
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

H-Calculus: Session Types for Hardware Analysis and
Well-Definedness

Luiz Gustavo Soares de Sá

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Orientador

Dr. Ricardo Pezzuol Jacobi

Coorientador

Dr. José Edil Guimarães de Medeiros

Brasília
2021

Ficha Catalográfica de Teses e Dissertações

Está página existe apenas para indicar onde a ficha catalográfica gerada para dissertações de
mestrado e teses de doutorado defendidas na UnB. A Biblioteca Central é responsável pela ficha,
mais informações nos sítios:

http://www.bce.unb.br
http://www.bce.unb.br/elaboracao-de-fichas-catalograficas-de-teses-e-dissertacoes

Esta página não deve ser inclusa na versão final do texto.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

H-Calculus: Session Types for Hardware Analysis and
Well-Definedness

Luiz Gustavo Soares de Sá

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Dr. Ricardo Pezzuol Jacobi (Orientador)

UnB-CIC

Dr. Frank Pfenning Dr. Mauricio Ayala Rincón

CSD-CMU UnB-CIC

Dr.a Genaina Nunes Rodrigues

Coordenadora do Programa de Pós-graduação em Informática

Brasília, 2 de Junho de 2021

Dedicatória

Dedico essa tese à minha mãe Célia Maria e à minha vó Joana.

iv

Agradecimentos

Agradeço aos meu orientador Ricardo Jacobi e o meu co-orientador José Edil. Ambos

me apoiaram e me deram a liberdade que eu precisava para tornar essa tese uma rea-

lidade. Especialmente agradeço Jacobi por me apoiar desde o curso de graduação até

hoje.

v

Resumo

Síntese de alto nível é considerada o próximo passo lógico em design de hardware, mas

os resultados, em geral, ainda não são tão bons quanto ao que a indústria necessita.

Conjecturamos que a falta de uma representação de hardware adequada, criada espe-

cificamente para análise automática de hardware, é um dos principais motivos pelos

quais os resultados são difíceis de otimizar. Apresentamos o cálculo-h, cálculo tipado

que usa tipos de sessão temporal para bem-definição e análise de hardware. Intro-

duzimos os conceitos principais, formalizamos suas definições, demonstramos como a

análise por meio de tipos funciona, e discutimos sua utilidade na síntese de alto nível.

Palavras-chave: Design de Hardware, Sistemas de Tipos, Tipos de Sessão, Cálculo de

Processos

vi

Abstract

High-Level Synthesis has been considered the next logical step for hardware design,

but results are, in general, still not as good as the industry requires. We conjecture

that the lack of a proper hardware representation crafted specifically for automatic

hardware analysis is one of the key reasons why results are hard to optimize. We

present the h-calculus, typed calculus that uses temporal session types for hardware

well-definedness and analysis. We introduce the key concepts, formalize their defi-

nitions, demonstrate how analysis through types works, and discuss its utility within

High-Level Synthesis.

Keywords: Hardware Design, Type System, Session Types, Process Calculi

vii

Sumário

1 Introduction 1
1.1 The Hardware Design Challenge . 1

1.2 High Level Synthesis . 2

1.3 An Ideal Intermediate Representation . 4

1.4 Overview . 5

2 Key Concepts of the H-Calculus 7
2.1 Hardware Modeling with Temporal Session Types 8

2.1.1 Signals as Temporal Sequences . 8

2.1.2 Clock Cycles and Registers . 9

2.1.3 Components and Temporal Session/Sequence Types 11

2.2 Type Merge . 19

2.3 Untyped Processes . 22

2.4 Processes Types . 23

2.5 Processes as resources . 25

2.6 Resource Sharing . 28

2.7 Type rules and Properties . 33

3 Background 35
3.1 Type Systems and the Lambda-Calculus 35

3.1.1 Untyped Lambda Calculus . 35

3.1.2 Simply Typed Lambda Calculus 37

3.1.3 Discussion on Type Systems . 39

3.2 Hardware Models of Computation . 40

3.3 Session Types and Process Calculi . 41

3.4 Session Types for Hardware . 43

viii

4 Semantics, Type Rules and Properties 44
4.1 Operational Semantics . 44

4.1.1 Main . 48

4.1.2 Id/Forwarding . 49

4.1.3 Cut/Fork . 49

4.1.4 End of process . 49

4.1.5 Parallelism . 50

4.1.6 Recursion (or loop) . 50

4.1.7 Put/Get . 50

4.1.8 Internal/External Choice . 51

4.1.9 Combinational process . 51

4.1.10 Register/Memory . 52

4.1.11 Resource instantiation . 52

4.1.12 Tick/Clock . 53

4.2 Temporal Session Types . 53

4.3 Typing rules . 54

4.3.1 Auxiliary Definitions . 54

4.3.2 Typing Rules . 55

4.3.3 General Insights . 58

4.3.4 Identity or Channel Forwarding 59

4.3.5 Forking process . 59

4.3.6 End of computation - 1 . 60

4.3.7 Getting/Putting values from channels 61

4.3.8 Recursion/Loop - µ . 62

4.3.9 Parallel Composition - ⊗ . 63

4.3.10 Choice operators . 65

4.3.11 Intra-Cycle Signal . 66

4.3.12 Combinational Circuit . 67

4.3.13 Register . 67

4.3.14 Tick/Delay . 68

4.3.15 Clock synchronization . 68

4.3.16 Resource instantiation . 69

4.3.17 Main instantiation . 69

4.4 Properties of the Type System . 70

5 H-Calculus for High-Level Synthesis 73
5.1 Translation . 73

5.2 Design Space Exploration . 76

ix

5.3 Synthesis . 83

5.3.1 Control - Finite State Machines . 83

5.3.2 Practicalities . 89

6 Related Work 91
6.1 Comparisons . 92

7 Discussion and Future Work 98

References 100

Apêndice 105

A Definitions, Theorems and Proofs 106
A.1 Definitions . 106

A.2 Lemmas and Corollaries . 107

A.3 Theorems . 121

A.3.1 Preservation . 121

A.3.2 Global Progress . 122

x

Lista de Figuras

1.1 Design Space Exploration Schematics . 2

1.2 High-Level Synthesis Flow . 3

1.3 Simplified High-Level Synthesis Flow 4

2.1 Hardware Components and Signals . 7

2.2 RTL components . 8

2.3 Digital signal . 8

2.4 Digital signal with the transitional value (red line) 9

2.5 Register signal behavior and cycle dynamics: c is the clock period, st is

the setup time needed for all registers to process their outputs, and s is

the stable period in which all registers outputs are stable and therefore

computation can be correctly performed 9

2.6 Clock period and periodic signals . 10

2.7 Temporal sequence example . 11

2.8 Adder modeled with types . 11

2.9 Component usage verification . 12

2.10 Resource Usage Example . 13

2.11 Resource Usage Example . 13

2.12 Clock and periodic actions . 15

2.13 Different increment process implementations 15

2.16 Adder process behavior . 16

2.14 Channels interacting with INC . 16

2.15 Multiplier modeled with TSTs . 16

2.17 Sum process behavior . 17

2.18 ALU channel signal decomposition . 17

2.19 ALU process behavior . 18

2.20 Channel splitting/merging . 19

2.21 Channel splitting/merging . 21

2.22 Examples of merge . 21

2.23 Graphical representations of a well-typed process 24

xi

2.24 Example of resource type extension . 26

2.25 Example waveforms (a) Case IV (b) Case V 27

2.26 Graphical explanation of a resource sharing 30

2.27 Sharing SUM process example . 32

2.28 Graphical representation of the ALU process 34

4.1 Graphical representation of the identity rule 59

4.2 Graphical representation of the cut rule 59

4.3 Graphical representation of 1 rules . 60

4.4 Graphical representation of messaging rules 61

4.5 Graphical representation of ⊗ rules . 63

4.6 Graphical representations of ⊕ rules . 65

4.7 Graphical representation of Use . 69

5.1 Simplified High-Level Synthesis flow . 73

5.2 Design Space Exploration Schematics . 76

5.3 Different h-calculus processes for the Dotp function 77

5.4 Typing judgements for all Dotp versions and auxiliary definitions 78

5.5 Dotp#1 as a Control Dataflow Graph (CDFG) 82

6.1 Dataflow Relationship Schematics . 93

xii

Lista de Tabelas

5.1 Dotp versions comparison . 81

5.2 Different possible cases of Dotp . 81

6.1 Comparison of different models of computation 97

xiii

Capítulo 1

Introduction

1.1 The Hardware Design Challenge

The current hardware industry demands optimized designs [1, 2, 3, 4]. This demand

comes from two contrasting factors: the limitations of transistor technology and the

increasing demand for computational power. The limitations of digital systems come

from the end of Dennard Scaling, which effectively caps transistors’ maximum fre-

quency, and the current struggle to keep up with Moore’s law. The demand for more

computational power comes from the growing usage of techniques, such as Machine

Learning and Digital Signal Processing, that require a high amount of calculations.

For projects depending on high throughput, CPUs and GPUs are often not enough

to meet efficiency constraints. That is why there is an increasing demand for custom,

application-specific hardware designs. However, designing custom hardware, especi-

ally when they need to be optimal according to application-specific constraints, is, in

general, an arduous task that requires long development times and significant deve-

lopment costs.

Most of the challenges in designing optimal custom hardware come from the need

for efficient Design Space Exploration (DSE). DSE is the step in which a designer, or an

automated system, explores distinct designs — verifying their correctness, analyzing

their efficiency parameters, applying transformations, and comparing them analyti-

cally — until it finds an optimal, or good enough, one (Fig 1.1).

1

DSE

transform

constraints

optimization

criteria

analysis

decisions

compare

Design Space

Figura 1.1: Design Space Exploration Schematics

A primary challenge in current hardware design is that there is no good automatic

solution for DSE. In traditional hardware design flows, the designers are responsible

for DSE. Semi-automatic tools help but do not perform DSE automatically. Humans,

however, are notoriously bad at solving problems such as DSE that involve extensive

search and analysis of different cases. Giving the responsibility of DSE to developers

results in long, iterative, and error-prone development cycles.

1.2 High Level Synthesis

High-Level Synthesis (HLS) [5, 6, 7, 8, 9, 4, 10, 1, 2, 3] is an interesting attempt to in-

crease automation in hardware design flows. HLS is based on the idea of transforming

a high-level description of hardware, written in a High-Level Language (HLL), into a

low-level Register Transfer Level (RTL) specification. Since this transformation is the

responsibility of the HLS tool, it moves the responsibility of DSE away from the desig-

ner, allowing for a more automated design flow (Fig. 1.2).

2

C

Haskell

P ython

Frontend

Constr

aints
Criteria

Intermediate

Representa-

tion

Optimizer

Backend

VHDL

V erilog

High-Level Languages

RTL Languages

Analysis
Transfor

mations

Figura 1.2: High-Level Synthesis Flow

However, HLS does not currently provide all the optimization demanded by cur-

rent hardware applications [1, 2, 3, 5]. As a consequence, HLS tools do not take com-

plete control of DSE. Instead, current HLS improves the traditional hardware design

flow, focusing on being interactive rather than a complete automated solution.

Ideally, HLS should produce good enough results without the need for human in-

teraction, but it turns out, reaching an ideal HLS poses complex challenges. HLS stra-

tegies defined as a predefined sequence of transformations (as traditional HLS theory,

composed of scheduling→ resource allocation→ binding→ control generation [4]) are

not enough to provide the efficiency demanded by the post-Dennard-scaling hardware

industry. Instead, DSE is required, something that traditional HLS techniques and

datatypes are not suitable.

To understand why HLS fails to implement efficient hardware, we need to unders-

tand its grounds. Conceptually, we can divide HLS into three steps (Fig. 1.3), each

with a well-defined concern. The translation step transforms the high-level specifi-

cation into an intermediate representation (IR) of hardware. The output of translation

does not need to be efficient or optimized; it just needs to represent the computa-

tion described in the input specification correctly. The DSE step performs analysis,

transformations, and comparisons on IR definitions until it finds one that meets all

the design constraints. The synthesis step transforms the hardware IR into the target

result, be it an HDL description (VHDL or Verilog) or a netlist.

3

HLL Translation

Constraints Criteria

DSE Synthesis RTL or Netlist
IR IR

IR

Figura 1.3: Simplified High-Level Synthesis Flow

1.3 An Ideal Intermediate Representation

Although the effectiveness of DSE depends on multiple factors — including the strate-

gies applied and computational power (in case the strategy depends on it) — the most

fundamental one is the IR choice.

The IR choice either allows or breaks the effectiveness of DSE by either enabling or

disabling the feasibility of specific exploration strategies. For example, an IR without

time representation does not enable an analysis (and optimization) of time-sensitive

parameters; and an IR unaware of resource usage cannot optimize resource sharing

effectively. Although an ideal IR is not enough for effective DSE, the effectiveness of

DSE is limited without an ideal IR.

An ideal IR for hardware DSE would have the following characteristics:

1. Has to be Correct-by-construction, which takes away the responsibility of chec-

king for correctness from the design exploration phase

2. Describe low-level hardware details, such as registers, digital signals, clock pe-

riod, concurrency, and others, which allow the definition of low-level optimiza-

tions that would be performed in low-level hardware design.

3. Includes Model system-level properties relevant for analysis and optimiza-
tion, such as resource usage, throughput, conditional branching, communication

patterns, temporal behavior, among others, which enable the definition of design

exploration strategies at a system-level.

4. Should be able to fetch analysis information trivially from the model, which

will be used as input to the design exploration system.

5. Provide efficient ways to transform models, allowing design exploration to ap-

ply many optimizations efficiently and compare their results.

6. Model (time-aware) communication patterns between hardware modules so

that components can be connected efficiently without the need for a communica-

tion template (e.g., FIFO buffers), used in most cases.

4

When analyzed through the prism of DSE suitability, most IRs used in HLS tools,

such as Control Dataflow Graphs (CDFGs), do not meet many of the requirements

above, making effective DSE more challenging.

This thesis introduces the h-calculus, purposely created to meet all the require-

ments above, thus being an ideal IR for hardware DSE. The h-calculus achieves this

by using a type system that models hardware concepts. Besides helping to ensure cor-

rectness, the type system also produces detailed analytical reports of the definition

encoded within the types, which allows for low-effort whole-system analysis.

By enabling effective DSE, the h-calculus aims to reduce the need for human inte-

raction in HLS tools. Designers would then focus on the high-level specification only,

making hardware design accessible for designers who understand the high-level lan-

guage but do not master the details of low-level hardware design.

This thesis does not focus on any particular DSE system or implementation of

an HLS system (although Chapter 5 touches upon these subjects). Instead, it focu-

ses on the definitions, properties, and use cases of the h-calculus, demonstrating why

and how it is suitable for hardware DSE and what it does differently than other fra-

meworks.

1.4 Overview

The contributions of the thesis, and the way it is structured:

• We start by introducing the key concepts of the h-calculus in Chapter 2; we ex-

plain the process calculus, the types, and how they relate to hardware modeling

through examples.

• Before discussing the details of the h-calculus, Chapter 3 explains the back-

ground necessary to understand the h-calculus. It includes discussions about

type systems and the λ-calculus, commonly used hardware models of computa-

tion, and Session Types.

• Chapter 4 introduces h-calculus typing and semantic rules, and discusses the

properties that make it a computational model for hardware.

• Chapter 5 discusses the advantages and disadvantages of using the h-calculus as

an IR for HLS instead of a more traditional hardware representation. The chapter

discusses translation from high-level languages to h-calculus, the effectiveness of

DSE using h-calculus, and transformation from h-calculus into RTL.

5

• Related work is found in Chapter 6. We analyze several other models of compu-

tation in the context of hardware modeling and compare them to the h-calculus.

• Chapter 7 concludes the thesis, pointing out future work directions.

6

Capítulo 2

Key Concepts of the H-Calculus

This chapter introduces the fundamental concepts behind the h-calculus in an infor-

mal manner, using examples to develop intuition about the technical mechanisms of

the calculus and how they relate to hardware modeling, verification, and analysis.

A simplified view of hardware architecture is a network of components that com-

municate through signals (Fig. 2.1). These signals carry complex data encoded as se-

quences of bits that change over time. Components react to input signals and produce

output signals, effectively performing computation. At the lowest level, components

are transistors. At the Register Transfer Level (RTL) components are logic gates (such

as AND, OR, NAND, NOT) and registers (Fig. 2.2).

components

input

signals

output

signals

Figura 2.1: Hardware Components and Signals

7

clk

Figura 2.2: RTL components

The objective of the h-calculus is to effectively model signals and components at

the RTL in a way that it is easy to spot incorrectness and performance inefficiencies.

The h-calculus’ approach is to model digital signals using temporal session types and

then use them to model hardware components effectively. This kind of modeling is

only possible due to the expressiveness of the type system.

2.1 Hardware Modeling with Temporal Session Types

2.1.1 Signals as Temporal Sequences

A practical way to model digital signals without losing information relevant to the

analysis is to use temporal sequences (TSs). Temporal sequences are (ordered) sequences

of pairs, each containing a value and a temporal index indicating how long the value

is stable.

Generally, 〈vτ1
1 ,v

τ2
2 ,v

τ3
3 , · · · 〉 denotes a temporal sequence that starts with value v1,

that is stable for τ1 units of time; after that, the signal transitions into value v2, that is

stable for τ2 units of time; and so on.

Example 2.1 (Temporal Sequence). The temporal sequence denoted 〈15,25,35,45,55〉
is graphically represented in Fig. 2.3, where the time advances from left to right.

1 2 3 4 5

Figura 2.3: Digital signal

Since abrupt changes of values in digital signals are not natural, temporal sequen-

ces use the special value •. It represents values that are uncertain, unstable, or transiti-

onal, therefore lacking functional significance. When a component considers a • value

8

meaningful, the result is unpredictable, resulting in incorrect behavior. It is used to

model transitions between stable values, allowing for more realistic signal modeling.

Example 2.2 (Temporal Sequence with •). The temporal sequence 〈14, •1,24, •1,34, •1,44, •1,55〉
represents the signal of Fig. 2.4.

1 2 3 4 5

Figura 2.4: Digital signal with the transitional value (red line)

The h-calculus uses temporal sequences to describe signals between components si-

milar to the way Kahn networks are formulated around sequences [11], the difference

being that TSs keep temporal information within the model. This temporal informa-

tion is crucial for hardware efficiency analysis, as we are going to see.

2.1.2 Clock Cycles and Registers

Temporal sequences are also able to model clock cycles. Clock cycles are an essential

part of synchronous digital design and a crucial parameter for measuring the efficiency

of hardware architectures. Within one clock cycle, an arbitrary amount of computation

can occur, but for the computation results to be carried on to the next cycle (and not

get lost), they have to be given to a register before the cycle ends.

The register is a unique hardware component with the sole purpose of saving values

from a previous cycle to the next (Fig. 2.5). A clock signal, an 1-bit signal that changes

from 0 to 1 and from 1 to 0 periodically, is directly connected to registers, controlling

when they should and should not forward an input through the next cycle.

in out

clk
0 st c

s = c − st

clk

x a b c

y a b

Figura 2.5: Register signal behavior and cycle dynamics: c is the clock period, st is the
setup time needed for all registers to process their outputs, and s is the stable period
in which all registers outputs are stable and therefore computation can be correctly
performed

Every cycle goes as follows (Fig. 2.6): at the start of the cycle, output signals from

registers carry stable values. These values are then fed to input ports of components

9

which compute new values. These freshly computed values can be fed to other com-

ponents or not; however, they must be fed to a register to be available next cycle (as

the register output). Thus it is crucial that values computed within a cycle get stable

before the cycle ends; otherwise, the register will possibly save a transitional value

instead, resulting in incorrect computation.

clk clk

in outc_out

f

0 st c
s = c − st

2c

clk

in a b c

c_out f (a) f (b)

out f (a) f (b)

Figura 2.6: Clock period and periodic signals

Compared to asynchronous digital design, synchronous design is more straight-

forward, predictable, and commonly used, which is why the h-calculus focuses on

synchronous design.

Synchronous circuitry can perform stateful computations using registers, but only

stateless computation can be performed within one cycle.

The nature of the clock cycle dictates the temporal form of every signal within the

synchronous system. Every signal has the form •stA1 •
stA2 •

stA3 •
stA4 · · · , where every

Ai is a temporal sequence belonging to the ith cycle with total duration s. Because

it would be cumbersome to repeatedly write •st every cycle in every sequence, the h-

calculus omits the setup time, denoting signals asA1A2A3A4 · · · instead. If the real time

value needs to be retrieved from the more succinct definition, it suffices to multiply the

temporal duration by the number c/s.

Example 2.3 (Clock Cycle Signals). (Fig 2.7) If c = 6, s = 5 and st = 1, then the

temporal sequence

〈•1,15, •2,24, •1,35, •2,44, •1,55〉

10

would be denoted succinctly, removing the setup periods, as

〈15, •1,24,35, •1,44,55〉.

0 c 2c 3c 4c 5c

clk

seq 1 2 3 4 5

Figura 2.7: Temporal sequence example

2.1.3 Components and Temporal Session/Sequence Types

Components only work the way we expect when input signals follow a particular valid

pattern; otherwise, the component outputs an undefined signal. The h-calculus captu-

res this concept using types to model particular signal patterns and how components

interact with them. For instance, the small type grammar

S ::= T δS (Sending value of type T for δ units of time)

| •δS (Lack of meaningful value for δ units of time (either noise or transitional values))

| 1 (End of the signal)

, where T is a functional non-recursive type, is enough to model simple hardware

signals and patterns effectively.

This typing scheme can model hardware components and verify if their usage is

correct or incorrect.

Example 2.4 (Modeling an Adder). Depicted in Fig. 2.8, where δi is the arrival time

of input i (for i = 1 or 2), δ+ is the statistical worst-case processing time of the Adder

and s is the duration of the stable period.

Adder

in1 : •δ1Ints−δ11

in2 : •δ2Ints−δ21
out : •max(δ1,δ2)+δ+Ints−(max(δ1,δ2)+δ+)1

Figura 2.8: Adder modeled with types

The Adders’s output would be ready after all the inputs arrive plus the Adder pro-

cessing time. Since the Adder is used to compute inside a cycle, the numerical va-

11

lues (s,δ1,δ2,δ+) must be such that the output value is stable before the cycle ends

(max(δ1,δ2) + δ+ < s).

This typing scheme makes it easy to spot incorrect applications of components be-

fore they are synthesized or even simulated.

Example 2.5 (Verifying applications of components). Fig 10 depicts the examples

above assuming δ+ = 1, the stable period is 5 units of time.

clk

in1 5

in2 6

out 11

in1 5 7

in2 6

out ????

in1 5

in2 6

out

Case 1

Case 2

Case 3

Figura 2.9: Component usage verification

Case 1 If in1 = 〈•352〉 and in2 = 〈•263〉, then input types are in1 : •3Int21 and in2 :
•2Int31, the application is considered correct and the result is out = 〈•3 • 1111〉 typed

out : •4Int11.

Case 2 If in1 = 〈•251 •171〉 and in2 = 〈•263〉, then the input types are in1 : •2Int1 •1Int11

and in2 : •2Int31. The application is then incorrect since in1 does not follow the pattern

accepted by the Adder. In type system terms, that would constitute a type mismatch.

Case 3 If in1 = 〈•451〉 and in2 = 〈•263〉, then input types are in1 : •4Int11 and in2 :
•2Int31. Although the inputs follow the pattern, the result would not be ready before

the clock cycle ends. In formal terms, the constraint max(4,2) + 1 < 5 does not hold,

constituting another type mistmatch.

Furthermore, these types can also model the usage of processes across multiple

executions and spot incorrect usages by correctly extending all the input and output

types through time. This is an essential feature of the h-calculus (that will be explored

12

in detail later this chapter) because it enables the verification and analysis of compo-

nent usage and sharing.

Example 2.6 (Resource Usage Examples). Figures 2.10 and 2.11 show some examples

of usage types for the Adder process.

clk

x x1 x3

y y1 y3

x+ y x1 x3

Figura 2.10: Resource Usage Example

Case 1 (Fig. 2.10) The Adder receives inputs in the first and third cycles but does not

receive anything during the second cycle. This usage leads to correct behavior since

not using components for some periods is valid.

clk

x x1 x2 x3

y y1 y3

x+ y x1 ???? x3

Figura 2.11: Resource Usage Example

Case 2 (Fig. 2.11) In this case, only one input is given to the component during the

second cycle. This usage will result in incorrect behavior since the Adder requires two

input values – or none at all – every time according to its type definition.

Although this typing scheme models "linear"signals well, temporal session types

become powerful when they are extended with type operators — ⊗ (parallelism) and

⊕ (choice, or branching) — inspired by linear logic, and type actions — µx.S [x] (recur-

sion),
−→
T (send message), and

←−
T (receive message). Together, these additions provide

the flexibility needed to accurately model complex temporal protocols, which natu-

rally represent the way hardware modules communicate. Definition 1 shows the com-

plete grammar for TSTs.

13

Definition 1 (Temporal Session Type Grammar)

T ::= Functional (non-recursive) Type

x ::= Channel variable

τ ::= Temporal value (Real number)

` ::= Label

L ::= Finite set of labels

S ::=
−→
T τS | ←−T τS | T τS (Write/Read/Interval value)

| S−→⊕ xS | S
←−⊕ xS

| −→⊕ x{` : S`}`∈L |
←−⊕ x{` : S`}`∈L

| S ⊗ S (Parallelism)

| •τS (Delay)

| µx.S (Recursion)

| 1 (End of Process)

The operations
−→
T τS (write a value) and

←−
T τS (read a value) extend temporal sequences

to model bidirectional channels instead of signals (it is possible to receive and send

data from the same channel). This extension allows temporal session types to describe

more realistic time-based communication protocols among processes.

The already introduced types T τS (internal value) and •τS (transitional value) have

the same meaning as before. The T τS type represents an internal value used as in-

put/output of combinational components — such as logic gates, adders, registers, and

others — that complete their execution within one clock cycle and •τS means the chan-

nel does not currently carry valuable information.

The distinction between an internal value and messages exists for formal reasons:

for the type system to keep being sound (as we are going to explain in full detail in

Section 4) and also to allow multiple components to use the same value at the same

clock cycle.

Operators S−→⊕ xS (internal choice) and S←−⊕ xS (external choice) and their n-ary forms
−→⊕ x{` : S`}`∈L and ←−⊕ x{` : S`}`∈L describe protocol branching based on decisions. Ope-

rationally, the choice operators either send or receive a message containing a decision

from the set of all possible decisions L, which determines the next type of the chan-

nel — for example if a process is interfacing with a channel typed −→⊕ x{` : S`}`∈L and it

receives a message k ∈ L, the type of the channel becomes Sk for every process interac-

14

ting with the channel. The channel identifier x allows the type system to know when

multiple decisions are the same.

Choice operators allow complex temporal protocol modeling. −→⊕ x and←−⊕ x are ins-

pired by the operators ⊕ and &, respectively, from linear logic and session types.

S ⊗ S represents parallel composition of channels inspired by the linear-logic ope-

rator with the same denotation. It allows for multiple channels to be treated as one

single channel. Recursive types µx.S allow for protocol repetition (loops), and type 1

indicates the end of a channel, meaning it will not carry valuable information anymore.

In short, temporal session types are very expressive, and they model complex tem-

poral behavior among communicating processes. Now let us see some examples of

hardware modeling using TSTs.

Example 2.7 (Modeling the clock and combinational processes). Hardware desig-

ners use the clock for time synchronization and state transitions. Because of the clock,

every channel that performs an action A within a cycle follows the general temporal

sequence pattern •τAs−τ · · · , where s is the duration of the stable period, and τ is the

instant, from 0 to s, when the action begins (Fig. 2.12). After the start of an action, it

can only end after the end of the cycle because state transitions cannot occur during

clock cycles. If the action starts right at the beginning of the cycle, then τ = 0 and the

pattern becomes As · · · .

0 τ c c+ τ 2c 2c+ τ 2(c+ τ)

clk

chan Ac−τ Ac−τ Ac−τ

Figura 2.12: Clock and periodic actions

A combinational process gets inputs, computes, and outputs the result within the

same clock period. For example, process Inc, capable of incrementing an integer, has

the channel x as input and the channel y as output, shown in Fig. 2.13a. Channel x is

typed •τ
−−→
Int s−τ · · · and channel y is typed •τ • δinc

−−→
Int s−(τ+δinc) · · · with an additional delay

δinc which is the time Inc takes to compute (see Fig. 2.14). Using Inc only works if

s > τ + δinc.

(a) Without register

Inc
yx

(b) With register

Inc

clk

x y z

Figura 2.13: Different increment process implementations

15

Adder

in1

in2

out

0 τ1 τ2 max(τ1, τ2) + p
= τ2 + p

c

clk

in1 3

in2 4

out 7

Figura 2.16: Adder process behavior

0 τ τ + p c 2c

clk

a)x 3

b)y 4

c)z 4

Figura 2.14: Channels interacting with INC

Let us suppose the result of Inc is fed to another process that needs almost all stable

period s to complete its computation: in this case, perhaps the duration in which the

Inc’s result is stable, c − (τ + δinc), may be too short. The use of a register, as shown in

Fig. 2.13b, solves this problem by delaying the result to the next cycle, when it is ready

right at the beginning (Fig. 2.14). A register is a process with input typed •τ
−→
T s−τ · · ·

and output •s
−→
T s · · · , for any τ < s.

Example 2.8 (Sequential Multiplier). It is also possible to model machines that

take more than one cycle to compute. While the Adder process seen in Example 4

is a combinational process that computes in one cycle, a Multiplier (Fig. 2.15), is an

example of a process that might take more than one cycle to compute dependent on the

implementation. Its inputs are similar to the adder ones, with
−−−→
Int δi instead of Intδi ,

but the output takes 8 cycles to complete. At the 8th cycle, the Multiplier outputs the

result after δ× unit of time.

Multiplier

in1 : •δ1Ints−δ11

in2 : •δ2Ints−δ21
out : •7s • δ×Ints−δ×1

Figura 2.15: Multiplier modeled with TSTs

Example 2.9 (Looping Processes - Sum). The Sum process takes a value as input every

cycle and feeds it to an Adder. The result is stored in a register and fed back to the Adder

16

next cycle. Since the register is initially set to 0, an input sequence 1,2,3,4,5 would

produce a result sequence 1,3,6,10,15. To model the repetitive behavior of Adder with

the type system, we define an infinite type loop using the recursive µ operator, denoted

by an overline S = µx.Sx = SSSS · · · , which means once S ends, it starts again.

According to Fig.2.17, x1 is typed •k
−−→
Int s−k, because the correct value only becomes

stable after k units of time, x2 is typed
−−→
Int s, ready at every start of cycle because it

comes from a register (and starts already with 0), z is typed •k • p
−−→
Int s−(k+δ+) where δ+

is the process time of Adder, and out is typed •s
−−→
Int s (instead of

−−→
Int s, because the first

value equal to 0 shall not be considered part of the result).

Inc

Sum

clk

x1

x2

y out

0 k k + p c c+ k c+ k + p 2c

clk

x2 0 5

x1 5 8

y 5 13

out 5

Figura 2.17: Sum process behavior

Example 2.10 (Arithmetic Logic Unit (ALU) implementation using choice and pa-
rallel operators). An ALU generally performs many different operations, depending

on the value of a control signal. In this example, the ALU performs addition, multiplica-

tion, and nop (no operation). For generality, the operations have different computation

timings and, therefore, temporal types: the addition result gets ready within the same

cycle, while multiplication requires eight cycles to compute (Figs. 2.18 and 2.19).

ALU

choice
x1

x2

x3

Figura 2.18: ALU channel signal decomposition

17

0 k1 k2 k2 + p c 2c 2c+ k1
2c+ k2

3c 10c 11c

clk

choice add nop mul

x1
←−
5

←−
7

x2
←−
4

←−
3

x3
−→
9

−−→
21

Figura 2.19: ALU process behavior

The input and output TSTs for ALU are defined by

SALU = µX.←−⊕{

add :
(
•k1
←−−
Int s−k11

)
⊗
(
•k2
←−−
Int s−k21

)
⊗
(
•max(k1k2) • δ+

−−→
Int s−(max(k1,k2)+δ+)X

)
mul :

(
•k1
←−−
Int s−k11

)
⊗
(
•k2
←−−
Int s−k21

)
⊗
(
•8s
−−→
Int sX

)
nop : •sX

}

The SALU type represents the protocol for correct interaction with the ALU. Any

process that wants to communicate with the ALU needs to interact with this channel

according to its type, or else correct communication is not possible.

The protocol starts with a recursion (µX. · · ·), so that every time the type variable

X is reached it goes back to the beginning. The protocol also uses an external choice

(←−⊕) that defines which operation the ALU must execute, and parallel channels (⊗), used

separately to receive/send data in parallel.

In the case of an add operation, 3 channels must be provided: the first 2 are input

channels, in which a process must provide 2 integers with possibly different arrival

times (k1 and k2), while the third one is the output channel, in which the result is re-

turned after max(k1, k2)+δ+ time units. Note that the first two channels end with 1 while

the third channel ends with X, which means the third channel continues the protocol.

The mul operation works similarly, because it also uses 3 channels, 2 for input and 1

for output, but the result is only ready after 8 cycles. While the computation occurs,

the ALU protocol ignores inputs (this is the meaning of •) and, after 8 cycles, the ALU

outputs the result. If one choses the nop (no operation), the ALU becomes idle for one

cycle. After the ALU computes, is goes back to its initial state, and the protocol never

actually ends.

18

2.2 Type Merge

Sharing wires/channels among more than two components is a basic design pattern in

hardware design that needs to be represented within our temporal session types. TSTs

achieve sharing using the type merge, a simple operation on TSTs used to verify and

analyse connected channels.

When a channel c : S (notation for “channel c has type S”) splits into n subchannels

c1 : S1, c2 : S2, . . . , cn : Sn (Fig. 2.20) we say the split is well defined if S1 × S2 × ...× Sn = S,

where × is the binary merge operation, which either returns a TST or is undefined.

When the merging of two session types is undefined, we say that the two types are not
mergeable, meaning they are not compatible with each other to provide correct channel

behavior. We use “c split into c1, · · ·cn” and “c1, · · ·cn merged into c” interchangeably.

c : T

c1 : T1

c2 : T2

c3 : T3

c4 : T4

...

cn : Tn

Figura 2.20: Channel splitting/merging

The formal definition of merge is shown in Definition 2. Informally, the merge is

well defined if there are no simultaneous writes among the channels (no collisions),

and every time there is a write, at least one of the channels reads the information (no

discarding of useful data). Writes and reads are represented by the types
−−→
Int τ · · · and

←−−
Int τ · · · and the choice operators (−→⊕ x and ←−⊕ x). Furthermore, the parallel operator ⊗
requires all endpoints to spawn subchannels, and the end type 1 is mergeable with any

19

other channel because 1× T = T for all T .

Definition 2 (Type Merge) The type merge operation, denoted ×, is an partial

function that takes two TSTs as input and outputs another TST. Is is defined by

(
−→
T kS1)× (

−→
T kS2) =

−→
T k(S1 × S2) (Multiple reads)

(
−→
T kS1)× (•kS2) =

−→
T k(S1 × S2) (One read)

(•kS1)× (
−→
T kS2) =

−→
T k(S1 × S2)

(
←−
T kS1)× (•kS2) =

←−
T k(S1 × S2) (One write)

(•kS1)× (
←−
T kS2) =

←−
T k(S1 × S2)

(
←−
T kS1)× (

−→
T kS2) =

←−
T k(S1 × S2) (Cross read/write)

(
−→
T kS1)× (

←−
T kS2) =

←−
T k(S1 × S2)

(S11
−→⊕ xS12)× (S21

−→⊕ xS22) = (S11 × S21)−→⊕ x(S12 × S22) (Multiple choice reads)

(S11
−→⊕ xS12)× S2 = (S11 × S2)−→⊕ x(S12 × S2) (One choice read)

S1 × (S21
−→⊕ xS22) = (S1 × S21)−→⊕ x(S1 × S22)

(S11
←−⊕ xS12)× S2 = (S11 × S2)←−⊕ x(S12 × S2) (One choice write)

S1 × (S21
←−⊕ xS22) = (S1 × S21)←−⊕ x(S1 × S22)

(S11
←−⊕ xS12)× (S21

−→⊕ xS22) = (S11 × S21)←−⊕ x(S12 × S22) (Cross choice read/write)

(S11
−→⊕ xS12)× (S21

←−⊕ xS22) = (S11 × S21)←−⊕ x(S12 × S22)

(S11 ⊗ S12)× (S21 ⊗ S22) = (S11 × S21)⊗ (S12 × S22) (Parallel)

(µx.S1)× S2 = S1 [x
/
µx.S1]× S2 (Recursion)

S1 × (µx.S2) = S1 × S2 [x
/
µx.S2]

(•kS1)× (•kS2) = •k(S1 × S2) (Idle)

1× S = S (End of channel)

S × 1 = S

S × S ′ = undefined otherwise

Now we show some examples of channel merging.

Example 2.11 (Channel Merging). Channel c is provided by process Q and used by

process P , consisting of 2 parallel processes, P1 and P2, both with access to c (Fig. 2.21).

For processes Q and P , channel c is typed T , while for P1 and P2, c is typed T1 and T2.

If T1 × T2 = T , the composition is well-typed, otherwise, it is incorrect.

20

Q

P1

P2

c : T

c1 : T1

c2 : T2

Figura 2.21: Channel splitting/merging

ill-typed

clk

T1 read Int write Int

T2 read Int read Int write Int

T1 read Int write Int

T2 read Int write Int

T1(choice) write “read” write “write”

T1(data) read Int write Int

T2(choice) read “read” read “write”

T2(data) read Int

a)

b)

c)

Figura 2.22: Examples of merge

Case I (Correct merging). Say T1 =
−−→
Int 5←−−Int 5 • 51 and T2 =

−−→
Int 5−−→Int 5←−−Int 51 (Fig. 2.22a).

• From 0 to 5: P1 and P2 read an Int from channel

• From 5 to 10: P1 writes an Int and P2 reads it

• From 10 to 15: P1 does not interact with c, while P2 writes an Int to it

In this case, T1 × T2 is well defined because all the 3 moments describe well-behaved si-
tuations. Simultaneous reads are allowed, simultaneous read and write are allowed and
write/read while the other process does not interact with the channel is also allowed. If T
satisfies the constraint T = T1 × T2 =

−−→
Int 5←−−Int 5←−−Int 51, the system is well-typed.

Case II (Conflicting merge). Say T1 =
−−→
Int 5←−−Int 51 and T2 =

−−→
Int 5←−−Int 51 (Fig. 2.22b).

• From 0 to 5: P1 and P2 read an Int from channel

• From 5 to 10: P1 and P2 write an Int in c

21

In this case, T1 and T2 cannot be merged because from 5 to 10, both write at the same time,
which is a violation of correct channel behavior. T1 × T2 = undefined and the system is not
well-typed regardless of the value of T .

Case III (Choice merge). Say T1 =←−⊕ c{read : •1
−−→
Int 41,write : •1

←−−
Int 41}, meaning P1 decides

(internal choice, coming from P1 itself) whether it reads or writes a value. The 1 unit time
delay is for the processes involved to compute the choice. What could be a type T2 so that
both types are mergeable? (Fig. 2.22c).

In this case, it suffices P2 to read the decision made by P1 and act accordingly. A possible
definition of T2 could be −→⊕ c{read : •1

−−→
Int 41,write : •51}, that is, P2 reads the choice made by

P1 (external choice) and acts so that each branch is independently mergeable. In this case,
T = T1 × T2 =←−⊕ c{read : •1

−−→
Int 41,write : •1

←−−
Int 41}, which means that Q also needs to read

P1’s choice, as if it is P ’s choice.
P2 does not necessarily need to read the choice if T2 suits all the possible branches: for

instance, T2 = •51 would satisfy both read and write cases. Also, if the choice were given by
Q instead of P1, both T1 and T2 could read the choice simultaneously.

In summary, the merge operation allows us to verify and analyse the sharing of

channels before any testing or simulation. It is a crucial part of h-calculus since it

enables sharing to be encoded seamlessly within the type rules as we will see in Section

4.

2.3 Untyped Processes

So, we understand that types describe/model hardware component properties, but we

still do not know how to define custom components from simpler ones. In this section

we will explain how untyped temporal processes are built and how they evolve through

time (their semantics).

Definition 3 (Untyped Process Syntax)

x,y,x1,x2 ::= Channel/Protocol variable

r ::= Resource variable

τ ::= Temporal (real) value

k,` ::= Choice variable

a ::= Constant value

L ::= Label

22

f ::= Function

P ,Q ::= Main (P) (Main process definition)

| x← y (Channel forwarding)

| x← P ;Q (Forking/Cut)

| x← r← {Σ;∆};Q (Instance Usage)

| tick τ ;P (Tick)

| clock;P (Clock)

| x← put y;P | y← get x;P (Sending/Receiving messages)

| x.k;P | case x of {`⇒Q`}`∈L (Internal/External Choice)

| P
∥∥∥Q | (x1,x2)← x;P (Parallelism/Channel separation)

| (x→ (x1,x2)) .
(
P

∥∥∥Q)
(Parallelism with internal channels)

| L : P (Recursion - Label Loop)

| end x (End of Process)

| Sig (τ,x← a) (Signal Process)

| Comb (f ,τ,y← (x1,x2, · · · ,xn)) (Combinational Process)

| Reg (y← x) (Register Process)

While the grammar is a syntactic description of untyped processes, their semantics
describes their meaning. Their operational semantics is defined using the partial func-

tion 7−→, which relates the current state of the system to its next state, representing

how processes evolve with time. We will discuss the complete, formal, definition of

the semantics in Section 4.

2.4 Processes Types

Channel types, as the name suggests, describes how channels behave. However, hard-

ware components interact with many channels simultaneously, which is why their ty-

pes are more complex. The mathematical construct that describes the behavior of pro-

cesses, and therefore the process type is a type sequent.
After the type checking phase, every well-typed process P is attributed a type sequent

that tells us the type of P , which includes the types of its channels and resources.

Definition 4 (Process Sequent) A sequent has the form

23

Σ;∆ c,s
k,t
P :: (x : A),

where Σ is a resource context containing all resources P must have access to in

order to function correctly, ∆ is a channel context with the channels P interacts

with, and x : A is the channel provided by P (note that every process has only

one provided channel). c, s, k, and t are numbers representing the clock period,

the useful cycle duration, the current clock cycle count, and the current instant

(from 0 to s), respectively. Two graphical representations for the sequent, one

more complete (a) and another more simplified (b), are shown in Fig. 2.23.

r1

r2

r3

r4 rm

· · ·

Σ

P

∆

clk

x : A

c1

c2

c3

c4
...

cn

(a) Complete

Σ

P
∆ x : A

(b) Simplified

Figura 2.23: Graphical representations of a well-typed process

A channel context ∆ = c1 : S1, · · · , cn : Sn is a set of channel typing judgements while

the resource context Σ = r1 : R1, · · · , rm : Rm is a set of resource typing judgements.

Resource types are different from channel types as we are going to see.

When a process P with sequent Σ;∆ c,s
k,t

P :: (x : A) is instantiated, or used, by a

parent process, the parent needs to provide all of the resources in Σ and channels in

∆, which means the parent process contains at least the entire Σ and ∆ within its own

channel and resource contexts respectively. The consequence of this is that the highest

level process, the one that defines the entire system, will have inside its contexts all

channels and resources of the entire system, along with their informative types, which

is very useful for analysis and optimization.

24

2.5 Processes as resources

The definition of a process and its sequent provides us with insights on how a process

operates internally, what is required for it to compute properly and what kind of in-

formation its channels carry. However, it does not tell us how processes are used, as

resources, by other higher-level processes.

A process definition is a template from which process instances are created. Multiple

different instances (sometimes even running in parallel) are linked to the same process

definition. For higher-level processes, an instance of process is a resource, an object that

can be used and shared by other processes.

Every well-typed process definition Σ;∆ s,c
k,t

P :: (x : A) has a resource context Σ,

which is the set of all resources required for the process to compute correctly. Each

one of the objects r : R in Σ has, along with its name r, a resource type R which tells us

how the higher-level process P interacts with r.

Definition 5 (Resource Types) Resource types are triples (Σext;∆ext;Aext), where

Σext and ∆ext are resource and channel context that must be provided for the

resource to compute correctly, and Aext is a temporal session type.

Not coincidentally, a resource type contains the same three objects represented in a

typed process definition. Process definitions can be interpreted as resources used only

once, and resources can be interpreted as process definitions used generally more than

once.

Although process definitions and resource types carry the same kind of informa-

tion, resource types generally carry more information. The difference is that Σext, ∆ext

and Aext are temporally extended versions of Σ, ∆ and A respectively, containing in-

formation about many executions, instead of just one — which is formally defined by

Def. 6. While Σ;∆ s,c
k,t

P :: (x : A) models one full computation from start to finish,

p : (Σext;∆ext; (xext : Aext)) models what happens before, during and after full com-

putations, until p stops being used by the parent process. Another way of looking

at it is that resource types model the idle time and computation time, while process

definitions only model computation time.

Resource types and process definitions consisting of similar parts is convenient, as

they can be interpreted interchangeably. For example, a process Σ;∆ s,c
k,t
P :: (x : A) can

be seen as a resource typed (Σ;∆; (x : A)) that is used only once and a resource typed

(Σext;∆ext; (xext : Aext)) can be interpreted as a process Σext;∆ext s,c
k,t
P ′ :: (xext : Aext)

with longer computation (as if idle time is considered computation time). This allows

25

instance types to be extended more than once, which is a simple way to model the way

instances are used by processes higher and higher in the hierarchy.

Example 2.12 (Resource Type). (Fig. 2.24) Consider that process P uses resource r

three times per execution and processQ uses an instance of P two times per execution.

Both P and Q contain r within their resource contexts, but with different types: in P ,

r has the resource type of being used 3 times, while in Q it has a more detailed type

representing six uses, because it is extended even further. This way, the use of r can be

traced to the highest-level process, which contains all of the system’s resources, along

information on how each one is used over time (very useful information for global

hardware analysis and optimization).

P using r

Q using p

Q using r

Figura 2.24: Example of resource type extension

Definition 6 (Resource Type Extension) A resource p : (Σp;∆p; (xp : Ap)) mo-

dels a process Σ;∆ s,c
k,t

P :: (x : A) if and only if ext((Σ;∆;A)), (Σp;∆p;Ap))

holds, meaning the usage of p does not contradict the type of P .

ext and its auxiliary definitions extΣ, extΣ, and extc are defined as

26

•ext((Σp;∆p;Ap), (Σr ;∆r ;Ar)) ⇐⇒ extΣ(Σp,Σr) and ext∆(∆p,∆r) and extc(Ap,Ar)

•extΣ(Σp,Σr) ⇐⇒ ∀ρ.(if (ρ : (Σ1;∆1;A1)) ∈ Σp and (ρ : (Σ2;∆2;A2)) ∈ Σrthen

extΣ(Σ1,Σ2) and ext∆(∆1,∆2) and extc(A1,A2))

•ext∆(∆p,∆r) ⇐⇒ ∀c.(if (x : A1) ∈ ∆p and (x : A2) ∈ ∆r then extc(A1,A2))

•extc(p,r) ⇐⇒ case (p,r) of

(A · 1,A ·B)→ extc(A · 1,B)

(A, •τB)→ extc(A,B)

(A,µx.B)→ extc(A,B [x
/
µx.B])

(A,←→⊗ c{B`}`∈L)→∀` ∈ L.(extc(A,B`))

(←→⊗ c{A`}`∈L,
←→⊗ c{B`}`∈L)→∀` ∈ L.(extc(A`,B`))

(A1 ⊗A2,B1 ⊗B2)→ extc(A1,B1) and extc(A2,B2)

(A,1)→ true

otherwise→ false

where←→⊗ c matches both −→⊗ c and←−⊗ c.

Example 2.13 (Examples of resource types). Let us say that the process Q is types as

−;x :
−→
A s1 s,c

k,0
Q :: (y : •s • s

−→
B s1)

0 s 2s 3s 4s 5s 6s 8s 10s

Q[x]
−→
A

Q[y]
−→
B

q[x]
−→
A

−→
A

q[y]
−→
B

−→
B

c F T F T

q[x]
−→
A

−→
A

q[y]
−→
B

−→
B

a)

b)

Figura 2.25: Example waveforms (a) Case IV (b) Case V

Case IV (Infinite usage (Fig. 2.25a)). Possible correct types for extended x and y and an
instance q could be (where µx.T is the recursive, or loop, operator)

x :
−→
A s • s • s

−→
A s • s • s

−→
A s • s • s

−→
A s • s • s · · · = µL.(

−→
A s • s • sL)

27

y : •s • s
−→
B s • s • s

−→
B s • s • s

−→
B s • s • s

−→
B s · · · = µL.(•s • s−→B sL)

q :
(
−;x : µL.(

−→
A s • s • sL);y : µL.(•s • s

−→
B sL)

)
Case V (Conditional usage (Fig. 2.25b)). Another possibility including a choice (external
or internal) c (with the branches written vertically for better visualization) could be

x : µL.⊕c


−→
A s • s • sL, if c is T

•sL, if c is F
y : µL.⊕c

•
s • s
−→
B sL, if c is T

•sL, if c is F

With resulting resource type

q :
(
−;x : µL.((

−→
A s • s • sL)⊕c (•sL));y : µL.((•s • s

−→
B sL)⊕c (•sL))

)
.

Bear in mind that if the choice c were not the same for x and y or if one of the clauses
were flipped (T case with answer for F and vice versa), the system would not be well typed.

2.6 Resource Sharing

If P has access to channel c : S and spawns two children processes in parallel P1 and P2,

we saw in Section 2.2 that both would have access to c, but with different types S1 and

S2 such that S1 × S2 = S. A very similar thing happens with resources: if P has access

to resource r : R, both P1 and P2 will have access to it, but with different resource types

R1 and R2 such that R1 ×R2 = R, where the operator × denotes, in this case, resource

type merge. The formal definition of resource merging involves channel type, channel

context, and resource context merging (Definition 7).

Definition 7 (Resource Merge)

(Σ1;∆1;A1)× (Σ2;∆2;A2) = (Σ1 ×Σ2;∆1 ×∆2;A1 ×A2)

28

Definition 8 (Channel context merge)

(c : S1,∆1)× (c : S2,∆2) = c : S1 × S2, (∆1 ×∆2)

(c : S1,∆1)×∆2 = c : S1, (∆1 ×∆2)

∆1 × (c : S2,∆2) = c : S2, (∆1 ×∆2)

∆1 ×− = ∆1

−×∆2 = ∆2

Definition 9 (Resource context merge)

(r : R1,Σ1)× (r : R2,Σ2) = r : R1 ×R2, (Σ1 ×Σ2)

(r : R1,Σ1)×Σ2 = r : R1, (Σ1 ×Σ2)

Σ1 × (r : R2,Σ2) = r : R2, (Σ1 ×Σ2)

Σ1 ×− = Σ1

−×Σ2 = Σ2

Merging of resources (and channels) is used to define correct resource sharing

among processes. Fig. 2.26 depicts what sharing a resource looks like: resource r,

contained in both Σ1 and Σ2, has its input channels ∆r (in this case only 2 channels)

split into ∆r1 and ∆r2, such that ∆r1 ×∆
r
2 = ∆r (context channel merge) and its resulting

channel xr : Ar split into x1 : Ar1 and x2 : Ar2, such that Ar1 ×A
r
2 = Ar (channel merge).

The resource requirements Σr are similarly provided by both P1 and P2, split into Σr1

and Σr2, such that Σr1 ×Σ
r
2 = Σr (resource context merge).

This definition of resource merge enables very expressive modeling of correct re-

source sharing among parallel processes. It allows processes to interact "incomple-

tely"with resources, not providing all resource and channel requirements, as long as

other processes complete the interaction using their channels and resources. Using

resource merge, we can correctly share all kinds of resources, including processes with

endless execution, registers, and combinational processes.

Example 2.14 (Shared SUM process). The SUM process receives a number input each

cycle and adds it to an accumulator, whose value is also the output of the next cycle.

Since the initial value of the accumulator is 0, a sequence of inputs 1,2,3,4,5 would

29

r

r1

r2

r3

r4
Σr

P1

r1 r3

r
Σ1

z1 : B1
∆1

P2

r2 r4 r Σ2

z2 : B2
∆2

x : Ar

x : Ar1

x : Ar2

∆r

∆r1

∆r2

clk

clk

clk

Figura 2.26: Graphical explanation of a resource sharing

30

produce a sequence •,1,3,6,10,15 of results. A possible type for SUM is

(Add : · · ·) ;
(
x :
−−→
Int s

)
s,c
k,0

SUM ::
(
z : •s
−−→
Int s

)
.

In this example, the SUM process is shared (correctly) among processes P andQ (Fig.

2.27). For P , the resource sumof SUM has type

sum :
(
(Add : · · ·) ;

(
x :
−−→
Int s • s

)
;
(
z : •s
−−→
Int

))
,

that is, P sends a number to sum every 2 cycles instead of every cycle, which is less

than required by SUM for it to compute correctly. This is an example of incomplete, or

partial, instantiation of process.

While only P does not completely satisfy SUM, the interactions of P combined with

the interactions of Q do. For Q, sum has type

sum :
(
(Add : · · ·) ;

(
x : •s
−−→
Int s

)
;
(
z : •s
−−→
Int s

))
,

meaning Q sends a number to sum every cycle P does not, therefore completely sa-

tisfying the requirements of SUM.

Even though P and Q do not provide the complete requirements of SUM separately,

both can interact with the resulting channel z completely, as if they had provided all

the requirements (for example, if P provided all the input channels and resources

while Q did not provide anything, Q would still be able to read z thoroughly).

Both P and Q do not "know"that sum is shared. If only one of them interacted

with it, instead of both, the system would not type-check. The reason their combined

interactions do type check is because the types of sum in P and Q merged is a correct

instance of the process type of SUM:

(
(Add : · · ·) ;

(
x :
−−→
Int s • s

)
;
(
z : •s
−−→
Int s

))
×
(
(Add : · · ·) ;

(
x : •s
−−→
Int s

)
;
(
z : •s
−−→
Int s

))
=

(
(Add : · · ·) ;

(
x :
−−→
Int s

)
;
(
z : •s
−−→
Int s

))

31

SUMP Q

Figura 2.27: Sharing SUM process example

Example 2.15 (Sharing registers). An ALU process is capable of executing three ope-

rations, increment (plus 1), negate (multiply by −1) and forward (forwarding the input

to the output). Each operation is performed by a different resource within the ALU, as

shown in Fig. 2.28a. The INC and NEG resources have a similar layout composed of a

combinational part (Cinc and Cneg) followed by a register (Rinc and Rneg), the FWD also

has a register, but it does not have a combinational part.

The type of the ALU is (using the vertical notation of ⊕)

Σalu;

c : µL.−→⊕ c


inc : •τ

−−→
Int s−τL,

neg : •τ
−−→
Int s−τL,

fwd : •τ
−−→
Int s−τL

 s,c
k,0

ALU ::

d : µL.−→⊕ c


inc : •s

−−→
Int sL,

neg : •s
−−→
Int sL,

fwd : •s
−−→
Int sL


where Σalu contains, among other things, the resources INC, NEG and FWD, each typed

Cinc : · · · ,Rinc : · · · ;

ininc : µL.−→⊕ c


inc : •τ

−−→
Int s−τL,

neg : •sL,

fwd : •sL

 s,c
t
INC ::

outinc : µL.−→⊕ c


inc : •s

−−→
Int sL,

neg : •sL,

fwd : •sL

 ,

Cneg : · · · ,Rneg : · · · ;

inneg : µL.−→⊕ c


inc : •sL,

neg : •τ
−−→
Int s−τL,

fwd : •sL

 s,c
t
NEG ::

outneg : µL.−→⊕ c


inc : •sL,

neg : •s
−−→
Int sL,

fwd : •cL

 , and

Rfwd : · · · ;

infwd : µL.−→⊕ c


inc : •sL,

neg : •sL,

fwd : •τ
−−→
Int s−τL,

 s,c
t
FWD ::

outfwd : µL.−→⊕ c


inc : •sL,

neg : •sL,

fwd : •s
−−→
Int sL

 .
All of these resources read the choice c, which is the input of ALU, and then either

compute if the choice was the right one or stay idle (represented by •s).

More importantly, we know, from the types, that when one of the resources (INC,

NEG or FWD) is being used, the other ones are idle, which means there may be potential

for resource sharing. INC, NEG or FWD use a register resource (Reginc, Regneg and Regfwd),

provided by the ALU process. Below are the types of the three registers inside Σalu:

32

Reginc :

−;

a : µL.−→⊕ c


inc : •τ+p−−→Int s−(τ+p)L,

neg : •sL,

fwd : •sL

 ;

b : µL.−→⊕ c


inc : •s

−−→
Int sL,

neg : •sL,

fwd : •sL




Regneg :

−;

a : µL.−→⊕ c


inc : •sL,

neg : •τ+p−−→Int s−(τ+p)L,

fwd : •sL

 ;

b : µL.−→⊕ c


inc : •sL,

neg : •s
−−→
Int sL,

fwd : •sL




Regf wd :

−;

a : µL.−→⊕ c


inc : •sL,

neg : •sL,

fwd : •τ+p−−→Int s−(τ+p)L

 ;

b : µL.−→⊕ c


inc : •sL,

neg : •sL,

fwd : •s
−−→
Int sL


 .

These types show that when one register is used, the other 2 are not, which means

that sharing can take place correctly. Now that we know Regs can be shared, we sligh-

tly transform our ALU process, defining only one register named Regshared, instead of

three, with type equals to the types of Reginc, Regneg and Regfwd merged and using it to

instantiate all INC, NEG and FWD resources. Regshared is a busy register that works every

cycle. Fig. 2.28b shows the optimized version of the circuit.

Regshared :

−;

a : µL.−→⊕ c


inc : •τ+p−−→Int s−(τ+p)L,

neg : •τ+p−−→Int s−(τ+p)L,

fwd : •τ+p−−→Int s−(τ+p)L

 ;

b : µL.−→⊕ c


inc : •s

−−→
Int sL,

neg : •s
−−→
Int sL,

fwd : •s
−−→
Int sL


 .

2.7 Type rules and Properties

We know that every well-typed process has a type definition Σ;∆ s,c
k,t
P :: (x : A), but we

still do not know how to construct it. Every well-typed process P is built according to

type rules.
We explain type rules in the next Chapter 3, and the specific rules of the h-calculus

are explained in Chapter 4.

For now, it suffices to say type rules and semantic rules are harmoniously related

to each other in a way that type preservation and global progress hold. These properties

ensure the type system is valuable and safe to use as a metric for correctness.

Next Chapter 3 will summarize all of the background knowledge required to un-

derstand the h-calculus, including type systems.

33

(a) Unoptimized (without sharing)

Cneg

Cinc

Control

NEG

INC

FWD

ALU

dc

(b) Optimized (with sharing)

Cneg

Cinc

Control

NEG

INC

FWD

ALU

dc

Figura 2.28: Graphical representation of the ALU process

34

Capítulo 3

Background

In this chapter, we will introduce type systems and explain the advantages of using

them in the context of hardware systems. Furthermore, we will understand process

calculi and other models of computation used for hardware modeling and compare

them to the h-calculus.

To understand the usefulness of type systems, we will first use the Untyped Lambda

Calculus (ULC), an untyped computational system, as a driving example.

3.1 Type Systems and the Lambda-Calculus

3.1.1 Untyped Lambda Calculus

The λ-calculus is a universal model of computation invented by Alonzo Church in the

1930s used to research the foundations of mathematics. It is attractive for formal rea-

soning because of its simple definitions and semantics, but it is also used in practical

programming, as proven by multiple functional programming languages based on it.

35

The ULC grammar comprises variables, application, abstraction, and reduction ru-

les τ-conversion, for avoiding naming collisions, and β-reduction, representing com-

putation.

Definition 10 (ULC syntax)

M,N ::= x (Variables)

| c (Constant)

| λx.M (Abstraction/Function)

| MN (Application)

Definition 11 (ULC reduction) ConsideringM [x] a termM containing a variable

x in its body, and M [a/x] the same term M with all instances of x replaced by a.

(λx.M [x])
α−→ (λy.M [y]) (α-conversion)

(λx.M)a
β
−→M [a/x] (β-reduction)

with a either a variable or constant

Allowing integer constants (· · · ,−1,0,1,2, · · ·), boolean constants (true, false) and

36

some operations such as + and ×, it is straightforward to write all sorts of useful func-

tions using the ULC:

Example 3.1 (ULC examples).

a) ((λx.λy.x+ y)5)4 Applying an adder to two arguments
β
−→ (λy.5 + y)4
β
−→ 5 + 4 = 9

b) (λx.x+ 5)true
β
−→ error? Applying wrong type to function

c) (λx.xx)(λx.xx) Unsolvable term
β
−→ (xx) [x

/
(λx.xx)]

subst−→ (λx.xx)(λx.xx)
β
−→ ·· ·

Although very expressive, the λ-calculus enables the construction of unwanted

terms. For instance, there is no mechanism preventing the construction of terms

such as (λx.x + 5)true (1b), that would result in undefined behavior; and terms like

(λx.xx)(λx.xx) (1c), that do not terminate. In summary, no mechanism enforces a no-

tion of correctness.

3.1.2 Simply Typed Lambda Calculus

The introduction of a type system solves this issue using a set of construction rules

called typing rules. Valid terms are constructed through typing rules, while invalid

terms cannot be derived from them. Of course, the definition of valid term depends on

the specific type system.

A type scheme that restricts the construction of 1b and 1c terms is the Simply Typed
Lambda Calculus (STLC). The STLC uses a simple type grammar (Def. 12) and only

37

changes the ULC syntax by adding a type to variables.

Definition 12 (STLC syntax) The set of STLC types τ and terms M,N are given

by

τ ::= A | τ→ τ

M,N ::= x (Variables)

| λx : τ.M (Abstraction/Function)

| MN (Application)

where A is a built in type — such as Int or Bool — and τ → τ is called a function
type.

Type sequents are objects that tell us the type of a term, given a context type Γ .

Definition 13 (STLC Sequent) The STLC sequent types follow the structure

Γ M : τ

where Γ = x1 : τ1,x2 : τ2, · · · ,xn : τn is a context — a multiset containing judgements

of form xi : τi , where xi are variable terms and τi are types. Type sequents can be

read as "M is typed τ given the context Γ ".

Typing rules are the construction rules that allow the building of complex sequents

from simpler ones. Typing rules follow the structure

Premise1,Premise2, · · · ,Premisen
Rule Identifier

Conclusion

where a rule may have more than one antecedent but only one result. If all antece-

dents are valid (i.e., they can be constructed through type rules), the type rule can be

applied. Antecedents and results are, in most cases, type sequents (from Def. 13), but

they may also be other judgements.

Definition 14 (STLC typing rules) The set of STLC’s typing rules (with τ and σ

being types):

Var
Γ ,x : τ x : τ

38

n ∈ Z
Cte(Int)

Γ n : Int

Γ x : Int Γ y : Int
Add

Γ x+ y : Int

Γ ,x : τ y : σ
Abs

Γ (λ(x : τ).y) : τ→ σ

Γ f : τ→ σ Γ x : τ
App

Γ f x : σ

Rule Var states that if we know x : τ from the context, then we can conclude, trivi-

ally, that x : τ . Rule Cte(Int) gives the type Int to any integer constant (as long as it

really s an integer) and Add implements type safe addition on integers.

Rule Abs types abstractions by constructing the functional type τ → σ , that repre-

sents a function that takes an τ as input and outputs a σ , as long as the variable is

typed τ and the body of the function is typed σ . The App rule enforces functions typed

τ→ σ to only be applied if the input term is typed τ , typing the application σ as result.

The power of type rules rely on derivation trees. Derivation trees allow more com-

plex terms to be derived from the simpler rules.

Example 3.2 (Derivation tree for STLC). The derivation tree

Var
x : Int x : Int

Cte(Int)
5 : Int

Add
x : Int (5 + x) : Int

Abs
(λx : Int.5 + x) : Int→ Int

Cte(Int)
4 : Int

App
(λx : Int.5 + x)4 : Int

proves that (λx.5 + x)4 is of type Int, independently of the context.

3.1.3 Discussion on Type Systems

Type systems bring correctness in exchange for expressiveness. The STLC (without

recursive types) is less expressive than the ULC. In the case of STLC, although its type

39

system prevents unwanted terms (such as for example 1b and 1c) from being valid, it

comes with the cost of considering some wanted terms invalid.

For example, an identity function λx : τ.x, that outputs its own input, is not par-

ticularly problematic as examples 1b and 1c. To be typed within the STLC, however,

the type τ must be specified before an application. For example, if we set τ as Int, the

identity function (λx : Int.x) will accept Ints but will not accept Booleans although,

semantically, there would be no issues with the function. For the identity function to

work on any type, the type-system needs to allow type polymorphism.

Since type systems trade expressiveness for correctness, it is responsibility of the

type system designer to choose how much and what kind of expressiveness they want

to trade for correctness, and to define what does "correct"mean in the context of the

target application.

For instance, if a polymorphic function like λx.x is important for the application,

one could use a System F [12] type system instead of STLC, if types need to be more

expressive to describe types such as a vector of length 5 (Vector 5) or a 3-by-3 matrix

(Matrix 3 3) (or types even more complex), a dependent type system could be used [13].

Each type system comes with its own expressiveness/correctness ratios, differences

and tradeoffs, which is why there are so many different type systems for the λ-calculus

alone.

3.2 Hardware Models of Computation

When it comes to models of computation used in current HLS, a critique is that they are

easy to construct but hard to verify and analyze. For most of the models, verification

is challenging, and analysis is overlooked. In this sense, it becomes clear that a type

system specially crafted for hardware design is a promising approach to solving many

of the problems related to HLS.

A more detailed analysis of hardware models of computation will be provided in

Chapter 6. In this chapter, we will only briefly characterize the general trends among

models.

HLS is very commonly built around Dataflow models [5, 6, 7, 8, 9, 4, 10, 1, 2, 3,

4]. The Dataflow model [11] is a graphical-based concurrent model of computation.

While expressive, Dataflow are generally difficult to verify and analyse, which is why

different kinds of Dataflow introduce rules to make it more verifiable and analyzable,

at expense of expressiveness, similar to the relationship between untyped and typed

lambda calculi.

40

Although some Dataflow models — such as Boolean Parametric Dataflow (BPDF)

[14], Scenario-Aware Dataflow (SADF) [15, 16], Schedulable Parametric Dataflow (SPDF)

[17], and Variable-Rate Dataflow (VRDF) [18] — seriously attempt to solve the verifi-

cation and analysis problem Control Dataflow Graphs [19], the most commonly used

model in HLS, do not provide reliable mechanisms of both verification and analysis.

As stated in the Chapter 1, we conjecture this is part of the reason why HLS has diffi-

culty producing efficient results.

That being said, even the Dataflow models that solve verification and analysis have

its caveats. From being a graph-based model, dataflow verification is computationally

expensive for large systems and analysis is not as rich as we would want for hardware

design space exploration. In face of these limitations, hardware-specific type systems

still seem like a good idea.

Even if type systems seem to fit hardware design well, λ-calculi do not. The pro-

blem with λ-calculi is that they do not natively model concepts such as time, expli-

cit parallelism, concurrency, communication, resource usage, channels, and others,

crucial for efficient hardware modeling. Although it is possible to describe hardware

with abstractions and applications, the long distance between functions and hardware

would ultimately lead to inefficient modeling.

3.3 Session Types and Process Calculi

Among all candidate hardware representations, Session Typed Process Calculi stand out

because they apply type system solutions to the context of concurrent processes.

The basic idea behind Session Types (ST) is to model concurrent processes using ty-

pes, similar to how functional types are used, in Section 3.1, to model functions. They

were first introduced in [20], to model the interaction between two communicating

processes. Since then, as research evolved, different implementations were defined for

different purposes, extending the original idea and expanding the use cases.

During the same time Session Types started to be researched, another research topic

was the computational interpretation of linear logic [21, 22]. Notably, [23] described

an isomorphism — a correspondence between linear logic and session types —, that

connected both theories.

The particular ST implementation resulting from this particular isomorphism is

exceptionally concise and expressive, using Intuitionistic Linear Logic (ILL) operators

in a computational (e.g., ⊗, ⊕, &,(, and 1), instead of proof-theoretical, setting.

41

Now we will describe basic session types as described in [24, 25, 26] (Def. 15).

Definition 15 (Basic Session Types) The set of Session Types A,B,Ai is given by

A,B,Ai ::= A⊗B | A(B | ⊕{Ai} | & {Ai} | 1.

In this computational interpretation of linear logic, linear logic operators represent

a communication protocol. The multiplicative operators — the dual operations ⊗ and

(— represent a higher-order message passing (sending or receiving) or parallel com-

position; the additive connectors — the duo ⊕ and & — represent internal and external

choice respectively; and the multiplicative truth — 1 — is the end of the protocol.

This small syntax, plus recursion, is expressive enough to model complex commu-

nication protocols.

Example 3.3Basic Session Types Usage Examples. Session Type examples from [24,

25, 26]:

Case VI (Sequence of Bits). An infinite sequence of bits could be modeled with internal
choice and recursion

bits = ⊕{zero : bits,one : bits, end : 1}

And if sequences are finite, an end choice can be added

bits = ⊕{zero : bits,one : bits, end : 1}

.

Case VII (List of Integers). We can use a similar pattern to model a list of integers (or any
other datatype):

List = ⊕{head : Int⊗List, end : 1}

where the head of the list contains Int⊗List, meaning a user will receive (⊗) an integer and
an updated List, with the next values.

Case VIII (Sum Process). Session types can model channels from concurrent processes very
well. For instance, a Sum process adds every input it receives until a getV al signal is
received. The user sends integers using(and receives the updated Sum as a result.

Sum = ⊕{add : Int(Sum,getV al : Int}

42

Case IX (Stack). We can also express protocols that require bidirectional flow of informa-
tion. A stack, for example, would wait for an external choice (&) to either get or put a value
from memory, but if get is chosen a value may or may not be available, which is modeled
with an internal choice (⊕).

Stack = & {put : Int(Stack,get : ⊕{empty : 1,val : Int⊗ Stack}}

If put is chosen, a user needs to send (() an integer to receive the updated Stack back, if
get is chosen and the stack is not empty, an integer is sent (×) to the user together with the
updated Stack.

3.4 Session Types for Hardware

Although classic STs seem to be closer to hardware designs than λ-calculi, they still

lack accurate representations of concepts crucial for efficient hardware modeling, the

most important of them being time.

Many concurrent models of computation model time [27, 28, 29, 30, 31, 32, 33, 34,

35, 24], but few of them combine it with ease of verification and analysis. Further-

more, most concurrent computational models, including STs, focus on distributed sys-
tems, meaning we need to tweak some details to enable accurate modeling of hardware

architectures, which are local systems. For instance, system-wide synchronous time,

resource sharing among components without trust issues, and determinism are noti-

ons that efficient hardware architectures rely on, but are hardly used in distributed

environments.

The h-calculus combines temporal sequences, session types, process calculi, and

synchronous time models to meet all of the requirements for efficient hardware mode-

ling.

43

Capítulo 4

Semantics, Type Rules and Properties

In this section, we will show and explain formal definitions related to the h-calculus

more formally. It will include definitions of its semantics, type system, and properties.

4.1 Operational Semantics

Before describing semantics it is important to define process equivalence. Processes

constructed differently (according to 3) may be equivalent at the definition level. This

equivalence definition describes that:

• time is fungible, so two ticks are the same as one longer tick; and that

• between time passage (ticks), the order of the actions do not matter since they

occur, in fact, simultaneously.

Definition 16 (Process Definitional Equivalence) Process definitional equiva-

lence is a relation P
def
≈ Q on process terms constructed from Def. 3. P

def
≈ Q holds

in the following cases:

• tick τ1;tick τ2;P ′
def
≈ tick (τ1 + τ2) ;Q′ (Time is fungible)

if P ′
def
≈ Q′

• a1;a2;tick τ ;P ′
def
≈ a2;a1;tick τ ;Q′ (Order between ticks does not matter)

if P ′
def
≈ Q′ and (a1, a2 , tick t for any t)

Stating that P
def
≈ Q means that P and Q can be used interchangeably, within both

type rules and operational semantic rules — P and Q will have the same type scheme

44

and will reduce to the same operational semantic result (more about this later this

chapter). It is also helpful to define an equivalence set that describes all processes that

are equivalent to each other.

Definition 17 (Process Equivalence Set) A equivalence set {P1, P2, · · · , Pn} is a set

of processes where for every i and j ∈ [1,n], Pi
def
≈ Pj . We refer as "the equivalence

set of P "an equivalence set P (P) in which P ∈ P (P).

The operational semantics describes how the system, composed of multiple concur-

rent components, evolves through time and interacts with the outside environment.

The h-calculus’ operational semantics maps the current state to the next state, where

a configuration represents the state.

Definition 18 (Configuration) A configuration is a structure that describes com-

pletely the state of the hardware system at a given moment. It is defined as

c ::= Channel/Protocol variable

r ::= Resource variable

τ ::= Real number

P ::= Process term

C ::= Main (P) (Main process definition)

| Closed { C } (Closed configuration)

| C,env (τ,τ,τ,τ) (Environment values)

| C,proc
(
r
∣∣∣ P ∣∣∣ c) (Resource executing process)

| C,idle (r) (Idle resource)

Configurations model many hardware concepts such as time, clock, resource usage

and sharing, execution of processes, communication through channels, and others.

The semantic object:

• env (c, s, t,k) describes the temporal parameters of the configuration — c for clock

period duration, s for the duration of the stable period, t for the time passed from

the start of the current stable period until the present moment (from 0 to s), and

k representing the number of complete clock periods already elapsed,

• idle (r) represents a component not being used at the current moment

45

• proc
(
r
∣∣∣ P ∣∣∣ c) describes a component r being executed as process P , providing

channel c as output,

• Main (P) represents the top-level process P , which is how all configurations start

• Closed { C } is a configuration that is closed in the sense that all internal channels

are completely connected and the only channels available externally are, in fact,

the inputs and output of the entire system.

Similar to untyped process syntax, not every configuration has semantic meaning

or is correct (for instance, Closed { Closed { C } } makes no sense), but this is solved by

the semantic and type rules that will not possibly construct such configurations.

A helper definition is configuration containment (Def. 19), indicating whether a

semantic object is or is not inside a configuration.

Definition 19 (Configuration Containment) We say o ∈ C, where o is a semantic

object, if

• C = C′, o for any C′, or

• C = Closed { C′, o } for any C′.

Definition 20 (Operational Semantics) We define the operational semantics as

rewriting rules from configuration to configuration. Every rule has the form

Ant
[
~x
]
−→ Conseq

[
~x
]

, where Ant is a pattern and Conseq is the resulting configuration in case Ant mat-

ches. Both Ant and Conseq are configurations defined using a set of parameters

~x.

If the a current configuration C matches Ant
[
~x
]
, then the result of the match

is a binding set of form ~x B ~a, where ~a are values inside C. The result of the

operational step is then Conseq
[
~a
/
~x
]
, representing the same Conseq but with the

parameters replaced by current values from C.

Since operational semantics based on multiset rewriting rules are well described

by several publications [36], we will focus on the peculiar aspects of the h-calculus

operational semantics. For instance, we allow Ant
[
~x
]

and Conseq
[
~x
]

to be, apart from

all of the semantic objects (idle (r), proc
(
r
∣∣∣ P ∣∣∣ c), Main (P) and Closed { C }) that match

46

themselves, the especial structure

[Ci]∀i∈[1,n]

which is a pattern that matches multiple semantic objects at the same time. This

pattern is crucial for the h-calculus because it allows for semantic rules to model

hardware-like signals sent to more than one process simultaneously.

Furthermore it is important to note that pattern matching is valid up to process

equivalence (Def. 16), meaning if proc
(
r
∣∣∣ P ∣∣∣ c) ∈ Ant[~x], then any proc

(
r
∣∣∣ P ′ ∣∣∣ c) with

P ′ ∈ P (P) (Def. 17) would match correctly.

Because most of the h-calculus’ semantic rules apply to Closed configurations, we

define the helper notation
Closed−−−−−→ (Def. 21) for better visualization. All h-calculus se-

mantic rules are defined in Def. 22

Definition 21 (Closed Step)

C Closed−−−−−→ C′ def= Closed { C } −→ Closed
{
C′

}

Definition 22 (H-Calculus’ Operational Semantic Rules)

(Main) Main (P [Σ][∆][x]) ,env (Tc,Ts,0,0)

−→ Closed
{
proc

(
p
∣∣∣ P ∣∣∣ x), [idle (r)]∀r∈Σ ,env (Tc,Ts,0,0)

}
(fresh p)

(id) C,proc
(
r
∣∣∣ x← y

∣∣∣ x) Closed−−−−−→ C [y
/
x] ,idle (r)

(cut) proc
(
r
∣∣∣ x← P ;Q

∣∣∣ z) Closed−−−−−→ proc
(
r
∣∣∣Q [a/x]

∣∣∣ z),proc(− ∣∣∣ P [a/x]
∣∣∣ a) (fresh a)

(1) proc
(
r
∣∣∣ end x ∣∣∣ x) Closed−−−−−→ idle (r)

(⊗?) proc
(
p
∣∣∣ P1

∥∥∥ P2

∣∣∣ x), [proc(qi ∣∣∣ (xi1,xi2)← x;Qi
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
p1

∣∣∣ P1 [a1
/
x]

∣∣∣ a1

)
,proc

(
p2

∣∣∣ P2 [a2
/
x]

∣∣∣ a2

)
,
[
proc

(
qi

∣∣∣Qi [a1
/
xi1] [a2

/
xi2]

∣∣∣ zi)]∀i∈[1,n]
(fresh p1,p2,a1,a2)

(⊗) proc
(
p
∣∣∣ (x→ (x1,x2)) .

(
P1

∥∥∥ P2

) ∣∣∣ x), [proc(qi ∣∣∣ (xi1,xi2)← x;Qi
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
p1

∣∣∣ P1 [a1
/
x1] [a2

/
x2]

∣∣∣ a1

)
,proc

(
p2

∣∣∣ P2 [a1
/
x1] [a2

/
x2]

∣∣∣ a2

)
,
[
proc

(
qi

∣∣∣Qi [a1
/
xi1] [a2

/
xi2]

∣∣∣ zi)]∀i∈[1,n]
(fresh p1,p2,a1,a2)

(Loop) proc
(
r
∣∣∣ L : P [L]

∣∣∣ x) Closed−−−−−→ proc
(
r
∣∣∣ P [L : P [L]

/
L]

∣∣∣ x)
(→-1) proc

(
r
∣∣∣ x← put y;P

∣∣∣ x), [proc(qi ∣∣∣ vi ← get x;Qi
∣∣∣ zi)]∀i∈[1,n]

,proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y) (τ ≤ 0)

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ x), [proc(qi ∣∣∣Qi [y/vi] ∣∣∣ zi)]∀i∈[1,n]

,proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y)

47

(→-2) proc
(
r
∣∣∣ x← put y;P

∣∣∣ z),proc(rx ∣∣∣ vx← get x;Px
∣∣∣ x)

,
[
proc

(
qi

∣∣∣ vi ← get x;Qi
∣∣∣ zi)]∀i∈[1,n]

proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y) (τ ≤ 0)

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ z),proc(rx ∣∣∣ Px ∣∣∣ x)[

proc
(
qi

∣∣∣Qi [y/vi] ∣∣∣ zi)]∀i∈[1,n]
,proc

(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y)

(⊕-1) proc
(
r
∣∣∣ x.k;P

∣∣∣ x), [proc(qi ∣∣∣ case x of {`⇒Qi`}`∈L
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ x), [proc(qi ∣∣∣Qik ∣∣∣ zi)]∀i∈[1,n]

(⊕-2) proc
(
r
∣∣∣ x.k;P

∣∣∣ z),proc(rx ∣∣∣ case x of {`⇒ P`}`∈L
∣∣∣ x)

,
[
proc

(
qi

∣∣∣ case x of {`⇒Qi`}`inL
∣∣∣ zi)]∀i∈[0,n]

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ z),proc(rx ∣∣∣ Pk ∣∣∣ x), [proc(qi ∣∣∣Qik ∣∣∣ zi)]∀i∈[0,n]

(comb?) proc
(
r
∣∣∣ Comb (f ,d,y← x)

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x)

Closed−−−−−→ proc
(
r
∣∣∣ Sig (τ + d,y← f (v))

∣∣∣ y)
(comb) proc

(
r
∣∣∣ Comb (f ,d,y← (x1, · · · ,xn))

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x)

,proc
(
r1

∣∣∣ Sig (τ1,x1← v1)
∣∣∣ x1

)
, · · · ,proc

(
rn

∣∣∣ Sig (τn,xn← vn)
∣∣∣ xn)

Closed−−−−−→ proc
(
r
∣∣∣ Sig (max (τ1, · · · , τn) + d,y← f (v1, · · · ,vn))

∣∣∣ y)
(reg) proc

(
r
∣∣∣ Reg (y← x)

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x),env (c, s,k, t)

Closed−−−−−→ env (c, s,k, t) ,idle (r)

,proc
(
−
∣∣∣ tick s − τ ; clock; a← Sig (0, a′← v) ; y← a

∣∣∣ y) (fresh a,a′)

(inst-1) idle (pB P [Σ] [∆] [x]) ,proc
(
r
∣∣∣ y← p← {Σ;∆};Q [y]

∣∣∣ z)
Closed−−−−−→ proc

(
p
∣∣∣ P [

Σ
/
Σ
] [
∆
/
∆
]
[a/x]

∣∣∣ a),proc(r ∣∣∣Q [a
/
y]

∣∣∣ z) (fresh a)

(inst-2) proc
(
p
∣∣∣ P [Σ] [∆] [x]

∣∣∣ x),proc(r ∣∣∣ y← p← {Σ;∆};Q [y]
∣∣∣ z)

Closed−−−−−→ proc
(
p
∣∣∣ P [

Σ×Σ
/
Σ
] [
∆×∆

/
∆
]
[a/x]

∣∣∣ a),proc(r ∣∣∣Q [a
/
y]

∣∣∣ z) (fresh a)

(tick)
[
proc

(
r
p
i

∣∣∣ tick τ ;Pi
∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n]

,env (c, s,k, t)
Closed−−−−−→

[
proc

(
r
p
i

∣∣∣ Pi ∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi − τ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n ,env (c, s,k, t + τ)

(clock)
[
proc

(
r
p
i

∣∣∣ clock;Pi
∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n]

,env (c, s,k, s)
Closed−−−−−→

[
proc

(
r
p
i

∣∣∣ Pi ∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
idle

(
rsi
)]
∀i∈[1,n

,env (c, s,k + 1,0)

4.1.1 Main

(Main) Main (P [Σ][∆][x]) ,env (Tc,Ts,0,0)

−→ Closed
{
proc

(
p
∣∣∣ P ∣∣∣ x), [idle (r)]∀r∈Σ ,env (Tc,Ts,0,0)

}
(fresh p)

48

Every configuration starts with only one Main object, containing the top-level pro-

cess definition, and an env object with the numerical values of the clock. The Main

rule initializes every resource r ∈ Σ as idle resources.

4.1.2 Id/Forwarding

(id) C,proc
(
r
∣∣∣ x← y

∣∣∣ x) Closed−−−−−→ C [y
/
x] ,idle (r)

When a process reaches a forwarding state, it means that it forwards any value from

its input channel (y) to its output channel (x). The process then ends execution and

becomes idle while the rest of the configuration replaces x by y.

4.1.3 Cut/Fork

(cut) proc
(
r
∣∣∣ x← P ;Q

∣∣∣ z) Closed−−−−−→ proc
(
r
∣∣∣Q [a/x]

∣∣∣ z),proc(− ∣∣∣ P [a/x]
∣∣∣ a) (fresh a)

The logical Cut rule is interpreted as a parallel fork between two processes. It re-

presents an asymmetrical, or dependent, parallelism because although P and Q run

in parallel P feeds Q all of its results, not being a completely independent process.

Since the process proc
(
−

∣∣∣ P [a/x]
∣∣∣ a) runs only once, it does not have a resource name

assigned to it, thus the blank (−) field.

4.1.4 End of process

(1) proc
(
r
∣∣∣ end x ∣∣∣ x) Closed−−−−−→ idle (r)

When a process ends, the channel provided by it terminates and an idle object

replaces the executing proc one. No resource is ever removed from the configuration

in this semantics.

49

4.1.5 Parallelism

(⊗) proc
(
p
∣∣∣ (x→ (x1,x2)) .

(
P1

∥∥∥ P2

) ∣∣∣ x), [proc(qi ∣∣∣ (xi1,xi2)← x;Qi
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
p1

∣∣∣ P1 [a1
/
x1] [a2

/
x2]

∣∣∣ a1

)
,proc

(
p2

∣∣∣ P2 [a1
/
x1] [a2

/
x2]

∣∣∣ a2

)
,
[
proc

(
qi

∣∣∣Qi [a1
/
xi1] [a2

/
xi2]

∣∣∣ zi)]∀i∈[1,n]
(fresh p1,p2,a1,a2)

(⊗?) proc
(
p
∣∣∣ P1

∥∥∥ P2

∣∣∣ x), [proc(qi ∣∣∣ (xi1,xi2)← x;Qi
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
p1

∣∣∣ P1 [a1
/
x]

∣∣∣ a1

)
,proc

(
p2

∣∣∣ P2 [a2
/
x]

∣∣∣ a2

)
,
[
proc

(
qi

∣∣∣Qi [a1
/
xi1] [a2

/
xi2]

∣∣∣ zi)]∀i∈[1,n]
(fresh p1,p2,a1,a2)

Rule (⊗?) matches a parallel composition and all of the processes that are liste-

ning to the parallel channel. After the matching, the rule spawns two independent

processes, each with its output channel.

Rule (⊗) works the same way, with the difference that the parallel processes are

not entirely independent. The rule allows parallel processes to "rename"their output

channels, meaning they can react to each other’s output.

4.1.6 Recursion (or loop)

(Loop) proc
(
r
∣∣∣ L : P [L]

∣∣∣ x) Closed−−−−−→ proc
(
r
∣∣∣ P [L : P [L]

/
L]

∣∣∣ x)
Recursion is defined in this calculus using labels that mark a location. Once we

reach a label, the rule replaces it with everything afterward. If P = L : A1;A2;L, then

A1;A2 will be executed and after that, once L is reached, Lwill be replaced by A1;A2;L,

and things will be repeated as A1;A2;A1; · · · .

4.1.7 Put/Get

(→-1) proc
(
r
∣∣∣ x← put y;P

∣∣∣ x), [proc(qi ∣∣∣ vi ← get x;Qi
∣∣∣ zi)]∀i∈[1,n]

,proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y) (τ ≤ 0)

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ x), [proc(qi ∣∣∣Qi [y/vi] ∣∣∣ zi)]∀i∈[1,n]

,proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y)

(→-2) proc
(
r
∣∣∣ x← put y;P

∣∣∣ z),proc(rx ∣∣∣ vx← get x;Px
∣∣∣ x)

,
[
proc

(
qi

∣∣∣ vi ← get x;Qi
∣∣∣ zi)]∀i∈[1,n]

proc
(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y) (τ ≤ 0)

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ z),proc(rx ∣∣∣ Px ∣∣∣ x)[

proc
(
qi

∣∣∣Qi [y/vi] ∣∣∣ zi)]∀i∈[1,n]
,proc

(
ry

∣∣∣ Sig (τ,y← w)
∣∣∣ y)

50

In both rules, the mechanism is the same. The value being put is transmitted,

through bindings, to every process geting it. Additionally, the value being transmitted

must come from a Signal process that holds it.

Rules (→-1) and (→-2) only differ in that in the first the value being put is the

output channel, while in the second it is an input channel.

4.1.8 Internal/External Choice

(⊕-1) proc
(
r
∣∣∣ x.k;P

∣∣∣ x), [proc(qi ∣∣∣ case x of {`⇒Qi`}`∈L
∣∣∣ zi)]∀i∈[1,n]

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ x), [proc(qi ∣∣∣Qik ∣∣∣ zi)]∀i∈[1,n]

(⊕-2) proc
(
r
∣∣∣ x.k;P

∣∣∣ z),proc(rx ∣∣∣ case x of {`⇒ P`}`∈L
∣∣∣ x)

,
[
proc

(
qi

∣∣∣ case x of {`⇒Qi`}`inL
∣∣∣ zi)]∀i∈[0,n]

Closed−−−−−→ proc
(
r
∣∣∣ P ∣∣∣ z),proc(rx ∣∣∣ Pk ∣∣∣ x), [proc(qi ∣∣∣Qik ∣∣∣ zi)]∀i∈[0,n]

The choice operation works similarly to the get/put operations. The internal choice

process sends a message containing the decision through the channel, and the listening

processes react to it by selecting the corresponding continuation process.

4.1.9 Combinational process

(comb) proc
(
r
∣∣∣ Comb (f ,d,y← (x1, · · · ,xn))

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x)

,proc
(
r1

∣∣∣ Sig (τ1,x1← v1)
∣∣∣ x1

)
, · · · ,proc

(
rn

∣∣∣ Sig (τn,xn← vn)
∣∣∣ xn)

Closed−−−−−→ proc
(
r
∣∣∣ Sig (max (τ1, · · · , τn) + d,y← f (v1, · · · ,vn))

∣∣∣ y)
(comb?) proc

(
r
∣∣∣ Comb (f ,d,y← x)

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x)

Closed−−−−−→ proc
(
r
∣∣∣ Sig (τ + d,y← f (v))

∣∣∣ y)
A combinational process is executed from start to finish within one cycle period. It

is fully defined by a pair (f ,d) composed of function f and a maximum process delay d.

Rule (comb) applies function f to the current value v inside the input channel x

and sets the current output y to the result of the application f (v) with correct temporal

delays. The rule also transforms the Comb into a Sig to prohibit multiple uses of the

same combinational process in the same cycle.

The more general (comb?) rule does the same thing, but it allows functions with

more than one input, that consumes multiple Signals in one cycle. The rule sets its

delay as the maximum delay among all inputs max(τ1, · · · , τn) plus the process delay d.

51

4.1.10 Register/Memory

(reg) proc
(
r
∣∣∣ Reg (y← x)

∣∣∣ y),proc(rx ∣∣∣ Sig (τ,x← v)
∣∣∣ x),env (c, s,k, t)

Closed−−−−−→ env (c, s,k, t) ,idle (r)

,proc
(
−
∣∣∣ tick s − τ ; clock; a← Sig (0, a′← v) ; y← a

∣∣∣ y) (fresh a,a′)

Registers are a special kind of process that carries values from one cycle to the next.

Operationally it consumes a signal and becomes a proc that will become a another
Signal, carrying the same value, in the next cycle.

Because of the special nature of computing between cycles, the semantics spawns

an auxiliar process whose function is to provide the value signal at the start of the next

cycle. This auxiliar process experiences the clock event and after that becomes a Sig

process using the textitFork/Cut and Channel Forwarding (a← y).

4.1.11 Resource instantiation

(inst-1) idle (pB P [Σ] [∆] [x]) ,proc
(
r
∣∣∣ y← p← {Σ;∆};Q [y]

∣∣∣ z)
Closed−−−−−→ proc

(
p
∣∣∣ P [

Σ
/
Σ
] [
∆
/
∆
]
[a/x]

∣∣∣ a),proc(r ∣∣∣Q [a
/
y]

∣∣∣ z) (fresh a)

(inst-2) proc
(
p
∣∣∣ P [Σ] [∆] [x]

∣∣∣ x),proc(r ∣∣∣ y← p← {Σ;∆};Q [y]
∣∣∣ z)

Closed−−−−−→ proc
(
p
∣∣∣ P [

Σ×Σ
/
Σ
] [
∆×∆

/
∆
]
[a/x]

∣∣∣ a),proc(r ∣∣∣Q [a
/
y]

∣∣∣ z) (fresh a)

The semantics of resource instantiation are quite liberal, leaving the correctness

verification for the type system. Rule (inst-1) models models how an idle resource

starts executing and becomes a proc.

The (inst-1) rule, however, allows a process to provide only the channels and

resources the instance needs at the moment (not forever). In other words, processes

can instantiate resources incompletely, as long as the resources it needs at the current

moment are available (the type system verifies this).

Incompletely instantiated resources need to be re-instantiated, which is why the

rule inst-2 exists. It "refuels"the contexts with new information.

Resource sharing is highly permissive in the h-calculus because of these two rules

and resource types. As an extreme example, the h-calculus could allow a resource to

receive, for n cycles, values coming from n different processes and would be able to

verify that.

52

4.1.12 Tick/Clock

(tick)
[
proc

(
r
p
i

∣∣∣ tick τ ;Pi
∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n]

,env (c, s,k, t)
Closed−−−−−→

[
proc

(
r
p
i

∣∣∣ Pi ∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi − τ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n ,env (c, s,k, t + τ)

(clock)
[
proc

(
r
p
i

∣∣∣ clock;Pi
∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
proc

(
rsi

∣∣∣ Sig(dsi ,xsi ← vi
) ∣∣∣ xsi)]∀i∈[1,n]

,env (c, s,k, s)
Closed−−−−−→

[
proc

(
r
p
i

∣∣∣ Pi ∣∣∣ xpi)]∀i∈[1,l] , [idle(rri)]∀i∈[1,m]

,
[
idle

(
rsi
)]
∀i∈[1,n

,env (c, s,k + 1,0)

The (tick) rule estates what happens when time passes and the (clock) rule es-

tates what happens when the clock cycle ends. Both of these rules only apply if the

configuration matches exactly all of the objects in the pattern.

For the (tick) rule to match, all processes must be ticking simultaneously, which

emphasizes that the system experiences time synchronously — the exception being

Sigs that carry intra-cycle values. After applied, the rule advances time inside env and

advances the temporal sequences stored inside Signals.

The system can never tick over to the next cycle; it can only tick until its end. For

the (clock) rule to apply, all processes must synchronously acknowledge the end of

the current cycle and start the next one by using the special clock operation. The clock

operation destroys Signals and updates the clock cycle count inside env.

4.2 Temporal Session Types

As seen in Chapter 2.7, Temporal Session Types are used, directly, to model commu-

nication channels among hardware components. These types are the foundation on

which the h-calculus is built. Just like untyped processes, TSTs also have an equiva-

lence relation (Def. 23). S1
def
≈ S2 means S1 and S2 can be used interchangeably without

diffferent type rule implications.

Definition 23 (TST Equivalence) S1
def
≈ S2 holds in the following cases:

• •τ1 • τ2S
def
≈ •τ1+τ2S ′ (Time fungible)

if S
def
≈ S ′

53

• S ′1 ⊗ S
′
2
def
≈ S ′2 ⊗ S

′
1 (Order of parallelism does not matter)

Definition 24 (Type Equivalence Set) A equivalence set {S1,S2, · · · ,Sn} is a set of

processes where for every i and j ∈ [1,n], Si
def
≈ Sj . We refer as "the equivalence set

of S"a set S(S) in which S ∈ S(S).

4.3 Typing rules

4.3.1 Auxiliary Definitions

Before describing the h-calculus type rules, we show some important definitions that

related to the definitions of process type (Def. 4) and resource types (Def. 5) shown in

Chapter 2.7. These include typing judgements, contexts, context operations for both

channels and resources.

Definition 25 (Channel Typing Judgement) A channel typing judgement is de-

noted c : S where c is a type variable and S is a Temporal Session Type. c : S means

"c acts according to S".

Definition 26 (Channel Context) A channel context is an unordered set compo-

sed of multiple channel typing judgements. Is is defined as a list

∆B c : S,∆ | −

where the operation c : S,∆ is called appending and − denotes the empty context.

Definition 27 (Channel Containment) A channel c is contained within a context

∆, denoted c ∈ ∆ if

∆ = c : S,∆′

for any ∆′ and S. We also say that c is not cointained within ∆, denoted c < ∆, if

c ∈ ∆ does not hold.

54

Definition 28 (Channel Context Concatenation) The concatenation of channel

contexts ∆1 and ∆2, denoted ∆1∆2 is defined as

• (c : S,∆′1)∆2 = c : S, (∆′1∆2)

where c < ∆2

• (−)∆2 = ∆2

• undefined otherwise

4.3.2 Typing Rules

H-Calculus typing rules ensure that if a hardware is well-typed communication errors,

timing errors, and deadlocks do not happen (as we are going to see in Section 4.4).

Furthermore it also encodes efficiency information within the types, enabling trivial

performance analysis and comparisons. Definition 29 shows all of the type rules at

once. Next we discuss them one-by-one.

Definition 29 (Type Rules) The set of all typing rules:

id
−;y : A s,c

k,t (
x← y

)
::
(
x : A

)
Σ1;∆1 s,c

k,t
P ::

(
x : A

)
Σ2;∆2,x : A s,c

k,t
Q ::

(
z : C

)
cut

Σ1 ×Σ2;∆1 ×∆2 s,c
k,t (

x← P ;Q
)

::
(
z : C

)

1R
−;− s,c

k,t
end x ::

(
x : 1

) Σ;∆ s,c
k,t
P ::

(
z : C

)
1L

Σ;∆,x : 1 s,c
k,t
P ::

(
z : C

)
Σ;∆,v : ατ1,x : •τA s,c

k,t
P ::

(
z : C

)
t + τ = s

→ L
Σ;∆,x : −→α τA s,c

k,t (
v← get x;P

)
::
(
z : C

)

55

Σ;∆ s,c
k,t
P ::

(
z : •τA

)
t + τ = s

→ R
Σ;∆,v : ατ1 s,c

k,t (
z← put v;P

)
::
(
z : −→α τA

)
Σ;∆,x : •τA s,c

k,t
P ::

(
z : C

)
t + τ = s

← L
Σ;∆,v : ατ1,x :←−α τA s,c

k,t (
x← put v;P

)
::
(
z : C

)
Σ;∆,v : ατ1 s,c

k,t
P ::

(
z : •τA

)
t + τ = s

← R
Σ;∆ s,c

k,t (
v← get z;P

)
::
(
z :←−α τA

)
Σ;∆,x : A [(µy.A)

/
y] s,c

k,t
P ::

(
z : C

)
µ L

Σ;∆,x : µy.A s,c
k,t
P ::

(
z : C

)
Σ;∆ s,c

k,t
P [(L : P)

/
L] ::

(
x : A [(µy.A)

/
y]

)
µ R

Σ;∆ s,c
k,t (

L : P
)

::
(
x : µy.A

)

Σ1;Γ ,∆1,xQ : BI s,c
k,t
P ::

(
xP : AE ×AI

)
Σ2;Γ ,∆2,xP : AI s,c

k,t
Q ::

(
xQ : BE ×BI

)
⊗ R

Σ1 ×Σ2; ;∆1 ×∆2 s,c
k,t ((

x→
(
xP ,xQ

))
.
(
P

∥∥∥Q))
::
(
x : AE ⊗BE

)

Σ1;Γ ,∆1 s,c
k,t
P ::

(
x : A

)
Σ2;Γ ,∆2 s,c

k,t
Q ::

(
x : B

)
⊗ R ?

Σ1 ×Σ2; ;∆1 ×∆2 s,c
k,t (

P
∥∥∥Q)

::
(
x : A⊗B

)
Σ;∆,x1 : A,x2 : B s,c

k,t
Q ::

(
z : C

)
⊗ L

Σ;∆,x : A⊗B s,c
k,t (

(x1,x2)← x;Q
)

::
(
z : C

)
(k ∈ L) Σ;∆ s,c

k,t
P ::

(
z : Ak

)
−→⊕ R

Σ;∆ s,c
k,t (

z.k;P
)

::
(
z : −→⊕ z{` : A`}`∈L

)

56

(∀` ∈ L) Σ`;∆`,x : A` s,c
k,t
Q` ::

(
z : C

)
−→⊕ L

⊕x{` : Σ`}`∈L;⊕x{` : ∆`}`∈L,x : −→⊕ x{` : A`}`∈L s,c
k,t (

case x of {`⇒Q`}`∈L
)

::
(
z : C

)

(∀` ∈ L) Σ`;∆` s,c
k,t
Q` ::

(
z : A`

)
←−⊕ R

⊕z{` : Σ`}`∈L;⊕z{` : ∆`}`∈L s,c
k,t (

case z of {`⇒Q`}`∈L
)

::
(
z :←−⊕ z{` : A`}`∈L

)

(k ∈ L) Σ;∆,x : Ak s,c
k,t
P ::

(
z : C

)
←−⊕ L

Σ;∆,x :←−⊕ x{` : A`}`∈L s,c
k,t (

x.k;P
)

::
(
z : C

)
Σ;∆ s,c

k,t+τ
P ::

(
z : C

)
t + τ ≥ s

tick
•τΣ; •τ∆ s,c

k,t (
tick τ ;P

)
::
(
z : •τC

)
Σ;∆ s,c

k+1,0
P ::

(
z : C

)
clock

Σ;∆ s,c
k,s (

clock;P
)

::
(
z : C

)

ΣQ, r : (Σr2;∆r2;Ar2);∆Q,x : Ar1 s,c
k,t
Q ::

(
z : C

)
Use

Σr1 ×Σ
Q, r : (Σr1;∆r1;Ar1)× (Σr2;∆r2;Ar2);∆r1 ×∆

Q
s,c
k,t (

x← r← {Σr1;∆r1};Q
)

::
(
z : C

)

(∀(((σ B Pσ) : Rσ) ∈ Σ).ext(Pσ ,Rσ)) Σ;∆ s,c
0,0

P ::
(
z : C

)
Main

Σ;∆ s,c
0,0

Main (P) ::
(
z : C

)
F
e : T (s > t + τ) (τ ≥ 0)

Signal-1
−;− s,c

k,t (
Sig (τ,y← e)

)
::
(
y : •τT s−(t+τ)1

)
F
e : T (s > t + τ) (τ < 0)

Signal-2
−;− s,c

k,t (
Sig (τ,y← e)

)
::
(
y : T s−t1

)

57

F
f : T1→ ·· · → Tn→ Tout (s > t + max(d1, · · · ,dn) + p) (p > 0)

Comb
−;x1 : •d1T

s−(t+d1)
1 1, · · · ,xn : •dnT s−(t+dn)

n 1 s,c
k,t

Comb (f ,p,y← (x1, · · · ,xn))

::
(
y : •max(d1,··· ,dn) • pT

s−(t+max(d1,··· ,dn)+p)
out 1

)
(s > t + τ)

Reg
−;x : •τT s−(t+τ)1 s,c

k,t (
Reg (y← x)

)
::
(
y : •s−tT s1

)

4.3.3 General Insights

The type system is based on Intuitionistic Session Types (IST), which are isomorphic

to Intuitionistic Linear Logic (ILL) [23]. Some TST rules are similar to IST, but there

are some modifications, additions and removals that make the calculus suitable for

hardware modelling.

A recurring distinction in TST type rules compared to IST ones is that, instead of

using set partitioning for context splitting, where intersections (and therefore sharing)

are not permitted, TST uses definitions of resource and channel merge (×), allowing

general sharing of resources and channels whenever a new process is spawned. This

change appears in any type rule that manages two or more parallel processes, inclu-

ding the foundational cut rule. Apart from this, other distinctions will be discussed in

detail individually.

Most type operations have a left rule, which tells us how an operation is used by

processes, and a right rule which tells us how a process performs an operation. That

said, some special operations such as id, cut and tick are not divided into left and right

rules for reasons which will be explained individually later.

When explaining the rules, it will sometimes be useful to explain their logical in-

terpretation, in addition to their hardware interpretation, for a broader understanding

of why some rules are defined the way they are. Every type rule will also have, apart

from its proof-tree definition, a graphical interpretation using the simplified depiction

of process shown in Fig. 2.23b.

58

4.3.4 Identity or Channel Forwarding

x← y
y : A x : A

Figura 4.1: Graphical representation of the identity rule

id
−;y : A s,c

k,t (
x← y

)
::
(
x : A

)
The channel forwarding or identity rule indicates that an input channel can be

forwarded as an output. In terms of linear logic, this is one of the most essential rules,

that enables an assumption to be used as a conclusion. This rule and the cut rule form

the bridge that connects left (L) and right (R) rules.

4.3.5 Forking process

P

Σ1

Q

Σ2

x : A

∆2

∆1

∆1 ×∆2

z : C

x← P ;Q

Σ1 ×Σ2

Figura 4.2: Graphical representation of the cut rule

Σ1;∆1 s,c
k,t
P ::

(
x : A

)
Σ2;∆2,x : A s,c

k,t
Q ::

(
z : C

)
cut

Σ1 ×Σ2;∆1 ×∆2 s,c
k,t (

x← P ;Q
)

::
(
z : C

)
The cut rule defines how processes can fork subprocesses and use their result as

input. Part of the main process contexts, Σ1 and ∆1, are assigned to the subprocess P

according to the merge definition (×), meaning resources can be shared between P and

Q. The cut rule and the identity rule bridge (L) and right (R) rules logically by defining

how hypothesis can be used to reach more complex conclusions.

59

4.3.6 End of computation - 1

(a) (1R)

end x
x : 1

(b) (1L)

P

Σ

∆

x : 1
z : C

P

Σ

Figura 4.3: Graphical representation of 1 rules

1R
−;− s,c

k,t
end x ::

(
x : 1

) Σ;∆ s,c
k,t
P ::

(
z : C

)
1L

Σ;∆,x : 1 s,c
k,t
P ::

(
z : C

)
The end of computation type 1 means the channel will not carry useful information

anymore. Rule 1R constructs a channel typed 1 using the process term end x while rule

1L removes the useless channel from inside of its channel context.

The left rule does not have an explicit process action because all processes interac-

ting with x have protocol knowledge, meaning they do not need additional information

to know when x closes.

For the end x process, this rule also means the end of computation. In operational

semantics, this means the instance will go idle after that.

60

4.3.7 Getting/Putting values from channels

(→L)

P

Σ

z : C

∆

x:•τA

v:−→α τ1

x:−→α τA

v← get x;P

Σ

(→R)

P

Σ

z:•τA

v:−→α τ1

z:−→α τA∆

z← put v;P

Σ

(←L)

P

Σ

z : C

∆

x:•τA

v:−→α τ1

x:←−α τA

x← put v;P

Σ

(←R)

P

Σ

∆
z:•τA z:←−α τA

v:−→α τ1

v← get z;P

Σ

Figura 4.4: Graphical representation of messaging rules

Σ;∆,v : ατ1,x : •τA s,c
k,t
P ::

(
z : C

)
t + τ = s

→ L
Σ;∆,x : −→α τA s,c

k,t (
v← get x;P

)
::
(
z : C

)
Σ;∆ s,c

k,t
P ::

(
z : •τA

)
t + τ = s

→ R
Σ;∆,v : ατ1 s,c

k,t (
z← put v;P

)
::
(
z : −→α τA

)
Σ;∆,x : •τA s,c

k,t
P ::

(
z : C

)
t + τ = s

← L
Σ;∆,v : ατ1,x :←−α τA s,c

k,t (
x← put v;P

)
::
(
z : C

)
Σ;∆,v : ατ1 s,c

k,t
P ::

(
z : •τA

)
t + τ = s

← R
Σ;∆ s,c

k,t (
v← get z;P

)
::
(
z :←−α τA

)
Getting a value from an input channel (→L) is, in this calculus, equivalent to split-

ting the channel typed x : −→α τA into two: a short internal value v : ατ1 lasting until the

61

end of the current cycle and a continuation channel x : •τA with no current value, but

carrying values for future cycles.

The 4 rules represent all possibilities among either with input (x) or output (z)

channels and either → or ←, all of them using the same split/merge mechanism

between v and x or z. Fig. 4.4 shows graphically the flow of data according to all

rules.

4.3.8 Recursion/Loop - µ

Σ;∆,x : A [(µy.A)
/
y] s,c

k,t
P ::

(
z : C

)
µ L

Σ;∆,x : µy.A s,c
k,t
P ::

(
z : C

)
Σ;∆ s,c

k,t
P [(L : P)

/
L] ::

(
x : A [(µy.A)

/
y]

)
µ R

Σ;∆ s,c
k,t (

L : P
)

::
(
x : µy.A

)
Recursive types can be only constructed from recursive processes (µR). Recursive

types get unrolled without the need of an action (µL). Since recursion is not a structural

rule, graphical depiction is not useful here.

Recursion in types and recursion in process terms are implemented using a simi-

lar term substitution mechanism: for types µy.A is replaced by A [(µy.A)
/
y] and for

terms L : P is replaced by P [(L : P)
/
L]. This means when the type variable y is reached,

the overall type becomes A again and when the process label L is reached the overall

process becomes P again, generating a loop.

As an example of recursive type, x : µy.
−−→
Int c
←−−
Int cy becomes

−−→
Int c
←−−
Int c(µy.

−−→
Int c
←−−
Int cy),

which is equivalent to the infinite type
−−→
Int c
←−−
Int c
−−→
Int c
←−−
Int c · · · . As an example of recur-

sive process, L: v← get x; z← put v; clock; L becomes v← get x; z← put v; clock; (L: v←
get x; z← put v; clock; L), which is the infinite process

v← get x; z← put v; clock; v← get x; z← put v; clock; · · · .

62

4.3.9 Parallel Composition - ⊗

(⊗L)

Q

Σ

z : C

∆

x1:A

x2:B

x:A⊗B

(x1,x2)←x;Q

Σ

(⊗R?)

P

Σ1

Q

Σ2

∆1

∆2

∆1×∆2

x:A

x:B

x:A⊗B

(x1,x2)←x;Q

Σ1×Σ2

(⊗R)

P

Σ1

Q

Σ2

∆1

∆2

∆1×∆2 x:AE⊗BE

x:AE

x:BE

x:AE×AI

x:BE×BI

xP :AI

xQ:BI

(x⇒(xP ,xQ)).(P ‖Q)

Σ1×Σ2

Figura 4.5: Graphical representation of ⊗ rules

Σ1;Γ ,∆1,xQ : BI s,c
k,t
P ::

(
xP : AE ×AI

)
Σ2;Γ ,∆2,xP : AI s,c

k,t
Q ::

(
xQ : BE ×BI

)
⊗ R

Σ1 ×Σ2; ;∆1 ×∆2 s,c
k,t ((

x→
(
xP ,xQ

))
.
(
P

∥∥∥Q))
::
(
x : AE ⊗BE

)
Σ1;Γ ,∆1 s,c

k,t
P ::

(
x : A

)
Σ2;Γ ,∆2 s,c

k,t
Q ::

(
x : B

)
⊗ R ?

Σ1 ×Σ2; ;∆1 ×∆2 s,c
k,t (

P
∥∥∥Q)

::
(
x : A⊗B

)
The linear logic operator ⊗ is used in TST to define arbitrary parallel composition

between processes. Compared to ⊗ in IST, which is defined only for processes that are

independent of each other, TST modifies the rule to also allow internal communication

63

among the processes (using the merge operator ×) making the ⊗ rule general enough

to represent both independent and dependent parallelism.

Logically speaking, the rule is a mixture of the IST’s ⊗ rule (independent paral-

lelism) with the cut rule (communication, or dependent parallelism). Although this

gives the rule ⊗R an unbalanced expressive power, it allows the calculus to compose

processes more liberally, allowing for more powerful optimizations. Furthermore, pa-

rallelism in hardware design and any other concurrent system is so important that it

makes sense for the rule to be “overpowered”. Nevertheless, type preservation and

global progress will still hold with this change.

The rule ⊗R? is a derivation of ⊗R, representing parallelism without internal com-

munication, depicted by Fig. 4.5b. In this case, the outputs of P and Q, A and B

respectively, become part of the output A⊗B completely. Note that both contexts are

merged, implying two parallel processes can still share channels and resources even

though there is no internal communication.

The more general ⊗R rule (see Fig. 4.5a for better understanding) is more elaborate.

The outputs of P (AE×AI) andQ (BE×BI) are, instead of being completely forwarded as

output as in ⊗R?, split into internal and external channels according to the definition

of channel merge (Def. 2). The internal output of P (AI) becomes input of Q and the

internal output ofQ (BI) becomes input of P , while the external output of both become

the output of the composition (AE ⊗BE).

The left rule ⊗L, in Fig. 4.5c, does not care if the input is generated by dependent

or independent parallelism. It decomposes the channel into two separate channels,

assigning them new names.

64

4.3.10 Choice operators

(−→⊕R)

P

Σ

∆ Lz:Ak z:−→⊗ z{`:A`}`∈L

z.k;P

Σ

(←−⊕L)

P

Σ

L
z : C

∆

x:Akx:←−⊕x{`:A`}`∈L

x.k;P

Σ

(−→⊕L)

Q

Σk

FSM

z:C
∆k

x:Ak

k

control[k]

⊕x{`:∆`}`∈L

x:−→⊕ x{`:A`}`∈L

case x of {`⇒Q`}`∈L

⊕x{`:Σ`}`∈L

(←−⊕R)

Q

Σk

∆k⊕x{`:∆`}`∈L

FSM
k

control[k]

z:Ak z:←−⊕{`:A`}`∈L

case z of {`⇒Q`}`∈L

⊕x{`:Σ`}`∈L

Figura 4.6: Graphical representations of ⊕ rules

(k ∈ L) Σ;∆ s,c
k,t
P ::

(
z : Ak

)
−→⊕ R

Σ;∆ s,c
k,t (

z.k;P
)

::
(
z : −→⊕ z{` : A`}`∈L

)

(∀` ∈ L) Σ`;∆`,x : A` s,c
k,t
Q` ::

(
z : C

)
−→⊕ L

⊕x{` : Σ`}`∈L;⊕x{` : ∆`}`∈L,x : −→⊕ x{` : A`}`∈L s,c
k,t (

case x of {`⇒Q`}`∈L
)

::
(
z : C

)

(∀` ∈ L) Σ`;∆` s,c
k,t
Q` ::

(
z : A`

)
←−⊕ R

⊕z{` : Σ`}`∈L;⊕z{` : ∆`}`∈L s,c
k,t (

case z of {`⇒Q`}`∈L
)

::
(
z :←−⊕ z{` : A`}`∈L

)

(k ∈ L) Σ;∆,x : Ak s,c
k,t
P ::

(
z : C

)
←−⊕ L

Σ;∆,x :←−⊕ x{` : A`}`∈L s,c
k,t (

x.k;P
)

::
(
z : C

)
65

The type of the choice operations, similar to get and put operations, have an arrow

representing the direction flow of information, which can be from outside to inside or

from inside to outside, depending on whether the channel is used or provided by the

process and if the choice is internal (made by the process itself) or external (made by

another process). The operator −→⊕ describes external choice if it is an input channel

and internal choice if it is an output channel, while←−⊕ describes the opposite: internal

choice if it is an input channel and external choice if it is an output channel.

Since the choice is interpreted as a message, the operators carry, as an index, the

name of the channel on which the decision was made (the c in ←→⊗c) so if, at the same

time, two choice types carry the same index, say x : A←→⊗cB and y : C←→⊗cD, this means

the decisions are synchronized, meaning x : A implies y : C and y : D implies x : B,

without x : A and y :D or x : B and y : C being possible.

The rules −→⊗R (Fig. 4.6a) and←−⊗L (Fig. 4.6b) represent processes making a decision

internally and sending the decision as a message through the channel. As processes

decide internally, they do not need to prepare for all the possible choices, instead it

needs to prepare itself only for the chosen type Ak.

The rules −→⊗ L (Fig. 4.6c) and ←−⊗R (Fig. 4.6d) represent a process receiving a de-

cision from an external process. In this case, the process receiving the decision must

be ready for each one of the possible choices. In both of these rules, the input con-

texts are expressed as ⊕x{` : Σ`}`∈L and ⊕x{` : ∆`}`∈I , a notation that expresses the fact

some input channels and resources may interact according to the same decision car-

ried by x (because of the nature of multicasting), in which case they also must change

accordingly.

The case operation is depicted (in Fig. 4.6c and 4.6d) uses a finite state machine
(FSM) module which was not depicted previously (more about that in Chapter 5). The

FSM takes as input the decision and updates control signals which make process Q

operate as Q` for any decision ` (in this case, Qk). Using FSMs to store and update the

state of processes is extremely common in hardware design, but is abstracted away in

H-Calculus. The consequences of hiding state control will be explained in detail in

Chapter 5.

4.3.11 Intra-Cycle Signal
F
e : T (s > t + τ) (τ ≥ 0)

Signal-1
−;− s,c

k,t (
Sig (τ,y← e)

)
::
(
y : •τT s−(t+τ)1

)

66

F
e : T (s > t + τ) (τ < 0)

Signal-2
−;− s,c

k,t (
Sig (τ,y← e)

)
::
(
y : T s−t1

)
Sigs are unique processes that live inside one cycle and carry functional values e : T

with them — for example, 5 : Int, false : Bool, or any other finite data structure. We

use a functional sequent F
e : T to check that the value e is well typed according to

some simply-typed function type scheme similar to Def. 12, capable of type checking

simple values and and functions (of functional type τ→ σ).

Rule Signal-1 models intra-cycle values that become stable after τ units of time

from the start of the cycle, while rule Signal-2 a value stabilized some time ago, mea-

ning τ is negative.

4.3.12 Combinational Circuit
F
f : T1→ ·· · → Tn→ Tout (s > t + max(d1, · · · ,dn) + p) (p > 0)

Comb
−;x1 : •d1T

s−(t+d1)
1 1, · · · ,xn : •dnT s−(t+dn)

n 1 s,c
k,t

Comb (f ,p,y← (x1, · · · ,xn))

::
(
y : •max(d1,··· ,dn) • pT

s−(t+max(d1,··· ,dn)+p)
out 1

)
Combinational processes compute within one cycle. They both consume and pro-

duce intra-cycle values. They represent a pure functional application being elevated

to the realm of hardware processes.

Input signals arrive at different instants (xi : •diT s−(t+di)
i 1), so the output signal must

take into account the combinational machine only starts to react to correct values after

all input values are stable max(d1, · · · ,dn), after that a maximum possible delay is added

and the output type is formed (•max(d1,··· ,dn)•pT
s−(t+max(d1,··· ,dn)+p)
out 1). As long as the function

f is functionally well typed and the output becomes stable before the end of the cycle,

the combinational the process is well typed.

4.3.13 Register
(s > t + τ)

Reg
−;x : •τT s−(t+τ)1 s,c

k,t (
Reg (y← x)

)
::
(
y : •s−tT s1

)
The Reg rule models how an intra-cycle signal interacts correctly with a register.

The register takes a signal from the current cycle x : •τT s−(t+τ), and forwards it to the

next cycle y : •s−tT s1 as an output. As long as the input value gets stable before the end

of the cycle, the register is well-typed.

67

4.3.14 Tick/Delay

Σ;∆ s,c
k,t+τ

P ::
(
z : C

)
t + τ ≥ s

tick
•τΣ; •τ∆ s,c

k,t (
tick τ ;P

)
::
(
z : •τC

)
The tick operation means that the process recognizes that time has passed for it-

self and for all other processes. Even though this rule represents an isolated process

ticking, every process in the system must tick together, which is why input channels

and resources also need to advance in time. After the tick, the time is updated from t

to t + τ where t + τ cannot surpass the clock cycle itself. Logically speaking this rule is

both left and right and proofs of preservation and global progress will highly depend

on the way it is defined.

4.3.15 Clock synchronization

Σ;∆ s,c
k+1,0

P ::
(
z : C

)
clock

Σ;∆ s,c
k,s (

clock;P
)

::
(
z : C

)
Similar to the way tick is defined, the clock event is also experienced by all pro-

cesses at the same time, synchronizing every action and state. Operationally, the clock

rule resets the intra-period timer from s to 0 and increments the clock count k. Notice

how the clock rule resets the timer but does not advance time.

68

4.3.16 Resource instantiation

Q

Σ2, r :
(Σr2;∆r2;Ar2)

r

Σr1 ×Σ
r
2

∆r1

∆r1 ×∆
r
2

∆r1 ×∆
Q

∆Q

∆r2

x : Ar2

x : Ar1
z : C

x : Ar1 ×A
r
2

x← r←
{
Σr1;∆r1

}
;Q

Σ1 ×Σ2, r :
(Σr1;∆r1;Ar1)

×
(Σr2;∆r2;Ar2)

Figura 4.7: Graphical representation of Use

ΣQ, r : (Σr2;∆r2;Ar2);∆Q,x : Ar1 s,c
k,t
Q ::

(
z : C

)
Use

Σr1 ×Σ
Q, r : (Σr1;∆r1;Ar1)× (Σr2;∆r2;Ar2);∆r1 ×∆

Q
s,c
k,t (

x← r← {Σr1;∆r1};Q
)

::
(
z : C

)
The resource instantiation rule is similar to the cut rule, the difference being that

the cut rule spawns a process term P while this rule initializes an idle resource r. Si-

milar to cut, the input contexts are split, to allow for channel and resource sharing.

This rule allows for partial use of resources, which means that Q may or may not

fully interact with r. Operationally, this means, the resource type of r is split into two,

the first one (Σr1;∆r1;Ar1) representing how Q will use it, and the second one (Σr2;∆r2;Ar2)

representing the “rest of interaction” needed for r to be completely satisfied. In the

case of Q interacting completely with r, (Σr2;∆r2;Ar2) would be (−;−;1).

4.3.17 Main instantiation

(∀(((σ B Pσ) : Rσ) ∈ Σ).ext(Pσ ,Rσ)) Σ;∆ s,c
0,0

P ::
(
z : C

)
Main

Σ;∆ s,c
0,0

Main (P) ::
(
z : C

)
The Main rule determines that the main process, the highest one in the hierarchy

tree, which contains all the channels and all the resources of the system, in addition

to being well-typed (Σ;∆ s,c
0,0

P :: (z : C)), must ensure that every resource σ ∈ Σ is a

complete and correct instantiation of their respective process definitions (∀((σ B Pσ) :

Rσ) ∈ Σ).ext(Pσ ,Rσ)).

69

The Main rule is necessary because, even though incomplete interactions with re-

sources is permitted to enable expressive resource sharing, all resources must be com-

pletely instantiated in the end.

4.4 Properties of the Type System

Both semantic and typing rules need to be harmoniously related to each other for the

entire system to be useful. Two properties are crucial:

• Every well typed system — constructed from the typing rules defined in Def. 29

— must, always, be able to evolve through time — i.e., must match one of the

semantic rule patterns described in Def. 22. This property is called global pro-
gress, and it ensures that no well-typed system is ever going to reach a deadlock

state.

• Every time a semantic rule is applied to a well-typed system, the resulting sys-

tem — after the rule is applied — must, not only be well-typed, but also have

exactly the same type as before. This property is called type preservation and it

ensures that we can trust that our types are not going to "change"throughout the

execution of the system (in other words, we can trust our types).

To define these two properties formally we first need to understand what does it

mean for a system to be well-typed. We know how to type individual processes, but

semantic rules work with configurations (Def. 18) instead of individual processes.

This is where configuration typing rules comes in. The type of a configuration informs

us the type of the system during an snapshot of its execution. We begin by defining

the configuration type sequent the mathematical structure that contains the type of the

configuration.

Definition 30 (Configuration Type Sequent) The configuration type sequent is

the object

ΣI ;∆I C ::
(
ΣO;∆O

)
where ΣI and ∆I are input contexts, that must be provided for configuration C
to execute correctly and ΣO and ∆O are output contexts that are provided by the

configuration C during correct execution. ΣI and ΣO are resource contexts and ∆I

and ∆O are channel contexts.

The configuration type sequent, different from the process type sequent, contains

multiple output channels, ∆O, and also contains output resources, ΣO, since a confi-

70

guration contains multiple processes, and resources, computing simultaneously. The

typing rules for configuration are defined in Def. 31, with an accompanying set of

illustrations.

Definition 31 (Configuration Typing) The set of all configuration typing rules:

ΣI1;∆I1 C1,env (s, c,k, t) ::
(
ΣO1 ;∆O1

)
ΣI2;∆I2 C2,env (s, c,k, t) ::

(
ΣO2 ;∆O2

)
Compose

ΣI1 ×Σ
I
2;∆I1 ×∆

I
2 C1C2,env (s, c,k, t) ::

(
ΣO1 Σ

O
2 ;∆O1 ∆

O
2

)
ΣC ;∆∆C C :: (ΣC , r : R;∆C ,x : A)

Closed
−;∆ Closed { C } :: (−;x : A)

Σ;∆ s,c
k,0

Main (P) ::
(
x : A

)
Main

−;∆ Main (P) ,env (s, c,0,0) :: (−;x : A)

[Σ]+T ; [∆]+T
s,c
k,t
P ::

(
x : [A]+T

)
inst((Σ;∆;A) ,R) (T = k × s+ t)

proc
Σ;∆ proc

(
r
∣∣∣ P ∣∣∣ x),env (s, c,k, t) :: (r : R;x : A)

inst (DEF(P),R)
idle

−;− idle (r B P) ,env (s, c,k, t) :: (r : R;−)

Some interesting aspects to note about these configuration typing rules:

• The rule Compose does not connect channels between two configurations, all of

the connections happen within the Closed rule. The reason why we separate

gathering from connecting channels and resources is that, since the h-calculus

permits channels to connect to multiple components, we are never sure whether

a given channel is fully connected or not. The Closed object is used to inform that,

within the given configuration, every channel must be fully connected, meaning

its type must be completely satisfied.

• The proc rule does take into account the passing of time. This is crucial for type

preservation because, although time passes, the configuration type will stay the

same, considering the beginning of time (k, t) = (0,0).

71

Now we can define type preservation and global progress using configuration types.

Theorem 1 (Preservation). If ΣI ;∆I C ::
(
ΣO;∆O

)
and C −→ D then ΣI ;∆I D ::(

ΣO;∆O
)
.

The complete proof of preservation is in the Appendix A. This proof consists of finding

the type of ΣI ;∆I C ::
(
ΣO;∆O

)
and the type of ΣI ′;∆I ′ D ::

(
ΣO′;∆O′

)
for each one

of the possible semantic rule cases C −→ D defined in Def. 20) and check if ΣI = ΣI ′,

∆I = ∆I ′, ΣO = ΣO′ and ∆O = ∆O′.

Theorem 2 (Global Progress). If −;∆ Closed { C } :: (r : R;x : A), then

1. C −→D, for some D, or

2. is communicating through c ∈ ∆ or x, or

3. does not have proc objects (computation is over).

The complete proof of progress is also in the Appendix A. This is proof is more intri-

cate than the preservation one. The main idea is to show that because Closed { C } is

a well-typed configuration either computation is over (case 3) or it is interacting with

channels or resources. Because the configuration is closed, interacting with resources

means the resource is internal, in which case an operational step should occur (case 1).

If the configuration interacts with channels, the channel is either internal or external.

If the channel is external case 2 applies. If the channel is internal, the type system

is designed in a way that every action is met by its correct reaction, resulting in an

operational step (case 1).

72

Capítulo 5

H-Calculus for High-Level Synthesis

This chapter discusses the consequences of using the h-calculus as an Intermediate

Representation (IR) in a High-Level Synthesis (HLS) system. We will also compare the

use of h-calculus to Control Dataflow Graphs (CDFGs), the most commonly used IR in

HLS, pointing out both advantages and disadvantages.

We will discuss how the h-calculus impacts the three steps of HLS (Fig. 5.1, shown

in Chapter 1) separately.

HLL Translation

Constraints Criteria

DSE Synthesis RTL or Netlist
IR IR

IR

Figura 5.1: Simplified High-Level Synthesis flow

5.1 Translation

Translation is the first step of HLS. Translation infers an IR from a high-level speci-

fication, written in a High-Level Language (HLL), without efficiency or optimization

concerns, since these are the responsibility of the Design Space Exploration step.

The effectiveness and complexity of translation techniques depend on the HLL and

IR choices. This thesis proposes using a functional typed programming language as

input and the h-calculus as the output of the translation step. We shall compare it to C-

like languages as input and CDFGs as output, which are typical choices in traditional

HLS.

73

High-Level Language Choice

Ideally, any HLL could be transformed into IR. In practice, however, the language

choice can either complicate or facilitate the translation step. There are some com-

pelling arguments in favor of functional languages over sequential languages as input

for HLS. The most compelling being related to concurrency inference. Both functional

and sequential code do not natively understand the notion of concurrency, meaning it

needs to be inferred by translation techniques.

Inferring concurrency from sequential specifications is a challenging problem without

an efficient solution. This leads to specifications that are, in general, not as parallel as

hardware designers would want. After transforming sequential code into CDFGs, it

is still difficult to infer concurrency from CDFGs, meaning concurrency inefficiency

will be carried all the way from the high-level specification up to the HLS result. It is

common in traditional HLS systems to extend their sequential languages with explicit

concurrency constructs (such as par), but the result is not ideal since now the designers

needs to worry about concurrency.

Inferring concurrency from functional specifications is as simple as it gets: given a

functional application f (x,y,z), we know that the terms x, y and z can be evaluated in

any sequence, or in parallel, without correctness issues. Since the entire specification

is composed of abstractions and applications, this is enough to infer system-wide con-

currency. Functional specifications suffer from the opposite problem: they often need

to be sequentialized, which is a simpler problem.

Intermediate Representation

Compared to extracting CDFGs from C-like specifications, extracting h-calculus speci-

fications from functional languages is not as simple and does not have well-established

solutions. The h-calculus, being closer to hardware, contains low-level details that re-

quire a great deal of inferring, which is alleviated by the fact that Translation does

not need to output optimized results. For example, a translation step could consider

every function application as a new resource running parallel and every recursion as

sequential computation. This is a practical way to translate since we expect the DSE

step to optimize any inefficiencies introduced by Translation.

Although translating C-like code to CDFGs does not require much inferring, the

resulting CDFGs do not provide efficient mechanisms for verification and analysis, so

it is a tradeoff between ease of analysis and ease of Translation.

74

Translation Scheme

This thesis does not provide a specific translation scheme because techniques still need

to be understood better. However, we provide a plan, a set of ideas, that should effici-

ently translate from functional language to h-calculus despite concerns. These are:

The Functionality Operator: The Functionality Operator: an operator, denoted F ,

that takes a well-typed process as input and returns a function as output

F
(
Σ;∆ s,c

k,t
P ::

(
x : A

))
→ f .

This operator should effectively transform temporal session types into algebraic

datatypes and erase the notions of concurrency, sequence, time, resources, and

channels from processes until only a function, a mapping from algebraic types

to algebraic types, is left.

A translation procedure: opposite of the functionality operator, denoted T , the trans-

lation should take a well-typed function as input and return a well-typed h-

calculus process

T (f)→ Σ;∆ s,c
k,t
P ::

(
x : A

)
.

Types are transformed into Temporal Session Types and functions into h-calculus

processes by inferring every characteristic not modeled by functions: concur-

rency, time, clock, resources. There are multiple possible processes for one func-

tion, but the translation procedure can choose any, even not optimized, as long as

it is correct. Previous work [37, 38, 39] successfully transformed typed functions,

using a Haskell-like language, into hardware: we need to translate the ideas to

output h-calculus processes instead.

A correctness proof: a proof that that translation preserves functionality, F (T (f)) =

f .

The main issue with this plan regards the proof of correctness. Ideally, we should

define functionality and translation operations with this proof as an objective; otherwise,

it may be difficult to prove since it is reduced to a function extensionality problem (pro-

ving two functions are equal), which is a challenging problem. Furthermore, F ’s out-

puts must be as simple as possible to allow DSE to perform automatic reasoning at the

functional level efficiently; a functionality operator that outputs functions that look

like a functional hardware description would not be helpful in this case. In summary,

bridging the h-calculus with functions is challenging, but solving the problem can

significantly improve the level of abstraction provided by HLS.

75

5.2 Design Space Exploration

Design Space Exploration is the step that analyses and manipulates IR descriptions

until it finds a design that meets all the project’s constraints. The exploration step

is more general than performing a fixed sequence of transformations. DSE (Fig. 5.2)

receives feedback information from multiple IR definitions and decides, based on it,

the next transformations it will perform. This feedback information contains efficiency

parameters and is crucial for the effectiveness of DSE.

DSE

transform

constraints

optimization

criteria

analysis

decisions

compare

Design Space

Figura 5.2: Design Space Exploration Schematics

For hardware DSE to be effective, feedback information must be easily fetchable —

i.e., must be computationally light and fast — and must accurately model hardware at

a low level, or else the information is not helpful for hardware analysis.

The h-calculus type system solves this by providing hardware-aware information

easily fetchable from its types. In the case of Control Dataflow Graphs, they are in-

terpreted as hardware but do not natively model hardware, meaning not all of the

information extracted from it will be accurate. Furthermore, extraction of analytical

information from CDFGs requires graph-crawling algorithms, which can be computa-

tionally heavy for large systems.

We do not provide one particular DSE system because we can implement them in

so many ways. It can be as simple as merging resources to minimize area usage, mul-

tiplying resources to maximize throughput, or pipelining a sequential computation

segment, or as advanced as using analytical data as input for a machine learning or

genetic programming decision scheme. As long as the IR is easy to analyze, multiple

schemes are possible.

An example is the best way to understand how the h-calculus aids DSE in practice.

In the following example, we will emulate a DSE system. Our objective is to optimize

an IR description according to specific design constraints and optimization criteria

76

using h-calculus’ types. We will also understand how DSE can be performed using

CDFGs instead of h-calculus and compare both results.

Example 5.1 (Dot Product Design Exploration). We will consider the hardware analy-

sis of a dot product implementation as an example. We will assume a designer wrote

the definition of dot product in a high-level language. The translation step then trans-

formed it into an h-calculus process, resulting in the Dotp#1 definition (#1 for first

version) described by Figure 5.3.

Dotp#1
def=

x1← get in1;

x2← get in2;

mx← mul1← {x1,x2};

r1← reg1←mx;

tick s; clock;

y1← get in1;

y2← get in2;

my ← mul2← {y1, y2};

a1← add1← {my , r1};

r2← reg2← a1;

tick s; clock;

z1← get in1;

z2← get in2;

mz← mul3← {z1, z2};

a2← add2← {mz, r2};

tick (δmul + δadd);

out← put a2; end out

First version

Dotp#2
def=

x1← get in1;

x2← get in2;

mx← mul123← {x1,x2};

r1← reg12←mx;

tick s; clock;

y1← get in1;

y2← get in2;

my ← mul123← {y1, y2};

a1← add12← {my , r1};

r2← reg12← a1;

tick s; clock;

z1← get in1;

z2← get in2;

mz← mul123← {z1, z2};

a2← add12← {mz, r2};

tick (δmul + δadd);

out← put a2; end out

Second version

Dotp#3
def=

(x1, y1, z1)← in1;

(x2, y2, z2)← in2;

mx← mul1← {x1,x2};

my ← mul2← {y1, y2};

mz← mul3← {z1, z2};

a1← add1← {mx,my};

a2← add2← {mz, a1};

tick (δmul + 2δadd);

out← put a2; end out

Third version

Dotp#4
def=

m← mulseq← {in1, in2};

tick δseq;m1← getm;

r1← reg←m1;

tick s;clock;tick δseq;

m2← getm;

a1← add← {m2, r1};

r2← reg← a1;

tick s;clock;tick δseq;

m3← getm;

a2← add← {m3, r2};

tick δadd;

out← put a2;end out

Fourth version

Figura 5.3: Different h-calculus processes for the Dotp function

77

−; in1 : •τ1Ints−τ11, in2 : •τ2Ints−τ21

s,c
k,0

Add ::
(
out : •max(τ1,τ2) • δadd

−−−→
Int s−(max(τ1,τ2)+δadd1

)
−; in1 : •τ1Ints−τ11, in2 : •τ2Ints−τ21

s,c
k,0

Mul ::
(
out : •max(τ1,τ2) • δmul

−−−→
Int s−(max(τ1,τ2)+δmul1

)
−; in1 : IntsIntsInts1, in2 : IntsIntsInts1

s,c
k,0

Mulseq ::
(
out : •s • s • δseqInts−δseq • δseqInts−δseq • δseqInts−δseq1

)

Σ#1; in1 :
−−−→
Int s

−−−→
Int s

−−−→
Int s1, in2 :

−−−→
Int s

−−−→
Int s

−−−→
Int s1

s,c
k,0

Dotp#1 ::
(
out : •2s • δmul+δadd −−−→Int s−(δmul+δadd)1

)
Σ#2; in1 :

−−−→
Int s

−−−→
Int s

−−−→
Int s1, in2 :

−−−→
Int s

−−−→
Int s

−−−→
Int s1

s,c
k,0

Dotp#2 ::
(
out : •2s • δmul+δadd −−−→Int s−(δmul+δadd)1

)
Σ#3; in1 :

(−−−→
Int s1

)
⊗
(−−−→
Int s1

)
⊗
(−−−→
Int s1

)
, in2 :

(−−−→
Int s1

)
⊗
(−−−→
Int s1

)
⊗
(−−−→
Int s1

)
s,c
k,0

Dotp#3 ::
(
out : •(δmul+2δadd)−−−→Int s−(δmul+2δadd)1

)
Σ#4; in1 :

−−−→
Int s

−−−→
Int s

−−−→
Int s1, in2 :

−−−→
Int s

−−−→
Int s

−−−→
Int s1

s,c
k,0

Dotp#4 ::
(
out : •4s • δseq+δadd −−−→Int s−(δseq+δadd)1

)

Σ#1 = mul1 : (−; in1 : Ints • s • s1, in2 : Ints • s • s1; •δmulInts−δmul • s • s1)

, mul2 : (−; in1 : •sInts • s1, in2 : •sInts • s1; •s • δmulInts−δmul • s1)

, mul3 : (−; in1 : •s • sInts1, in2 : •s • sInts1; •s • s • δmulInts−δmul1)

, reg1 : (−; in : •δmulInts−δmul • s • s1; •sInts • s1)

, reg2 : (−; in : •s • δmul+δaddInts−(δmul+δadd) • s1; •s • sInts1)

, add1 : (−; in1 : •s • δmulInts−δmul • s1, in2 : •sInts • s1

; •s • δmul+δaddInts−(δmul+δadd) • s1)

, add2 :
(
−; in1 : •s • s • δmulInts−δmul1, in2 : •s • sInts1

; •s • s • δmul+δaddInts−(δmul+δadd)1
)

Σ#2 = mul123 :
(
−; in1 : IntsIntsInts1, in2 : IntsIntsInts1

; •δmulInts−δmul • δmulInts−δmul • δmulInts−δmul1
)

, reg12 : (−; in : •δmulInts−δmul • δmul+δaddInts−(δmul+δadd) • s1; •sIntsInts1)

, add12 :
(
−; in1 : •s • δmulInts−δmul • δmulInts−δmul1, in2 : •sIntsInts1

; •s • δmul+δaddInts−(δmul+δadd) • δmul+δaddInts−(δmul+δadd)1
)

Σ#3 = mul1 : (−; in1 : Ints1, in2 : Ints1; •δmulInts−δmul1)

, mul2 : (−; in1 : Ints1, in2 : Ints1; •δmulInts−δmul1)

, mul3 : (−; in1 : Ints1, in2 : Ints1; •δmulInts−δmul1)

, add1 :
(
−; in1 : •δmulInts−δmul1, in2 : •δmulInts−δmul1

; •δmul+δaddInts−(δmul+δadd)1
)

, add2 :
(
−; in1 : •δmulInts−δmul1, in2 : •δmul+δaddInts−(δmul+δadd)1

; •δmul+2δaddInts−(δmul+2δadd)1
)

Σ#4 = mulseq :
(
−; in1 : IntsIntsInts1, in2 : IntsIntsInts1

; •2s • δseqInts−δseq • δseqInts−δseq • δseqInts−δseq1
)

, reg :
(
−; in : •2s • δseqInts−δseq • δseq+δaddInts−(δseq+δadd) • s1

; •2s • sIntsInts1
)

, add :
(
−; in1 : •2s • s • δseqInts−δseq • δseqInts−δseq1, in2 : •2s • sIntsInts1

; •2s • s • δseq+δaddInts−(δseq+δadd) • δseq+δaddInts−(δseq+δadd)1
)

Figura 5.4: Typing judgements for all Dotp versions and auxiliary definitions

The process definitions discussed in this example are in Figures 5.3, and auxiliary

type definitions are in Figure 5.4. Our goals with this example are to:

• analyze and explore the design space for correct dot-product hardware designs,

analyze them and discuss their advantages and disadvantages,

• show that even for simple descriptions, such as a dot-product, hardware analysis

can get quite complicated, which is why h-calculus is helpful. There are many

correct but drastically different architectures that need to be explored before re-

aching optimal results, and

• show how a semi or fully automatic system can use the information provided

by types to make sense of the complexity, extract relevant information and, as a

consequence, be able to choose optimizations more intelligently

.

78

Analysis and Design Space Exploration As previously stated, we assume the result

in Figure 5.3 comes from the translation stage. The translation stage’s objective is to

transform the high-level input into any h-calculus definition as long as it type-checks

and preserves the input’s functionality. It does not matter, for this stage, if results are

optimized or not, which is good because the algorithm can focus on being correct and

as simple as possible.

Since we expect Dotp#1 to be inefficient, we start by looking at its types to collect

analytical information. By merging the types of Mul1, Mul2, and Mul3, we can tell they

are compatible. Their merged type is

(−; in1 : IntsIntsInts1, in2 : IntsIntsInts1; •δmulInts−δmul • δmulInts−δmul • δmulInts−δmul1),

which is enough information to replace them all by only one multiplier, called Mul123.

Similarly, we can replace Reg1 and Reg2 by Reg12, and Add1 and Add2 by Add12. After

these optimizations, Dotp#1 becomes Dotp#2. These optimizations do not change the

structure of Dotp#1, it just makes the hardware module leaner, decreasing its area and

cost

Suppose that, as designers, we want higher throughput. There are many ways of

achieving this, but we will try parallelization, also known as unrolling, which is, in

terms of TSTs, changing input types from

−−→
Int s

−−→
Int s

−−→
Int s1

to (−−→
Int s1

)
⊗
(−−→
Int s1

)
⊗
(−−→
Int s1

)
,

meaning all three values will arrive at the same time instead of in sequence. This

optimization yields Dotp#3. Different from Dotp#1, all resources in Σ#3 are merge-

incompatible, which is a side-effect of computing in parallel.

All three versions of Dotp so far assume that the processing time of multiplications

δmul to be less than the cycle duration δmul < s, but that might not be true. The value

of s might be constrained, or designers might prefer faster clock frequencies (in which

case s should be as small as possible). Assuming s ≤ δmul, 1-cycle multipliers would not

type check. A solution is to replace them with sequential pipelined multipliers Mulseq
(Figure 5.4) instead, which, in our case, take 3 stages to finish one multiplication. The

timings are such that δseq is smaller than δmul since it represents the computation time

for the third stage of multiplication only. The result is a sequential Dotp#4 that uses

this new sequential multiplier.

79

Comparison

A summary of information collected from the types of all Dotp versions is in Table 5.1.

Resource Usage The sequential versions #2 and #4 use fewer resources than #1 and

#3. The first version uses many resources because it is the version before resource

sharing optimization, but it has no logical reason to use this amount of resources.

Version #2 provides the same advantages as #1 while using fewer resources,

which is a case of objective improvement, independent of designers’ optimiza-

tion constraints. Version #3 uses more resources because it uses parallel compu-

tation: it performs computations in fewer cycles, but it uses more resources in

turn.

Regarding resource usage, #2 and #4 are the best options. However, it is hard to

measure which one is the best since we would have to estimate the resource cost

of Mul compared to Mulseq, which is unclear since Mul should use more combina-

tional circuitry and Mulseq should use registers to carry information through the

pipeline stages.

Throughput Considering output per cycle rate, the winner is #3 because it runs all

the computation in one cycle, while others take 3 and 5. However, output per

time — the output per cycle divided by the minimum period — requires a more

detailed analysis.

#3 would indeed perform the computation in one s. However, the minimum

possible value for s, in this case, would be δmul+2δadd, which could be a relatively

large number, mainly because δmul should be much bigger than δadd due to the

complexity of multiplication.

To know which architecture would have the highest throughput, we would have

to set relative values for δmul, δseqF andδadd G and calculate the throughputs. In

Table 5.2, we show different possible cases, A and B, and their throughput. In

case A, δmulH being too big, version #4 will have a better throughput by allowing

a faster clock speed. Version #1 and #2 would be especially slow in this case

since they have to perform multiplication three times in sequence. In case B,

δseqJ is only slightly bigger than δmulK, so versions #2 and #4 have very similar

throughput, and version #3 would offer the best throughput.

80

Tabela 5.1: Dotp versions comparison

Version Mul Mulseq Add Reg Total Latency Output/Cycle Min. period Output/Time
#1 3 0 2 2 7 2s+ δmul + δadd 1/3 s = δmul + δadd 1/(3(δmul + δadd))
#2 1 0 1 1 3 2s+ δmul + δadd 1/3 s = δmul + δadd 1/(3(δmul + δadd))
#3 3 0 2 0 5 δmul + 2δadd 1 s = δmul + 2δadd 1/(δmul + 2δadd)
#4 0 1 1 1 3 4s+ δseq + δadd 1/5 s = δseq + δadd 1/(5(δseq + δadd))

Tabela 5.2: Different possible cases of Dotp

Case δadd δmul δseq
A 1 64 8
B 1 8 3

Version A B
#1 1/195 1/21
#2 1/195 1/21
#3 1/66 1/8
#4 1/45 1/20

Discussion

As we can see, all the versions have advantages and disadvantages, and choosing the

right one depends on the project’s constraints and optimization criteria. If we wanted

better throughput, we could either choose higher clock frequency and go with archi-

tecture #4 or choose parallelism and go with architecture #3. If we wanted low-cost

hardware, versions #2 and #4 would be better suited. If optimization parameters con-

sider cost and throughput equally important, version #4 would probably be the better

fit by providing both high throughput and low resources to a certain extent. This entire

analysis is only possible by the information provided by the type system.

Comparison with Control Dataflow Graphs

Although the Dotp example shows how h-calculus helps analysis and DSE, how does

it compare to Control Dataflow Graphs (CDFGs)? CDFGs combine control and data

flow within the same graph and are easily extracted from source code, especially from

imperative descriptions, but it is not easy to verify and analyze. To demonstrate this

distinction, let us suppose the Translation step inferred a CDFG equivalent to Dot#1

(shown in Fig 5.5, where rectangles represent conditional path selectors).

81

1
2
3

1
2
3

×

×

×

+

+ out

in1

in2

cycle

cycle

Figura 5.5: Dotp#1 as a Control Dataflow Graph (CDFG)

Since CFDGs do not model temporal information, First In First Out (FIFO) buffers

become intrinsic to the design. We do not know during static analysis where buffers

need to be synthesized and how much data they need to store at a given time. Several

other dataflow models (such as SADF [15, 16], BPDF [14], SPDF [17], VRDF [18]) try

to make the buffer analysis problem statically decidable, but most solutions involve

exhaustive algorithms. The h-calculus’ type system does not natively use buffers, and

if one needs to be implemented as a process, it needs to have a finite storage capacity.

Another issue with the dataflow representation is that it is not trivial to analyze

when control is involved. For instance, we can perform a resource sharing analysis

analogous to using the merge operation in h-calculus (such as the one that generated

Dotp#2 from Dotp#1) using dataflow representations; however, the technique would

be iterative, verifying every possible path provided by the selector separately. The

h-calculus analysis is easy to automate for any other example. In contrast, the kind

of graph analysis required by dataflow models does not scale when applied to larger

systems.

In summary, compared to dataflow models, analyzing h-calculus descriptions is

more computationally straightforward since structured analytical information is rea-

dily available within well-typed processes.

HLS systems using h-calculus as IR can perform design exploration more effecti-

vely at the cost of a slightly more complex translation stage. Compared to dataflow,

the synthesis from IR to RTL should be more straightforward because the h-calculus

represents hardware at a lower level (registers, combinational circuits, clock). In con-

trast, dataflow models still need to infer components (especially buffers), generating a

mismatch between static analysis and the actual results.

82

5.3 Synthesis

Since h-calculus’ level of detail is very close to RTL, the synthesis step — inferring an

RTL architecture from an h-calculus specification — is not a complex procedure.

Similar to the RTL model, the h-calculus describes an architecture composed of

connections and resources. Unlike RTL, however, h-calculus hides control information

and multiplexers (components that route values through different wires depending on

a control signal).

The objective of Synthesis is then to infer all of the things that are implicit in the

h-calculus and construct the RTL architecture. Next, we define an RTL architecture

as two separate connected parts: the control part, a Finite State Machine that outputs

control signals, and the operative part, containing the components, registers, multi-

plexers, and connections. Then we define Control Merging and, finally, Synthesis.

5.3.1 Control - Finite State Machines

Definition 32 (Control Part) The control part of an architecture is a finite state

machine (a), represented by a circle, where states (b) are assigned a set of control

signals, denoted by Ω, and an index t between 0 and s that describes when, within

one cycle, the state is situated. Signals in Ω can be: control flow signals conn(x) =

y, start signals start(r), or branching signals x = `. The transitions (c) react to a

start, clock, branching, or empty events.

clock

x = `1

x = `2

x = `n

...

C1

C2

Cn

C

C

(c) transitions

(a) state machine (b) state

C
ε

Ω

t

t

s

Ω

Ω

Ω

t

C
start(r)

t

Ω

We use the empty event to construct finite state machines recursively. Control

83

equivalence optimizes away the empty events by considering two states connected

by an empty event the same.

C
ε t2

Ω2

t1

Ω1

a

≈

C

t1 + t2

Ω1Ω2

a

Where Ω1Ω2 is the union between all control signals in Ω1 and Ω2.

Definition 33 (Operative Part) The operative part of an architecture is a network

of components connected through channels. We represent components as rectan-

gles and channels as lines (a). A little dark square (b) graphically represents con-

nections between two endpoints. When more than two endpoints connect, the

connection must receive a control signal that will route data correctly — this con-

nection may become a multiplexer at later stages of synthesis depending on the

direction of the data.

(a) components and

channels
(b) connection

P

control

signal

Definition 34 (Hardware Architecture) Hardware architecture represents an

RTL description. It is composed of an operative and a control parts. The control

part sends signals to the operative part managing the dynamic connections, and

the operative part sends branching information (coming from external choices) as

input to the control part.

84

Ω1

t2

Ω2

t2

control signals

operative

part

control

part

A vital definition for Synthesis is Control Merge, which optimizes two control parts

running in parallel, resulting in an equivalent one. Control merge will allow the en-

tire system to have only one control part, made from all its components’ finite state

machines merged.

Definition 35 (Control Merge) The control merge operation merges two control

parts running in parallel and constructs one resulting control part. Its definition

is recursive and graphical:

C D

C merged with D

Cases:

clock
C1

s

Ω1

clock
C2

s

Ω2

clock
C2

s

Ω1Ω2

C1=

85

C

t

Ω1, x = `k

x = `1

x = `2

x = `n

...

D1

D2

Dn

Ω2

t

...

C

t

Ω1Ω2

a a
Dk=

C

t

Ω1, start(r)

C

t

Ω1Ω2

a a
DD

t

Ω2

start(r) =

clock
C

s

Ω1

x = `1

x = `2

x = `n

...

D1

D2

Dn

Ω

t

x = `1

x = `2

x = `n

Ω1Ω2

t

clock
C

s

Ω1

D1

clock
C

s

Ω1

D2

clock
C

s

Ω1

Dn

...

...
...

=

...

D2

Dn

Ω2

t

Ω1Ω2

t

C2 D2

...

...

D1
x = `1

x = `2

x = `n

...

C2

Cn

Ω1

t

...

C1

Cn Dn

C1 D1
x = `1

x = `2

x = `n

x = `1

x = `2

x = `n

...

=

y = r1

y = r2

y = rm
...

D2

Dm

Ω2

t

xy = `1r1

xy = `irj

xy = `nrm

Ω1Ω2

t

Ci Dj

...

...

...

D1
x = `1

x = `2

x = `n

...

C2

Cn

Ω1

t

...

C1

Cn Dm

C1 D1

=

86

y = r1

y = r2

y = rm
...

D2

Dm

Ω2

t2

Ω1

t1

...

D1
x = `1

x = `2

x = `n

...

C2

Cn

Ω1

t1

...

C1

C1

t1 < t2

y = r1
y = r2

y = rm
...

D2

Dm

Ω2

t2

...

D1

C2

y = r1
y = r2

y = rm
...

D2

Dm

Ω2

t2

...

D1

Cn

y = r1
y = r2

y = rm
...

D2

Dm

Ω2

t2

...

D1

...

...

x = `1

x = `2

x = `n

=

Definition 36 (Synthesis) Synthesis transforms a process into a hardware archi-

tecture composed of control and operative (components) parts. Synthesis is defi-

ned recursively and graphically:

We start by synthesizing and merging the control parts from all resources within

the system together with the main process control:

Pr1

P

P· · · Prn

r1 : R1, · · · , rn : Rn;∆ s,c
0,0

P ::
(
x : A

)
0

start(r)

ε

0
start(r)

ε

Next rules show how P is transformed:

x← y

P

Q

QP

x← P ;Q

r

P

x← r← {Σ;∆};Q

P
start(r)

0 ε

87

P

tick τ ;P

P

τ
ε

P

clock;P

P

s
clock

P

L : P

P

ε

P

P
conn(x) = y

t ε

y

x

P

P
conn(x) = y

t ε

y

x P

P
conn(x) = y

t ε

y

x

P

P
conn(x) = y

t ε

y

x

x← put y;P x← put y;P y← get x;P y← get x;P

P

P
x = `k

t ε

x

x.k;P

Pi

x

f x

x = `1

x = `2

x = `n

...

P2

Pn

Ω1

t

...

P1

case x of {`⇒ P`}`∈L

P

Q

QP

P
∥∥∥Q

P

Q

QP

(x→ (x1,x2)) .
(
P

∥∥∥Q)

P

P

(x1,x2)← x;P

Sig (τ,x← a)

x D a

Reg (y← x)

x y

Comb (f ,τ,y← (x1,x2, · · · ,xn))

x1

y

...

x2

xn

f

88

5.3.2 Practicalities

The control part, hidden by the h-calculus, introduces practical issues that need to be

solved for synthesis to produce correct hardware.

The synthesis step also includes transforming the control part into a circuit. It

translates the Finite State Machine first into a set of boolean equations, then into a

digital circuit composed of flip-flops and logic gates (e.g., AND, OR, NOT, and NAND). Like

any hardware component, control needs time to transition from one state to the other.

We denote δcontrol as the maximum amount of time elapsed for an input change to

result in a stable state (maximum transition time).

Setup Time We explained earlier, in Chapter 2, that the setup time st = c − s is the

time that it takes for every register within the system to stabilize its value. It turns

out st must also be greater or equal than δcontrol, or else the state would not be sta-

ble during the stable period, resulting in the following additional constraint: st ≥
max(δregisterδcontrol).

Synthesizable Choice Another consequence of having to consider δcontrol regards

the choice events. Different from reacting to clock events, reacting to choice events of

type −→⊕ x{` : S`}`∈L can occur anywhere within the stable period. Since the maximum

transition time is at least greater than zero, an additional constraint is that types such

as −→⊕ x{` : S`}`∈L need to be replaced by their delayed versions −→⊕ x{` : •δcontrolS`}`∈L to

synthesize correctly.

Fortunately, this constraint needs to be enforced only to choices produced outside
of the system since those produced within the system have their control optimized

away by the control merge operation (Def. 35). For a choice external to the system to

be synthesizable, it needs to follow the pattern −→⊕ x{` : •τS`}`∈L with τ ≥ δcontrol. For

example, if c is a channel coming from the external environment, type

c : µL.−→⊕ c


inc :

−−→
Int sL,

neg :
−−→
Int sL,

fwd :
−−→
Int sL

is incorrect, while type

c : µL.−→⊕ c


inc : •τ

−−→
Int s−τL,

neg : •τ
−−→
Int s−τL,

fwd : •τ
−−→
Int s−τL

89

with τ ≥ δcontrol is correct.

90

Capítulo 6

Related Work

This chapter will compare the h-calculus to other models of computation (MoCs) used

for hardware modeling or concurrent systems modeling. To aid the comparison, we

provide a summary of the comparisons in Table 6.1. The table analyses all models of

computation according to the following criteria:

Well-Formedness Does the model allow for any well-formedness technique (such as

type-checking or iterative model checking) that detects erratic hardware?

Analysis Does the MoC provide methods for analysis that are not computationally

intensive? Where analysis, in this case, is the ability to retrieve, from the model,

efficiency parameters that will guide design exploration.

Expressive Is the MoC expressive enough to model complex computations, or do their

limitations make it difficult for designers to represent complex architectures?

Resource Does the model understand resource usage and resource sharing? Effici-

ent use and sharing of resources are perhaps one of the most critical aspects of

hardware design optimization.

A model without resource modeling cannot validate or analyze the way resources

are used, which leads to inefficient results. An approach to avoid this problem is

considering every instance of processes to be unique. Although this is acceptable

for deeply parallel architectures, this approach cannot output "lean"results with

fewer components, which is undesirable.

Concurrency Is it a concurrent model of computation? Since hardware is a naturally

concurrent system, using a model that does not understand concurrency implies

the HLS system must infer concurrency before trying to optimize any design.

91

Because inferring concurrency is an undecidable, complex problem with unsa-

tisfactory solutions [40, 41], non-concurrent models should be avoided for hard-

ware modeling.

Time Does the MoC model time? Although many models represent sequences of

events, such as action A then action B, and some understand the notion of cycles,

few MoCs model time inside one clock cycle. Modeling time with more precision

allows the model to analyze and transform architectures more efficiently [40].

HLL→ X (Translation) Is it easy to convert High-Level Language (HLL) into the tar-

get model?

X→ RTL (Synthesis) Is it easy to transform the model definition into an RTL or other

low-level hardware representation?

Hardware Does the MoC understand hardware design concepts such as clock, regis-

ters, combinational circuits, and others?

6.1 Comparisons

Next, we discuss the most relevant aspects of all models of computation presented in

Table 6.1.

(HC) H-Calculus The h-calculus uses session type checking/inference to detect ill-

formed hardware descriptions.

Analysis is straightforward because efficiency parameters can be fetched from the

type definitions of processes, including resource usage and communication informa-

tion. The h-calculus understands time, concurrency, and hardware concepts, and it is

expressive enough for hardware-design needs, although not as expressive as general

MoCs such as λ or π-calculus.

Although it is simple to transform the h-calculus into HLS (Def. 36), it is not as

trivial to convert HLLs into h-calculus when compared to other models. The h-calculus

trades off ease to define for ease to analyze. The separation of HLS in steps — that

removes any responsibility of optimization from the translation step — alleviates this

downside, but the transformation is still relatively challenging.

(DF) Dataflow Dataflow [42, 43, 44, 45, 46, 47] is a directed graph where nodes

are concurrent actors, and the vertices are communication channels. Actors perform

92

computation when certain trigger conditions on their inputs are met. Although it is

an expressive concurrent model of computation, it is generally hard to analyze.

In order to suit better the needs of specific applications, including better analy-

sis, different kinds dataflow models were introduced. Different trigger conditions de-

fine different kinds of Dataflow. This chapter will briefly discuss Control Dataflow
Graphs (CDFGs) [19], Boolean Parametric Dataflow (BPDF) [14], Scenario-Aware Data-
flow (SADF) [15, 16], Schedulable Parametric Dataflow (SPDF) [17], and Variable-Rate
Dataflow (VRDF) [18]. Figure 6.1 shows a map of different dataflow models and their

relationship to each other.

DF/KN

CDFG SDF

ESDF

BPDF

SADF SPDF

VRDF

Figura 6.1: Dataflow Relationship Schematics

(KN) Kahn Networks A Kahn Network [48] is a network of concurrent components

represented as mathematical functions that manipulate sequences of values instead of

plain values. [11] shows that Kahn Networks and Dataflow are equivalent. Similar to

DF, KN is expressive but hard to analyze.

(CDFG) Control Dataflow Graphs Control Dataflow Graphs [19] are the most com-

monly used intermediate representation in HLS systems [2, 3, 1]. CDFGs are a kind of

Dataflow representing both the control and operative parts of the hardware within the

same graph. In other words, the actors’ computations can change state variables, thus

controlling the operative part.

The advantage of CDFGs is that it is straightforward to infer it from high-level code,

especially sequential code. Thus it is commonly used to extract control information

from C programs (the most common example). However, CDFGs do not solve the

general Dataflow problem of being difficult to analyze.

Since analyzing CDFGs is an arduous task, HLS systems based on CDFGs rarely

rely upon gathering information from definitions [4, 9]. Instead, they apply a fixed,

statically defined sequence of optimizations/algorithms that statistically gives better

93

results most of the time. While an inflexible is not efficient enough for general hard-

ware designs, it often works for specific applications [2, 3, 1].

(SDF) Synchronous Dataflow Synchronous Dataflow [49] (see Figure 6.1) is a data-

flow with triggering rules that require actors to consume and produce values at fixed,

statically determined rates (for example, two values per cycle).

SDF’s restrictive firing rules result in a loss of expressiveness but allow for better

analysis compared to general DF and CDGF models. It is straightforward to check

deadlock freedom, optimally schedule tasks, and choose buffer sizes. If an application

needs little to no control flow, SDF can be a powerful model to use.

It is important to note that SDF’s analysis have several differences from those per-

formed within h-calculus. H-Calculus performs analysis during construction through

the type checking/inference algorithm, while algorithms for analysis used in SDF and

other dataflows rely on graph crawling. Graph crawling gets computationally expen-

sive as systems get big, which is the case with modern System on Chips (SoCs).

Moreover, h-calculus’ analysis relates almost 1 to 1 to hardware analysis, while

SDF’s analysis needs to be interpreted as hardware analysis, resulting in inaccuracies.

The major downside of SDF is that it is not very expressive. For example, since it

allows fixed rates only, any conditional or dynamic flow cannot be represented. Several

kinds of Dataflow try to combine the SDF’s ease of analysis with the expressiveness of

dynamic DF. We are going to talk about some of them next.

(ESDF) Extended Synchronous Dataflow Extended SDF is the name we use to clas-

sify Dataflows that try to extend the SDF model, adding more expressiveness while

keeping the ease of analysis (see Fig 6.1).

Some examples of ESDF are Boolean Parametric Dataflow (BPDF) [14], Scenario-
Aware Dataflow (SADF) [15, 16], Schedulable Parametric Dataflow (SPDF) [17], and Variable-
Rate Dataflow (VRDF) [18].

Details aside, these Dataflow models attempt to extend the SDF with mechanisms

that change the rate of consumption/production of values dynamically. The result is a

slightly more complicated model that keeps SDF’s properties (e.g., deadlock freedom,

buffer size decidability) but is better suited for applications with more control flow.

Although these models look promising for hardware modeling, especially compa-

red to the standard CDFGs used in HLS, their major drawback is their lack of time

representation. It should be simple to declare actors related to hardware components

(such as registers, multiplexers, and logical gates), but extending Dataflow models

with temporal information while keeping it analyzable is not trivial.

94

(FSMD) Finite State Machine with Dataflow The FSMD model [4, 50] combines a

finite state machine representing control with a hardware architecture datapath. Com-

pared to other models, this one understands hardware concepts such as control signals,

clock cycle, registers, and multiplexers, so it is trivial to transform a description into

an RTL one. Furthermore, it understands resource usage and resource sharing.

Although the FSMD represents hardware somewhat accurately, it does not have

adequate analysis mechanisms. Since FSMD is more low-level and harder to manipu-

late, it is common for current HLS systems to transform CDFGs into FSMD during the

later stages of high-level synthesis [4, 2, 9, 3, 1].

(LC) Lambda Calculi The untyped lambda calculus (seen in Chapter 3.4) is a Turing
complete model of computation with simple syntax and semantic rules. Its simpli-

city and expressiveness are the reason several programming languages are based on

it. However, λ-calculus’ abstractions and applications are not enough for hardware

modeling as they cannot trivially model concurrency, resources, time, and hardware

components.

(TLC) Typed Lambda Calculi While types still do not trivially model concurrency

and time, using a type system brings ease of well-formedness, which is a crucial part

of hardware design.

Expressive types allow hardware-like types to be constructed — such as Signal,

Component types, for example —, which is the approach taken by some research [51,

52, 53, 54, 55]. The problem with this approach is that while it might be a better

Hardware Description Language with well-formedness advantages, it is still difficult to

analyze.

(PC) Process Calculi. The process calculus approach models concurrent processes

with algebraic simplicity compared to lambda-calculus. The pi-calculus [56, 57] and

its variations stand out for being Turing-complete (able to encode the lambda-calculus

within themselves) among all process calculi. The pi-calculus, for instance, models

channels and concurrent processes and uses operational semantic rules to describe

how the processes evolve through interactions and time.

The pi-calculus is more suitable for hardware design than lambda-calculi since it

is built around concurrency, but it is still not a perfect fit. Several modeling details

separate pi-calculus from an ideal hardware representation, the most prevalent one

being the lack of efficient analysis mechanisms.

95

(STPC) Session-Typed Process Calculi. Session Types [23, 21, 20] solve the well-

formedness issue of process calculi by providing a type system that understands con-

currency and ensures well-formation — no deadlock or communication errors possible

for well-typed processes for example. Compared to Dataflow models, session types

provide a great balance between efficient well-formedness checking and expressive-

ness.

Although session types look promising candidates for hardware modeling, it still

is not the perfect fit. Considering basic session types described in Section 3.4 [23],

the system lacks temporal durations and is not hardware-aware enough to provide

high-quality hardware analysis. Furthermore, some of the expressiveness needs to be

capped for hardware design’s sake. For example, dynamic creation of channels, a distinct

characteristic of the π-calculus, does not translate well into (efficient) hardware as well

as some linear-logic inspired interpretations.

The upside about Session Types is that it is possible to extend/modify the type

system to make it as appropriate for the target application as possible (e.g., [58, 59, 24,

32, 33, 60, 61, 62, 25, 26]), which was the path taken by the h-calculus research.

96

X
W

el
l-

Fo
rm

ed
n

es
s

A
n

al
ys

is
E

xp
re

ss
iv

e
R

es
ou

rc
e

C
on

cu
rr

en
cy

T
im

e
H

L
L
→

X
X
→

R
T

L
H

ar
d

w
ar

e
H

C
3

3
3

3
3

3
7

3
3

D
F

7
7

3
7

3
7

3
7

7

K
N

7
7

3
7

3
7

3
7

7

C
D

FG
7

7
3

7
3

7
3

7
7

SD
F

3
7

7
7

3
7

3
7

7

E
SD

F
3

7
3

7
3

7
3

7
7

FS
M

D
7

7
7

3
3

7
7

3
3

LC
7

7
3

7
7

7
3

7
7

T
LC

3
7

3
7

7
7

3
7

7

P
C

7
7

3
7

3
7

*
7

7
7

ST
P

C
3

3
3

7
*

3
7

7
7

7

Ta
be

la
6.

1:
C

om
p

ar
is

on
of

d
iff

er
en

t
m

od
el

s
of

co
m

p
u

ta
ti

on

97

Capítulo 7

Discussion and Future Work

,

In this thesis, we introduced a process calculus for hardware design called H-
Calculus, which uses a novel type system of Temporal Session Types (TSTs), based on

the works on Session Types. The H-Calculus provides an intermediate representation

well-suited for Design Space Exploration (DSE) of hardware by focusing on correctness-

by-construction and ease of analysis. We provided several examples demonstrating the

level of expressiveness and detail of the h-calculus to describe, analyze and transform

low-level interconnected hardware modules.

However, there are still pending issues with the h-calculus and research to be done.

Translation from high-level languages needs to be solved entirely with an efficient al-

gorithm and a functionality conservation proof. Furthermore, an easier way to prove

functionality preservation for transformations/optimizations would be handy. [37]

partially solves translation’s challenges for functional languages, but it is incomplete

how to fit all of the details within the context of the h-calculus.

The h-calculus’ type system is expressive enough to model low-level hardware, but

it comes with a price. The type-checking algorithm for the h-calculus is somewhat

complex and needs a great deal of type inference to work. A decidable type inference

algorithm that implements the h-calculus’ type system has not yet been thought out.

This algorithm should be a priority for future work since a future implementation

requires it.

Future work is directed towards implementation of an entire HLS flow, including

a translation scheme (the frontend of a compiler), a Design Space Exploration system,

and a synthesis scheme into RTL (backend of the compiler), and assess the efficiency

of the system for real-world hardware design examples.

Further research on the properties of the h-calculus type system could have exciting

consequences for hardware design. For example, the possibility of type inhabitation

98

could imply hardware generation from their types alone.

One of our main motivations for introducing this calculus was to offer a power-

ful intermediate representation for High-Level Synthesis, making automatic hardware

DSE practical. Although the thesis does not describe a particular DSE scheme, which

could be the theme for future research, the h-calculus is the perfect environment to

implement such a complex scheme, which depends on extensive detailed analysis and

transformations.

The implementation of other parts of the HLS system, including a compiler fron-

tend and backend and a hardware DSE scheme, seem to be the next logical steps for

future work. Also, a study on the description of real-world hardware design examples

using h-calculus would be useful to better under and its advantages, disadvantages,

and limitations.

99

References

[1] Campbell, Keith, Wei Zuo, and Deming Chen: New advances of high-level
synthesis for efficient and reliable hardware design. Integration, 58:189–214,
2017, ISSN 0167-9260. https://www.sciencedirect.com/science/article/pii/
S0167926016301432. 1, 2, 3, 40, 93, 94, 95

[2] Nane, R., V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao, S.
Brown, F. Ferrandi, J. Anderson, and K. Bertels: A Survey and Evaluation of FPGA
High-Level Synthesis Tools. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 35(10):1591–1604, 2016. 1, 2, 3, 40, 93, 94, 95

[3] Meeus, Wim, Kristof Van Beeck, Toon Goedemé, Jan Meel, and Dirk Stroobandt:
An overview of today’s high-level synthesis tools. Design Autom. for Emb. Sys.,
16:31–51, September 2012. 1, 2, 3, 40, 93, 94, 95

[4] Coussy, P., D. D. Gajski, M. Meredith, and A. Takach: An Introduction to High-
Level Synthesis. IEEE Design Test of Computers, 26(4):8–17, 2009. 1, 2, 3, 40, 93,
95

[5] Martin, G. and G. Smith: High-Level Synthesis: Past, Present, and Future. IEEE
Design Test of Computers, 26(4):18–25, 2009. 2, 3, 40

[6] Canis, Andrew, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Tomasz Czajkowski, Stephen D. Brown, and Jason H. Anderson: LegUp: An Open-
Source High-Level Synthesis Tool for FPGA-Based Processor/Accelerator Systems.
ACM Trans. Embed. Comput. Syst., 13(2), September 2013, ISSN 1539-9087.
https://doi.org/10.1145/2514740. 2, 40

[7] Bourgeat, Thomas, Clément Pit-Claudel, Adam Chlipala, and Arvind: The Essence
of Bluespec: A Core Language for Rule-Based Hardware Design. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2020, page 243–257, New York, NY, USA, 2020. Association for Com-
puting Machinery, ISBN 9781450376136. https://doi.org/10.1145/3385412.
3385965. 2, 40

[8] Nikhil, Rishiyur S.: Bluespec: A General-Purpose Approach to High-Level Synthe-
sis Based on Parallel Atomic Transactions, pages 129–146. Springer Nether-
lands, Dordrecht, 2008, ISBN 978-1-4020-8588-8. https://doi.org/10.1007/
978-1-4020-8588-8_8. 2, 40

100

https://www.sciencedirect.com/science/article/pii/S0167926016301432
https://www.sciencedirect.com/science/article/pii/S0167926016301432
https://doi.org/10.1145/2514740
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1145/3385412.3385965
https://doi.org/10.1007/978-1-4020-8588-8_8
https://doi.org/10.1007/978-1-4020-8588-8_8

[9] Fingeroff, Michael: High-Level Synthesis Blue Book. Xlibris Corporation, 2010,
ISBN 1450097243. 2, 40, 93, 95

[10] Fine Licht, Johannes de, Maciej Besta, Simon Meierhans, and Torsten Hoefler:
Transformations of High-Level Synthesis Codes for High-Performance Computing.
CoRR, abs/1805.08288, 2018. http://arxiv.org/abs/1805.08288. 2, 40

[11] Lee, Edward A and Eleftherios Matsikoudis: The semantics of dataflow with firing.
G. Huet, G. Plotkin, J.-J. Lévy, and Y. Bertot, editors, From Semantics to Computer
Science: Essays in Honour of Gilles Kahn, pages 71–94, 2009. 9, 40, 93

[12] Girard, Jean Yves: The system F of variable types, fifteen years later. Theoretical
computer science, 45:159–192, 1986. 40

[13] Aspinall, David and Martin Hofmann: Dependent Types, pages 45–86. MIT Press,
December 2004, ISBN 9780262162289. 40

[14] Bebelis, Vagelis, Pascal Fradet, Alain Girault, and Bruno Lavigueur: BPDF: A stati-
cally analyzable dataflow model with integer and boolean parameters. In 2013 Procee-
dings of the International Conference on Embedded Software (EMSOFT), pages 1–10,
2013. 41, 82, 93, 94

[15] Stuijk, Sander, Marc Geilen, Bart Theelen, and Twan Basten: Scenario-Aware Da-
taflow: Modeling, Analysis and Implementation of Dynamic Applications. pages 404
– 411, August 2011. 41, 82, 93, 94

[16] Theelen, Bart, M.C.W. Geilen, T. Basten, Jeroen Voeten, S.V. Gheorghita, and San-
der Stuijk: A Scenario-Aware Data Flow model for combined long-run average and
worst-case performance analysis. pages 185 – 194, August 2006. 41, 82, 93, 94

[17] Fradet, Pascal, Alain Girault, and Peter Poplavko: SPDF: A Schedulable Parametric
Data-Flow MoC (Extended Version). Research Report RR-7828, INRIA, December
2011. https://hal.inria.fr/hal-00666284. 41, 82, 93, 94

[18] Wiggers, Maarten H., Marco J.G. Bekooij, and Gerard J.M. Smit: Buffer Capa-
city Computation for Throughput Constrained Streaming Applications with Data-
Dependent Inter-Task Communication. In 2008 IEEE Real-Time and Embedded Te-
chnology and Applications Symposium, pages 183–194, 2008. 41, 82, 93, 94

[19] Orailoglu, Alex and Daniel Gajski: Flow Graph Representation. pages 503–509,
January 1986. 41, 93

[20] Honda, Kohei: Types for dyadic interaction. In International Conference on Concur-
rency Theory, pages 509–523. Springer, 1993. 41, 96

[21] Kobayashi, Naoki, Benjamin Pierce, and David Turner: Linearity and the Pi-
Calculus. ACM Transactions on Programming Languages and Systems (TOPLAS),
21:914–947, December 1999. 41, 96

101

http://arxiv.org/abs/1805.08288
https://hal.inria.fr/hal-00666284

[22] Abramsky, Samson: Computational interpretations of linear logic. Theoretical Com-
puter Science, 111(1):3–57, 1993, ISSN 0304-3975. https://www.sciencedirect.
com/science/article/pii/030439759390181R. 41

[23] Caires, Luís and Frank Pfenning: Session Types as Intuitionistic Linear Propositi-
ons. In Gastin, Paul and François Laroussinie (editors): CONCUR 2010 - Concur-
rency Theory, pages 222–236, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg, ISBN 978-3-642-15375-4. 41, 58, 96

[24] Das, Ankush, Jan Hoffmann, and Frank Pfenning: Parallel Complexity Analysis
with Temporal Session Types. Proc. ACM Program. Lang., 2(ICFP), July 2018.
https://doi.org/10.1145/3236786. 42, 43, 96

[25] Das, Ankush, Jan Hoffmann, and Frank Pfenning: Work Analysis with Resource-
Aware Session Types. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’18, page 305–314, New York, NY, USA, 2018.
Association for Computing Machinery, ISBN 9781450355834. https://doi.org/
10.1145/3209108.3209146. 42, 96

[26] Balzer, Stephanie, Frank Pfenning, and Bernardo Toninho: A universal session type
for untyped asynchronous communication. In 29th International Conference on Con-
currency Theory (CONCUR 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2018. 42, 96

[27] Yi, Wang: CCS + time = an interleaving model for real time systems. In Albert, Ja-
vier Leach, Burkhard Monien, and Mario Rodríguez Artalejo (editors): Automata,
Languages and Programming, pages 217–228, Berlin, Heidelberg, 1991. Springer
Berlin Heidelberg, ISBN 978-3-540-47516-3. 43

[28] Timed Process Calculi, a LOTOS Perspective, pages 261–286. Springer London, Lon-
don, 2006, ISBN 978-1-84628-336-9. https://doi.org/10.1007/1-84628-336-1_
9. 43

[29] Bernardo, Marco, Flavio Corradini, and Luca Tesei: Timed process calculi with de-
terministic or stochastic delays: Commuting between durational and durationless ac-
tions. Theoretical Computer Science, 629:2–39, 2016, ISSN 0304-3975. https:
//www.sciencedirect.com/science/article/pii/S0304397516001444, Theoreti-
cal Computer Science in Italy. 43

[30] Cerans, Karlis, Jens Godskesen, and Kim Larsen: Timed Modal Specification - The-
ory and Tools. Volume 697, pages 253–267, June 1993, ISBN 978-3-540-56922-0.
43

[31] Moller, Faron and Chris Tofts: A temporal calculus of communicating systems. In
Baeten, J. C. M. and J. W. Klop (editors): CONCUR ’90 Theories of Concurrency:
Unification and Extension, pages 401–415, Berlin, Heidelberg, 1990. Springer Ber-
lin Heidelberg, ISBN 978-3-540-46395-5. 43

102

https://www.sciencedirect.com/science/article/pii/030439759390181R
https://www.sciencedirect.com/science/article/pii/030439759390181R
https://doi.org/10.1145/3236786
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1145/3209108.3209146
https://doi.org/10.1007/1-84628-336-1_9
https://doi.org/10.1007/1-84628-336-1_9
https://www.sciencedirect.com/science/article/pii/S0304397516001444
https://www.sciencedirect.com/science/article/pii/S0304397516001444

[32] Bocchi, Laura, Maurizio Murgia, Vasco Thudichum Vasconcelos, and Nobuko
Yoshida: Asynchronous Timed Session Types. In Caires, Luís (editor): Programming
Languages and Systems, pages 583–610, Cham, 2019. Springer International Pu-
blishing, ISBN 978-3-030-17184-1. 43, 96

[33] Bartoletti, Massimo, Tiziana Cimoli, and Maurizio Murgia: Timed Session Types.
arXiv e-prints, page arXiv:1710.05388, October 2017. 43, 96

[34] Halbwachs, N., P. Caspi, P. Raymond, and D. Pilaud: The synchronous data flow
programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.
43

[35] Caspi, P., D. Pilaud, N. Halbwachs, and J. A. Plaice: LUSTRE: A Declarative
Language for Real-Time Programming. In Proceedings of the 14th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, POPL ’87, page
178–188, New York, NY, USA, 1987. Association for Computing Machinery,
ISBN 0897912152. https://doi.org/10.1145/41625.41641. 43

[36] Durgin, Nancy, Patrick Lincoln, and John Mitchell: Multiset Rewriting and the
Complexity of Bounded Security Protocols. Journal of Computer Security, 12:247–
311, February 2004. 46

[37] Sá, Luiz: Síntese de arquiteturas dedicadas a partir de linguagens funcionais. Ba-
chelor’s Thesis, Universidade de Brasília, DF, Brazil, 2017. https://bdm.unb.br/
handle/10483/19378. 75, 98

[38] Townsend, Richard, Martha A. Kim, and Stephen A. Edwards: From Functional
Programs to Pipelined Dataflow Circuits. In Proceedings of the 26th International
Conference on Compiler Construction, CC 2017, page 76–86, New York, NY, USA,
2017. Association for Computing Machinery, ISBN 9781450352338. https://
doi.org/10.1145/3033019.3033027. 75

[39] Zhai, Kuangya, Richard Townsend, Lianne Lairmore, Martha A. Kim, and
Stephen A. Edwards: Hardware synthesis from a recursive functional language. In
2015 International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 83–93, 2015. 75

[40] Edwards, S.A.: The Challenges of Synthesizing Hardware from C-Like Languages.
IEEE Design Test of Computers, 23(5):375–386, 2006. 92

[41] Masud, Abu, Björn Lisper, and Federico Ciccozzi: Automatic Inference of Task Pa-
rallelism in Task-Graph-Based Actor Models. IEEE Access, PP:1–1, December 2018.
92

[42] Whiting, P.G. and R.S.V. Pascoe: A history of data-flow languages. IEEE Annals of
the History of Computing, 16(4):38–59, 1994. 92

[43] Ackerman, W.: Data flow languages. 1979 International Workshop on Managing
Requirements Knowledge (MARK), pages 1087–1095, 1979. 92

103

https://doi.org/10.1145/41625.41641
https://bdm.unb.br/handle/10483/19378
https://bdm.unb.br/handle/10483/19378
https://doi.org/10.1145/3033019.3033027
https://doi.org/10.1145/3033019.3033027

[44] Adams, Duane Albert: A Computation Model with Data Flow Sequencing. PhD
thesis, Stanford, CA, USA, 1969. AAI6913919. 92

[45] Karp, Richard M and Rayamond E Miller: Properties of a model for parallel computa-
tions: Determinacy, termination, queueing. SIAM Journal on Applied Mathematics,
14(6):1390–1411, 1966. 92

[46] Lee, Edward A. and Thomas M. Parks: Dataflow Process Networks, page 59–85.
Kluwer Academic Publishers, USA, 2001, ISBN 1558607021. 92

[47] Rodrigues, J. E. and Jorge E Rodriguez Bezos: A Graph Model for Parallel Compu-
tations. Technical report, USA, 1969. 92

[48] Kahn, Gilles: The Semantics of a Simple Language for Parallel Programming. In
Rosenfeld, Jack L. (editor): Information Processing, Proceedings of the 6th IFIP Con-
gress 1974, Stockholm, Sweden, August 5-10, 1974, pages 471–475. North-Holland,
1974. 93

[49] Lee, Edward A and David G Messerschmitt: Synchronous data flow. Proceedings
of the IEEE, 75(9):1235–1245, 1987. 94

[50] Davis, Justin and Robert Reese: Finite State Machine Datapath Design, Optimiza-
tion, and Implementation. Synthesis Lectures on Digital Circuits and Systems,
2(1):1–113, 2007. 95

[51] Grundy, J., T. Melham, and J. O’Leary: A reflective functional language for hardware
design and theorem proving. Journal of Functional Programming, 16:157 – 196,
2005. 95

[52] Brady, Edwin, James McKinna, and Kevin Hammond: Constructing Correct Cir-
cuits: Verification of Functional Aspects of Hardware Specifications with Dependent
Types. In Proceedings of the Eighth Symposium on Trends in Functional Program-
ming, TFP 2007, New York City, New York, USA, April 2-4. 2007, pages 159–176,
2007. 95

[53] Baaij, Christiaan, Matthijs Kooijman, Jan Kuper, Arjan Boeijink, and Marco Ge-
rards: CλaSH: Structural Descriptions of Synchronous Hardware Using Haskell. In
2010 13th Euromicro Conference on Digital System Design: Architectures, Methods
and Tools, pages 714–721, 2010. 95

[54] Bjesse, Per, Koen Claessen, Mary Sheeran, and Satnam Singh: Lava: Hardware
Design in Haskell. ACM SIGPLAN Notices, 34, May 2001. 95

[55] Grov, Gudmund, Andrew Ireland, Greg Michaelson, and Kevin Hammond: Ve-
rifying Temporal Properties in HW-Hume. January 2006. 95

[56] Oquendo, Flavio: -ARL: An Architecture Refinement Language for Formally Model-
ling the Stepwise Refinement of Software Architectures. SIGSOFT Softw. Eng. No-
tes, 29(5):1–20, September 2004, ISSN 0163-5948. https://doi.org/10.1145/
1022494.1022517. 95

104

https://doi.org/10.1145/1022494.1022517
https://doi.org/10.1145/1022494.1022517

[57] Milner, Robin: Communicating and Mobile Systems: The -Calculus. Cambridge Uni-
versity Press, USA, 1999, ISBN 0521658691. 95

[58] Pruiksma, Klaas and Frank Pfenning: A Message-Passing Interpretation of Adjoint
Logic. In Martins, Francisco and Dominic Orchard (editors): Proceedings Pro-
gramming Language Approaches to Concurrency- and Communication-cEntric Soft-
ware, PLACES@ETAPS 2019, Prague, Czech Republic, 7th April 2019, volume 291
of EPTCS, pages 60–79, 2019. https://doi.org/10.4204/EPTCS.291.6. 96

[59] Balzer, Stephanie, Bernardo Toninho, and Frank Pfenning: Manifest deadlock-
freedom for shared session types. In European Symposium on Programming, pages
611–639. Springer, 2019. 96

[60] Das, Ankush and Frank Pfenning: Session Types with Arithmetic Refinements and
Their Application to Work Analysis. CoRR, abs/2001.04439, 2020. https://arxiv.
org/abs/2001.04439. 96

[61] Honda, Kohei, Nobuko Yoshida, and Marco Carbone: Multiparty Asynchronous
Session Types. J. ACM, 63(1), March 2016, ISSN 0004-5411. https://doi.org/10.
1145/2827695. 96

[62] Das, Ankush and Frank Pfenning: Rast: A Language for Resource-Aware Session
Types. CoRR, abs/2012.13129, 2020. https://arxiv.org/abs/2012.13129. 96

105

https://doi.org/10.4204/EPTCS.291.6
https://arxiv.org/abs/2001.04439
https://arxiv.org/abs/2001.04439
https://doi.org/10.1145/2827695
https://doi.org/10.1145/2827695
https://arxiv.org/abs/2012.13129

Apêndice A

Definitions, Theorems and Proofs

A.1 Definitions

Definition 37 (Communicating through channel) C is communicating through

channel c if proc
(
r
∣∣∣ P ∣∣∣ c) ∈ C, for any r, or proc

(
r
∣∣∣ P ∣∣∣ d) ∈ C, for any r and d , c,

where P is equal to:

I. c← put y;P ′

II. y← put c;P ′

III. y← get c;P ′

IV. c← get y;P ′

V. c.k;P ′

VI. case c of {`⇒Q`}`∈L

VII. (c→ (c1, c2)) .
(
P1

∥∥∥ P2

)
VIII. P1

∥∥∥ P2

IX. (c1, c2)← c;P ′

X. Sig (τ,c← a)

XI. Reg (c← x)

XII. Reg (y← c)

106

XIII. Comb (f ,τ,c← (d1,d2, · · · ,dn))

XIV. Comb (f ,τ,d← (c1, c2, · · · , cn)) such that ∃j ∈ [1,n].cj = c

Definition 38 (Requesting resource) C is requesting resource r if it has the form

C′,proc
(
p
∣∣∣ x← r← {Σ;∆};Q

∣∣∣ d), for any p, x, Σ, ∆, Q, d.

Definition 39 (Configuration Well-formedness) C is well formed if:

• C = Main (P) ,env (c, s,k, t), with c ≥ s ≥ t, or

• C = Closed { C′,env (c, s,k, t) }, with c ≥ s ≥ t, where inside C′, for every chan-

nel c there is exactly one proc
(
r
∣∣∣ P ∣∣∣ c) object and for every resource r there

is exactly one idle (r) or proc
(
r
∣∣∣ P ∣∣∣ c) object.

A.2 Lemmas and Corollaries

Lemma 1 (Right Inversion). If ΣI ;∆I C,env (Tc,Ts, k, t) ::
(
ΣO;∆O, c : S

)
then

proc
(
r
∣∣∣ P ∣∣∣ c) ∈ C where Σ;∆ Ts,Tc

k,t
P ::

(
c : [S]+(kTs+t)

)
.

Demonstração. Inversion on proc and compose �

Lemma 2 (Left Inversion). If ΣI ;∆I , c : S C,env (Tc,Ts, k, t) ::
(
ΣO;∆O

)
then[

proc
(
ri

∣∣∣ Pi ∣∣∣ xi)]∀i∈[1,n]
∈ C where Σi ;∆i , c : Si Ts,Tc

k,t
Pi ::

(
xi : Si

)
and

∏n
i=1Si = [S]+(kTs+t).

Demonstração. Inversions on proc and compose �

Lemma 3 (Resource Inversion). If ΣI ;∆I C,env (Tc,Ts, k, t) ::
(
ΣO, r : R;∆O

)
then either

I. idle (r) ∈ C, or

II. proc
(
r
∣∣∣ P ∣∣∣ x) ∈ C

Demonstração. Inversions on proc, idle, and compose �

Lemma 4 (Comb reduction). If −;∆ Closed { C } :: (r : R;x : A) with
proc

(
q
∣∣∣ Comb (f ,d,z← (y1, · · · , yn))

∣∣∣ z) ∈ C, for any q, f , d, y1, · · · , yn and z , x, then either

1. C Closed−−−−−→D, for some D, or

107

2. C is communicating through c ∈ ∆ or x.

Demonstração. This lemma is proved using a recursive proof that only terminates because
the h-calculus does not permit cyclical references.
ΣC ;∆∆C C :: (ΣC , r : R;∆C ,x : A) (by inversion on (Closed) and substitution)

for some ΣC and ∆C

(by inversion on Comb)
−;y1 : •d1T

s−(t+d1)
1 1, · · · , yn : •dnT s−(t+dn)

n 1 s,c
k,t

Comb (f ,p,z← (y1, · · · , yn))

::
(
z : •max(d1,··· ,dn) • pT

s−(t+max(d1,··· ,dn)+p)
out 1

)
where s > t + max(d1, · · · ,dn) + p and p > 0

∀i ∈ [1,n].yi ∈ ∆∆C (By (proc))
∀i ∈ [1,n]. either yi ∈ ∆ or yi ∈ ∆C (By Lemma 2)
We analyse two subcases: If there is a k ∈ [1,n] such that yk ∈ ∆, and if for all i ∈ [1,n].yi ∈
∆C .

Case I (∃k ∈ [1,n].yk ∈ ∆). By definition of communication, C is communicating through
yk ∈ ∆ so case 2 applies.

Case II (∀i ∈ [1,n].yi ∈ ∆C).

C = C′′,
[
proc

(
q
y
i

∣∣∣ P yi ∣∣∣ yi)]∀i∈[1,n]
(by applications of Lemma 1)

where Σi ;∆i s,c
k,t
P
y
i ::

(
yi : •diT s−(t+di)

i 1
)

for some C′′, qyi , Σi and ∆i

(by inversions on (Comb) and (Signal-1))
P
y
i = Comb (gi ,pi , yi ← (w1, · · · ,wm)) or P yi = Sig (di , yi ← ei)

for some m,pi , gi ,w1, · · · ,wm and ei
We analyse two subcases: If there is a k ∈ [1,n] such that P yk = Comb (gk ,pk , yk← (w1, · · · ,wm)),
and if for all i ∈ [1,n].P yi = Sig (di , yi ← ei).

Case II.I (∃k ∈ [1,n].P yk = Comb (gk ,pk , yk← (w1, · · · ,wm))).

C = C′′,proc
(
qk

∣∣∣ Comb (gk ,pk , yi ← (w1, · · · ,wm))
∣∣∣ yk) (by substitution and generalization)

for some C′′

By applying Lemma 4 recursively we know that either C Closed−−−−−→D, for some D (case 1), or C
is communicating through c ∈ ∆ or x (case 2).

Case II.II (∀i ∈ [1,n].P yi = Sig (di , yi ← ei)).

(by substitution and generalization)
C = C′′′,proc

(
q
∣∣∣ Comb (f ,p,z← (y1, · · · , yn))

∣∣∣ z), [proc(qyi ∣∣∣ Sig (di , yi ← ei)
∣∣∣ yi)]∀i∈[1,n]

for some C′′′

108

C Closed−−−−−→ C′′′,proc
(
q
∣∣∣ Sig (max (d1, · · · ,dn) + p,z← f (e1, · · · , en))

∣∣∣ z) (by Comb)
Case 1 applies.

�

Lemma 5 (Reg reduction). If −;∆ Closed { C } :: (r : R;x : A) with proc
(
q
∣∣∣ Reg (z← y)

∣∣∣
z
)
∈ C, for any C′, q, y and z , x, then either

1. C Closed−−−−−→D, for some D, or

2. C is communicating through c ∈ ∆ or x.

Demonstração.

ΣC ;∆∆C C :: (ΣC , r : R;∆C ,x : A) (by inversion on (Closed) and substitution)
for some ΣC and ∆C

−;y : •dT s−(t+d)1 s,c
k,t

Reg (z← y) ::
(
z : •s−tT s1

)
(by inversion on Reg)

where s > t + d

y ∈ ∆∆C (By (proc))
Either y ∈ ∆ or y ∈ ∆C (By Lemma 2)

Case I (y ∈ ∆). By definition of communication, C is communicating through y ∈ ∆ so case
2 applies.

Case II (y ∈ ∆C).

C = C′′,proc
(
q
∣∣∣ Reg (z← y)

∣∣∣ z),proc(qy ∣∣∣ P y ∣∣∣ y) (by applications of Lemma 1)
for some C′′ and qy

(by inversions on (Comb) and (Signal-1))
P y = Comb (g,p,y← (w1, · · · ,wm)) or P y = Sig (d,y← e)

for some m,p,g,w1, · · · ,wm and e

Case II.I (P y = Comb (g,p,y← (w1, · · · ,wm))).

C = C′′,proc
(
qk

∣∣∣ Comb (g,p,y← (w1, · · · ,wm))
∣∣∣ yk) (by substitution and generalization)

for some C′′

By Lemma 4, either C Closed−−−−−→ D, for some D (case 1), or C is communicating through c ∈ ∆
or x (case 2).

Case II.II (P y = Sig (d,y← e)).

(by substitution and generalization)
C = C′′′,proc

(
q
∣∣∣ Reg (z← y)

∣∣∣ z),proc(qy ∣∣∣ Sig (d,y← e)
∣∣∣ y),env (c, s, t,k)

where C′′ = C′′′,env (c, s, t,k)

109

(by Reg)
C Closed−−−−−→ C′′,idle (r) ,proc

(
−
∣∣∣ tick s − d; clock; a← Sig (0, a′← e)← {−;−}; y← a

∣∣∣ y)
fresh a and a′

Case 1 applies.

�

Lemma 6 (Internal resource request). If ΣC ;∆∆C C :: (ΣC ;∆C ,x : A) and C is requesting

resource m ∈ ΣC then C Closed−−−−−→D, for some D.

Demonstração.

ΣC ;∆∆C C :: (ΣC ;∆C ,x : A) (from main assumption)
C = C′,proc

(
p
∣∣∣ b←m← {Σp;∆p};P

∣∣∣ d) (from Definition 38)
for some C′, b, Σp, ∆p, P and d

C = C′′,idle (mBM [Σm] [∆m] [y]) or C = C′,proc
(
m

∣∣∣M [Σm] [∆m] [y]
∣∣∣ y) (by Lemma 3)

for some C′′, M, Σm, ∆m and y
We proceed analysing both cases:

Case I (C = C′′,idle (mBM [Σm] [∆m] [y])).

(from Definition of context)
C = E ,idle (mBM [Σm] [∆m] [y]) ,proc

(
p
∣∣∣ b←m← {Σp;∆p};P

∣∣∣ d)
(by (inst-1))

C Closed−−−−−→ E ,proc
(
m

∣∣∣M [Σp
/
Σm] [∆p

/
∆m] [a

/
y]

∣∣∣ a),proc(p ∣∣∣ P [a
/
b]

∣∣∣ d)
(fresh a)

Case II (C = C′,proc
(
m

∣∣∣M [Σm] [∆m] [y]
∣∣∣ y)).

(from Definition of context)
C = E ,proc

(
m

∣∣∣M [Σm] [∆m] [y]
∣∣∣ y),proc(p ∣∣∣ b←m← {Σp;∆p};P

∣∣∣ d)
(by (ext-2))

C Closed−−−−−→ E ,proc
(
m

∣∣∣M [(Σp ×Σm)
/
Σm] [(∆p ×∆m)

/
∆m] [a

/
y]

∣∣∣ y),proc(p ∣∣∣ P [a
/
b]

∣∣∣ d)
(fresh a)

�

Lemma 7 (Internal communication). If ΣC ;∆∆C C :: (ΣC , r : R;∆C ,x : A) and C is com-
municating through c ∈ ∆C then either

1. C Closed−−−−−→D, for some D, or

2. C is communicating through c ∈ ∆ or x.

110

Demonstração.

ΣC ;∆∆C C :: (ΣC , r : R;∆C ,x : A) (from main assumption)
(c : S) ∈ ∆C (generalization)

for some S
C = C′,env (Tc,Ts, k, t) (by Def. of Well-Formed Configuration)

for some C′,Ts,Tc, k and t
C′ = C′′,proc

(
rR

∣∣∣ P R ∣∣∣ c) (by Lemma 1)

where ΣR;∆R Ts,Tc

k,t
P R ::

(
c : S

)
for some C′′, rR, P R,∆R and ΣR

C′ = C′′′,
[
proc

(
rLi

∣∣∣ P Li ∣∣∣ xi)]∀i∈[1,n]
(by Lemma 2)

where ΣLi ;∆Li , c : Si Ts,Tc

k,t
P Li ::

(
xi : Ai

)
and

n∏
i=1

Si = S

for any C′′′,n, rLi , P
L
i ,xi ,Ai ,Σ

L
i and ∆Li

C′ = C∗,
[
proc

(
rLi

∣∣∣ P Li ∣∣∣ xi)]∀i∈[1,n]
,proc

(
rR

∣∣∣ P R ∣∣∣ c) (by Def. of Well-Formed Configuration)
since ∀i ∈ [1,n].xi , c

for some C∗

C = C∗,
[
proc

(
rLi

∣∣∣ P Li ∣∣∣ xi)]∀i∈[1,n]
,proc

(
rR

∣∣∣ P R ∣∣∣ c),env (Tc,Ts, k, t) (by substitution)

ΣI∗;∆I∗ C∗,env (Tc,Ts, k, t) ::
(
ΣO∗;∆O∗

)
(by generalization)

for some ΣI∗,∆I∗,ΣO∗ and ∆O∗

ΣL;∆L, c : S
[
proc

(
rLi

∣∣∣ P Li ∣∣∣ xi)]∀i∈[1,n]
,env (Tc,Ts, k, t) (by (proc) and (compose))

:: rL1 : RL1, · · · , r
L
n : RLn;x1 : A1, · · · ,xn : An

where
n∏
i=1

ΣLi = ΣL and
n∏
i=1

∆Li = ∆L

for some RL1 · · ·R
L
n

ΣR;∆R proc
(
rR

∣∣∣ P R ∣∣∣ c),env (Tc,Ts, k, t) ::
(
rR : RR;c : S

)
(by (proc) and (compose))

for some RR

ΣI∗ ×ΣL ×ΣR;∆I∗ ×∆L ×∆R, c : S (by (proc) and (Compose)
C∗,

[
proc

(
rLi

∣∣∣ P Li ∣∣∣ xi)]∀i∈[1,n]
,proc

(
rR

∣∣∣ P R ∣∣∣ c),env (Tc,Ts, k, t)

::
(
ΣO∗, rR : RR, rL1 : RL1, · · · , r

L
n : RLn;∆O∗, c : S,x1 : A1, · · · ,xn : An

)
ΣC = ΣI∗ ×ΣL ×ΣR (by Substitution)
ΣC = ΣO∗, rR : RR, rL1 : RL1, · · · , r

L
n : RLn

∆C ,x : A = ∆O∗, c : S,x1 : A1, · · · ,xn : An
∆∆C =

(
∆I∗ ×∆L ×∆R

)
, c : S

111

Now we analyse each case of c : S covering all possible cases in which C is commu-

nicating through c ∈ ∆C . We will, for each case of c : S, use inversion steps to infer

the possible values of P R, P Li and more generally C∗ (excluding cases where C is not

communicating through c), to prove that, for every case, either C is communicating

externally or an operational semantics rule applies.

Case I (S = −→α τS ′).

P R = c← put v;P R′ (by inversion of→ R)
n∏
i=1

Si = −→α τS ′ (by substitution)

Si = −→α τS ′i or Si = •τS ′i (by definition of Merge (×))
with at least one −→α τS ′i instance

P Li = vi ← get c;P Li
′ or P Li = P tick

i (by inversion of (→ L) and generalization)
with at least one vi ← get c;P Li

′ instance

for any vi and P tick
i such that ΣLi ;∆Li , c : •τS ′i Ts,Tc

k,t
P tick
i ::

(
xi : Ai

)
C = E ,

[
proc

(
rLi

∣∣∣ vi ← get c;P Li
′
∣∣∣ xi)]∀i∈Iget ,proc(rR ∣∣∣ c← put v;P R′

∣∣∣ c) (by substitution)

for E = C∗,
[
proc

(
rLi

∣∣∣ P tick
i

∣∣∣ xi)]∀i∈Itick ,env (Tc,Ts, k, t)

and any I • and I→ such that {Itick, Iget} is a partition of [1,n]
ΣR;∆R′,v : ατ1 Ts,Tc

k,t
c← put v;P R′ ::

(
c : −→α τSi

)
(by inversion on (→ R))

for any ∆R′

(v : ατ1) ∈ ∆R (by definition of context)
(v : ατ1) ∈

(
∆I∗ ×∆L ×∆R

)
(by Lemma X)

(v : ατ1) ∈
(
∆I∗ ×∆L ×∆R

)
, c : S (by definition of Merge (×))

(v : ατ1) ∈ ∆∆C (by substitution)
Either (v : ατ1) ∈ ∆ or (v : ατ1) ∈ ∆C (by Lemma 2)

Case I.I ((v : ατ1) ∈ ∆).

C =A,proc
(
rR

∣∣∣ c← put v;P R′
∣∣∣ c) (by generalization)

for some A
(v : ατ1) ∈ ∆ (Case I.I)
C is communicating through v ∈ ∆ (by definition of communication)
Case 2 applies.

Case I.II ((v : ατ1) ∈ ∆C).

C =A,proc
(
rsig

∣∣∣ Sig (ρ,v← e)
∣∣∣ v) (by Lemma 1 and inversion on (Signal − 2))

for any e, and some A and ρ ≤ 0

112

(by substitution and definition of Well-Formed Configuration)
C = E ′,

[
proc

(
rLi

∣∣∣ vi ← get c;P Li
′
∣∣∣ xi)]∀i∈Iget ,proc(rR ∣∣∣ c← put v;P R′

∣∣∣ c)
,proc

(
rsig

∣∣∣ Sig (ρ,v← e)
∣∣∣ v)

where E = E ′,proc
(
rsig

∣∣∣ Sig (ρ,v← e)
∣∣∣ v)

C Closed−−−−−→ E ′,
[
proc

(
rLi

∣∣∣ P Li ′ [v/vi] ∣∣∣ xi)]∀i∈Iget ,proc(rR ∣∣∣ P R′ ∣∣∣ c) (by (→ 1))

,proc
(
rsig

∣∣∣ Sig (ρ,v← e)
∣∣∣ v)

Case 1 applies.

Case II (S =←−α τS ′).

P R = v← get c;P R′ (by inversion of (← R))
n∏
i=1

Si =←−α τS ′ (by substitution)

Si = −→α τS ′i or Si =←−α τS ′i or Si = •τS ′i (by definition of Merge (×))
with exactly one←−α τS ′i instance

(by inversion of (→ L) (← L) and generalization)
P Li = vi ← get c;P Li

′ or P Li = c← put vi ;P
L
i
′ or P Li = P tick

i

with exactly one c← put vi ;P
L
i
′ instance

for any vi and P tick
i such that ΣLi ;∆Li , c : •τS ′i Ts,Tc

k,t
P tick
i ::

(
xi : Ai

)
C = E ,

[
proc

(
rLi

∣∣∣ vi ← get c;P Li
′
∣∣∣ xi)]∀i∈Iget ,proc(rLk ∣∣∣ c← put vk;P

L
k
′
∣∣∣ xk) (by substitution)

,proc
(
rR

∣∣∣ v← get c;P R′
∣∣∣ c)

for E = C∗,
[
proc

(
rLi

∣∣∣ P tick
i

∣∣∣ xi)]∀i∈Itick ,env (Tc,Ts, k, t)

for any k ∈ [1,n] and I • and I→ such that {Itick, Iget, {k}} is a partition of [1,n]
ΣLk ;∆Lk

′,vk : ατ1, c :←−α τS ′k Ts,Tc

k,t
c← put vk;P

L
k
′ ::

(
xk : Ak

)
(by inversion on (← L))

for any ∆Lk
′

(vk : ατ1) ∈ ∆Lk (by definition of context)
(vk : ατ1) ∈ ∆L (because

∏n
i=1∆

L
i = ∆L and Lemma X)

(vk : ατ1) ∈
(
∆I∗ ×∆L ×∆R

)
(by Lemma X)

(vk : ατ1) ∈
(
∆I∗ ×∆L ×∆R

)
, c : S (by definition of Merge (×))

(vk : ατ1) ∈ ∆∆C (by substitution)
Either (vk : ατ1) ∈ ∆ or (vk : ατ1) ∈ ∆C (by Lemma 2)

Case II.I ((vk : ατ1) ∈ ∆).

C =A,proc
(
rLk

∣∣∣ c← put vk;P
L′
k

∣∣∣ xk) (by generalization)
for some A

(vk : ατ1) ∈ ∆ (Case II.I)
C is communicating through vk ∈ ∆ (by definition of communication)
Case 2 applies.

113

Case II.II ((vk : ατ1) ∈ ∆C).

C =A,proc
(
rsig

∣∣∣ Sig (ρ,vk← e)
∣∣∣ vk) (by Lemma 1 and inversion on (Signal − 2))

for any A, e and ρ such that ρ ≤ 0

(by substitution and definition of Well-Formed Configuration)
C = E ′,

[
proc

(
rLi

∣∣∣ vi ← get c;P Li
′
∣∣∣ xi)]∀i∈Iget ,proc(rLk ∣∣∣ c← put vk;P

L
k
′
∣∣∣ xk)

,proc
(
rR

∣∣∣ v← get c;P R′
∣∣∣ c),proc(rsig ∣∣∣ Sig (ρ,vk← e)

∣∣∣ vk)
where E = E ′,proc

(
rsig

∣∣∣ Sig (ρ,vk← e)
∣∣∣ vk)

C Closed−−−−−→ C∗′,
[
proc

(
rLi

∣∣∣ P Li ′ [vk/vi] ∣∣∣ xi)]∀i∈Iget ,proc(rLk ∣∣∣ P Lk ′ ∣∣∣ xk) (by (→ 2))

,proc
(
rR

∣∣∣ P R′ [vk/v]
∣∣∣ c),proc(rsig ∣∣∣ Sig (ρ,vk← e)

∣∣∣ vk)
Case 1 applies.

Case III (S = ατS ′).

P R = Sig (τ,c← e) (by inversion of (Signal-2))
n∏
i=1

Si = ατS ′ (by substitution)

Si = ατS ′i (by definition of Merge (×))

where
n∏
i=1

S ′i = S ′

P Li = Comb (fi ,pi ,xi ← (yi1, · · · , yim)) , or (by inversion of (Comb), (Reg), (→ R) and (← L))
= Reg (xi ← c) , or
= zi ← put c;P ′Li
where there is one k ∈ [1,m] such that yik = c

for any fi , pi , m, yij , yi , zi and P ′Li
C = E ,

[
proc

(
rLi

∣∣∣ Comb (fi ,pi ,xi ← (yi1, · · · , yim))
∣∣∣ xi)]∀i∈Icomb (by substitution)

,
[
proc

(
rLi

∣∣∣ Reg (xi ← c)
∣∣∣ xi)]∀i∈Ireg , [proc(rLi ∣∣∣ zi ← put c;P ′Li

∣∣∣ xi)]∀i∈Iput
,proc

(
rR

∣∣∣ Sig (τ,c← e)
∣∣∣ c)

for some E = C∗,env (Tc,Ts, k, t)

for any ρ, Icomb, Ireg and Iput where {Icomb, Ireg, Iput} is a partition of [1,n]
If Icomb is not empty Lemma 4 is applied and if Ireg is not empty Lemma 5 is applied. In
both of these cases, C Closed−−−−−→ D, for some D, and Case 1 applies. The remaining case is the
one where both Icomb and Ireg are empty and Iput = [1,n]:
C = E ,

[
proc

(
rLi

∣∣∣ zi ← put c;P ′Li
∣∣∣ ρ)]

∀i∈[1,n]
,proc

(
rR

∣∣∣ Sig (τ,c← e)
∣∣∣ c)

For simplification, we choose to focus on only one specific k ∈ [1,m]

C = E ′,proc
(
rLk

∣∣∣ zk← put c;P ′Lk
∣∣∣ xk),proc(rR ∣∣∣ Sig (τ,c← e)

∣∣∣ c) (by substitution)
for some E ′

Now we analyse separately the case where xk = zk and the case where xk , zk:

114

Case III.I (xk = zk).

Σk;∆k , c : ατS ′k Ts,Ts

k,t (
xk← put c;P ′Lk

)
::
(
xk : −→α τAk

)
(by inversion on (→ R))(

xk : −→α τAk
)
∈ ∆C

Since xk , x
C = E ′′,

[
proc

(
qi

∣∣∣ P ∗i ∣∣∣ wi)]∀i∈[1,l] (by Lemma 2)

where wi : Ai and
l∏
i=1

Bi = −→α τAk

Bi = −→α τB′i or Bi = •τB′i (by Definition of merge (×))
for any B′i

P ∗i = vi ← get xk;P
∗
i
′ or P ∗i = tick τ ;P ∗i

′ (by inversion of (→ L) and (tick))
for any vi and P ∗i

′

(by substitution and Definition of Configuration)
C =A,

[
proc

(
qi

∣∣∣ vi ← get xk;P
∗
i
′
∣∣∣ wi)]∀i∈Iget

,proc
(
rLk

∣∣∣ xk← put c;P ′Lk
∣∣∣ xk),proc(rR ∣∣∣ Sig (τ,c← e)

∣∣∣ c)
for some A and Iget ⊆ [1, l]

(by (→ 1))
C Closed−−−−−→A,

[
proc

(
qi

∣∣∣ P ∗i ′ [c/vi] ∣∣∣ wi)]∀i∈Iget ,proc(rLk ∣∣∣ P ′Lk ∣∣∣ xk),proc(rR ∣∣∣ Sig (τ,c← e)
∣∣∣ c)

Case 1 applies.

Case III.II (xk , zk).

Σk;∆k , c : ατS ′k , zk :←−α τAk Ts,Ts

k,t (
zk← put c;P ′Lk

)
::
(
xk : C

)
(by inversion on (← L))(

zk :←−α τAk
)
∈ ∆I∗(

zk :←−α τAk
)
∈ ∆∆C (by substitution)

Either zk ∈ ∆ or zk ∈ ∆C (by Lemma X)
If zk ∈ ∆ then Case 2 applies. Now we continue analysing the case where zk ∈ ∆C . In this
case, there could be other processes consuming zk with other types. By Definition of merge,
for the configuration to be well-typed, the types are either zk :←−α τA′k or zk : •αA′k, and the
result of their merge is zk :←−α τARk . Now we proceed applying Lemma 2 on zk :←−α τA′k and
Lemma 1 on zk :←−α τARk , leaving us with the configuration:
C = E ′′,proc

(
q
∣∣∣ v← get zk;Q

′
∣∣∣ zk), [proc(qi ∣∣∣ vi ← get zk;Qi

∣∣∣ wi)]∀i∈Iget
for any v, Q′, qi , vi , wi and Iget

(by substitution and Definition of Configuration)
C =A,proc

(
q
∣∣∣ v← get zk;Q

′
∣∣∣ zk), [proc(qi ∣∣∣ vi ← get zk;Qi

∣∣∣ wi)]∀i∈Iget
,proc

(
rLk

∣∣∣ zk← put c;P ′Lk
∣∣∣ xk),proc(rR ∣∣∣ Sig (τ,c← e)

∣∣∣ c)
for some A and Iget ⊆ [1, l]

115

C Closed−−−−−→A,proc
(
q
∣∣∣Q′ [c/v]

∣∣∣ zk), [proc(qi ∣∣∣Qi [c/vi] ∣∣∣ wi)]∀i∈Iget (by (→ 2))

,proc
(
rLk

∣∣∣ P ′Lk ∣∣∣ xk),proc(rR ∣∣∣ Sig (τ,c← e)
∣∣∣ c)

Case 1 applies.

Case IV (S = −→⊕ c{` : S`}`∈L).

P R = c.k;P R′ (by inversion of (−→⊕R))
for any P R′ and k ∈ L

n∏
i=1

Si = −→⊕ c{` : S`}`∈L (by substitution)

Si = −→⊕ c{` : Si`}`∈L or Si = any other type (by definition of Merge (×))
with at least one −→⊕ c{` : Si`}`∈L instance

P Li = case c of
{
`⇒ P Li`

′
}
`∈L

or P Li = any other process (by inversion of (−→⊕ L))

with at least one case c of
{
`⇒ P Li`

′
}
`∈L

instance
for any P Li`

′

C = E ,proc
(
rR

∣∣∣ c.k;P R′
∣∣∣ c), [proc(rLi ∣∣∣ case c of {

`⇒ P Li`
′
}
`∈L

∣∣∣ xi)]∀i∈I⊕ (by substitution)
where E = C∗,env (Tc,Ts, k, t) and I⊕ ⊆ [1,n]

C Closed−−−−−→ E ,proc
(
rR

∣∣∣ P R′ ∣∣∣ c), [proc(rLi ∣∣∣ P Lik ′ ∣∣∣ xi)]∀i∈I⊕ (by (⊕ 1))
Case 1 applies.

Case V (S =←−⊕ c{` : S`}`∈L).

P R = case c of
{
`⇒ P R`

′
}
`∈L

(by inversion of (←−⊕R))
for any P R`

′

n∏
i=1

Si =←−⊕ c{` : S`}`∈L (by substitution)

Si =←−⊕ c{` : Si`}`∈L or −→⊕ c{` : Si`}`∈L or Si = any other type (by definition of Merge (×))
with exactly one←−⊕ c{` : Si`}`∈L instance

(by inversion of (←−⊕ L), (−→⊕ L))
P Li = c.k or P Li = case c of

{
`⇒ P Li`

′
}
`∈L

or P Li = any other process
with exactly one c.k instance
for any k and P Li`

′

C = E ,proc
(
rLj

∣∣∣ c.k;P R′j
∣∣∣ xj),proc(rR ∣∣∣ case c of {

`⇒ P R`
′
}
`∈L

∣∣∣ c) (by substitution)

,
[
proc

(
rLi

∣∣∣ case c of {
`⇒ P Li`

′
}
`∈L

∣∣∣ xi)]∀i∈I⊕
where E = C∗,env (Tc,Ts, k, t), j < I

⊕ and {I⊕, {j}} ⊆ [1,n]

C Closed−−−−−→ E ,proc
(
rLj

∣∣∣ P R′j ∣∣∣ xj),proc(rR ∣∣∣ P Rk ′ ∣∣∣ c), [proc(rLi ∣∣∣ P Lik ′ ∣∣∣ xi)]∀i∈I⊕ (by (⊕ 2))
Case 1 applies.

Case VI (S = S1 ⊗ S2).

116

P R = (c→ (c1, c2)) .
(
P R1

∥∥∥ P R2)
(by inversion of (⊗ R))

for any c1, c2, P R1 and P R2
n∏
i=1

Si = S1 ⊗ S2 (by substitution)

Si = Si1 ⊗ Si2 (by definition of Merge (×))
for any Si1 and Si2

P Li = (ci1, ci2)← c;P Li
′ (by inversion of (⊗ L))

for any ci1, ci2, P Li
′

C = E ,proc
(
rR

∣∣∣ (c→ (c1, c2)) .
(
P R1

∥∥∥ P R2) ∣∣∣ c) (by substitution)

,
[
proc

(
rLi

∣∣∣ (ci1, ci2)← c;P Li
′
∣∣∣ xi)]∀i∈[1,n]

where E = C∗,env (Tc,Ts, k, t)

C Closed−−−−−→ E ,proc
(
rR1

∣∣∣ P R1 [a1
/
c1] [a2

/
c2]

∣∣∣ a1

)
,proc

(
rR2

∣∣∣ P R2 ∣∣∣ a2

)
(by (⊗ 2))

,
[
proc

(
rLi

∣∣∣ P Li ′ [a1
/
ci1] [a2

/
ci2]

∣∣∣ xi)]∀i∈[1,n]

(fresh rR1 , rR2 , a1 and a2)
Case 1 applies.

Case VII (S = •τ1T τ21).

P R = Comb (f ,p,c← w1, · · · ,wn) , or (by inversion of (Comb), (Reg) and (Signal-1))
= Reg (c← w) , or
= Sig (τ1, c← e) .

where p > 0 and max(delay(w1), · · · ,delay(wn)) + p = τ1

for any f , n, wi , w and e
(It is important to note another possibility is tick τ1;aux← Sig (0, aux← e) ;c← aux

but from process equivalence we have that tick τ1;aux ← Sig (0, aux← e) ;c ← aux ≡
Sig (τ1, aux← e) so we only consider the latter version)
We analyse each case separately:

Case VII.I (P R = Comb (f ,p,c← w1, · · · ,wn)).

C Closed−−−−−→D, for some D (by Lemma 4)
Case 1 applies.

Case VII.II (P R = Reg (c← w)).

C Closed−−−−−→D, for some D (by Lemma 5)
Case 1 applies.

Case VII.III (P R = Sig (τ1, c← e)).

n∏
i=1

Si = •τ1T τ21 (by substitution)

117

Si = •τ1T τ21 (by definition of Merge (×))
P Li = Comb (fi ,pi , zi ← (u1, · · · ,um)) or P Li = Reg (c← u) (by inversion of (Comb) and (Reg))

where there is one j ∈ [1,m] such that yj = c

for some m, fi , pi , zi , ui and u.
In the case of Comb we apply Lemma 4 and in the case of Reg we apply Lemma 5. In both
cases we get that C Closed−−−−−→D for some D. Case 1 applies.

Case VIII (S = µz.S).

P R = L : P R′ (by inversion of (µ R))
for any L and P R′

C = E ,proc
(
rR

∣∣∣ L : P R′
∣∣∣ c) (by substitution)

for some E
C Closed−−−−−→ E ,proc

(
rR

∣∣∣ P R′ [(L : P R′
)/
L
] ∣∣∣ c) (by (Loop))

Case 1 applies.

Case IX (S = 1).

P R = end c (by inversion of (1 R))
for any L and P R′

C = E ,proc
(
rR

∣∣∣ end ∣∣∣) (by substitution)
for some E

C Closed−−−−−→ E ,idle
(
rR

)
(by (1))

Case 1 applies.

�

Lemma 8. If ΣI ;∆I C ::
(
ΣO;∆O

)
, then either

I. C −→ C′, for some C′, or

II. C is communicating through c ∈ ∆I , or

III. C is communicating through c ∈ ∆O, or

IV. C is requesting resource from r ∈ ΣI , or

V. C does not have proc objects (computation is over).

Demonstração. By induction on the configuration type rules that form C.

Case X (One semantic object).

118

Case X.I (idle).

inst (DEF(P),R)
idle

−;− idle (r B P) ,env (s, c,k, t) :: (r : R;−)

C does not have proc objects (computation is over).

Case X.II (proc).

[Σ]+T ; [∆]+T
s,c
k,t
P ::

(
x : [A]+T

)
inst((Σ;∆;A) ,R) (T = k × s+ t)

proc
Σ;∆ proc

(
r
∣∣∣ P ∣∣∣ x),env (s, c,k, t) :: (r : R;x : A)

For every process P , one of the cases apply. For instance:

• If P = x← y, then C −→ C′, for some C′,

• if P = x← get y, then C is communicating through c ∈ ∆O or c ∈ ∆I ,

• if P = tick τ , then C −→ C′, for some C′,

• if P = x← r← {Σ;∆}, then C is requesting resource from r ∈ ΣI .

Case XI (compose).

ΣI1;∆I1 C1,env (s, c,k, t) ::
(
ΣO1 ;∆O1

)
ΣI2;∆I2 C2,env (s, c,k, t) ::

(
ΣO2 ;∆O2

)
Compose

ΣI1 ×Σ
I
2;∆I1 ×∆

I
2 C1C2,env (s, c,k, t) ::

(
ΣO1 Σ

O
2 ;∆O1 ∆

O
2

)
By induction hypothesis, we have that IH1 and IH2 simultaneously:

(IH1) Either

I. C1,env (c, s,k, t) −→ C′1,env (c, s,k′, t′), or

II. C1 is communicating through c ∈ ∆I1, or

III. C1 is communicating through c ∈ ∆O1 , or

IV. C1 is requesting resource from r ∈ ΣI1, or

V. C1 does not have proc objects (computation is over).

(IH2) Either

I. C2,env (c, s,k, t) −→ C′2,env (c, s,k′, t′), or

II. C2 is communicating through c ∈ ∆I2, or

119

III. C2 is communicating through c ∈ ∆O2 , or

IV. C2 is requesting resource from r ∈ ΣI2, or

V. C2 does not have proc objects (computation is over).

We proceed analysing all possible cases provided by (IH1) and (IH2). We start analysing
cases of (IH1) for any kind of C2, using (IH2) only in the last case:

Case XI.I (C1,env (c, s,k, t) −→ C′1,env (c, s,k′, t′), for some C′1).

C1C2 −→ C′1C2 (by Lemma 7)

Case XI.II (C1 is communicating through c ∈ ∆I1).

C1C2 is communicating through c ∈ ∆I1 ×∆
I
2 (by Lemma 8)

Case XI.III (C1 is communicating through c ∈ ∆O1).

C1C2 is communicating through c ∈ ∆O1 ∆
O
2 (by Lemma 9)

Case XI.IV (C1 is requesting resource from r ∈ ΣI1).

C1C2 is requesting resource from r ∈ ΣI1 ×Σ
I
2 (by Lemma 10)

Case XI.V (C1 does not have proc objects). By IH2:

Case XI.V.I (C2 −→ C′2, for some C′2).

C1C2 −→ C1C′2 (by Lemma 7)

Case XI.V.II (C2 is communicating through c ∈ ∆I2).

C1C2 is communicating through c ∈ ∆I1 ×∆
I
2 (by Lemma 8)

Case XI.V.III (C2 is communicating through c ∈ ∆O2).

C1C2 is communicating through c ∈ ∆O1 ∆
O
2 (by Lemma 9)

Case XI.V.IV (C2 is requesting resource from r ∈ ΣI2).

C1C2 is requesting resource from r ∈ ΣI1 ×Σ
I
2 (by Lemma 10)

Case XI.V.V (C2 does not have proc objects (computation is over)).

C1C2 does not have proc objects (computation is over) (by Definition 3)

�

120

A.3 Theorems

A.3.1 Preservation

Theorem 1 (Preservation). If ΣI ;∆I C ::
(
ΣO;∆O

)
and C −→ D then ΣI ;∆I D ::(

ΣO;∆O
)
.

Demonstração. Induction on all cases of C −→ D, type checking C and D and asserting

that all the types are the same. We demonstrate some of the cases:

Case I (Main).

(Main) Main (P [Σ][∆][x]) ,env (Tc,Ts,0,0)

−→ Closed
{
proc

(
p
∣∣∣ P ∣∣∣ x), [idle (r)]∀r∈Σ ,env (Tc,Ts,0,0)

}
(fresh p)

Before rule:

A1

(∀(((σ B Pσ) : Rσ) ∈ Σ).ext(DEF(Pσ),Rσ))

A2

Σ;∆ Ts,Tc

0,0
P ::

(
x : A

)
Main

Σ;∆ Ts,Tc

0,0
Main (P) ::

(
x : A

)
Main

−;∆ Main (P) ,env (Ts,Tc,0,0) :: (−;x : A)

After rule:

A2

Σ;∆ Tc,Ts

0,0
P ::

(
x : A

) A3

ext ((Σ;∆;A),R)
proc

Σ;∆ proc
(
r
∣∣∣ P ∣∣∣ x),env (Tc,Ts,0,0) :: (r : R;x : A)

A1

(∀((σ : Rσ) ∈ Σ).ext(DEF(Pσ),Rσ))
idle

−;− [idle (σ B Pσ)]∀σ∈Σ ,env (Tc,Ts,0,0) :: (Σ;−)
Compose

Σ;∆ proc
(
r
∣∣∣ P ∣∣∣ x), [idle (σ B Pσ)]∀σ∈Σ ,env (Tc,Ts,0,0) :: (r : R,Σ;x : A)

Closed
−;∆ Closed

{
proc

(
r
∣∣∣ P ∣∣∣ x), [idle (σ B Pσ)]∀σ∈ΣC ,env (Tc,Ts,0,0)

}
:: (−;x : A)

A3 holds because r is used only once, so R = (Σ;∆;A) and ext ((Σ;∆;A), (Σ;∆;A)) is
trivial.

Case II (id).

(id) C,proc
(
r
∣∣∣ x← y

∣∣∣ x) Closed−−−−−→ C [y
/
x] ,idle (r)

Before rule:

121

A1

ΣC , r : R;∆∆C ,x : A C′,env (c, s,k, t) :: (ΣC ;∆C , y : A′, z : C)

A2(
[A′]+T = [A]+T = B

) id
−;y : B c,s

k,t (
x← y

)
::
(
x : B

)
eq

−;y : [A′]+T
c,s
k,t (

x← y
)

::
(
x : [A]+T

) A3

ext ((−;y : A′;A),R) (T = sk + t)
proc

−;y : A′ proc
(
r
∣∣∣ x← y

∣∣∣ x),env (c, s,k, t) :: (r : R;x : A)
Compose

ΣC , r : R;∆∆C ,x : A,y : A′ C′,proc
(
r
∣∣∣ x← y

∣∣∣ x),env (c, s,k, t) :: (ΣC , r : R;∆C ,x : A,y : A′z : C)
Closed

−;∆ Closed
{
C′,proc

(
r
∣∣∣ x← y

∣∣∣ x),env (c, s,k, t)
}

:: (−;z : C)

After rule:

A1

ΣC , r : R;∆∆C ,x : A C′,env (c, s,k, t) :: (ΣC ;∆C , y : A′, z : C)

A2

[A]+T = [A′]+T (T = sk + t)
Subst

ΣC , r : R;∆∆C , y : A′ C′ [y
/
x] ,env (c, s,k, t) :: (ΣC ;∆C , y : A′, z : C)

A4

ext(DEF(Pr),R))
idle

−;− idle (r B Pr) ,env (c, s,k, t) :: (r : R;−)
Compose

ΣC , r : R;∆∆C , y : A′ C′ [y
/
x] ,idle (r) ,env (c, s,k, t) :: (ΣC , r : R;∆C , y : A′, z : C)

Closed
−;∆ Closed

{
C′ [y

/
x] ,idle (r) ,env (c, s,k, t)

}
:: (−;z : C)

�

A.3.2 Global Progress

Theorem 3 (Global Progress). If −;∆ Closed { C } :: (−;x : A), then

1. C −→D, for some D, or

2. C is communicating through c ∈ ∆ or x, or

3. C does not have proc objects (computation is over).

Demonstração.

−;∆ Closed { C } :: (−;x : A) (main assumption)
ΣC ;∆∆C C :: (ΣC ;∆C ,x : A) (by inversion on (Closed))

for some ΣC and ∆C

By Lemma 8, either

I. C −→D, for some D, or

II. C is communicating through c ∈ ∆∆C , or

III. C is communicating through c ∈ (∆C ,x : A), or

IV. C is requesting resource from r ∈ ΣC , or

V. C does not have proc objects (computation is over).

122

We proceed proving global progress for each case:

Case I (C −→D, for some D). Case 1 applies.

Case II (C is communicating through c ∈ ∆∆C). By Lemma 2, C is either communicating
through ∆ or through ∆C . We proceed analysing both subcases:

Case II.I (C is communicating through c ∈ ∆). Case 2 applies.

Case II.II (C is communicating through c ∈ ∆C). By Lemma 7, either C Closed−−−−−→D, for some
D, (Case 1 applies) or C is communicating through ∆ or x (Case 2 applies).

Case III (C is communicating through c ∈ (∆C ,x : A)). By Definition 3, of contexts, C is
either communicating through ∆C or through x. We proceed analysing each subcase:

Case III.I (C is communicating through c ∈ ∆C). Same as in Case II.II

Case III.II (C is communicating through x). Case 2 applies.

Case IV (C is requesting resource from r ∈ ΣC). By Lemma 6, C Closed−−−−−→ D, for some D,
(Case 1 applies).

Case V (C does not have proc objects (computation is over)). Case 3 applies.

�

123

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	The Hardware Design Challenge
	High Level Synthesis
	An Ideal Intermediate Representation
	Overview

	Key Concepts of the H-Calculus
	Hardware Modeling with Temporal Session Types
	Signals as Temporal Sequences
	Clock Cycles and Registers
	Components and Temporal Session/Sequence Types

	Type Merge
	Untyped Processes
	Processes Types
	Processes as resources
	Resource Sharing
	Type rules and Properties

	Background
	Type Systems and the Lambda-Calculus
	Untyped Lambda Calculus
	Simply Typed Lambda Calculus
	Discussion on Type Systems

	Hardware Models of Computation
	Session Types and Process Calculi
	Session Types for Hardware

	Semantics, Type Rules and Properties
	Operational Semantics
	Main
	Id/Forwarding
	Cut/Fork
	End of process
	Parallelism
	Recursion (or loop)
	Put/Get
	Internal/External Choice
	Combinational process
	Register/Memory
	Resource instantiation
	Tick/Clock

	Temporal Session Types
	Typing rules
	Auxiliary Definitions
	Typing Rules
	General Insights
	Identity or Channel Forwarding
	Forking process
	End of computation - 1
	Getting/Putting values from channels
	Recursion/Loop -
	Parallel Composition -
	Choice operators
	Intra-Cycle Signal
	Combinational Circuit
	Register
	Tick/Delay
	Clock synchronization
	Resource instantiation
	Main instantiation

	Properties of the Type System

	H-Calculus for High-Level Synthesis
	Translation
	Design Space Exploration
	Synthesis
	Control - Finite State Machines
	Practicalities

	Related Work
	Comparisons

	Discussion and Future Work
	References
	Apêndice
	Definitions, Theorems and Proofs
	Definitions
	Lemmas and Corollaries
	Theorems
	Preservation
	Global Progress

