited without an ideal IR.
An ideal IR for hardware DSE would have the following characteristics:

1.

Has to be Correct-by-construction, which takes away the responsibility of chec-

king for correctness from the design exploration phase

Describe low-level hardware details, such as registers, digital signals, clock pe-
riod, concurrency, and others, which allow the definition of low-level optimiza-

tions that would be performed in low-level hardware design.

Includes Model system-level properties relevant for analysis and optimiza-
tion, such as resource usage, throughput, conditional branching, communication
patterns, temporal behavior, among others, which enable the definition of design

exploration strategies at a system-level.

Should be able to fetch analysis information trivially from the model, which

will be used as input to the design exploration system.

Provide efficient ways to transform models, allowing design exploration to ap-

ply many optimizations efficiently and compare their results.

. Model (time-aware) communication patterns between hardware modules so

that components can be connected efficiently without the need for a communica-

tion template (e.g., FIFO buffers), used in most cases.

4



When analyzed through the prism of DSE suitability, most IRs used in HLS tools,
such as Control Dataflow Graphs (CDFGs), do not meet many of the requirements
above, making effective DSE more challenging.

This thesis introduces the h-calculus, purposely created to meet all the require-
ments above, thus being an ideal IR for hardware DSE. The h-calculus achieves this
by using a type system that models hardware concepts. Besides helping to ensure cor-
rectness, the type system also produces detailed analytical reports of the definition
encoded within the types, which allows for low-effort whole-system analysis.

By enabling effective DSE, the h-calculus aims to reduce the need for human inte-
raction in HLS tools. Designers would then focus on the high-level specification only,
making hardware design accessible for designers who understand the high-level lan-
guage but do not master the details of low-level hardware design.

This thesis does not focus on any particular DSE system or implementation of
an HLS system (although Chapter 5 touches upon these subjects). Instead, it focu-
ses on the definitions, properties, and use cases of the h-calculus, demonstrating why
and how it is suitable for hardware DSE and what it does differently than other fra-

meworks.

1.4 Overview
The contributions of the thesis, and the way it is structured:

* We start by introducing the key concepts of the h-calculus in Chapter 2; we ex-
plain the process calculus, the types, and how they relate to hardware modeling
through examples.

* Before discussing the details of the h-calculus, Chapter 3 explains the back-
ground necessary to understand the h-calculus. It includes discussions about
type systems and the A-calculus, commonly used hardware models of computa-

tion, and Session Types.

* Chapter 4 introduces h-calculus typing and semantic rules, and discusses the

properties that make it a computational model for hardware.

* Chapter 5 discusses the advantages and disadvantages of using the h-calculus as
an IR for HLS instead of a more traditional hardware representation. The chapter
discusses translation from high-level languages to h-calculus, the effectiveness of

DSE using h-calculus, and transformation from h-calculus into RTL.



* Related work is found in Chapter 6. We analyze several other models of compu-

tation in the context of hardware modeling and compare them to the h-calculus.

* Chapter 7 concludes the thesis, pointing out future work directions.



Capitulo 2

Key Concepts of the H-Calculus

This chapter introduces the fundamental concepts behind the h-calculus in an infor-
mal manner, using examples to develop intuition about the technical mechanisms of
the calculus and how they relate to hardware modeling, verification, and analysis.

A simplified view of hardware architecture is a network of components that com-
municate through signals (Fig. 2.1). These signals carry complex data encoded as se-
quences of bits that change over time. Components react to input signals and produce
output signals, effectively performing computation. At the lowest level, components
are transistors. At the Register Transfer Level (RTL) components are logic gates (such
as AND, OR, NAND, NOT) and registers (Fig. 2.2).

output
input; signals

signals / /\componénts

Figura 2.1: Hardware Components and Signals
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Figura 2.2: RTL components

The objective of the h-calculus is to effectively model signals and components at
the RTL in a way that it is easy to spot incorrectness and performance inefficiencies.
The h-calculus’ approach is to model digital signals using temporal session types and
then use them to model hardware components effectively. This kind of modeling is

only possible due to the expressiveness of the type system.

2.1 Hardware Modeling with Temporal Session Types

2.1.1 Signals as Temporal Sequences

A practical way to model digital signals without losing information relevant to the
analysis is to use temporal sequences (TSs). Temporal sequences are (ordered) sequences
of pairs, each containing a value and a temporal index indicating how long the value
is stable.

Generally, (vfl,vgz,v?,---) denotes a temporal sequence that starts with value vy,
that is stable for 7; units of time; after that, the signal transitions into value v,, that is

stable for 1, units of time; and so on.

Example 2.1 (Temporal Sequence). The temporal sequence denoted (1°,25,35,4°,5°)

is graphically represented in Fig. 2.3, where the time advances from left to right.

1 2 3 X 4 5

Figura 2.3: Digital signal

Since abrupt changes of values in digital signals are not natural, temporal sequen-
ces use the special value «. It represents values that are uncertain, unstable, or transiti-

onal, therefore lacking functional significance. When a component considers a - value

8



meaningful, the result is unpredictable, resulting in incorrect behavior. It is used to
model transitions between stable values, allowing for more realistic signal modeling.

Example 2.2 (Temporal Sequence with -). The temporal sequence (14,.1,24,.1,34 .1 44 .1 55)
represents the signal of Fig. 2.4.

1 Y 2 3 4 W s

Figura 2.4: Digital signal with the transitional value (red line)

The h-calculus uses temporal sequences to describe signals between components si-
milar to the way Kahn networks are formulated around sequences [11], the difference
being that TSs keep temporal information within the model. This temporal informa-

tion is crucial for hardware efficiency analysis, as we are going to see.

2.1.2 Clock Cycles and Registers

Temporal sequences are also able to model clock cycles. Clock cycles are an essential
part of synchronous digital design and a crucial parameter for measuring the efficiency
of hardware architectures. Within one clock cycle, an arbitrary amount of computation
can occur, but for the computation results to be carried on to the next cycle (and not
get lost), they have to be given to a register before the cycle ends.

The register is a unique hardware component with the sole purpose of saving values
from a previous cycle to the next (Fig. 2.5). A clock signal, an 1-bit signal that changes
from 0 to 1 and from 1 to 0 periodically, is directly connected to registers, controlling

when they should and should not forward an input through the next cycle.

in H out ck 1+ L T L[
x T r—( 7 r—{<
y —« v )
s=c—st _
0 st c
clk

Figura 2.5: Register signal behavior and cycle dynamics: c is the clock period, st is the
setup time needed for all registers to process their outputs, and s is the stable period
in which all registers outputs are stable and therefore computation can be correctly
performed

Every cycle goes as follows (Fig. 2.6): at the start of the cycle, output signals from

registers carry stable values. These values are then fed to input ports of components



which compute new values. These freshly computed values can be fed to other com-
ponents or not; however, they must be fed to a register to be available next cycle (as
the register output). Thus it is crucial that values computed within a cycle get stable
before the cycle ends; otherwise, the register will possibly save a transitional value

instead, resulting in incorrect computation.

—‘ in c_outH out

clk clk

clk _] | | L
in — a H b HCe

c_out (7@ ) f(b)
out S—c st [(@) F®)
0 st ¢ 2c i

Figura 2.6: Clock period and periodic signals

Compared to asynchronous digital design, synchronous design is more straight-
forward, predictable, and commonly used, which is why the h-calculus focuses on
synchronous design.

Synchronous circuitry can perform stateful computations using registers, but only
stateless computation can be performed within one cycle.

The nature of the clock cycle dictates the temporal form of every signal within the
synchronous system. Every signal has the form <A, -5'A, -5'A3.5'A,---, where every
A; is a temporal sequence belonging to the ith cycle with total duration s. Because
it would be cumbersome to repeatedly write «*' every cycle in every sequence, the h-
calculus omits the setup time, denoting signals as A1 A,A3A,--- instead. If the real time
value needs to be retrieved from the more succinct definition, it suffices to multiply the

temporal duration by the number c/s.

Example 2.3 (Clock Cycle Signals). (Fig 2.7) If ¢ = 6, s = 5 and st = 1, then the
temporal sequence
<.1 15.2 94 1 35 2 44 1 55>

10



would be denoted succinctly, removing the setup periods, as

<151.1, 24, 35} .1144’ 55>

clk | | ] \ | | | | [ L]
seq —__1 2> Y 3 {4+ H 5 )
0 c 2c 3c 4c gc

Figura 2.7: Temporal sequence example

2.1.3 Components and Temporal Session/Sequence Types

Components only work the way we expect when input signals follow a particular valid
pattern; otherwise, the component outputs an undefined signal. The h-calculus captu-
res this concept using types to model particular signal patterns and how components

interact with them. For instance, the small type grammar

S u=T°S (Sending value of type T for o units of time)
©S  (Lack of meaningful value for & units of time (either noise or transitional values))

| 1 (End of the signal)

, where T is a functional non-recursive type, is enough to model simple hardware
signals and patterns effectively.
This typing scheme can model hardware components and verify if their usage is

correct or incorrect.

Example 2.4 (Modeling an Adder). Depicted in Fig. 2.8, where 9; is the arrival time
of input i (for i = 1 or 2), 0, is the statistical worst-case processing time of the Adder

and s is the duration of the stable period.

ing ;91 Ints011

> out - MEX(1,02)+5, Ty s—(max(81,02)+0,) 1
in, :+2Ints%21 Adder >

>

Figura 2.8: Adder modeled with types

The Adders’s output would be ready after all the inputs arrive plus the Adder pro-

cessing time. Since the Adder is used to compute inside a cycle, the numerical va-

11



lues (5,01,0,,0,) must be such that the output value is stable before the cycle ends
(max(01,07) + 0, <s).

This typing scheme makes it easy to spot incorrect applications of components be-

fore they are synthesized or even simulated.

Example 2.5 (Verifying applications of components). Fig 10 depicts the examples

above assuming o, =1, the stable period is 5 units of time.

ak [ L]
iny
Casel in, —{__6 )
out
iny
Case2 in, —{__6 )
out
iny
Case3 i, — {6 )

out

Figura 2.9: Component usage verification

Case 1 If in; = (-35%) and in, = (->6%), then input types are in; : >Int?1 and in, :
2Int>1, the application is considered correct and the result is out = (>« 111!) typed
out : 4Int!1.

Case?2 [Ifin; =(->5!.17'yand in, = (->6%), then the input types are in; : «>Int!-1Int!1
and in, : +>Int®1. The application is then incorrect since in; does not follow the pattern

accepted by the Adder. In type system terms, that would constitute a type mismatch.

Case 3 If iny = (-*5') and in, = (-263), then input types are in; : -*Int!1 and in, :
-2Int31. Although the inputs follow the pattern, the result would not be ready before
the clock cycle ends. In formal terms, the constraint max(4,2)+ 1 < 5 does not hold,

constituting another type mistmatch.

Furthermore, these types can also model the usage of processes across multiple
executions and spot incorrect usages by correctly extending all the input and output

types through time. This is an essential feature of the h-calculus (that will be explored

12



in detail later this chapter) because it enables the verification and analysis of compo-

nent usage and sharing.

Example 2.6 (Resource Usage Examples). Figures 2.10 and 2.11 show some examples

of usage types for the Adder process.

ck [ L[ | \ |

x —(— ) (%)
y “ Y1 ,‘ { Y3 )
x+v (N {2

Figura 2.10: Resource Usage Example

Case 1 (Fig. 2.10) The Adder receives inputs in the first and third cycles but does not
receive anything during the second cycle. This usage leads to correct behavior since

not using components for some periods is valid.

cdk [ LT I \ |

x —(—x ) (=} (s )
7

y Y} { Y3 )

x+}} ,‘ X1 ,‘ ,‘ 277? ,‘ { X3 )

Figura 2.11: Resource Usage Example

Case 2 (Fig. 2.11) In this case, only one input is given to the component during the
second cycle. This usage will result in incorrect behavior since the Adder requires two

input values — or none at all — every time according to its type definition.

Although this typing scheme models "linear"signals well, temporal session types
become powerful when they are extended with type operators — ® (parallelism) and
@ (choice, or branching) — inspired by linear logic, and type actions — ux.S [x] (recur-
sion), T (send message), and T (receive message). Together, these additions provide
the flexibility needed to accurately model complex temporal protocols, which natu-
rally represent the way hardware modules communicate. Definition 1 shows the com-

plete grammar for TSTs.

13



Definition 1 (Temporal Session Type Grammar)

T ::=Functional (non-recursive) Type

x ::= Channel variable
t 1= Temporal value (Real number)
¢ ::= Label
L ::= Finite set of labels
— — .
Su=T'S | T*S | T*S (Write/Read/Interval value)

| S&.S | S®,S
— —
| ©{€:Seleer | ®x{€: Seleer

| S®S (Parallelism)
| 7S (Delay)
| px.S (Recursion)
| 1 (End of Process)

The operations TS (write a value) and TTs (read a value) extend temporal sequences
to model bidirectional channels instead of signals (it is possible to receive and send
data from the same channel). This extension allows temporal session types to describe
more realistic time-based communication protocols among processes.

The already introduced types T*S (internal value) and +*S (transitional value) have
the same meaning as before. The T*S type represents an internal value used as in-
put/output of combinational components — such as logic gates, adders, registers, and
others — that complete their execution within one clock cycle and «*S means the chan-
nel does not currently carry valuable information.

The distinction between an internal value and messages exists for formal reasons:
for the type system to keep being sound (as we are going to explain in full detail in
Section 4) and also to allow multiple components to use the same value at the same
clock cycle.

Operators S@)XS (internal choice) and S(EBXS (external choice) and their n-ary forms
5),6{5 : S¢lper and gx{f : S¢}eer describe protocol branching based on decisions. Ope-
rationally, the choice operators either send or receive a message containing a decision
from the set of all possible decisions L, which determines the next type of the chan-
nel — for example if a process is interfacing with a channel typed @)x{g : S¢teer and it

receives a message k € L, the type of the channel becomes Sy for every process interac-
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ting with the channel. The channel identifier x allows the type system to know when
multiple decisions are the same.

Choice operators allow complex temporal protocol modeling. 5,6 and 5,6 are ins-
pired by the operators @ and &, respectively, from linear logic and session types.

S ® S represents parallel composition of channels inspired by the linear-logic ope-
rator with the same denotation. It allows for multiple channels to be treated as one
single channel. Recursive types ux.S allow for protocol repetition (loops), and type 1
indicates the end of a channel, meaning it will not carry valuable information anymore.

In short, temporal session types are very expressive, and they model complex tem-
poral behavior among communicating processes. Now let us see some examples of

hardware modeling using TSTs.

Example 2.7 (Modeling the clock and combinational processes). Hardware desig-
ners use the clock for time synchronization and state transitions. Because of the clock,
every channel that performs an action A within a cycle follows the general temporal
sequence pattern «*A*""-.., where s is the duration of the stable period, and t is the
instant, from 0 to s, when the action begins (Fig. 2.12). After the start of an action, it
can only end after the end of the cycle because state transitions cannot occur during
clock cycles. If the action starts right at the beginning of the cycle, then 7 = 0 and the

pattern becomes A®---.

ck Lo LI LT

chan _} A} {a—™ ) AT

0 T ¢ c+T 2c 2c+T 2(c+71)

Figura 2.12: Clock and periodic actions

A combinational process gets inputs, computes, and outputs the result within the
same clock period. For example, process Inc, capable of incrementing an integer, has
the channel x as input and the channel y as output, shown in Fig. 2.13a. Channel x is
typed * Inf>..- and channel v is typed «F « Oinc It s~(t+0ind) ... with an additional delay

Oinc Which is the time Inc takes to compute (see Fig. 2.14). Using Inc only works if

S> T+ Ojye-
(a) Without register (b) With register
X y X y z
—> Inc —» —> Inc —
clk

Figura 2.13: Different increment process implementations
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iTll (
out . : g
in, Adder —» ty T : 4
out {7  +
I 0 T (9] max(ty,72) +p ¢

=T tp

Figura 2.16: Adder process behavior

clk _1 | [ \ .
a)x —_ 3 F—e —
by ——{ & —

)z &+

0 T T+p c 2

Figura 2.14: Channels interacting with INC

Let us suppose the result of Incis fed to another process that needs almost all stable
period s to complete its computation: in this case, perhaps the duration in which the
Inc’s result is stable, ¢ — (7 + 9;,,), may be too short. The use of a register, as shown in
Fig. 2.13b, solves this problem by delaying the result to the next cycle, when it is ready
right at the beginning (Fig. 2.14). A register is a process with input typed AT

H
and output T *---, for any 7 <s.

Example 2.8 (Sequential Multiplier). It is also possible to model machines that
take more than one cycle to compute. While the Adder process seen in Example 4
is a combinational process that computes in one cycle, a Multiplier (Fig. 2.15), is an
example of a process that might take more than one cycle to compute dependent on the
. . . .. . — 5. - S
implementation. Its inputs are similar to the adder ones, with Int? instead of Int%,
but the output takes 8 cycles to complete. At the 8th cycle, the Multiplier outputs the

result after o, unit of time.

ing 191 Ints011
—>

in,: 2T nt5021 Multiplier
4>

out: e’ OxIntS0x1

Figura 2.15: Multiplier modeled with TSTs

Example 2.9 (Looping Processes - Sum). The Sum process takes a value as input every
cycle and feeds it to an Adder. The result is stored in a register and fed back to the Adder
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next cycle. Since the register is initially set to 0, an input sequence 1,2,3,4,5 would
produce a result sequence 1,3, 6,10,15. To model the repetitive behavior of Adder with
the type system, we define an infinite type loop using the recursive y operator, denoted
by an overline S = px.Sx =S585S---, which means once S ends, it starts again.

According to Fig.2.17, x; is typed I_nt)s‘k, because the correct value only becomes

—
stable after k units of time, x, is typed Int?, ready at every start of cycle because it

comes from a register (and starts already with 0), z is typed +k P Infs~(k+3.) where Oy

— —
is the process time of Adder, and out is typed +° Int s (instead of Int*, because the first

value equal to 0 shall not be considered part of the result).

b

_—1> clk _j L_j l_—j
Y out

X5 Inc [ > Xy — 0 I 5 Y

> Ik xy, —( 5 {5

y “ 5 ,‘ { 13 >—

out { 5 {

Sum

Figura 2.17: Sum process behavior

Example 2.10 (Arithmetic Logic Unit (ALU) implementation using choice and pa-
rallel operators). An ALU generally performs many different operations, depending
on the value of a control signal. In this example, the ALU performs addition, multiplica-
tion, and nop (no operation). For generality, the operations have different computation
timings and, therefore, temporal types: the addition result gets ready within the same

cycle, while multiplication requires eight cycles to compute (Figs. 2.18 and 2.19).

choice

—p© ALU

Figura 2.18: ALU channel signal decomposition
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ck LT 1 | | [ I N

choice — add | 0P ( p .
v —{5 S
x, —(1 ) ———
X3 S S S ——r

0 ki ky ko+p ¢ 2c 2c+k 3¢ 10c 11c

Figura 2.19: ALU process behavior

The input and output TSTs for ALU are defined by

SaLu = P‘X-g{

add - (.k1 sk 1)® (_k2<l_ms—k21 ) ® (_max(klkz) A ms—(max(kl,k2)+a+)x)
mul : (-klﬁs—kl1)@(-"2(ﬁ5—"21)®(-85ﬁsx)

nop : +°X
)

The Ssry type represents the protocol for correct interaction with the ALU. Any
process that wants to communicate with the ALU needs to interact with this channel
according to its type, or else correct communication is not possible.

The protocol starts with a recursion (uX.---), so that every time the type variable
X is reached it goes back to the beginning. The protocol also uses an external choice
((5) that defines which operation the ALU must execute, and parallel channels (®), used
separately to receive/send data in parallel.

In the case of an add operation, 3 channels must be provided: the first 2 are input
channels, in which a process must provide 2 integers with possibly different arrival
times (k; and k,), while the third one is the output channel, in which the result is re-
turned after max(ky, ky)+0, time units. Note that the first two channels end with 1 while
the third channel ends with X, which means the third channel continues the protocol.
The mul operation works similarly, because it also uses 3 channels, 2 for input and 1
for output, but the result is only ready after 8 cycles. While the computation occurs,
the ALU protocol ignores inputs (this is the meaning of «) and, after 8 cycles, the ALU
outputs the result. If one choses the nop (no operation), the ALU becomes idle for one
cycle. After the ALU computes, is goes back to its initial state, and the protocol never

actually ends.
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2.2 Type Merge

Sharing wires/channels among more than two components is a basic design pattern in
hardware design that needs to be represented within our temporal session types. TSTs
achieve sharing using the type merge, a simple operation on TSTs used to verify and
analyse connected channels.

When a channel ¢ : S (notation for “channel c has type S”) splits into n subchannels
c1:51,62:8y,...,¢,: S, (Fig. 2.20) we say the split is well defined if S; xS, x...x S, =S,
where x is the binary merge operation, which either returns a TST or is undefined.
When the merging of two session types is undefined, we say that the two types are not
mergeable, meaning they are not compatible with each other to provide correct channel

behavior. We use “c split into cy,---c,,” and “cy,--- ¢, merged into ¢” interchangeably.

c1:1h

c: T

Figura 2.20: Channel splitting/merging

The formal definition of merge is shown in Definition 2. Informally, the merge is
well defined if there are no simultaneous writes among the channels (no collisions),
and every time there is a write, at least one of the channels reads the information (no
discarding of useful data). Writes and reads are represented by the types Int®--- and
Tnt7--- and the choice operators (é)x and @,). Furthermore, the parallel operator ®

requires all endpoints to spawn subchannels, and the end type 1 is mergeable with any
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other channel because 1 xT =T forall T.

Definition 2 (Type Merge) The type merge operation, denoted X, is an partial
function that takes two TSTs as input and outputs another TST. Is is defined by

(T*S1)x (T*S,y) = TH(S; x S) (Multiple reads)
(T*81) x (£85) = TX(S, x S,) (One read)
(£51) x (T¥8) = TH(51x 55)

(Tksl)x(-ksz):?k(sl X S5) (One write)
(*51)x (T*s5) = TH(S, xS,)

(?ksl) X (?ksz) = ?k(Sl X Sy) (Cross read/write)
(T*$1)x (T*$) = TH(S1 x 52)

(S118+512) X (S21® S22) = (S11 X $21) B (S12% S22)  (Multiple choice reads)
(811@),{512) xSy = (8511 X Sz)E_B)x(Slz X S5) (Omne choice read)
§1 % (5210 x522) = (81 % 521)6_9)x(51 X 572)

(S11®,S12) xSy = (511 X 52)(5,((512 X Sy) (One choice write)
S1%(S21 ®522) = (S1 % $21) ®+(S1 X S12)

(SH%XSQ) X (821@))(522) = (Sll X 521)(536(512 X 522) (CTOSS ChOiCe read/write)
(S11 8 xS12) X (S21 ®,522) = (S11 % S21) B 1(S12 X S22)

(S11®512) X (521 ® S22) = (511 % 521) ® (S12 % S22) (Parallel)
(px.S1) xSy = Sq [x/px.51]1% S, (Recursion)
S1 % (4x.S3) = Sy X Sy [x/px.S,]

(£81) % (£85) = K(81 x S) (Idle)
1xS=S (End of channel)

Sx1=S

S x S’ =undefined otherwise

Now we show some examples of channel merging.

Example 2.11 (Channel Merging). Channel c is provided by process Q and used by
process P, consisting of 2 parallel processes, P; and P, both with access to c (Fig. 2.21).
For processes Q and P, channel c is typed T, while for P, and P, c is typed T; and 7.
If T, x T, = T, the composition is well-typed, otherwise, it is incorrect.
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C]ZTl

C2!T2

Figura 2.21: Channel splitting/merging

clk
il — read Int )| write Int }
[1) T, — read Int X read Int X write Int —
b e — read Int ) write Int —
) T, — read Int ) write Int — ill—typed
Ty (choice) — write “read” Y write “write”
Ty (data) — read Int — write Int —
C) Ty (choice) — read “read” X read “write” —

Ty(data) ——{___readlnt )

Figura 2.22: Examples of merge

Case I (Correct merging). Say T; = Int5Tnt>+51 and T, = Int>Tnt3Tnt51 (Fig. 2.22a).
* From 0 to 5: P, and P, read an Int from channel
» From 5 to 10: P, writes an Int and P, reads it
e From 10 to 15: P, does not interact with c, while P, writes an Int to it

In this case, Ty x T, is well defined because all the 3 moments describe well-behaved si-

tuations. Simultaneous reads are allowed, simultaneous read and write are allowed and

write/read while the other process does not interact with the channel is also allowed. If T
. e . —)5<—5(—5 .

satisfies the constraint T = Ty x T, = Int > Int> Int>1, the system is well-typed.

Case II (Conflicting merge). Say T} = Int5Tnt>1 and T, = Int5Tnt>1 (Fig. 2.22b).
e From 0 to 5: P, and P, read an Int from channel

e From 5to 10: P; and P, write an Int in ¢

21



In this case, Ty and T, cannot be merged because from 5 to 10, both write at the same time,
which is a violation of correct channel behavior. Ty x T, = undefined and the system is not

well-typed regardless of the value of T.

Case III (Choice merge). Say T; = ®(read : +! Int 41, write : 1 Tnt 41), meaning P, decides
(internal choice, coming from Py itself) whether it reads or writes a value. The 1 unit time
delay is for the processes involved to compute the choice. What could be a type T, so that
both types are mergeable? (Fig. 2.22c).

In this case, it suffices P, to read the decision made by P, and act accordingly. A possible
definition of T, could be gc{read sl ﬁ‘*l,write : 21}, that is, P, reads the choice made by
P, (external choice) and acts so that each branch is independently mergeable. In this case,
T=T,xT, = ®Jread : +! Tnt 41, write - -1(m41}, which means that Q also needs to read
P,’s choice, as if it is P’s choice.

P, does not necessarily need to read the choice if T, suits all the possible branches: for
instance, T, = +>1 would satisfy both read and write cases. Also, if the choice were given by

Q instead of Py, both Ty and T, could read the choice simultaneously.

In summary, the merge operation allows us to verify and analyse the sharing of
channels before any testing or simulation. It is a crucial part of h-calculus since it
enables sharing to be encoded seamlessly within the type rules as we will see in Section
4.

2.3 Untyped Processes

So, we understand that types describe/model hardware component properties, but we
still do not know how to define custom components from simpler ones. In this section
we will explain how untyped temporal processes are built and how they evolve through
time (their semantics).

Definition 3 (Untyped Process Syntax)

X,9,X1,X, := Channel/Protocol variable
r ::= Resource variable
T ::= Temporal (real) value
k,{ ::= Choice variable
a ::= Constant value

L ::= Label
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f ©:= Function
P,Q ::= Main(P) (Main process definition)
| Xy (Channel forwarding)
| x<P;Q (Forking/Cut)
| x —r<{X;A};Q (Instance Usage)
| tickT;P (Tick)
| clock;P (Clock)
| x —puty;P | y<—getx;P (Sending/Receiving messages)
| x.k;P | casexof {€ = Q}per (Internal/External Choice)
| P ” Q | (x1,x) «x;P (Parallelism/Channel separation)
| (x — (xl,xz)).(P “ Q) (Parallelism with internal channels)
| L:P (Recursion - Label Loop)
| endx (End of Process)
| Sig(t,x < a) (Signal Process)
| Comb(f, T,y « (x1,%2,-++,%,)) (Combinational Process)
| Reg(y « x) (Register Process)

While the grammar is a syntactic description of untyped processes, their semantics
describes their meaning. Their operational semantics is defined using the partial func-
tion >, which relates the current state of the system to its next state, representing
how processes evolve with time. We will discuss the complete, formal, definition of

the semantics in Section 4.

2.4 Processes Types

Channel types, as the name suggests, describes how channels behave. However, hard-
ware components interact with many channels simultaneously, which is why their ty-
pes are more complex. The mathematical construct that describes the behavior of pro-
cesses, and therefore the process type is a type sequent.

After the type checking phase, every well-typed process P is attributed a type sequent

that tells us the type of P, which includes the types of its channels and resources.

Definition 4 (Process Sequent) A sequent has the form
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;A i; P:(x:A),

where ¥ is a resource context containing all resources P must have access to in
order to function correctly, A is a channel context with the channels P interacts
with, and x : A is the channel provided by P (note that every process has only
one provided channel). ¢, s, k, and t are numbers representing the clock period,
the useful cycle duration, the current clock cycle count, and the current instant
(from O to s), respectively. Two graphical representations for the sequent, one

more complete (a) and another more simplified (b), are shown in Fig. 2.23.

x: A P

A x: A
: 1

(b) Simplified

| clk

(a) Complete

Figura 2.23: Graphical representations of a well-typed process

A channel context A =c¢; : S,-++,¢, : S, is a set of channel typing judgements while
the resource context ¥ = r{ : Ry,---,1, : R, is a set of resource typing judgements.
Resource types are different from channel types as we are going to see.

When a process P with sequent ¥;A Iccst P :: (x : A) is instantiated, or used, by a
parent process, the parent needs to provide all of the resources in ¥ and channels in
A, which means the parent process contains at least the entire ¥ and A within its own
channel and resource contexts respectively. The consequence of this is that the highest
level process, the one that defines the entire system, will have inside its contexts all
channels and resources of the entire system, along with their informative types, which

is very useful for analysis and optimization.

24



2.5 Processes as resources

The definition of a process and its sequent provides us with insights on how a process
operates internally, what is required for it to compute properly and what kind of in-
formation its channels carry. However, it does not tell us how processes are used, as
resources, by other higher-level processes.

A process definition is a template from which process instances are created. Multiple
different instances (sometimes even running in parallel) are linked to the same process
definition. For higher-level processes, an instance of process is a resource, an object that
can be used and shared by other processes.

Every well-typed process definition ¥;A fct P :: (x : A) has a resource context ¥,
which is the set of all resources required for the process to compute correctly. Each
one of the objects r: R in ¥ has, along with its name r, a resource type R which tells us

how the higher-level process P interacts with r.

Definition 5 (Resource Types) Resource types are triples (Xeyt; Aext; Aext), Where
Yext and Agy¢ are resource and channel context that must be provided for the

resource to compute correctly, and A, is a temporal session type.

Not coincidentally, a resource type contains the same three objects represented in a
typed process definition. Process definitions can be interpreted as resources used only
once, and resources can be interpreted as process definitions used generally more than
once.

Although process definitions and resource types carry the same kind of informa-
tion, resource types generally carry more information. The difference is that Yo, Aext
and A, are temporally extended versions of ¥, A and A respectively, containing in-
formation about many executions, instead of just one — which is formally defined by
Def. 6. While ;A ];Ct P :: (x : A) models one full computation from start to finish,
P (Zexts Dexts (Xext © Aext)) models what happens before, during and after full com-
putations, until p stops being used by the parent process. Another way of looking
at it is that resource types model the idle time and computation time, while process
definitions only model computation time.

Resource types and process definitions consisting of similar parts is convenient, as
they can be interpreted interchangeably. For example, a process X; A Iscct P:(x:A)can
be seen as a resource typed (X;A;(x : A)) that is used only once and a resource typed
(Zext; Aexts (Xext : Aext)) can be interpreted as a process Yeyxt; Aext l_:ct P’ it (Xext & Aext)

with longer computation (as if idle time is considered computation time). This allows
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instance types to be extended more than once, which is a simple way to model the way

instances are used by processes higher and higher in the hierarchy.

Example 2.12 (Resource Type). (Fig. 2.24) Consider that process P uses resource r
three times per execution and process Q uses an instance of P two times per execution.
Both P and Q contain r within their resource contexts, but with different types: in P,
r has the resource type of being used 3 times, while in Q it has a more detailed type
representing six uses, because it is extended even further. This way, the use of r can be
traced to the highest-level process, which contains all of the system’s resources, along
information on how each one is used over time (very useful information for global

hardware analysis and optimization).

P using r N {@—--
Qusingp ) — () -
Q using r  IIN)—{T) Em—E—

Figura 2.24: Example of resource type extension

Definition 6 (Resource Type Extension) A resource p : (X,;4,;(x, : A,)) mo-
dels a process ;A ];Ct P (x : A) if and only if ext((X;4;A)),(X,4,54,))
holds, meaning the usage of p does not contradict the type of P.

ext and its auxiliary definitions exty, exty, and ext. are defined as
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eext((Xp;Ap4,), (X5A5A4,) & exty(X,,X,)and extp(Ay, A,) and ext (A, A))
eexty (X, X,) &= Yp.(if (p: (E;A1A1)) €Xpand (p: (22;45;A,)) € X, then
exty(X1,X;) and exta(Aq,A;) and ext (A1, Ay))
eexta(Ap, Ar) & Ve (if (x: Aj) € Ay and (x: Ay) €A, thenext (A, A)))
eext.(p,r) & case (p,r) of
(A-1,A-B) > ext.(A-1,B)
(A,*"B) — ext.(A,B)
(A, px.B) — ext (A, B[x/ux.B])
(A, G elBe)er) — YE € L(ext(4, By))
(€ clAddcer, ® clBrleer) — V€ € Lexto(Ag, Be))
(A1 ® Ay, B; ® By) — ext (A, B;) and ext (A,, By)
(A,1) > true
otherwise — false

where (§)C matches both gc and gc.

Example 2.13 (Examples of resource types). Let us say that the process Q is types as

—

—x: A® IIZ—gQ:: (y:-5-5§)51)

qly] ———{F +—+—{7F }-

0 5 2s 3s 4s 55 65 8s 10s

Figura 2.25: Example waveforms (a) Case IV (b) Case V

Case IV (Infinite usage (Fig. 2.25a)). Possible correct types for extended x and y and an

instance q could be (where ux.T is the recursive, or loop, operator)

.x:Z)S'S’SZ)S°S'SZ)S'S°SXS°S'S”':IIL.(Z)S'S°SL)
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y:.s.sfs.s.sfs.s.sfs.s.sgs.n :’UL.('S‘SE)SL)

q: (‘;x (LA 5 5L)p L (4 -SE)SL))

Case V (Conditional usage (Fig. 2.25b)). Another possibility including a choice (external
or internal) ¢ (with the branches written vertically for better visualization) could be

A®L, dfcisT < «*B°L, ifcisT
x:uL. @, V:ul. @,
SL, ifcisF SL, ifcisF

With resulting resource type

4+ (=% LA D) @ (L) k(< L) @ (1))

Bear in mind that if the choice ¢ were not the same for x and y or if one of the clauses

were flipped (T case with answer for F and vice versa), the system would not be well typed.

2.6 Resource Sharing

If P has access to channel ¢ : S and spawns two children processes in parallel P, and P,,
we saw in Section 2.2 that both would have access to ¢, but with different types S; and
S, such that S; xS, = S. A very similar thing happens with resources: if P has access
to resource r: R, both P; and P, will have access to it, but with different resource types
R; and R, such that R; x R, = R, where the operator x denotes, in this case, resource
type merge. The formal definition of resource merging involves channel type, channel

context, and resource context merging (Definition 7).

Definition 7 (Resource Merge)

(X5ALAN)X(E5A0,A5) = (X1 x XA x Ag; Ay X Ap)
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Definition 8 (Channel context merge)

(c:S1,A1)%(c:S5,Ay)=c:51 xSy, (A1 xAy)
(c:S1,A1)xAy=c:S51,(A1 xAy)

A1 x(c:Sy,Ay)=c:8y,(A1 xXAy)

Al x—=A;

—-xAy =A,

Definition 9 (Resource context merge)

(r:R,X1)x(r:Ry,Yp)=1:Ry xRy, (X1 XX5)
(r:R,X1)x X =71:Rq, (X1 xXX5)

Y1 X(r:Ry,X5)=1:Ry, (X1 XX,)

Yix—=%

—-x¥, =3,

Merging of resources (and channels) is used to define correct resource sharing
among processes. Fig. 2.26 depicts what sharing a resource looks like: resource 7,
contained in both ¥; and ¥,, has its input channels A" (in this case only 2 channels)
split into A} and AJ, such that A} x A} = A" (context channel merge) and its resulting
channel x" : A" split into x; : A] and x; : A}, such that A} x A}, = A” (channel merge).
The resource requirements ¥” are similarly provided by both P, and P,, split into ¥}
and X%, such that ¥] x X} = X' (resource context merge).

This definition of resource merge enables very expressive modeling of correct re-
source sharing among parallel processes. It allows processes to interact "incomple-
tely"with resources, not providing all resource and channel requirements, as long as
other processes complete the interaction using their channels and resources. Using
resource merge, we can correctly share all kinds of resources, including processes with

endless execution, registers, and combinational processes.

Example 2.14 (Shared SUM process). The SUM process receives a number input each
cycle and adds it to an accumulator, whose value is also the output of the next cycle.

Since the initial value of the accumulator is 0, a sequence of inputs 1,2,3,4,5 would
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Figura 2.26: Graphical explanation of a resource sharing
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produce a sequence -, 1,3,6,10, 15 of results. A possible type for SUM is

—\k -
(Add:---);(x: ms) S,S SUM :: (z:fﬁs).

In this example, the SUM process is shared (correctly) among processes P and Q (Fig.

2.27). For P, the resource sumof SUM has type
p——— pum—
sum : ((Add : ---);(x: Ints-s);(z 28 Int )),

that is, P sends a number to sum every 2 cycles instead of every cycle, which is less
than required by SUM for it to compute correctly. This is an example of incomplete, or
partial, instantiation of process.

While only P does not completely satisfy SUM, the interactions of P combined with
the interactions of Q do. For Q, sum has type

sum:((Add:---);(x:ﬁ);(z:-sﬁ)),

meaning Q sends a number to sum every cycle P does not, therefore completely sa-
tisfying the requirements of SUM.

Even though P and Q do not provide the complete requirements of SUM separately,
both can interact with the resulting channel z completely, as if they had provided all
the requirements (for example, if P provided all the input channels and resources
while Q did not provide anything, Q would still be able to read z thoroughly).

Both P and Q do not "know"that sum is shared. If only one of them interacted
with it, instead of both, the system would not type-check. The reason their combined
interactions do type check is because the types of sumin P and Q merged is a correct

instance of the process type of SUM:

x((Add:---);(x:-sﬁ)s);(z:ﬁﬁs))

:((Add:-“);(x: Ints);(z:-slnts))




p SUM Q

Figura 2.27: Sharing SUM process example

Example 2.15 (Sharing registers). An ALU process is capable of executing three ope-
rations, increment (plus 1), negate (multiply by —1) and forward (forwarding the input
to the output). Each operation is performed by a different resource within the ALU, as
shown in Fig. 2.28a. The INC and NEG resources have a similar layout composed of a
combinational part (C;;,. and C,,.,) followed by a register (R, and R,,g), the FWD also
has a register, but it does not have a combinational part.

The type of the ALU is (using the vertical notation of @)

inc: " I—n_t>5‘TL, inc: < I—n_t>5L,
Yawle: yL.é)C neg: " E?S—TL, ];S ALU: | d: yL.@C neg : + 171_t)SL,
fwd : TInt>"L fwd : STntsL
where ¥,;, contains, among other things, the resources INC, NEG and FWD, each typed
inc: -TWS‘TL, inc: msL,
Cinc ' *»Rinc: sl inine: yL.E_B)C neg: <L, Sfc INC:: | outine: yL.@C neg:+°L, ,
fwd: L fwd: L
inc: L, inc: L,
Cheg """ 'Rneg 1 *+* 3| ineg : yL.@c neg: " mS—TL, Sfc NEG :: [ 0tutpeg yL.@C neg: -+ WSL, , and
fwd: <L fwd: L
inc: L, inc: L,
Rewd - 5| iflfug ptL.é)c neg: <L, s,tc FWD :: | oute,qg : yL.@C neg: <L,
fwd < Tnt*~L, fwd : S TntsL

All of these resources read the choice ¢, which is the input of ALU, and then either
compute if the choice was the right one or stay idle (represented by +*).

More importantly, we know, from the types, that when one of the resources (INC,
NEG or FWD) is being used, the other ones are idle, which means there may be potential
for resource sharing. INC, NEG or FWD use a register resource (Reg;nc, Regneg and Rege,q),

provided by the ALU process. Below are the types of the three registers inside ¥,

32



inc:<™P ms_(”p)L, inc: e msL,
Reginc i | —|a: yL.@C neg:+°L, ;b yL.@)C neg:+°L,

fwd : L fwd : SL

inc: <L, inc: L,
Regeq 1| —5| 4 [JL.@)C neg:«"*P ﬁs‘(”P)L, ;1 ,uL.é)C neg: WSL,

fwd : L fwd : L

inc: L, inc: L,
Regryag i |—|a: ,ML-@C neg:+°L, AR yL.é)C neg: <L,

fwd : P Tnts—(t+p)L fwd : TntsL

These types show that when one register is used, the other 2 are not, which means
that sharing can take place correctly. Now that we know Regs can be shared, we sligh-
tly transform our ALU process, defining only one register named Reggp,cq, instead of
three, with type equals to the types of Regj,., Regneg and Rege,q merged and using it to
instantiate all INC, NEG and FWD resources. Reggpareq is @ busy register that works every

cycle. Fig. 2.28b shows the optimized version of the circuit.

inc:ttP IWH“WL, inc: < msL,
Reg.nared : | =l a: yL.é)C neg : «v+P ﬁs—(wp)L’ b l’tL'é)c neg : + I—nt>5L,
fwd : TP Tnf s (P)L fwd: STntsL

2.7 Type rules and Properties

We know that every well-typed process has a type definition ¥; A I;Ct P:(x:A) but we
still do not know how to construct it. Every well-typed process P is built according to
type rules.

We explain type rules in the next Chapter 3, and the specific rules of the h-calculus
are explained in Chapter 4.

For now, it suffices to say type rules and semantic rules are harmoniously related
to each other in a way that type preservation and global progress hold. These properties
ensure the type system is valuable and safe to use as a metric for correctness.

Next Chapter 3 will summarize all of the background knowledge required to un-

derstand the h-calculus, including type systems.
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(a) Unoptimized (without sharing) (b) Optimized (with sharing)

Control Control
ALU ALU
INC INC
Cinc I Cinc
NEG NEG
™ d d
c
() Cneg I J‘_ () Cneg I
FWD FWD

Figura 2.28: Graphical representation of the ALU process
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Capitulo 3

Background

In this chapter, we will introduce type systems and explain the advantages of using
them in the context of hardware systems. Furthermore, we will understand process
calculi and other models of computation used for hardware modeling and compare
them to the h-calculus.

To understand the usefulness of type systems, we will first use the Untyped Lambda

Calculus (ULC), an untyped computational system, as a driving example.

3.1 Type Systems and the Lambda-Calculus

3.1.1 Untyped Lambda Calculus

The A-calculus is a universal model of computation invented by Alonzo Church in the
1930s used to research the foundations of mathematics. It is attractive for formal rea-
soning because of its simple definitions and semantics, but it is also used in practical

programming, as proven by multiple functional programming languages based on it.
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The ULC grammar comprises variables, application, abstraction, and reduction ru-
les T-conversion, for avoiding naming collisions, and S-reduction, representing com-

putation.

Definition 10 (ULC syntax)

M,N := x (Variables)
| ¢ (Constant)
| Ax.M (Abstraction/Function)
| MN (Application)

Definition 11 (ULC reduction) Considering M [x] a term M containing a variable
x in its body, and M [a/x] the same term M with all instances of x replaced by a.
(Ax.M [x]) N (Ay.M[y]) (a-conversion)

(Ax.M)a - M [a/x] (B-reduction)

with a either a variable or constant

Allowing integer constants (---,—1,0,1,2,---), boolean constants (true, false) and
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some operations such as + and x, it is straightforward to write all sorts of useful func-
tions using the ULC:

Example 3.1 (ULC examples).

a) (Ax.Ay.x+y)5)4 Applying an adder to two arguments
L (544
i) 5+4=9
b) (Ax.x +5)true i) error? Applying wrong type to function
c) (Ax.xx)(Ax.xx) Unsolvable term

i) (xx) [x/(Ax.xx)]

subst (Ax.xx)(Ax.xx)

P
—_— e

Although very expressive, the A-calculus enables the construction of unwanted
terms. For instance, there is no mechanism preventing the construction of terms
such as (Ax.x + 5)true (1b), that would result in undefined behavior; and terms like
(Ax.xx)(Ax.xx) (1c), that do not terminate. In summary, no mechanism enforces a no-

tion of correctness.

3.1.2 Simply Typed Lambda Calculus

The introduction of a type system solves this issue using a set of construction rules
called typing rules. Valid terms are constructed through typing rules, while invalid
terms cannot be derived from them. Of course, the definition of valid term depends on
the specific type system.

A type scheme that restricts the construction of 1b and 1c terms is the Simply Typed
Lambda Calculus (STLC). The STLC uses a simple type grammar (Def. 12) and only
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changes the ULC syntax by adding a type to variables.

Definition 12 (STLC syntax) The set of STLC types t and terms M, N are given
by

Ti=A| 1o

M,N == x (Variables)
| Ax:t.M (Abstraction/Function)
| MN (Application)

where A is a built in type — such as Int or Bool — and 7 — t is called a function

type.

Type sequents are objects that tell us the type of a term, given a context type I'.

Definition 13 (STLC Sequent) The STLC sequent types follow the structure
r I— M:t

where ' = x; : 7,x,: 7p,--+, X, : T, is a context — a multiset containing judgements
of form x; : t;, where x; are variable terms and t; are types. Type sequents can be

read as "M is typed 7 given the context I'".

Typing rules are the construction rules that allow the building of complex sequents

from simpler ones. Typing rules follow the structure

Premisey,Premise,,---,Premise,

- Rule Identifier
Conclusion

where a rule may have more than one antecedent but only one result. If all antece-
dents are valid (i.e., they can be constructed through type rules), the type rule can be
applied. Antecedents and results are, in most cases, type sequents (from Def. 13), but

they may also be other judgements.

Definition 14 (STLC typing rules) The set of STLC’s typing rules (with  and o
being types):

\
F,x:TI—x:T o
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nez Cte(Int)
— Cte(In
FI—n:Int

FI—x:Int FI—y:Int
I‘I—x+y:Int

Add

F,x:rl—y:a
I‘I—()\(x:r).y):”c—>o~

Abs

Rule Var states that if we know x : T from the context, then we can conclude, trivi-
ally, that x : . Rule Cte(Int) gives the type Int to any integer constant (as long as it
really s an integer) and Add implements type safe addition on integers.

Rule Abs types abstractions by constructing the functional type © — o, that repre-
sents a function that takes an 7 as input and outputs a o, as long as the variable is
typed 7 and the body of the function is typed o. The App rule enforces functions typed
T — o to only be applied if the input term is typed 7, typing the application ¢ as result.

The power of type rules rely on derivation trees. Derivation trees allow more com-

plex terms to be derived from the simpler rules.

Example 3.2 (Derivation tree for STLC). The derivation tree

Var ——Cte(Int)
x:IntI—x:Int I—S:Int dd
A
x:IntI—(5+x):Int
Abs —Cte(Int)
I—(/\x:Int.5+x):Int—>Int |—4:Int
App

I— (Ax:Int.5+x)4:Int

proves that (Ax.5 + x)4 is of type Int, independently of the context.
3.1.3 Discussion on Type Systems

Type systems bring correctness in exchange for expressiveness. The STLC (without
recursive types) is less expressive than the ULC. In the case of STLC, although its type
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system prevents unwanted terms (such as for example 1b and 1c¢) from being valid, it
comes with the cost of considering some wanted terms invalid.

For example, an identity function Ax : 7.x, that outputs its own input, is not par-
ticularly problematic as examples 1b and 1c. To be typed within the STLC, however,
the type T must be specified before an application. For example, if we set 7 as Int, the
identity function (Ax : Int.x) will accept Ints but will not accept Booleans although,
semantically, there would be no issues with the function. For the identity function to
work on any type, the type-system needs to allow type polymorphism.

Since type systems trade expressiveness for correctness, it is responsibility of the
type system designer to choose how much and what kind of expressiveness they want
to trade for correctness, and to define what does "correct"mean in the context of the
target application.

For instance, if a polymorphic function like Ax.x is important for the application,
one could use a System F [12] type system instead of STLC, if types need to be more
expressive to describe types such as a vector of length 5 (Vector 5) or a 3-by-3 matrix
(Matrix 3 3) (or types even more complex), a dependent type system could be used [13].
Each type system comes with its own expressiveness/correctness ratios, differences
and tradeoffs, which is why there are so many different type systems for the A-calculus

alone.

3.2 Hardware Models of Computation

When it comes to models of computation used in current HLS, a critique is that they are
easy to construct but hard to verify and analyze. For most of the models, verification
is challenging, and analysis is overlooked. In this sense, it becomes clear that a type
system specially crafted for hardware design is a promising approach to solving many
of the problems related to HLS.

A more detailed analysis of hardware models of computation will be provided in
Chapter 6. In this chapter, we will only briefly characterize the general trends among
models.

HLS is very commonly built around Dataflow models [5, 6, 7, 8, 9, 4, 10, 1, 2, 3,
4]. The Dataflow model [11] is a graphical-based concurrent model of computation.
While expressive, Dataflow are generally difficult to verify and analyse, which is why
different kinds of Dataflow introduce rules to make it more verifiable and analyzable,
at expense of expressiveness, similar to the relationship between untyped and typed

lambda calculi.
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Although some Dataflow models — such as Boolean Parametric Dataflow (BPDF)
[14], Scenario-Aware Dataflow (SADF) [15, 16], Schedulable Parametric Dataflow (SPDF)
[17], and Variable-Rate Dataflow (VRDF) [18] — seriously attempt to solve the verifi-
cation and analysis problem Control Dataflow Graphs [19], the most commonly used
model in HLS, do not provide reliable mechanisms of both verification and analysis.
As stated in the Chapter 1, we conjecture this is part of the reason why HLS has diffi-
culty producing efficient results.

That being said, even the Dataflow models that solve verification and analysis have
its caveats. From being a graph-based model, dataflow verification is computationally
expensive for large systems and analysis is not as rich as we would want for hardware
design space exploration. In face of these limitations, hardware-specific type systems
still seem like a good idea.

Even if type systems seem to fit hardware design well, A-calculi do not. The pro-
blem with A-calculi is that they do not natively model concepts such as time, expli-
cit parallelism, concurrency, communication, resource usage, channels, and others,
crucial for efficient hardware modeling. Although it is possible to describe hardware
with abstractions and applications, the long distance between functions and hardware

would ultimately lead to inefficient modeling.

3.3 Session Types and Process Calculi

Among all candidate hardware representations, Session Typed Process Calculi stand out
because they apply type system solutions to the context of concurrent processes.

The basic idea behind Session Types (ST) is to model concurrent processes using ty-
pes, similar to how functional types are used, in Section 3.1, to model functions. They
were first introduced in [20], to model the interaction between two communicating
processes. Since then, as research evolved, different implementations were defined for
different purposes, extending the original idea and expanding the use cases.

During the same time Session Types started to be researched, another research topic
was the computational interpretation of linear logic [21, 22]. Notably, [23] described
an isomorphism — a correspondence between linear logic and session types —, that
connected both theories.

The particular ST implementation resulting from this particular isomorphism is
exceptionally concise and expressive, using Intuitionistic Linear Logic (ILL) operators

in a computational (e.g., ®, @, &, —, and 1), instead of proof-theoretical, setting.
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Now we will describe basic session types as described in [24, 25, 26] (Def. 15).

Definition 15 (Basic Session Types) The set of Session Types A, B, A; is given by

ABA; :=A®B | A—-B | ®{A;} | &{A;} | 1.

In this computational interpretation of linear logic, linear logic operators represent
a communication protocol. The multiplicative operators — the dual operations ® and
—o — represent a higher-order message passing (sending or receiving) or parallel com-
position; the additive connectors — the duo @ and & — represent internal and external
choice respectively; and the multiplicative truth — 1 — is the end of the protocol.

This small syntax, plus recursion, is expressive enough to model complex commu-

nication protocols.

Example 3.3Basic Session Types Usage Examples. Session Type examples from [24,
25, 26]:

Case VI (Sequence of Bits). An infinite sequence of bits could be modeled with internal
choice and recursion
bits = ®@{zero : bits,one : bits,end : 1}

And if sequences are finite, an end choice can be added

bits = @{zero : bits,one : bits,end : 1}

Case VII (List of Integers). We can use a similar pattern to model a list of integers (or any

other datatype):

List = ®{head : Int® List,end : 1}

where the head of the list contains Int® List, meaning a user will receive (®) an integer and

an updated List, with the next values.

Case VIII (Sum Process). Session types can model channels from concurrent processes very
well. For instance, a Sum process adds every input it receives until a getVal signal is

received. The user sends integers using —o and receives the updated Sum as a result.

Sum=@@{add : Int — Sum, getVal : Int}
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Case IX (Stack). We can also express protocols that require bidirectional flow of informa-
tion. A stack, for example, would wait for an external choice (&) to either get or put a value
from memory, but if get is chosen a value may or may not be available, which is modeled

with an internal choice (®).

Stack = &{put : Int —o Stack, get : ®{empty : 1,val : Int @ Stack}}

If put is chosen, a user needs to send (—o) an integer to receive the updated Stack back, if
get is chosen and the stack is not empty, an integer is sent (x) to the user together with the
updated Stack.

3.4 Session Types for Hardware

Although classic STs seem to be closer to hardware designs than A-calculi, they still
lack accurate representations of concepts crucial for efficient hardware modeling, the
most important of them being time.

Many concurrent models of computation model time [27, 28, 29, 30, 31, 32, 33, 34,
35, 24], but few of them combine it with ease of verification and analysis. Further-
more, most concurrent computational models, including STs, focus on distributed sys-
tems, meaning we need to tweak some details to enable accurate modeling of hardware
architectures, which are local systems. For instance, system-wide synchronous time,
resource sharing among components without trust issues, and determinism are noti-
ons that efficient hardware architectures rely on, but are hardly used in distributed
environments.

The h-calculus combines temporal sequences, session types, process calculi, and
synchronous time models to meet all of the requirements for efficient hardware mode-

ling.
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Capitulo 4
Semantics, Type Rules and Properties

In this section, we will show and explain formal definitions related to the h-calculus

more formally. It will include definitions of its semantics, type system, and properties.

4.1 Operational Semantics

Before describing semantics it is important to define process equivalence. Processes
constructed differently (according to 3) may be equivalent at the definition level. This

equivalence definition describes that:

* time is fungible, so two ticks are the same as one longer tick; and that

* between time passage (ticks), the order of the actions do not matter since they

occur, in fact, simultaneously.

Definition 16 (Process Definitional Equivalence) Process definitional equiva-

de de
lence is a relation P Y Q on process terms constructed from Def. 3. P J Q holds

in the following cases:

de . . .
e tick 7y;tick 7y; P’ zf tick (1 +12);Q’ (Time is fungible)
de
if P’ zf Q’
. ,def . ) )
eay;aytick ;P = aj;aq;tick 7;Q (Order between ticks does not matter)

d
if P’ J Q" and (ay,a, # tick t for any t)

d
Stating that P J Q means that P and Q can be used interchangeably, within both

type rules and operational semantic rules — P and Q will have the same type scheme
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and will reduce to the same operational semantic result (more about this later this
chapter). It is also helpful to define an equivalence set that describes all processes that

are equivalent to each other.

Definition 17 (Process Equivalence Set) A equivalence set {P;,P,,---,P,} is a set

d
of processes where for every i and j € [1,n], P, J P;. We refer as "the equivalence
set of P"an equivalence set P(P) in which P € P(P).

The operational semantics describes how the system, composed of multiple concur-
rent components, evolves through time and interacts with the outside environment.
The h-calculus’ operational semantics maps the current state to the next state, where

a configuration represents the state.

Definition 18 (Configuration) A configuration is a structure that describes com-

pletely the state of the hardware system at a given moment. It is defined as

¢ ::= Channel/Protocol variable
r ::= Resource variable
T ::= Real number

P ::= Process term

C := Main(P) (Main process definition)
| Closed{C} (Closed configuration)
| C,env(t,T,7,7) (Environment values)
| C, proc(r | p c) (Resource executing process)
| C,idle(r) (Idle resource)

Configurations model many hardware concepts such as time, clock, resource usage
and sharing, execution of processes, communication through channels, and others.

The semantic object:

* env(c,s, t, k) describes the temporal parameters of the configuration — ¢ for clock
period duration, s for the duration of the stable period, ¢ for the time passed from
the start of the current stable period until the present moment (from 0 to s), and

k representing the number of complete clock periods already elapsed,

» idle(r) represents a component not being used at the current moment
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. proc(r | P | c) describes a component r being executed as process P, providing

channel c as output,
* Main(P) represents the top-level process P, which is how all configurations start

* Closed{C }is a configuration that is closed in the sense that all internal channels
are completely connected and the only channels available externally are, in fact,

the inputs and output of the entire system.

Similar to untyped process syntax, not every configuration has semantic meaning
or is correct (for instance, Closed{ Closed{C } } makes no sense), but this is solved by
the semantic and type rules that will not possibly construct such configurations.

A helper definition is configuration containment (Def. 19), indicating whether a

semantic object is or is not inside a configuration.

Definition 19 (Configuration Containment) We say o € C, where o is a semantic

object, if
* C=C,oforanyC’, or

* C=Closed{C’,0} for any C".

Definition 20 (Operational Semantics) We define the operational semantics as

rewriting rules from configuration to configuration. Every rule has the form
Ant [X¥]— Conseq[x]

, where Ant is a pattern and Conseq is the resulting configuration in case Ant mat-
ches. Both Ant and Conseq are configurations defined using a set of parameters
X.

If the a current configuration C matches Ant [x], then the result of the match
is a binding set of form X := 4, where & are values inside C. The result of the
operational step is then Conseq[a/X], representing the same Conseq but with the

parameters replaced by current values from C.

Since operational semantics based on multiset rewriting rules are well described
by several publications [36], we will focus on the peculiar aspects of the h-calculus
operational semantics. For instance, we allow Ant [ﬂ and Conseq [9?] to be, apart from
all of the semantic objects (idle(r), proc(r | P | c), Main(P) and Closed{C }) that match
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themselves, the especial structure

[Cilviei,n

which is a pattern that matches multiple semantic objects at the same time. This
pattern is crucial for the h-calculus because it allows for semantic rules to model
hardware-like signals sent to more than one process simultaneously.

Furthermore it is important to note that pattern matching is valid up to process
equivalence (Def. 16), meaning if proc(r | P | C) € Ant[¥], then any proc(r | p’ c) with
P’ e P(P) (Def. 17) would match correctly.

Because most of the h-calculus’ semantic rules apply to Closed configurations, we

define the helper notation Closed, (Def. 21) for better visualization. All h-calculus se-

mantic rules are defined in Def. 22

Definition 21 (Closed Step)

Closed

PN Closed{C }— Closed{C’}

Definition 22 (H-Calculus’ Operational Semantic Rules)

(Main) Main(P[X][A][x]),env(T,, T, 0,0)

- Closed{ proc(p | P | ) [idle(7)]y,cx env(T,, T, 0,0) } (fresh p)
(id) C,proc(r’xeylx)% [v/x],idle(r)
(cut) proc(r ’ x <« P;Q | ) Closed proc( | Qla/x] | z),proc(— | Pla/x] | a) (fresh a)

D) proc(r | end x | x) Llosed 4 idle(r)

(@) proc(p | P || P, | X ,[DFOC qi | (xi1,%i2) — 6 Qi | 2
Closed

' ]Vie[l,n]
proc(p1 | Py [ay/x] | al) proc(pz | P [ay/x] | az)

'[P"OC qi | Qilar/xi][ Z ]We[l’n] (fresh py,p;,a1,a;)
(®) proc(p | (x = (x1,%2)). (P || P2) | X);[PFOC(%’ | (xi1,%i2) < % Qi | Zi)]\v’ie[l,n]

o, pFOC(P1 | Py [a1/x1] [ﬂz/xz] | ﬂl);DFOC(Pz | Py (a1 /x1][az/x] | ﬂz)

,[DFOC(%’ | Qi [a1/xi1][a2/xi2] | ‘)]WE (1] (fresh py,ps,a1,a7)
(Loop) proc(r | L: P[L] | x) “=%% proc(r | P[L: P[LI/L] | x)
(—=1) proc(r| x put y;P | x), [oroc(q; | v — get x;Qi |z )] .,

,prOC(ry|Sig(T,y<—W)|y) (t<0)

Closed

— pr‘oc(r | P | x),[proc(qi | Qi [v/vi] | ,proc(ry | Sig(t,y « w) | y)

Zi)]weu,n]
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(—-2) proc( | X < put y; P | ) proc(rx | v, < get x; P, | x)

[proc(q, | v; < get x; Q, zZ; proc(ry | Sig(t,y « w) | y)

Closed

]Vze[l n)
proc( |P| ) proc(rx | P, ' )
[proc(a; | Qily/vil | 2i)],p, o Proclry [ Sig(my < w)| )

(@-1) proc( | x.k; P | [D"OC qi | case x of {{= Qirleer | Zi)]Vie[l,n]

S prc(r | P ) [oroe(s: | Qi | )],

(®-2) proc( | x.k; P | ),proc(rx | case x of {{ = Pplset | x)

[proc(qi | case x of {€ = Qj¢lsinL | Zi)]WE[o,n]
M) proc( | P | ) pI’OC(Tx | P | x)'[proc(% | Qik | Zi)]Vie[O,n]
(combx) proc( |Comb (f,d,y < x |y) proc(rx | Sig(t,x < v) | x)

S8, proc(r | sie(r+dy — f(v)]y)

(comb) proc( | Comb(f,d, v < (x1,--+,%y)) | y),proc(rx | Sig(t,x < v) | x)

proc(rl | Sig(ty,x1 <« v1) | xl) ---,proc(rn | Sig(t,,x, < v,) | xn)
M>pr‘oc( |Slg (max(ty,-- Tn)+d,y<—f(v1,---,vn))|y)

(reg) proc( ’ Reg(y « x ’y) proc(rx | Sig(t,x <« v) | x),w(c,s,k,t)
Closed env(c,s, k,t),idle(r)
,proc(— | tick s —1; clock; a < Sig(0,a’ < v); y < a | y)

(inst- 1)idle(p PZ][A][x]) proc( |y<—p<—{fZ}Q[ | 2)
Closed

—— proc p | P[Z/Z][A/A] a/x DFOC( |Q a/y]| )

(inst-2) proc(p | P[E][A][x] | ) proc( |y <—p — {Z;A); Q[y] | z)
Llosed, proc p | P[): X 2/2”A X A/A] [a/x ) proc( | Qla/y] | z)

(tick) [P"OC i | tick T; P |x 1d1e ]VZE [1,m]

,env(c,s,k,t)

]Vz [L1)’ [
[proc( | Slg(ds x; vl 1

]Vze[l n]’

Closed [1d1e

[proc plP |x lr ]Vlelm]

,env(c,s, k,t+ 1)

]v (L1’
[proc |Slg(d5—rx <—levZ |x

(clock) [proc P | clock; P; |x )

]Vze[l n

idle(r ir)]v:'e[l,m]

,env(c,s,k,s)

]v RN [
[proc | Slg(ds x; — vl T

]Vze [1,n]”
M>[proc( p|P |x )]VZE[” [ dle

,[idle ]Vl ,env(c,s, k+1,0)

()]
’i Vie[l,m]

(t<0)

(fresh a,a’)

(fresh a)

(fresh a)

4.1.1 Main

(Main) Main(P[X][A][x]),env(T,, T}, 0,0)
- Closed{ proc(p | P | ) [idle(7)]y ey env(T,, T, 0,0) }

(fresh p)
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Every configuration starts with only one Main object, containing the top-level pro-
cess definition, and an env object with the numerical values of the clock. The Main

rule initializes every resource r € ¥ as idle resources.

4.1.2 Id/Forwarding

(id) C,proc(r | X7y | x) Llosed, Cly/x],idle(r)

When a process reaches a forwarding state, it means that it forwards any value from
its input channel (y) to its output channel (x). The process then ends execution and

becomes idle while the rest of the configuration replaces x by v.

4.1.3 Cut/Fork

(cut) proc(r | x < P;Q | z) Llosed, proc(r | Qla/x] | z),proc(— | Pla/x] | a) (fresh a)

The logical Cut rule is interpreted as a parallel fork between two processes. It re-
presents an asymmetrical, or dependent, parallelism because although P and Q run
in parallel P feeds Q all of its results, not being a completely independent process.
Since the process proc(— | Pla/x] | a) runs only once, it does not have a resource name
assigned to it, thus the blank () field.

4.1.4 End of process

) PFOC(r | end x | x) Losed, idle(r)

When a process ends, the channel provided by it terminates and an idle object
replaces the executing proc one. No resource is ever removed from the configuration

in this semantics.
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4.1.5 Parallelism

(®) DFOC(P | (x— (prz))-(Pl I Pz) | X);[IO"OC(% | (xi1,xi2) < % Qi |Zi)]

Yie[l,n]
Closed proc(p1 |P1 [a1/x1][az/x] | al),proc(Pz | Py [ay/xi][az/x;] | az)
,[proc(qi | Qi[ay/xi1][az/xi>] | Zi)]vie[l,n] (fresh prpasdutz)
(&%) proc(P | b || P, | x)’[p'"oc(‘ﬁ | (xi1,%i2) < X, Q; |Zi)]vz'6[1,n]
Closed prOC(p1 |p1 [a1/x] | al),proc(Pz | P, [ay/x] | az)
,[pr‘oc(qi | Qila1/xi1][az/xi2] | Zi)]vz'e[l,n] (fresh py,p),a1,a2)

Rule (®*) matches a parallel composition and all of the processes that are liste-
ning to the parallel channel. After the matching, the rule spawns two independent
processes, each with its output channel.

Rule (®) works the same way, with the difference that the parallel processes are
not entirely independent. The rule allows parallel processes to "rename"their output

channels, meaning they can react to each other’s output.

4.1.6 Recursion (or loop)

(Loop) proc( |L P[L] | )———> proc( |P[L P[L]/L] | x)

Recursion is defined in this calculus using labels that mark a location. Once we
reach a label, the rule replaces it with everything afterward. If P = L : Ay;A,;L, then
Ay; A, will be executed and after that, once L is reached, L will be replaced by A;;A;; L,
and things will be repeated as Aj;A;Aq;---.

4.1.7 Put/Get

(—-1) proc(r | X « put y;P | X),[pI"OC(qZ' | v; < get x; Qi | Zi)]\v’ie[l,n]

,proc(ry|Sig T, «— w) |y) (t<0)
Closed, proc | P | [proc qi | Qi [y/vil | )]v i ,proc(ry | Sig(t,y « w) | y)
(—-2) proc( | X« puty;P|z | ) proc(rx | v, <« get x; P | x)

,[proc(qi | v; « get x; Q; | z,-) proc(ry | Sig(t,y « w) | y) (t<0)

]Vie[l,n]
0%, proc(r| P | 2),proc(r | B | x)

[proc(qi | Qi[v/vil| i) sproc(r, | Sig(t,y —w)|)

]Vie[l,n]
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In both rules, the mechanism is the same. The value being put is transmitted,
through bindings, to every process geting it. Additionally, the value being transmitted
must come from a Signal process that holds it.

Rules (—-1) and (—-2) only differ in that in the first the value being put is the

output channel, while in the second it is an input channel.

4.1.8 Internal/External Choice

(®-1) proc(r | x.k; P | x), [pFOC(qi | case x of {{ = Qjrlrer | Zi)]Vie[l,n]

(Closed procZ(r | p | x)'[p'”oc(qi | Qik I Zi)]ViE[lr”]

(®-2) proc(r | x.k; P | z),proc(rx | case x of { = Pp}yt | x)

,[proc(qi | case x of {€ = Qislpinr | Zi)]\/ie[o,n]

Coeed, proc(r | P|z).proc(r | B |x),[pr0c(q,' | Qi | Z")]Vie[oyn]

The choice operation works similarly to the get/put operations. The internal choice
process sends a message containing the decision through the channel, and the listening

processes react to it by selecting the corresponding continuation process.

4.1.9 Combinational process

(comb) proc(r | Comb(f,d,y « (x1,---,%,)) | y),proc(rx | Sig(t,x < v) | x)

,proc(rl | Sig(ty,x] « v1) | X1 ), ,prOC(Tn | Sig(Ty, X, < vy) | Xn)
Closed, proc(r | Sig(max(ty, -, T,)+d, v « f(vy,---,vy)) | y)
(combx) proc(r | Comb(f,d,y « x) | y),proc(rx | Sig(t,x < v) | x)

S5 proc(r | sig(t+d,y < f) |9)

A combinational process is executed from start to finish within one cycle period. It
is fully defined by a pair (f,d) composed of function f and a maximum process delay d.

Rule (comb) applies function f to the current value v inside the input channel x
and sets the current output y to the result of the application f(v) with correct temporal
delays. The rule also transforms the Comb into a Sig to prohibit multiple uses of the
same combinational process in the same cycle.

The more general (combx) rule does the same thing, but it allows functions with
more than one input, that consumes multiple Signals in one cycle. The rule sets its

delay as the maximum delay among all inputs max(zy,---,7,) plus the process delay d.
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4.1.10 Register/Memory

(reg) proc(r | Reg(y « x) | y),proc(rx | Sig(t,x « v) | x),w(c,s,k,t)

losed
C.iwnv(c,s,k t),idle(r)

,proc(— | tick s—17; clock; a « Sig(0,a’ < v); vy «<—a fresh a,a’
v Y

Registers are a special kind of process that carries values from one cycle to the next.
Operationally it consumes a signal and becomes a proc that will become a another
Signal, carrying the same value, in the next cycle.

Because of the special nature of computing between cycles, the semantics spawns
an auxiliar process whose function is to provide the value signal at the start of the next
cycle. This auxiliar process experiences the clock event and after that becomes a Sig

process using the textitFork/Cut and Channel Forwarding (a < ).

4.1.11 Resource instantiation

(inst-1) idle(p := P[X][A][x]) proc( | y—p <« {Z;ALEQ[y] | z)

LClosed, c(p | P[Z/E][A/A] a/x) | a) proc( | Qla/y] | z) (fresh a)
(inst-2) proc(p | P[E][A][x] | x) proc( |y —p—{ZALQ | z)

Closed, roc(p | P[E X Z/Z] [A X A/A] [a/x] | a),proc(r | Q [a/y] | z) (fresh a)

The semantics of resource instantiation are quite liberal, leaving the correctness
verification for the type system. Rule (inst-1) models models how an idle resource
starts executing and becomes a proc.

The (inst-1) rule, however, allows a process to provide only the channels and
resources the instance needs at the moment (not forever). In other words, processes
can instantiate resources incompletely, as long as the resources it needs at the current
moment are available (the type system verifies this).

Incompletely instantiated resources need to be re-instantiated, which is why the
rule inst-2 exists. It "refuels"the contexts with new information.

Resource sharing is highly permissive in the h-calculus because of these two rules
and resource types. As an extreme example, the h-calculus could allow a resource to
receive, for n cycles, values coming from n different processes and would be able to

verify that.
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4.1.12 Tick/Clock

(tick) [proc (7 | tick T; P, |x ]VGU] [1d1e ]Vze[lm
[proc r; ’Slg(ds x; <—v 1)]Vie ]’ ,env(c,s,k,t)
Closed [proc p | b |x ]Vz [ll] [1dle ]Vle[lm
[proc r; 'Slg(d-s—r,x- — vl ]v ,env (c,s,k, t+1)

(clock) [proc p|clock P; |x ]Vze[ll [1d1e ; ]Vie[l’m]
[proc r; 'Slg(d? x; — v ]\7’16 . n] ,env(c,s,k,s)
Closed [pI”OC ; | l |X )]V e’ [1dl lr ]Vze[l m]

,[1d1e( l)]we[m,eﬂ(c,s,k+l,0)

The (tick) rule estates what happens when time passes and the (clock) rule es-
tates what happens when the clock cycle ends. Both of these rules only apply if the
configuration matches exactly all of the objects in the pattern.

For the (tick) rule to match, all processes must be ticking simultaneously, which
emphasizes that the system experiences time synchronously — the exception being
Sigs that carry intra-cycle values. After applied, the rule advances time inside env and
advances the temporal sequences stored inside Signals.

The system can never tick over to the next cycle; it can only tick until its end. For
the (clock) rule to apply, all processes must synchronously acknowledge the end of
the current cycle and start the next one by using the special clock operation. The clock

operation destroys Signals and updates the clock cycle count inside env.

4.2 Temporal Session Types

As seen in Chapter 2.7, Temporal Session Types are used, directly, to model commu-
nication channels among hardware components. These types are the foundation on

which the h-calculus is built. Just like untyped processes, TSTs also have an equiva-

d
lence relation (Def. 23). S; ;f S, means Sy and S, can be used interchangeably without

diffferent type rule implications.

d
Definition 23 (TST Equivalence) S; ;f S, holds in the following cases:

d
°:11.7125 ;f Tt g/ (Time fungible)

sz def
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d
*5/®S, J S, ®8S] (Order of parallelism does not matter)

Definition 24 (Type Equivalence Set) A equivalence set {S,S,, -+, S,} is a set of

d
processes where for every i and j € [1,n], S; ;f S;. We refer as "the equivalence set
of S"a set S(S) in which S € §(S).

4.3 Typingrules

4.3.1 Auxiliary Definitions

Before describing the h-calculus type rules, we show some important definitions that
related to the definitions of process type (Def. 4) and resource types (Def. 5) shown in
Chapter 2.7. These include typing judgements, contexts, context operations for both

channels and resources.

Definition 25 (Channel Typing Judgement) A channel typing judgement is de-
noted c: S where c is a type variable and S is a Temporal Session Type. c: S means

"c acts according to S".

Definition 26 (Channel Context) A channel context is an unordered set compo-

sed of multiple channel typing judgements. Is is defined as a list
A=c:SA| -

where the operation c: S, A is called appending and — denotes the empty context.

Definition 27 (Channel Containment) A channel ¢ is contained within a context
A, denoted c € A if
A=c:S,AN

for any A’ and S. We also say that c is not cointained within A, denoted ¢ ¢ A, if
c € A does not hold.
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Definition 28 (Channel Context Concatenation) The concatenation of channel
contexts Ay and A,, denoted A A, is defined as

[ ) (C . S,Ai)AQ =cC: S,(A’lAz)
where c ¢ A,
° (5)Ar2=4A

e undefined otherwise

4.3.2 Typing Rules

H-Calculus typing rules ensure that if a hardware is well-typed communication errors,
timing errors, and deadlocks do not happen (as we are going to see in Section 4.4).
Furthermore it also encodes efficiency information within the types, enabling trivial
performance analysis and comparisons. Definition 29 shows all of the type rules at

once. Next we discuss them one-by-one.

Definition 29 (Type Rules) The set of all typing rules:

id

—;y:AI%(xey)::(x:A)

Y10 ]sc,f P (x:A) Zz;Az,x:Al%Q:: (z:C)
k,t
s,C

Y1 xEy A xAZI—(x<—P;Q):: (z:C)

cut

YA ISC"EP::(Z:C)
— 1R " 1L
—— e end x :: (x:1) YA x: 15 P (Z:C)

kv
S:Av:iatl,x:TA S,Ct P (z:C) t+1=5

— L

YA x: E”AI%(I/ «— get x;P) : (z : C)
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;A ];Ct P::(z:-TA) t+t=s

» — R
A v:at 5 (z<—put v;P):: (Z:E)TA)

YA x:TA I;Ct P::(z:C) t+T=s

o «— L
SAv:iatl,x: (ETAIS,—'C(x < put v;P) : (z : C)

kr
YA v:atl s;P::(z:-TA) t+T1=s

. «~— R
A Sct (v «— get z;P) 5 (z : (ETA)
5Ax:Al(py.A)/y] ];Ct P (z: C)

uL

A xc: uy.A ]s(ct P (z:C)

SAREPIL: PYLs (v: Alp-A)y))
A ];Ct (L : P) : (x : yy.A) '

k,t
Zl;r,Al,XQ : BI 5,C P (XPZAE XAI)

Zz;r,Az,Xp : AI l% Q o (XQ : BE XBI)

®
Y1 xXs A1 XA, If—ct((x — (xp,xQ)).(P || Q)) : (x : AE®BE)

DT WWAY] I;z P:: (x:A) 22;]:‘,A2|%Q:: (x:B)
%1 x Eo5A1 x As [ (P Q) = (x: A®B)

YA, x1 A xy BI%Q : (z:C)

P ® L
Y;A,x:A®B Si ((xl,x2)<—x;Q):: (z:C)
(kel) %;A Iscct P:: (z:Ak) N
@ R

A Is(z (z.k;P) : (z : @)ZM : Ag}gEL)
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(V€el) Eg;Ag,XZAgl%QgZZ (z:C) =0
S

k,t
ONC: Tedecrs Ol Agdrer, X B0 Ag)er s (case x of {£ = Qpler) : (2: C)

(VCeLl) XpAyp l% Qp (z : Ag)

%
k,t «— ® R
®:40: Seleer; ®:4€ : Acler s (case z of (€= Qplper) 1 (2: @21€: Arlrer)

(kel) ;A x: A I;Ct P (z:C)

&

YA xc: gx{f s Agler lsci (x.k;P) i (z: C)

kt+T

YA 5t P::(z:C) t+1>s

3 tick
IX;eTA Sct (tick T;P) * (z : -TC)

A k;lc'o P (z : C)

clock
A ];j (clock;P) " (z: C)

¥ (R AL AL AR x A l% Q: (z : C)

Use
k,
i x ¥Q r: (XL ALAY) x (25 A% A%); A x AQ syﬁ (x — 1« {Z{;A;};Q) i (z : C)

(V(((0 = P,): R,) € ).ext(P,,R,)) S;AFE P (2:C)

00 Main
YA e Main(P) = (z : C)

Iie:T (s>t+1) (t=0)

- ]:Ct (Sig(r,y — e)) 3 (y : -TTS_(”TH)

Signal-1

Ee:T (s>t+1) (1<0)
—;—I%(Sig(r,y — e)) o (y : Ts_t1)

Signal-2
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Iif:Tl — o> T, > Ty (s>t+max(dy,--,d,)+p) (p>0)
_(t"’dn)

(t+d;) kt Comb
1 1 1 S:C Comb(f’p'y — (xl""lxn))

i (V . max(dy,,dy)  pops—(trmax(dy, - du)tp) )

dy S d. S
—xp 1T s, Xyt Ty,

out

(s>t+1)

—x TS I% (Reg(y — x)) $ (y : -S_tT51)

Reg

4.3.3 General Insights

The type system is based on Intuitionistic Session Types (IST), which are isomorphic
to Intuitionistic Linear Logic (ILL) [23]. Some TST rules are similar to IST, but there
are some modifications, additions and removals that make the calculus suitable for
hardware modelling.

A recurring distinction in TST type rules compared to IST ones is that, instead of
using set partitioning for context splitting, where intersections (and therefore sharing)
are not permitted, TST uses definitions of resource and channel merge (x), allowing
general sharing of resources and channels whenever a new process is spawned. This
change appears in any type rule that manages two or more parallel processes, inclu-
ding the foundational cut rule. Apart from this, other distinctions will be discussed in
detail individually.

Most type operations have a left rule, which tells us how an operation is used by
processes, and a right rule which tells us how a process performs an operation. That
said, some special operations such as id, cut and tick are not divided into left and right
rules for reasons which will be explained individually later.

When explaining the rules, it will sometimes be useful to explain their logical in-
terpretation, in addition to their hardware interpretation, for a broader understanding
of why some rules are defined the way they are. Every type rule will also have, apart
from its proof-tree definition, a graphical interpretation using the simplified depiction

of process shown in Fig. 2.23b.
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4.3.4 Identity or Channel Forwarding

X<y

Figura 4.1: Graphical representation of the identity rule

id
k.t
—;y:AIS,—C(x<—y):: (x:A)

The channel forwarding or identity rule indicates that an input channel can be
forwarded as an output. In terms of linear logic, this is one of the most essential rules,
that enables an assumption to be used as a conclusion. This rule and the cut rule form
the bridge that connects left (L) and right (R) rules.

4.3.5 Forking process

x<—P;Q

P Q

&)

Al XAZ AZ

()

Figura 4.2: Graphical representation of the cut rule

YA ];Ct P (x:A) 22;A2,x:A|%Q:: (z:C)
k,t
s,C

Y x XA XAZI—(x<—P;Q):: (z:C)

cut

The cut rule defines how processes can fork subprocesses and use their result as
input. Part of the main process contexts, ¥, and A4, are assigned to the subprocess P
according to the merge definition (x), meaning resources can be shared between P and
Q. The cut rule and the identity rule bridge (L) and right (R) rules logically by defining

how hypothesis can be used to reach more complex conclusions.
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4.3.6 End of computation - 1

(b) (1L)
(a) (1R)

end x

x:1 A P

e
®

Figura 4.3: Graphical representation of 1 rules

YA lsci P (z: C)

Py 1L

1R
——Isc endx::(x:1) YA x 1 ]:,';P::(z:C)

The end of computation type 1 means the channel will not carry useful information
anymore. Rule 1R constructs a channel typed 1 using the process term end x while rule
1L removes the useless channel from inside of its channel context.

The left rule does not have an explicit process action because all processes interac-
ting with x have protocol knowledge, meaning they do not need additional information
to know when x closes.

For the end x process, this rule also means the end of computation. In operational

semantics, this means the instance will go idle after that.
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4.3.7 Getting/Putting values from channels

(—R)
(—L)
z <« putv;P
v« getx; P
P
A p A zTA ZdTA
@A x:TA z:C >
() ®
@ i@
«R
(L) (<R)
v« getz; P
X <« putv; P
P
A p = z::TA zaTA
f:?TA x:TA z:C R
i@ T @ @
@ v

Figura 4.4: Graphical representation of messaging rules

k,
S:Av:iatl,x:fA S,Ct P (z:C) t+71=s

YA x: E)TAI%(V «— get x;P) i (z : C)

— L

;A ]S(E P::(z:-TA) t+Tt=s

A v at fé (z «— put v;P) * (z : E)TA)

YA x:TA 15(5 P::(z:C) t+T1=s

SAv:iatl,x: (ETAI%(x «— put v;P) : (z : C)

k.t
YA viat S’CP::<ZZ-TA) t+T=5s
<~ R

A ]s(i (v «— get z;P) 5 (z : WTA)

Getting a value from an input channel (—L) is, in this calculus, equivalent to split-

ting the channel typed x : @ “A into two: a short internal value v : a*1 lasting until the
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end of the current cycle and a continuation channel x : <*A with no current value, but
carrying values for future cycles.

The 4 rules represent all possibilities among either with input (x) or output (z)
channels and either — or «, all of them using the same split/merge mechanism
between v and x or z. Fig. 4.4 shows graphically the flow of data according to all

rules.

4.3.8 Recursion/Loop - u

5Ax:Al(py.A)/y] I;Ct P (z: C)

L
A x:uy. A ]s(,’ﬁP::(z:C) '

S ARE PI(L: PY/L] = (x: Al(uy-A)p))
A I;Ct (L : P) * (x : yy.A)

u R

Recursive types can be only constructed from recursive processes (yR). Recursive
types get unrolled without the need of an action (uL). Since recursion is not a structural
rule, graphical depiction is not useful here.

Recursion in types and recursion in process terms are implemented using a simi-
lar term substitution mechanism: for types uy.A is replaced by A[(uy.A)/y] and for
terms L : P is replaced by P[(L: P)/L]. This means when the type variable y is reached,
the overall type becomes A again and when the process label L is reached the overall
process becomes P again, generating a loop.

. — —— — —— —

As an example of recursive type, x : yy.Int “ Int“y becomes Int “ Int“(uy.Int ¢ Int‘y),
which is equivalent to the infinite type Int € Int Int“Int¢---. As an example of recur-
sive process, L: v «— get x; z < put v; clock; L becomes v «— get x; z < put v; clock; (L: v «

get x; z < put v; clock; L), which is the infinite process

v« get x; z <« put v; clock; v « get x; z < put v; clock;---.
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4.3.9 Parallel Composition - ®

(®Rx*)
(®L) (x1,%2)=x;Q
P
(x1,%2)=x;Q Ay x:A
A
Q O,
. z:C ArxA, x:A®B
x:A®B x:A R—

X,:B @ Q
Ay
)

x:B

(®R)
(x=(xp,x0))-(PlQ)
A p
XZAE XAI
19,
:B
A1xA, it >< x:Ap®BE
XPZA]
Q x:Bg
— x:BgxBj
NO

Figura 4.5: Graphical representation of ® rules

ZI;F,Al,xQ:BI ];’Ct P (Xp IAE XA[)
Zz;r,Az,XpZAll%QZZ (XQZBEXBI)

k,t
5,C

Y1 xXo5 A XAZI;((x - (XP,XQ)).(P || Q)) = (x:AE®BE) o

YT, A I;Ct P:: (x : A) YT, A, l% Q: (x : B)
k,t
s,C

S x T35 A1 x Ay s (P Q) (x: A®B)

® R

The linear logic operator ® is used in TST to define arbitrary parallel composition
between processes. Compared to ® in IST, which is defined only for processes that are

independent of each other, TST modifies the rule to also allow internal communication
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among the processes (using the merge operator x) making the ® rule general enough
to represent both independent and dependent parallelism.

Logically speaking, the rule is a mixture of the IST’s ® rule (independent paral-
lelism) with the cut rule (communication, or dependent parallelism). Although this
gives the rule ®R an unbalanced expressive power, it allows the calculus to compose
processes more liberally, allowing for more powerful optimizations. Furthermore, pa-
rallelism in hardware design and any other concurrent system is so important that it
makes sense for the rule to be “overpowered”. Nevertheless, type preservation and
global progress will still hold with this change.

The rule ®Rx* is a derivation of ®R, representing parallelism without internal com-
munication, depicted by Fig. 4.5b. In this case, the outputs of P and Q, A and B
respectively, become part of the output A ® B completely. Note that both contexts are
merged, implying two parallel processes can still share channels and resources even
though there is no internal communication.

The more general @R rule (see Fig. 4.5a for better understanding) is more elaborate.
The outputs of P (AgxA;) and Q (BgpxBj) are, instead of being completely forwarded as
output as in @Rx, split into internal and external channels according to the definition
of channel merge (Def. 2). The internal output of P (A;) becomes input of Q and the
internal output of Q (B;) becomes input of P, while the external output of both become
the output of the composition (Ag ® Bg).

The left rule ®L, in Fig. 4.5¢c, does not care if the input is generated by dependent
or independent parallelism. It decomposes the channel into two separate channels,

assigning them new names.
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4.3.10 Choice operators

%

(®R) (%L)

z.k;P x.k;P
P . A P
A z:Ag r% 22® l:Ar}per P z:C
N x:®{C:Ar)per /‘.rl‘\x:Ak
© NN ©)
H
(L) -
(®R)
case x of {{=Qy}pcr
case z of {{(=Qp}scr
®x{€:Aﬂ}€eL P Ak Q
— U z:C Q -
x:® {C:Aeper N x:Ag D {C:Ar}per s Ay Z:Ap N Z:®{€:AZ}[EL
N @ % : NP
control[k]
control[/\']T
k
k
Ox{l:eleer

O:{l:eleer

Figura 4.6: Graphical representations of & rules

(kel) X;A fﬁ P (z:Ak)

A I;Ct (z.k;P) = (z:@z{&Ag}geL)

(V€el) Ee;Ag,X:Agl%Qg " (z : C)

—

k,t
D0 Telecr; Ol Adrer, x: B0 Agler s (case x of {€ = Qpler) 2 (2: C)

(V€ S L) DIINAY) l% Qg (Z : Ag)

k.t
&M XpYper; ®MC - Ap)rer 5 (case zof {{ = Qg}geL) i (z L@, Ag}geL)

(kel) ;A x:A; I;Ct P (z:C)

A x %x{ﬁ s Apleer ];Ct (x.k;P) :: (z: C)
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The type of the choice operations, similar to get and put operations, have an arrow
representing the direction flow of information, which can be from outside to inside or
from inside to outside, depending on whether the channel is used or provided by the
process and if the choice is internal (made by the process itself) or external (made by
another process). The operator @ describes external choice if it is an input channel
and internal choice if it is an output channel, while @ describes the opposite: internal
choice if it is an input channel and external choice if it is an output channel.

Since the choice is interpreted as a message, the operators carry, as an index, the
name of the channel on which the decision was made (the c in (QTC)) so if, at the same
time, two choice types carry the same index, say x : A(@)B and p : C(@_)C)D, this means
the decisions are synchronized, meaning x : A implies y : C and p : D implies x : B,
without x: Aand y: D or x: Band y : C being possible.

The rules ® R (Fig. 4.6a) and ®L (Fig. 4.6b) represent processes making a decision
internally and sending the decision as a message through the channel. As processes
decide internally, they do not need to prepare for all the possible choices, instead it
needs to prepare itself only for the chosen type Ay.

The rules ®L (Fig. 4.6¢) and ®R (Fig. 4.6d) represent a process receiving a de-
cision from an external process. In this case, the process receiving the decision must
be ready for each one of the possible choices. In both of these rules, the input con-
texts are expressed as @,{¢ : X/}ser and @,{€ : Ay}oer, @ notation that expresses the fact
some input channels and resources may interact according to the same decision car-
ried by x (because of the nature of multicasting), in which case they also must change
accordingly.

The case operation is depicted (in Fig. 4.6¢c and 4.6d) uses a finite state machine
(FSM) module which was not depicted previously (more about that in Chapter 5). The
FSM takes as input the decision and updates control signals which make process Q
operate as Q, for any decision ¢ (in this case, Q). Using FSMs to store and update the
state of processes is extremely common in hardware design, but is abstracted away in
H-Calculus. The consequences of hiding state control will be explained in detail in
Chapter 5.

4.3.11 Intra-Cycle Signal
Iie:T (s>t+1) (r>=0)

—— ];E (Sig(’(,y «— e)) : (y : .TTS—(t+r)1)

Signal-1
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Iie:T (s>t+1) (t<0)
—}—l%(Sig(T,yHe)):: (y : Ts_t1)

Sigs are unique processes that live inside one cycle and carry functional valuese: T

Signal-2

with them — for example, 5 : Int, false : Bool, or any other finite data structure. We
use a functional sequent IL e : T to check that the value e is well typed according to
some simply-typed function type scheme similar to Def. 12, capable of type checking
simple values and and functions (of functional type 7 — o).

Rule Signal-1 models intra-cycle values that become stable after 7 units of time
from the start of the cycle, while rule Signal-2 a value stabilized some time ago, mea-

ning 7 is negative.

4.3.12 Combinational Circuit

Iif;T1 — o T, > Ty (s>t+max(dy,---,d,)+p) (p>0)

_ k,
— X1 le —(t+dy) ,...’xn:.d”T; (t+dn)1 5’5 Comb(f,p,y<—(x1;"';xn))

- (y Jmax(dy,,d,) pT (t+max(d1,-~-,dn)+p)1)

out

Comb

Combinational processes compute within one cycle. They both consume and pro-
duce intra-cycle values. They represent a pure functional application being elevated
to the realm of hardware processes.

. . . . d;
Input signals arrive at different instants (x; : lT (i

1), so the output signal must
take into account the combinational machine only starts to react to correct values after
all input values are stable max(dy,---,d,,), after that a maximum possible delay is added

(max( . ”)pT (t+max(d1 d)+P))

and the output type is formed 1). Aslong as the function

f is functionally well typed and the output becomes stable before the end of the cycle,

the combinational the process is well typed.

4.3.13 Register

(s>t+1)
LTSt I%(Reg(y — x)) : (y : -S_tT51)

The Reg rule models how an intra-cycle signal interacts correctly with a register.

Reg

The register takes a signal from the current cycle x : «*T5"(*#7), and forwards it to the
next cycle y : < 7'T°1 as an output. As long as the input value gets stable before the end

of the cycle, the register is well-typed.
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4.3.14 Tick/Delay

k,t+1

YA 5t P::(z:C) t+12>5

tick
IX5A Ils(—i (tick T;P) i (z : -TC)

The tick operation means that the process recognizes that time has passed for it-
self and for all other processes. Even though this rule represents an isolated process
ticking, every process in the system must tick together, which is why input channels
and resources also need to advance in time. After the tick, the time is updated from ¢
to t + T where t + T cannot surpass the clock cycle itself. Logically speaking this rule is
both left and right and proofs of preservation and global progress will highly depend
on the way it is defined.

4.3.15 Clock synchronization

A k:,lc'o P (z : C)

e clock
YA (clock;P) " (z: C)
Similar to the way tick is defined, the clock event is also experienced by all pro-
cesses at the same time, synchronizing every action and state. Operationally, the clock
rule resets the intra-period timer from s to 0 and increments the clock count k. Notice

how the clock rule resets the timer but does not advance time.
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4.3.16 Resource instantiation

x<—r<—{Zq;Aq};Q

A} x AQ AR Q
. z:C

x:A1 Yo,r:

r. r. r

(Zh;AL;AD)

x: A}
x: Al x Al
AV
1 A; r
Al x A}

Figura 4.7: Graphical representation of Use

¥Q r: (X% S;Ag);AQ,x:A; I%Q = (z: C)

PN xYQ r: (EALAY) X (E5;A%;A%); A] XAQI%(x — 1« {ZZ;A;};Q) i (z: C)

Use

The resource instantiation rule is similar to the cut rule, the difference being that
the cut rule spawns a process term P while this rule initializes an idle resource r. Si-
milar to cut, the input contexts are split, to allow for channel and resource sharing.

This rule allows for partial use of resources, which means that Q may or may not
fully interact with r. Operationally, this means, the resource type of r is split into two,
the first one (X];A]; A7) representing how Q will use it, and the second one (X/;A%; A))
representing the “rest of interaction” needed for r to be completely satisfied. In the

case of Q interacting completely with 7, (X};A%; A}) would be (—;—;1).

4.3.17 Main instantiation

(V(((0 = P,): R,) € T).ext(P,,R,)) E;Alge P (z:C)

) Main
Y;A s Main(P) (z : C)
The Main rule determines that the main process, the highest one in the hierarchy
tree, which contains all the channels and all the resources of the system, in addition
. 0,0 .
to being well-typed (X;A 5z P : (z: C)), must ensure that every resource 0 € ¥ is a

complete and correct instantiation of their respective process definitions (V((o := P,) :
R,) € X).ext(P,,Ry)).
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The Main rule is necessary because, even though incomplete interactions with re-
sources is permitted to enable expressive resource sharing, all resources must be com-

pletely instantiated in the end.

4.4 Properties of the Type System

Both semantic and typing rules need to be harmoniously related to each other for the

entire system to be useful. Two properties are crucial:

* Every well typed system — constructed from the typing rules defined in Def. 29
— must, always, be able to evolve through time — i.e., must match one of the
semantic rule patterns described in Def. 22. This property is called global pro-
gress, and it ensures that no well-typed system is ever going to reach a deadlock

state.

* Every time a semantic rule is applied to a well-typed system, the resulting sys-
tem — after the rule is applied — must, not only be well-typed, but also have
exactly the same type as before. This property is called type preservation and it
ensures that we can trust that our types are not going to "change"throughout the

execution of the system (in other words, we can trust our types).

To define these two properties formally we first need to understand what does it
mean for a system to be well-typed. We know how to type individual processes, but
semantic rules work with configurations (Def. 18) instead of individual processes.
This is where configuration typing rules comes in. The type of a configuration informs
us the type of the system during an snapshot of its execution. We begin by defining
the configuration type sequent the mathematical structure that contains the type of the

configuration.

Definition 30 (Configuration Type Sequent) The configuration type sequent is
the object
vl Al |=C : (EO;AO)

where ¥! and A! are input contexts, that must be provided for configuration C
to execute correctly and X© and A© are output contexts that are provided by the
configuration C during correct execution. X! and 0 are resource contexts and A’

and A© are channel contexts.

The configuration type sequent, different from the process type sequent, contains

multiple output channels, A®, and also contains output resources, ¥, since a confi-
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guration contains multiple processes, and resources, computing simultaneously. The
typing rules for configuration are defined in Def. 31, with an accompanying set of

illustrations.

Definition 31 (Configuration Typing) The set of all configuration typing rules:

Z{;A{ |=Cl,w(s,c,k,t) " (Z?;Alo) ZIZ;AIZ |=02,w(5, ¢,k t): (Zg;A?)
Z{ X Zé;A{ X Aé |=ClC2,w(s, ¢,k t): (Z?E?;A?AZO)

Compose

Yo AAc |=C (X, R Acx A)
—;A|=(Zlosed{ Clu(—=x:A)

Closed

;A ];S Main(P):: (x:A)

Main
—;A|=Main(P),w(s,c,0,0) t(—x:A)

[EITSIAIT e P (x: [A]'T) inst(Z5A;4),R) (T =kxs+1)

Z;A|=proc(r|P|x),w(s,c,k,t) t(r:Rx: A) broe

inst (DEF(P),R)
_;_|= idle(r :=P),env(s,c,k,t) : (r: R;—)

idle

Some interesting aspects to note about these configuration typing rules:

* The rule Compose does not connect channels between two configurations, all of
the connections happen within the Closed rule. The reason why we separate
gathering from connecting channels and resources is that, since the h-calculus
permits channels to connect to multiple components, we are never sure whether
a given channel is fully connected or not. The Closed object is used to inform that,
within the given configuration, every channel must be fully connected, meaning

its type must be completely satisfied.

* The proc rule does take into account the passing of time. This is crucial for type
preservation because, although time passes, the configuration type will stay the

same, considering the beginning of time (k, t) = (0, 0).
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Now we can define type preservation and global progress using configuration types.

Theorem 1 (Preservation). If AL ): C (ZO;AO) and C — D then YAl ): D :
(EO;AO).

The complete proof of preservation is in the Appendix A. This proof consists of finding
the type of ¥ Al |=C : (ZO;AO) and the type of Y17 Al |= D (ZO’;AO') for each one
of the possible semantic rule cases C — D defined in Def. 20) and check if ! = ¥/,
A=A, 30 =39 and A9 = A?".

Theorem 2 (Global Progress). If — A ): Closed{C}: (r:R;x:A), then
1. C— D, for some D, or
2. is communicating through c € A or x, or
3. does not have proc objects (computation is over).

The complete proof of progress is also in the Appendix A. This is proof is more intri-
cate than the preservation one. The main idea is to show that because Closed{C } is
a well-typed configuration either computation is over (case 3) or it is interacting with
channels or resources. Because the configuration is closed, interacting with resources
means the resource is internal, in which case an operational step should occur (case 1).
If the configuration interacts with channels, the channel is either internal or external.
If the channel is external case 2 applies. If the channel is internal, the type system
is designed in a way that every action is met by its correct reaction, resulting in an

operational step (case 1).
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Capitulo 5

H-Calculus for High-Level Synthesis

This chapter discusses the consequences of using the h-calculus as an Intermediate
Representation (IR) in a High-Level Synthesis (HLS) system. We will also compare the
use of h-calculus to Control Dataflow Graphs (CDFGs), the most commonly used IR in
HLS, pointing out both advantages and disadvantages.

We will discuss how the h-calculus impacts the three steps of HLS (Fig. 5.1, shown
in Chapter 1) separately.

@

IR IR . .
HLL —»] Translation - DSE > Synthesis —» RTL or Netlist

A %

Constraints Criteria

Figura 5.1: Simplified High-Level Synthesis flow

5.1 Translation

Translation is the first step of HLS. Translation infers an IR from a high-level speci-
fication, written in a High-Level Language (HLL), without efficiency or optimization
concerns, since these are the responsibility of the Design Space Exploration step.

The effectiveness and complexity of translation techniques depend on the HLL and
IR choices. This thesis proposes using a functional typed programming language as
input and the h-calculus as the output of the translation step. We shall compare it to C-
like languages as input and CDFGs as output, which are typical choices in traditional
HLS.
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High-Level Language Choice

Ideally, any HLL could be transformed into IR. In practice, however, the language
choice can either complicate or facilitate the translation step. There are some com-
pelling arguments in favor of functional languages over sequential languages as input
for HLS. The most compelling being related to concurrency inference. Both functional
and sequential code do not natively understand the notion of concurrency, meaning it
needs to be inferred by translation techniques.

Inferring concurrency from sequential specifications is a challenging problem without
an efficient solution. This leads to specifications that are, in general, not as parallel as
hardware designers would want. After transforming sequential code into CDFGs, it
is still difficult to infer concurrency from CDFGs, meaning concurrency inefficiency
will be carried all the way from the high-level specification up to the HLS result. It is
common in traditional HLS systems to extend their sequential languages with explicit
concurrency constructs (such as par), but the result is not ideal since now the designers
needs to worry about concurrency.

Inferring concurrency from functional specifications is as simple as it gets: given a
functional application f(x,y,z), we know that the terms x, y and z can be evaluated in
any sequence, or in parallel, without correctness issues. Since the entire specification
is composed of abstractions and applications, this is enough to infer system-wide con-
currency. Functional specifications suffer from the opposite problem: they often need

to be sequentialized, which is a simpler problem.

Intermediate Representation

Compared to extracting CDFGs from C-like specifications, extracting h-calculus speci-
fications from functional languages is not as simple and does not have well-established
solutions. The h-calculus, being closer to hardware, contains low-level details that re-
quire a great deal of inferring, which is alleviated by the fact that Translation does
not need to output optimized results. For example, a translation step could consider
every function application as a new resource running parallel and every recursion as
sequential computation. This is a practical way to translate since we expect the DSE
step to optimize any inefficiencies introduced by Translation.

Although translating C-like code to CDFGs does not require much inferring, the
resulting CDFGs do not provide efficient mechanisms for verification and analysis, so

it is a tradeoff between ease of analysis and ease of Translation.
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Translation Scheme

This thesis does not provide a specific translation scheme because techniques still need
to be understood better. However, we provide a plan, a set of ideas, that should effici-

ently translate from functional language to h-calculus despite concerns. These are:

The Functionality Operator: The Functionality Operator: an operator, denoted F,

that takes a well-typed process as input and returns a function as output
k,t
f():;A sc P (x:A)) — f.

This operator should effectively transform temporal session types into algebraic
datatypes and erase the notions of concurrency, sequence, time, resources, and
channels from processes until only a function, a mapping from algebraic types

to algebraic types, is left.

A translation procedure: opposite of the functionality operator, denoted 7, the trans-
lation should take a well-typed function as input and return a well-typed h-
calculus process

T(f) > SARE P (x: A)

Types are transformed into Temporal Session Types and functions into h-calculus
processes by inferring every characteristic not modeled by functions: concur-
rency, time, clock, resources. There are multiple possible processes for one func-
tion, but the translation procedure can choose any, even not optimized, as long as
it is correct. Previous work [37, 38, 39] successfully transformed typed functions,
using a Haskell-like language, into hardware: we need to translate the ideas to

output h-calculus processes instead.

A correctness proof: a proof that that trans