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Abstract

Image segmentation aims to simplify the understanding of digital images. Deep learning-based

methods using convolutional neural networks have been game-changing, allowing the exploration

of different tasks (e.g., semantic, instance, and panoptic segmentation). Semantic segmentation

assigns a class to every pixel in an image, instance segmentation classifies objects at a pixel

level with a unique identifier for each target, and panoptic segmentation combines instance-

level predictions with different backgrounds. Remote sensing data largely benefits from those

methods, being very suitable for developing new DL algorithms and creating solutions using

top-view images. However, some peculiarities prevent remote sensing using orbital and aerial

imagery from growing when compared to traditional ground-level images (e.g., camera photos):

(1) The images are extensive, (2) it presents different characteristics (e.g., number of channels

and image format), (3) a high number of pre-processes and post-processes steps (e.g., extracting

patches and classifying large scenes), and (4) most open software for labeling and deep learn-

ing applications are not friendly to remote sensing due to the aforementioned reasons. This

dissertation aimed to improve all three main categories of image segmentation. Within the in-

stance segmentation domain, we proposed three experiments. First, we enhanced the box-based

instance segmentation approach for classifying large scenes, allowing practical pipelines to be

implemented. Second, we created a bounding-box free method to reach instance segmentation

results by using semantic segmentation models in a scenario with sparse objects. Third, we

improved the previous method for crowded scenes and developed the first study considering

semi-supervised learning using remote sensing and GIS data. Subsequently, in the panoptic

segmentation domain, we presented the first remote sensing panoptic segmentation dataset con-

taining fourteen classes and disposed of software and methodology for converting GIS data into

the panoptic segmentation format. Since our first study considered RGB images, we extended

our approach to multispectral data. Finally, we leveraged the box-free method initially designed

for instance segmentation to the panoptic segmentation task. This dissertation analyzed various

segmentation methods and image types, and the developed solutions enable the exploration of

new tasks (such as panoptic segmentation), the simplification of labeling data (using the pro-

posed semi-supervised learning procedure), and a simplified way to obtain instance and panoptic

predictions using simple semantic segmentation models.

Keywords: semantic segmentation, instance segmentation, panoptic segmentation, GIS, remote

sensing, deep learning
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Resumo

A segmentação de imagens visa simplificar o entendimento de imagens digitais e métodos de

aprendizado profundo usando redes neurais convolucionais permitem a exploração de diferentes

tarefas (e.g., segmentação semântica, instância e panóptica). A segmentação semântica atribui

uma classe a cada pixel em uma imagem, a segmentação de instância classifica objetos a nível

de pixel com um identificador exclusivo para cada alvo e a segmentação panóptica combina

instâncias com diferentes planos de fundo. Os dados de sensoriamento remoto são muito ade-

quados para desenvolver novos algoritmos. No entanto, algumas particularidades impedem que o

sensoriamento remoto com imagens orbitais e aéreas cresça quando comparado às imagens tradi-

cionais (e.g., fotos de celulares): (1) as imagens são muito extensas, (2) apresenta características

diferentes (e.g., número de canais e formato de imagem), (3) um grande número de etapas de pré-

processamento e pós-processamento (e.g., extração de quadros e classificação de cenas grandes) e

(4) os softwares para rotulagem e treinamento de modelos não são compatíveis. Esta dissertação

visa avançar nas três principais categorias de segmentação de imagens. Dentro do domínio de

segmentação de instâncias, propusemos três experimentos. Primeiro, aprimoramos a abordagem

de segmentação de instância baseada em caixa para classificar cenas grandes. Em segundo

lugar, criamos um método sem caixas delimitadoras para alcançar resultados de segmentação

de instâncias usando modelos de segmentação semântica em um cenário com objetos esparsos.

Terceiro, aprimoramos o método anterior para cenas aglomeradas e desenvolvemos o primeiro

estudo considerando aprendizado semissupervisionado usando sensoriamento remoto e dados

GIS. Em seguida, no domínio da segmentação panóptica, apresentamos o primeiro conjunto de

dados de segmentação panóptica de sensoriamento remoto e dispomos de uma metodologia para

conversão de dados GIS no formato COCO. Como nosso primeiro estudo considerou imagens

RGB, estendemos essa abordagem para dados multiespectrais. Por fim, melhoramos o método

box-free inicialmente projetado para segmentação de instâncias para a tarefa de segmentação

panóptica. Esta dissertação analisou vários métodos de segmentação e tipos de imagens, e as

soluções desenvolvidas permitem a exploração de novas tarefas , a simplificação da rotulagem

de dados e uma forma simplificada de obter previsões de instância e panópticas usando modelos

simples de segmentação semântica.

Palavras-chave: segmentação semântica, segmentação de instâncias, segmentação panótica,

GIS, sensoriamento remoto, aprendizagem profunda
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Chapter 1

Introduction

We live in the Big Data era. Endless sources (e.g., satellites, smartphones, websites) generate

raw data non-stop, rapidly feeding ever-larger databases. The information flow is so high that

developing automated mechanisms is crucial to handle massive amounts of data. In this re-

gard, high-quality structured data is vital to understanding patterns, guiding decision-making

processes, and reducing laborious work.

Nowadays, the talk of the town when referring to automated processes is deep learning (DL).

DL is a subsection of Artificial Intelligence (AI) that uses neural networks (Schmidhuber, 2015),

a structure composed of weighted connections between neurons that iteratively learn high and

low-level features such as textures and shapes through gradient descent (Nogueira et al., 2017).

DL promoted a revolution in several fields of science, including visual recognition (Voulodimos

et al., 2018), natural language processing (Sun et al., 2017; Young et al., 2018), speech recognition

(Nassif et al., 2019; Zhang et al., 2018c) object detection (Sharma and Mir, 2020; Zhao et al.,

2019) medical image analysis (Liu et al., 2019b; Serte et al., 2020; Zhou et al., 2019), person

identification (Bharathi and Shamily, 2020; Kaur et al., 2020), among others.

Image recognition is one of the hottest topics regarding automation processes, being a fast-

growing field. This success is mainly related to substantial growth in image sources (e.g., cam-

eras, satellites, sensors), which enables the constitution of large databases and advances in

convolutional neural networks (CNNs). The CNNs are a particular type of neural network that

mimics the human frontal cortex - which allows understanding of the interaction of shapes, con-

tours, and textures by applying convolutional kernels throughout the image resulting in feature

maps, enabling low, medium, and high-level feature recognition (e.g., corners, parts of an object,

and complete objects, respectively) (Nogueira et al., 2017). The usability in image processing

is very high due to the CNN’s ability to process data in multi-dimensional arrays (Lecun et al.,

2015). Besides, the CNN’s may present different configurations that enable the exploration of

different tasks, from image classification to keypoint detection (Dhillon and Verma, 2020).

Remote sensing using aerial and orbital images is one of the most consistent data sources,

providing periodic information with standardized characteristics (e.g., spatial resolution, number

of bands). Those characteristics make it suitable for advancing and exploring computer vision

deep learning models, and the increasing availability of satellite images alongside computational
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improvements makes the remote sensing field conducive to using deep learning (DL) techniques

(Ma et al., 2019).

Remote sensing top-view images presents peculiarities compared to ground-level images (e.g.,

cellphone pictures) that require specific solutions. First, the properties of the images are usually

different, i.e., the images are much larger, there is a varying number of channels, and the image

format is different. Most new deep learning methods are tested on well-known large datasets

such as COCO (Lin et al., 2014), Mapillary Vistas (Neuhold et al., 2017), and Cityscapes (Cordts

et al., 2016). All of those datasets use RGB images. Besides, the size of remote sensing images

also requires post-processing steps using sliding windows.

Those previously mentioned time and consuming labor tasks have prevented the growth and

exploration of various segmentation problems in the remote sensing field. First, most available

software, such as the Facebook‘s Detectron2 (Wu et al., 2019) are designed for RGB images.

The development of novel methods that uses more or less spectral bands is little explored in

the instance, and panoptic segmentation, in which the first study using instance segmentation

with more than three bands was only done last year (de Carvalho et al., 2021c). Panoptic

segmentation has great potential in the remote sensing field, but there are still no works on this

topic. Finally, most annotation tools are not designed for remote sensing images, difficulting

the generation and exploration of new datasets.

1.1 Objectives

The present study aims to explore the three main segmentation tasks using remote sensing

images, with the following secondary objectives:

• leverage the mechanism of the sliding window to box-based instance segmentation methods.

• investigate the impact of image dimensions on small object studies.

• design a semi-iterative learning procedure associated with GIS software to easily augment

datasets.

• propose a box-free instance segmentation approach for touching and non-touching targets

at a pixel level.

• propose the first panoptic segmentation dataset in the remote sensing field.

• propose a software that converts GIS shapefile data into the panoptic segmentation COCO

annotation format.

• propose an analysis on multispectral data and panoptic segmentation.

• A simplification of the panoptic segmentation task as an extention of the semantic seg-

mentation task.
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1.2 Overview of this Dissertation

This manuscript was divided into eight chapters to address the previously stated research ob-

jectives. Chapter 2 presents background information to the readers regarding the most critical

topics in this paper. The readers will find deep learning, CNN, and image segmentation infor-

mation. Next, chapter 3 starts with the most traditional instance segmentation method, the

Mask-RCNN. We propose an analysis of multispectral data, small objects, and an enhancement

of the process for classifying large areas. Chapter 4 propose a box-free method for obtaining

instance segmentation results for sparse (non-touching) objects, and Chapter 5 generalizes this

method for crowded objects and explores the concepts of semi-supervised learning. Chapter 6

proposes the first panoptic segmentation approach in the remote sensing field. We proposed

the first panoptic segmentation dataset and software to convert GIS data into the panoptic

segmentation COCO format. Still, in the panoptic landscape, we proposed in chapter 7 the

first approach of panoptic segmentation using multispectral data, and Chapter 8 presents an al-

ternative approach using a box-free-based panoptic segmentation approach, being an extension

of the proposed method in chapter 4 and 5. Finally, Chapter 9 brings the conclusions of this

dissertation.
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Chapter 2

Background

This chapter aims to connect the readers with the most critical topics that will be developed and

discussed in the following chapters. In this regard, we explain deep learning and its foundations,

the functioning of CNNs, the application of CNNs for image segmentation and its variants, the

metrics used for those tasks, and the more commonly used remote sensing sensors with their

specifications.

2.1 Deep Learning

2.1.1 Overview

The terms artificial intelligence, machine learning, and deep learning often cause confusion, which

is understandable since all of them are related (Bengio et al., 2017; Bini, 2018; Goodfellow et al.,

2016). In a nutshell, deep learning is a subgroup of machine learning, and machine learning is a

subgroup of artificial intelligence (Figure 2.1). In other words, there is a hierarchical structure

among them, and deep learning is the most specific.

Figure (2.1) Hierarchical representation of Artificial Intelligence, Machine Learning, and Deep
Learning.
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Even though there is massive hype about AI, primarily due to the success of many deep

learning applications, it has been around for a long time. AI is simply defined as a machine’s

ability to mimic human behavior. The thing is, the first implementations used manual con-

figurations. In other words, the programs had a set of instructions made by humans, and all

intelligence in the systems is predefined (Bengio et al., 2017).

Eventually, scientists realized that machines could figure out some information themselves.

This is how Machine Learning (ML) started (El Naqa and Murphy, 2015). In this regard, a

hand-designed set of rules now became a hand-designed selection of features of which a program

with statistical models will learn and then define an output. The reader should understand

features as pieces of important information.

Furthermore, deep learning emerges as a more complex solution (Lecun et al., 2015). The

program learns the features that are relevant to the problem at hand. This happens because of

the interaction within neurons present in different layers. This allows the systems to learn from

other features at different levels of abstraction. Usually, the number of neurons and connections

is so high that the entire pipeline is often seen as a black box.

2.1.2 Neural Networks

Neural networks encompass a large set of topics, having different variants. For example, CNN’s

are primarily used for image recognition, and Transformers and Long-short term memory have

suitable applications with text. One of the simplest forms is the Multilayer Perceptron (MLP)

(Bengio et al., 2017; Murtagh, 1991). The MLP structure has three-layer categories: input layer,

hidden layers, and output layer (Figure 2.2). Each layer is composed of neurons connected to all

neurons in the subsequent layer. The number of hidden layers and neurons may vary according

to the programmer’s specifications. Each neuron holds a value. The neurons in the first layer

are often the raw data’s value. Also, each neuron has connections with all neurons in the next

layer. Mathematically, we can express each neuron as a simple function:

m
∑

i=i

wixi + K, (2.1)

in which m is the total number of neurons connected to this neuron, i is the instance of each

neuron, w is the weight value, x is the input value of the previous neuron, and K is the bias.

However, the mathematical formulation can be improved. Since the number of connections is

often very high, summing many weights and biases may yield extremely large results, propagating

to the next layer, and diverging the entire system. Besides, up until now, all of the formulations

are linear, which could be reduced and simplified. To solve this issue, we use activation functions.

The activation function is basically a way to squish the values into a determined range of values,

bringing non-linearity to the entire system and enabling the understanding of more complex

patterns. There are many ways to establish this range of values. Table 2.1 lists commonly used

activation functions.

5



Figure (2.2) Simplified representation of the Multilayer Perceptron.

Table (2.1) Data split in the training validation and testing sets with their respective number
of images and instances.

Name Function Range

binary

{

0 if x ≤ 0
1 if x > 0

0,1

sigmoid σ(x) = 1
1+e−x 0,1

tanh tanh(x) = ex−e−x

ex+e−x -1,1

ReLU

{

0 if x ≤ 0
x if x > 0

0, ∞

Leaky ReLU

{

0.01x if x ≤ 0
x if x > 0

−∞, ∞

Gaussian ex2
0,1

So, basically, we can change the weights and biases’ values to bring the best results. Nonethe-

less, it is important to note that the way computers can deal with such an extensive amount

of data quickly is by using matrices. In a hypothetical scenario, the weights and biases for a

neuron would be computed as follows:
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To reach the best weights and biases, we must first decide what the neural network needs

to learn. In other words, we need a label for each sample in a given dataset. For example,

suppose the objective is to predict which pixels in an image represents cars. In that case, it is

necessary to build a dataset in which we know the output of all samples to make predictions

on unseen data in the future. Since neural networks deal with numbers, a conventional way is

to assign positive labels to the presence of a condition and a negative label to the absence of

the given condition. Thus, the pixels that belong to cars will receive a 1-label and non-cars a

0-label. If the expected result is known, it is straightforward to compute how well the neural

network is adjusted to this data set. This can be done by calculating the difference between

the predicted value and what the value was actually supposed to be, and if we could adjust the

weights and biases to reduce the sum of all errors to a minimal value, this would be ideal. In this

regard, this function is called the cost function of a neural network, which is simply a measure

of the predicted and expected results. Many possible functions are to be used, and many studies

propose new functions to better adjust to a specific dataset (Janocha and Czarnecki, 2017).

Figure (2.3) Simplified representation of the cost function with gradient descent.

Since we are dealing with functions, it is possible to reach a minimum value. A minimum

value of a loss function is basically the best generalization for a given sample of data. The

way neural networks reach those minimum values is by using gradient descent. However, since

the functions have a very large number of parameters, there are many local minimum values

in which the algorithm may converge. Reaching the global minimum value is very hard in

many situations, and a local minimum may yield satisfactory results. In a nutshell, the learning

process may be seen as achieving the goal of reaching a minima of a determined cost function

(min(J(w))), in which backpropagation is used to change the values of weights and biases from

the last layers to the first layers in order to keep minimizing the cost function.
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2.1.3 Convolutional Neural Networks

CNNs were game-changing in the image processing scenario. In many Kaggle competitions

among tabular data, traditional ML methods such as Random Forests (Breiman, 2001), XGBoost

(Chen et al., 2015), and SVM sometimes achieve even better results than Artificial Neural

Networks (Drew and Monson, 2000). This is not the case for images, in which the disparity

between traditional methods and CNN is very apart from each other.

Suppose a scenario in which we want to distinguish between cats and dogs. In some sense,

they have many similarities. Nonetheless, cats have pointier ears than dogs. The pointier ears

are a shape and require a group of pixels in a particular order to understand this pattern. This

is where CNN’s are so powerful. Instead of the features being related to a single pixel, it extracts

information in various levels of abstraction, which tends to be at a higher level in the last layers.

A typical CNN structure is composed of three types of layers (Albawi et al., 2017): (1)

convolutional layer, (2) pooling layer, and (3) fully-connected layer. The convolution operation

requires a filter (also refered to as a kernel) and the original image which is as array with three

dimensions (height, width, and channels). The filter will then pass through the entire image

and the convolution between the original array with the kernel will result in an array with new

values. Figure 2.4 shows a simplified example of the convolution operation. To show exactly the

mathematics behind it, we painted the pixels in red that ends up in the upper-left quadrant of the

final matrix, being the sum of the multiplications at each position (0∗0+1∗1+3∗2+4∗3 = 19).

Figure (2.4) Example of the convolution operation.

Note that the output array is smaller than the input array in this case. The output size

is affected by three factors: the size of the input image, the size of the kernel, and the stride

value (how many pixels the kernel skips from one iteration to the other). In this case, every

time we apply a convolution, the size of the image will be smaller, and often times this is not

desirable. A common approach for maintaining the array dimensions is to apply padding (insert

a border in the image with zeros). In this regard, considering the image height (H), width (W),

kernel size (KxK), stride (S), and padding (P), the output dimensions of each convolution can

be expressed by:

(
H − K + 2P

S
+ 1,

W − K + 2P

S
+ 1) (2.2)

Just like in the neural networks, we also apply activation functions in the output of the

convolutions. In CNNs, the Rectified Linear Units (ReLU) are the most used because they are
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fast and avoid vanishing gradient problems. In this way, we can connect multiple convolutional

layers.

Moving forward, we also have the pooling layer, which reduces the spatial dimensions of the

arrays, reducing the number of parameters and computational cost of the CNN. There are two

main pooling approaches, max pooling and average pooling. Figure 2.5 shows an example of the

max and average pooling operations using a 2x2 kernel, in which the max pooling extracts the

highest value and the average pooling extracts the average value, reducing the image dimensions.

Figure (2.5) Example of the max and average pooling operations.

Finally, we connect the last layer with a fully connected layer to achieve a classification

result. In binary classification problems, we only need a single neuron associated with a sigmoid

activation function to present values in the range of zero and one. In cases with more classes,

each of the last neurons will be responsible for holding the result of a single class. Now, there

are two distinct tasks, multilabel (Tsoumakas and Katakis, 2007) and multiclass (Aly, 2005). In

multiclass problems, there can only be one correct class. Thus, we use the softmax activation

function, which makes the sum of all neurons’ probabilities equal one. The multilabel still uses

a sigmoid activation function, but now the classes do not sum up to one since all classes may

be present simultaneously. A good example of this would be to feed pictures of humans and try

to simultaneously predict age, gender, and ethnicity, among others.

2.1.4 Image segmentation

Image segmentation is referred to as the process of grouping the pixels of a given image into

different groups, enabling a more synthetic understanding of the image. To group pixels, we

first need to understand the two main categories of targets adopted by the computer vision

community: "things" and "stuff" (Cordts et al., 2016; Everingham et al., 2015; Geiger et al.,

2013; Lin et al., 2014; Neuhold et al., 2017). The thing categories are often countable objects

and present characteristic shapes, similar sizes, and identifiable parts (e.g., buildings, houses,

swimming pools). Oppositely, stuff categories are usually not countable and amorphous (e.g.,

lake, grass, roads) (Caesar et al., 2018).
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Understanding the target type, the specific task to tackle the problem may be chosen. In

this regards, there are three main approaches for image segmentation (Hoeser et al., 2020; Ma

et al., 2019; Voulodimos et al., 2018; Yuan et al., 2021) (Figure 2.6): (1) semantic segmentation;

(2) instance segmentation; and (3) panoptic segmentation. For a given input image (Figure

2.6A), semantic segmentation models perform a pixel-wise classification (Singh and Rani, 2020)

(2.6B), in which all elements belonging to the same class receive the same label. However, this

method presents limitations for recognising individual elements, especially in crowded areas. On

the other hand, instance segmentation generates bounding boxes (i.e., a set of four coordinates

that delimits the objects boundaries) and performs a binary segmentation mask for each ele-

ment, enabling a distinct identification (He et al., 2020). Instance segmentation approaches are

restricted to objects (Figure 2.6B), not covering background elements (e.g., lake, grass, roads).

The panoptic segmentation task (Kirillov et al., 2019) aims to simultaneously combine instance

and semantic predictions for classifying things and stuff categories, providing a more informative

scene understanding (Figure 2.6D).

Figure (2.6) Representation of the (A) Original image, (B) semantic segmentation, (C) instance
segmentation, and (D) panoptic segmentation.
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Anchor and Bounding Box-Free approach

The conventional approaches, for instance and panoptic segmentation, are extensions of object

detection networks that aim to predict a bounding box to each element. In general, those

approaches require many parameters such as anchor boxes, anchor ratios, and regression losses

for optimizing the bounding boxes, among others (Bonde et al., 2020; de Carvalho et al., 2021a).

All of those parameters are learning-based strategies, and even though it has a high performance,

removing some of those elements may be more practical. This field has two main categories:

anchor-free and bounding-box-free methods. The anchor-free methods still yield bounding boxes

at the end but eliminate the necessity of having anchor boxes in the training processes (Lee and

Park, 2020; Xie et al., 2020). The second approach is a completely bounding box-free approach,

which does not provide any boxes in the final results (Bonde et al., 2020; de Carvalho et al.,

2021a).
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Chapter 3

Box-Based Instance Segmentation

This chapter addresses box-based instance segmentation methods with two significant challenges

for image processing, the small objects, and the usage of sliding windows for large scene classi-

fication. The analyzed target are the straw beach umbrellas (SBU), which are very common in

the beach landscape. The results from this chapter were published in the ISPRS International

Journal of Geoinformation.

3.1 Presentation

Public land management is essential for the effective use of natural resources with implications

for economic, social, and environmental issues (Brown et al., 2014). Government policies estab-

lish public areas in ecological, social, or safety-relevant regions (i.e., natural fields and historic

spaces), offering services ranging from natural protection to recreation (Brown et al., 2014; De-

Fries et al., 2007). However, managing public interests to promote social welfare over private

goals is a significant challenge. Especially in developing countries, recurrent misuse of public

land (Belal and Moghanm, 2011), and illegal invasions (i.e., the use of public lands for private

interests) (Dacey et al., 2013) are among the most common problems.

Coastal zone areas concentrate a large part of the world population, despite being envi-

ronmentally sensitive with intense natural processes (erosion, accretion, and natural disasters)

(Brown et al., 2015) and constant anthropic threats (marine litter, pollution, and inappropriate

use) (Martin et al., 2018; Serra-Gonçalves et al., 2019). The coastal zone is a priority for devel-

oping continuous monitoring and misuse detection programs. In Brazil, coastal areas belong to

the Federal Government, considering the distance of 33 meters from the high-medium water line

in 1831 (known as navy land). According to the Brazilian Forest Code, beaches and water bodies

have guaranteed public access. Therefore, Brazilian legislation establishes measures for public

use, economic exploitation, environmental preservation, and recovery considering coastal areas

socio-environmental function. Inspecting beach areas in Brazil is challenging, as the Unions Her-

itage Secretariat does not have complete and accurate information about this illegal occupation

throughout the country. The undue economic exploitation of the urban beach strip leads to an

increase in the number of illegal constructions and a reduction in government revenue due to
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non-registration, environmental problems, visual pollution, beach litter, among others. Many

illegal installations on urban beaches are masonry constructions for private or commercial use.

In addition, tourist infrastructure for food and leisure extends several straw beach umbrellas

(SBUs) (fixed in the sand by local traders) to the sand strip without permission. Given the

potential impact on the environment and the local economy, the monitoring and enforcement to

curb private business development in public spaces must be constant and efficient (Brown et al.,

2015), mainly to avoid uncontrolled tourism development (Burak et al., 2004; Gladstone et al.,

2013). The inspection must ensure the legal requirements, avoid frequent changes that lead to

lawful gaps, and minimize differences arising from conflicts of interest.

Conventionally, the inspection process imposes a heavy burden on state and federal agencies,

containing few inspectors with low frequency on site. In this regard, geospatial technologies and

remote sensing techniques are valuable for public managers since they enable monitoring changes

in the landscapes and understanding different patterns and behaviors. An excellent potential for

remote sensing application by government control agencies is detecting unauthorized construc-

tions in urban areas (He et al., 2019b; Varol et al., 2019). Several review articles address the use

of remote sensing and geospatial technology in coastal studies (El Mahrad et al., 2020; Lira and

Taborda, 2014; McCarthy et al., 2017; Ouellette and Getinet, 2016; Parthasarathy and Deka,

2019). Currently, geospatial technology is a key factor for the development and implementa-

tion of integrated coastal management, allowing a spatial analysis for studies of environmental

vulnerability, landform change (erosion and accretion), disaster management, protected areas,

ecosystem, economic and risk assessment (Ibarra-Marinas et al., 2021; Poompavai and Rama-

lingam, 2013; Rifat and Liu, 2020; Sahana et al., 2019).

However, few remote sensing studies focus on detecting tourist infrastructure objects on

the beach for inspection. Beach inspection requires high-resolution images and digital image

processing algorithms that identify, count, and segment small objects of interest, such as the

SBUs. Among the remote sensing data, high-resolution orbital images have the advantage of pe-

riodic availability and coverage of large areas at a moderate cost, unlike aerial photographs and

Unmanned Aircraft Systems (UASs) of limited accessibility. Typically, high-resolution satellite

images acquire a panchromatic band (from 1 meter to sub-metric resolutions) and multispectral

bands (spectral bands of blue, green, red, and near-infrared with spatial resolutions ranging from

1m to 4m), such as IKONOS (Pan-chromatic: 1 m; Multispectral: 4 m), OrbView-3 (Panchro-

matic: 1 m; Multispectral: 4 m), QuickBird (Panchromatic: 0.6 m; Multispectral: 2.4 m),

GeoEye-1 (Panchromatic: 0, 41 m; Multispectral: 1.65 m) and Pleiades (Panchromatic: 0.5

m; Multispectral: 2 m). Unlike the satellites mentioned above, the WorldView-2 (WV2) and

WorldView-3 (WV3) images pre-sent a differential for combining the panchromatic band (0.3 m

resolution) with eight multispectral bands (Resolution 1, 24 m): coastal (400 - 450 nm), blue

(450 - 510 nm), green (510 - 580 nm), yellow (585 - 625 nm), red (655 - 690 nm), red edge

(705 - 745 nm), near-infrared 1 (NIR1) (770 - 895 nm) and near-infrared 2 (NIR2) (860 - 1040

nm). There-fore, WorldView-2 and WorldView-3 have additional spectral bands compared to

other sensors (coastal, yellow, red edge, and NIR2), valuable for urban mapping (Momeni et al.,

2016). Therefore, the conjunction of the spectral and spatial properties of the WorldView-2
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and WorldView-3 images is an advantage in the detailed classification process in complex urban

environments. Few studies assess infrastructure detection on the beach. Llausàs et al. (2019)

conducted private swimming pools on the Catalan coast to estimate water use from WorldView-

2 images and Geographic Object-Based Image Analysis (GEOBIA). Papakonstantinou et al.

(2019) used UAS images and GEOBIA to detect tourist structures in the coastal region of

Santorini and Lesvos islands. Despite the wide use of the GEOBIA, Deep Learning (DL) seg-

mentation techniques demonstrate greater efficiency than GEOBIA in the following factors: (a)

greater precision and efficiency; (b) high ability to transfer knowledge to other environments

and different attributes of objects (light, color, size, shape, and background); (c) requires less

human supervision; and (d) less noise interference (Albuquerque et al., 2021a; Guirado et al.,

2017; Huang et al., 2020; Liu et al., 2018c).

The DL methods promote a revolution in several fields of science, including visual recognition

(Voulodimos et al., 2018), natural language processing (Sun et al., 2017; Young et al., 2018),

speech recognition (Nassif et al., 2019; Zhang et al., 2018c) object detection (Sharma and Mir,

2020; Zhao et al., 2019) medical image analysis (Liu et al., 2019b; Serte et al., 2020; Zhou et al.,

2019), person identification (Bharathi and Shamily, 2020; Kaur et al., 2020), among others. Like

other fields of knowledge, DL achieves state-of-the-art performance in remote sensing (Li et al.,

2020a; Liu et al., 2020; Ma et al., 2019) with a significant increase in articles after 2014 (Cheng

et al., 2020b). In a short period, several review articles have reported about DL and sensing,

considering different applications (Ball et al., 2017; Li et al., 2019a); digital image processing

methods (Cheng et al., 2020b; Hoeser et al., 2020; Khelifi and Mignotte, 2020; Li et al., 2018;

Ma et al., 2019; Zhang et al., 2016); types of images (Paoletti et al., 2019; Parikh et al., 2020;

Signoroni et al., 2019; Vali et al., 2020; Zhu et al., 2017), and environmental studies (Yuan

et al., 2020). DL algorithms use neural networks (Schmidhuber, 2015), a structure composed

of weighted connections between neurons that iteratively learn high and low-level features such

as textures and shapes through gradient descent (Nogueira et al., 2017). CNN have great

usability in image processing because of their ability to process data in multi-dimensional arrays

(Lecun et al., 2015). There are many applications with CNN models, e.g., classification, object

detection, semantic segmentation, instance segmentation, among others (Ma et al., 2019). The

best method often depends on the problem specification.

Instance segmentation and object detection networks enable a distinct identification for ele-

ments of the same class, suitable for multi-object identification and counting. A drawback when

comparing instance segmentation and object detection networks is real-time processing, in which

instance segmentation usually presents an inference speed lower than object detection. Never-

theless, instance segmentation models bring more pixel-wise information, crucial to determining

the exact object dimensions.

However, instance segmentation brings difficulties in its implementation. The first is the

annotation format, where most instance segmentation models use a specific format that is not

as straightforward as traditional annotations. The second is that most algorithm uses conven-

tional Red, Green, and Blue (RGB) images, whereas remote sensing images often present more

spectral channels and varied dimensions. The third problem is adjusting the training images to
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a specific size to train the models. To classify a large area requires post-processing procedures.

Object detection algorithms require only the bounding box coordinates, which are much more

straightforward than instance segmentation, which requires each object’s bounding boxes and

polygons.

Another recurrent problem is the poor performance of DL algorithms on small objects since

they present low resolutions and a noisy representation (Li et al., 2017). Common Objects in

Context (COCO) (Lin et al., 2014) characterizes objects sizes within three categories: (a) small

objects (area < 322 pixels); (b) medium objects (322 < area < 962); and (c) large objects (area >

962 pixels). The average precision (AP) score (main metric) has nearly half of the performance

on small objects within the COCO challenge than on medium and large objects. According to

a review article by Tong et al. (2020), few studies focus on small object detection, and despite

the subject’s relevance, the current state is far from acceptable in most scenarios and still

underrepresented in the remote sensing field. In this regard, an effective method is to increase

the image dimensions. In this way, the small objects will have more pixels, differentiating them

from noise.

The present research aims to effectively identify, count, and estimate SBU areas using multi-

spectral WordView-3 (WV-3) imagery and instance segmentation to properly inspect and prop-

erly control tourist infrastructure. Very few works use instance segmentation in remote sensing,

and none use WV-3 images or in beach areas. Our contributions are threefold: (1) a novel appli-

cation of instance segmentation using multispectral WV-3 images on beach areas, (2) leverage

the existing method for classifying large areas using instance segmentation, and (3) analyze and

compare the effect of the DL image tiles and their metrics.

3.2 Materials and Methods

The methodology is subdivided into the following steps: (A) dataset; (B) instance segmentation

approach; (C) image mosaicking using sliding window; and (D) performance metrics (Figure

3.1).

3.2.1 Dataset

Study Area

The study area was Praia do Futuro in Fortaleza, Ceará, Brazil, with intense tourist activities.

The research used WorldView-3 images from September 17, 2017, and September 18, 2018, pro-

vided by the European Space Agency (ESA) with a total length of 400km2 (Figure 3.2. The

WorldView-3 images combine the acquisition of panchromatic (with 0.31-m resolution) and mul-

tispectral (with 1.2-m resolution and eight spectral bands) bands. We used the Gram-Schmidt

pan-sharpening method (Laben and Brower, 2000) with nearest neighbor resampling to maxi-

mize image resolution and preserve spectral values (Johansen et al., 2020). The pansharpening

technique aims to combine the multispectral images (with low spatial resolution and narrow

spectral band) with the panchromatic image (with high spatial resolution and wide spectral
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Figure (3.1) Methodological flowchart.

band), extracting the best characteristics of both data and merging in a product that favours

the data interpretation (Ghassemian, 2016). The Gram-Schmidt technique presents high fidelity

in rendering spatial features, being a fast and straightforward method.

Annotations

Annotations assign specific labels to the objects of interest, consisting of the ground truth in

model training. Instance segmentation programs use the COCO annotation format, such as De-

tectron2 software (Wu et al., 2019) with the Mask-RCNN model (He et al., 2017). Consequently,

several annotation tools have been proposed for traditional photographic images considering the

COCO format, such as LabelMe (Russell et al., 2008; Torralba et al., 2010), Computer Vision

Annotation Tool (CVAT) (Sekachev et al., 2019), RectLabel (https://rectlabel.com), Label-

box (https:///labelbox.com), and Visual Object Tagging Tool (VoTT) (https://github.

com/microsoft/VoTT). In remote sensing studies, an extensive collection of annotation tools

is present in Geographic Information Systems (GIS) with several procedures to capture, store,

edit and display geo-referenced data. Therefore, an alternative to taking advantage of all the

technology developed for spatial data is to convert the output data from the GIS program to

the COCO annotation format. In the present research, we converted GIS data to the COCO

annotation format from the program developed in the C++ language proposed by Carvalho

et al. (2021). The SBUs’ ground truth digitization used ArcGIS software. Since instance seg-

mentation requires a unique identifier (ID) for each object, each SBU had a different value (from

1 to N, with N being the total number of SBUs).
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Figure (3.2) Study Area with a zoomed area from the WorldView-3 image.

Clipping Tiles and Scaling

Our research targets are very small (< 162 pixels) and very crowded in most cases. To improve

small objects’ detection, a powerful yet straightforward operation is to scale the input image

(Tong et al., 2020). We evaluated the ratios of 2x, 4x, and 8x in the original image. The

cropped tiles considered 64x64 pixels in the original image, which increased proportionally with

the different scaling ratios (128x128, 256x256, and 512x512, respectively).

Data Split

For supervised DL tasks, using three sets is beneficial to evaluate the proposed model. The

training set usually presents most of the samples, which is where the algorithm will understand

the patterns. However, the training set alone is insufficient since the final model may be over-

fitting or underfitting. In this regard, the validation set plays a crucial role in keeping track of

the model progress. A common approach is to save the model with the best performance on

the validation set. Nevertheless, this procedure also brings a bias. With that said, the model is

often preferable to be done using an independent test set. We distributed the cropped tiles into

training, validation, and test sets as listed in Table 3.1. The number of instances shows a high

object concentration, with an average of nearly ten objects per 64x64 pixel image.
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Table (3.1) Data split between the training validation and testing sets with their respective
number of images and instances.

Set Number of images Number of instances
Train 185 1,780

Validation 40 631
Test 45 780

3.2.2 Instance Segmentation Approach

Mask-RCNN Architecture

Facebook Artificial Intelligence Research (FAIR) introduced the Mask-Region-based Convolu-

tional Neural Network (Mask-RCNN) as an extension of previous studies for object detection

architectures: RCNN (Girshick et al., 2014), Fast-RCNN (Girshick, 2015), and Faster-RCNN

(Ren et al., 2017). The Mask-RCNN uses the Faster-RCNN as a basis with the addition of a

segmentation branch that performs a binary segmentation on each detected bounding box using

a Fully Convolutional Network (FCN) (Shelhamer et al., 2017) (Figure 3.3).

Figure (3.3) Mask-RCNN Architecture.

The region-based algorithms present a backbone structure (e.g., ResNets (He et al., 2016),

ResNeXts (Xie et al., 2017), or other CNNs) followed by a Region Proposal Network (RPN).

However, the Mask-RCNN has a Region of Interest (RoI) Align mechanism, in contrast to the

RoIPool. The benefit of this method is a better alignment of each RoI with the inputs that

removes any quantization problems on the RoIs boundaries. Succinctly, the model aims to

identify the bounding boxes, classify the bounding box classes, and apply a pixel-wise mask on

the bounding box objects. The loss function considers the three elements, being the sum of the

bounding box loss (Lossbbox), mask loss (Lossmask), and classification loss (Lossclass), in which

Lossmask and Lossclass are log loss functions, and Lossbbox is the L1 loss.

We use the Detectron2 software (Wu et al., 2019), which uses the Pytorch framework. Since

this architecture is usually applied to traditional images (3 channels), it requires some adjust-
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ments to be compatible with the WV-3 imagery (TIFF format and has more than three channels)

(Carvalho et al., 2021).

Model Configurations

To train the Mask-RCNN model, we made the necessary source code changes for compatibility

and applied z-score normalization based on the training set images. We only used the ResNeXt-

101-FPN (X-101-FPN) backbone since the objective is to analyze scaling.

Regarding hyperparameters, we applied: (a) Stochastic gradient descent (SGD) optimizer

with a learning rate of 0.001 (divided by ten after 500 iterations); (b) 256 ROIs per image; (c)

five thousand iterations; (d) different anchor box scales for the original image (4, 8, 12, 16, 32),

2x scale image (8, 16, 24, 32, 64), 4x scale image (16, 32, 48, 64, 128), and 8x scale image (32,

64, 48, 128, 256). To avoid overfitting, we applied the following augmentation to the training

images: (a) random horizontal flip, (b) random vertical flip, and (c) random rotation. Finally,

we used Nvidia GeForce RTX 2080 TI GPU with 11GB memory to process and train the model.

3.2.3 Image Mosaicking Using Sliding Windows

In remote sensing, the images often present interest areas much larger than the images used

in training, validation, and testing. This problem requires some post-processing procedures.

This process is not straightforward since the edges of the frames usually present errors. In this

context, the sliding window technique has been used for various semantic segmentation prob-

lems (Audebert et al., 2017a; da Costa et al., 2021b; de Albuquerque et al., 2020b), in which

the authors establish a step value (usually less than the frame size) and take the average from

the overlapping pixels to attenuate the border errors. The problem persists in object detection

and instance segmentation since predictions from adjacent frames would output distinct par-

tial predictions for the same object. Recently, Carvalho et al. (2021) proposed a mosaicking

strategy for object detection using a base classifier (Figure 3.4B), vertical edge classifier (Figure

3.4C), and horizontal edge classifier (Figure 3.4E). Our research adapted the method by adding

a double-edge classifier since some errors may persist (https://github.com/osmarluiz/Straw-

Beach-Umbrella-Detection).

Figure (3.4) Scheme of the mosaicking procedure, with the Base Classification (BC), Vertical
Edge Classification (VEC), Horizontal Edge Classification (HEC), and Double Edge Classifica-
tion (DEC).
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Base Classification

The first step is to apply a Base Classifier (BC) (considering all elements) using a sliding win-

dow starting at x=0 and y=0 and stride values of 512 (Figure 3.5B). This procedure produces

partial classification on the frame’s edges between consecutive frames, resulting in more than

one imperfect classification for the same object, which is a misleading result.

Single Edge Classification

The second step is to classify objects located in the borders (partially classified objects by the

BC). We applied the Vertical Edge Classifier (VEC) to classify elements in consecutive frames

vertical-wise, composed of a sliding window that starts at x=256 and y=0 (Figure 3.5C). Sim-

ilarly, to horizontal-wise consecutive frames, we applied the Horizontal Edge Classifier (HEC),

with a sliding window that starts at x=0 and y=256 (Figure 3.5D). Both strategies use 512-

pixel strides. In addition, to avoid the high computational cost, the VEC and HED only classify

objects that start before the center of the image (x<256 for the VEC and y<256 for the HEC)

and end after the image’s center (x>256 for the VEC and y>256 for the HEC).

Double Edge Classification

An additional problem for crowded object areas such as SBUs is objects located at the BC borders

horizontal-wise and vertical-wise, presenting a double edge error (DEC). Thus, we enhanced the

mosaicking by applying a new sliding window, starting at x=256 and y=256 with 512-pixel

strides (Figure 3.5E).

Non-maximum suppression sorted by area

Furthermore, each object located at the images’ borders may present more than one classification

for the same object, partial classifications from consecutive BC frames (incorrect classifications),

and a unique, complete classification (correct classification) from the HEC, VEC, or DEC (Figure

3.5). The elimination of excessive boxes used the non-maximum suppression ordered by area,

guaranteeing only the classification of the most significant element (complete object). Figure

3.5 shows an example of an element located at double edges, where the DEC classification is the

largest and the correct one.

Figure (3.5) Example of classifications from each mosaicking procedure.
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3.2.4 Performance Metrics

The model evaluation considered the following COCO metrics: Average Precision (AP), AP50,

and AP75. The AP is a ranking metric that calculates the area under the precision-recall

curve. However, in object detection, it is crucial to determine a minimum overlap between the

predicted bounding box and the ground truth bounding box to evalu-ate a correct classification.

Another element is the Intersection over Union (IoU) (Figure 3.6). In this regard, the COCO

AP considers the average among ten Intersection over Union (IoU) thresholds (from 0.5 to 0.95

with 0.05 steps), while AP50 and AP75 scores consider a fixed threshold of 0.5 and 0.75.

Figure (3.6) Representation of the Intersection over Union metric.

3.3 Results

3.3.1 Performance Metrics

Table 3.2 lists the detection (Box) and segmentation (Mask) results with different image scaling

ratios and the X-101-FPN backbone. Results on the original image presented similar results

compared to the COCO dataset scores. Scaling presented significant improvement, in which 2x

scaling increased nearly 20% in the AP score, and 8x scaling increased nearly 30% AP.

Small objects negatively affect the strictest metrics (highest IoU, e.g., AP75). Slight errors

in the bounding box position on small objects (with fewer pixels) significantly reduce the IoU

(implying low AP scores). In turn, the mistakes are much less impactful when increasing the

image dimensions. However, the high computational cost is a limitation of the indefinite increase

in the image dimensions.

3.3.2 Scene Classification

We used the X-101-FPN model with the best scaling ratio (8x) scores, applying it in a 3072x2048

pixel image (also using 8x scaling) to validate the mosaicking technique. Figure 3.7A demon-

strates a satisfactory classification even in crowded areas. This process excluded 66 partial
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Table (3.2) COCO metrics (AP, AP50, and AP75) for segmentation (mask) and detection
(box) on the different ratio images.

Ratio (Size) Type AP AP50 AP75
8x (512x512) Box 58.12 94.56 66.06

Mask 56.76 93.73 63.86
4x (256x256) Box 53.45 93.01 60.76

Mask 52.89 92.21 58.87
2x (128x128) Box 48.24 89.66 46.54

Mask 49.09 90.24 49.84
1x (64x64) Box 30.49 74.68 15.68

Mask 36.69 77.42 27.50

classifications in total (Figure 3.7B), and the trained model has proven to distinguish SBUs

from other elements such as tourist beach umbrellas.

Figure 3.8 shows three zoomed areas (1, 2, and 3) where the top images present the complete

(correct) classification results, whereas the bottom images show the partial (incorrect) classifi-

cations deleted by the non-max suppression sorted by area algorithm. Figs. 3.8.1, 3.8.2, and

3.8.3 shows the DEC, VEC, and HEC, respectively. Another interesting point is that example

3.8.2 shows that one of the partial predictions has greater confidence than the correct prediction

(97% against 96%), demonstrating that the non-maximum suppression ordered by area brings

improved results.

Table 3.3 lists quantitative values that may be very helpful in decision-making. This method-

ology enables automatic counting and detection within large areas using Mask-RCNN. The sizes

of the SBUs are very similar, with the average and median sizes very close and a standard de-

viation of 0.2m2. Besides, the algorithm could differentiate very close objects, showing a good

usage of instance segmentation models for crowded regions.

Table (3.3) Analysis of the detected objects regarding their counting, average size, median size,
minimum size, maximum size, and standard deviation, considering the 8x scaled image.

Description Result
Count 148

Average SBU size 4,172 pixels (5.8m2)
Median SBU size 4,027 pixels (5.6m2)

SBU Standard Deviation 161.60 (0.2m2)
Min. SBU size 2,693 pixels (3.8m2)

3.4 Discussion

Instance segmentation is a state-of-the-art computer vision segmentation method that enables

many practical approaches for identifying objects at the pixel level. Most instance segmentation

studies use large datasets (e.g., COCO (Lin et al., 2014), Cityscapes (Cordts et al., 2016),

Mapillary Vistas (Neuhold et al., 2017)) in a ready-to-use format. Developing datasets for

instance segmentation is highly complex and labor-intensive, requiring annotation experts and a
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Figure (3.7) Classifications considering the correct classifications (A) and the deleted partial
classifications from each object (B).

suitable storage format for DL models. Difficulties worsen for orbital remote sensing images by

the need to choose the places of each image tile and the existence of very little annotation software

available that considers geospatial data’s particularities. With that said, in a Web of Science

search up to November 11, considering the keywords instance segmentation, remote sensing, and

deep learning, we found only 22 peer-reviewed journal articles. Despite the gains in efficiency

and quality of results, the limited number of papers using instance segmentation demonstrates

the difficulties reported. The present research demonstrates that instance segmentation allows a

significant gain in inspection efficiency in coastal areas that have not yet been explored. Within

these 22 articles, Soloy et al. (2020) also explored the beach areas, but with a different approach,

as the authors used photos taken by the iPhone to quantify grain size on pebble beaches.

3.4.1 Multichannel Instance Segmentation Studies

Few studies addressed instance segmentation using multi-channel imagery. Most studies use

RGB images (Li and Chen, 2021; Wu et al., 2021; Zhao et al., 2021) or even three-channel images

from the combination of digital orthophoto map and near-infrared band from the Landsat-8 (Lv
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Figure (3.8) Representation of the three distinct classification scenarios, considering the double
edge classification (DEC), vertical edge classification (VEC), and horizontal edge classification
(HEC).

et al., 2020). The usage of multi-channels in remote sensing is widespread, allowing for more

efficient detection than traditional RGB images (e.g., camera photos). Basically, there are four

scenarios in remote sensing for using multi-channel inputs: (1) sensors with many spectral bands,

(2) time series, (3) change detection, and (4) a combination of these characteristics (e.g., a time

series of multispectral images). Using multispectral imagery, Carvalho et al. (2021) made a

study on center pivot irrigation systems using Landsat-8 images. The authors compared the

usage of seven channels with the traditional RGB, showing a difference of 3% in the AP metric

when using more channels. Hao et al. (2021) used a multiband input for the Mask-RCNN

for identifying tree crowns and estimating their height. Concerning time series applications,

Albuquerque et al. (2021a) used Sentinel-1 time series (up to eleven channels) for mapping center

pivots. The authors reported an increased performance when including more time frames. In a

different approach, Albuquerque et al. (2021b) used Sentinel-2 time series (up to 24 channels),

considering four spectral bands per temporal frame for effectively mapping regions with a cloud

presence.

3.4.2 Methods for large scene classification

A significant problem is a DL adaptation for remote sensing applications that uses large-size

images. In this regard, the present research used mosaicking with sliding windows for object
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detection/instance segmentation. This procedure is more common in semantic segmentation

approaches using overlapping pixels (Audebert et al., 2017a; Costa et al., 2021; da Costa et al.,

2021b; de Albuquerque et al., 2020b). The method uses a sliding window with a step size smaller

than the frame dimensions, causing overlapping. Averaging the overlapping areas mitigates er-

rors, providing better accuracy metrics and visual results. However, for instance segmentation

models, the procedure must consider the bounding boxes. In this sense, we modified the method

proposed by Carvalho et al. (2021), introducing the double edge classifier (DEC) that is more

efficient in extremely crowded areas, such as the SBUs. The methodology effectively elimi-

nates frame discontinuity problems by considering the prediction under the best circumstance,

providing a viable solution for mapping large areas.

Applying an instance segmentation algorithm over a large area enables a thorough scene

understanding, which is vital for public inspection. For example, our study allows automatic

counting of all SBUs and a series of other statistics, such as average size, median size, and

standard deviation of the sizes. These quantitative results increase the amount of information

for public managers to act, allowing the extraction of the exact location of each element by

getting the coordinates of each bounding box.

3.4.3 Small object problem

Small objects often underperform in many datasets. For example, in the COCO dataset, the

APsmall metric is much lower than the APmedium and APlarge metrics. This effect is related

to increasing noise with decreasing object size. In the review of Tong et al. (2020), image

scaling is a straightforward approach to improve small object detection. Nevertheless, no study

compares the effect of different scaling and improved object detection. In this regard, this

research compares three scaling ratios for mapping SBUs, which are very small objects. This

comparison can guide other studies further studies of small object detection in other scenarios.

Our results show that image scaling (even as an image augmentation built-in method) may be

a plausible and effective solution. The AP metrics increased more than 20%, considering eight

times the original size. Even so, doubling the dimensions already provided a significant increase.

This analysis is relevant since increasing the image dimensions might present computational

problems (e.g., memory, processing time).

Some other alternatives have been studied for detecting small objects. Zhang et al. (2019)

proposed a scale adaptive proposal network by modifying the Faster-RCNN architecture. This

innovative approach has broad applications where there are datasets of many different sizes.

Nonetheless, considering different scales might not be enough for very small objects, especially

for AP scores, where few mistakes in the bounding box drastically reduce this accuracy metric.

Generative Adversarial Networks (GAN) algorithms also present advances in studies with small

objects (Li et al., 2017). In remote sensing, Ren et al. (2018) proposed an advanced end-to-end

GAN to increase image resolution and apply the Faster-RCNN network in object detection.

Therefore, a viable alternative for future studies would be the development of algorithms using

GAN for surveillance in coastal areas. In the traditional RGB images from the COCO data set,
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Kisantal et al. (2019) made an augmentation system based on copying and pasting small objects

into different images to increase the representativeness of a small object in a larger number of

images. This augmentation is a promising strategy for datasets with different scaled images.

However, it can be computationally expensive in multichannel imaging and in detecting many

small objects.

3.4.4 Accuracy metrics for small objects

Even though there is broad applicability of the COCO metrics for instance segmentation datasets

(including the COCO dataset), the AP50 is the most appropriate metric for analyzing small

objects (especially in datasets in which all objects are small) since very few mistakes drop the

performance metrics significantly. Figure 9 shows two theoretical examples A and B, in which

the prediction and the ground truth bounding boxes have the exact spatial dimensions.

When considering small objects, a slight mistake of 1 pixel horizontally and vertically has

an IoU of 69.25%, impacting the AP and AP75 metric. A 1-pixel error in a 100x100 pixel

bounding box generates a 96.10% IoU, showing the attenuation of slight errors in larger objects.

This research shows that the simple increase in object dimensions gives the algorithm a better

accuracy score. Therefore, generating ground truth data, especially for small objects, must be

done rigorously to avoid misleading metrics.

3.4.5 Policy Implications

The Brazilian Government is responsible for the administration and inspection of federal prop-

erties. According to Normative Instruction No. 23, of March 18, 2020, the inspection action

may have a preventive or coercive nature, requiring a field inspector to investigate possible irreg-

ularities committed against federal properties. The inspection action is predominantly coercive

through denunciation, when the improper action is consolidated, leaving only the repair of the

damage. The lack of preventive action causes an increase in unlawful acts and the filing of

numerous lawsuits, with deprivation of use of areas and legal uncertainty.

In Brazil, beach areas are public properties protected by environmental legislation (CONAMA

resolution No. 303 of 20/03/2002) as permanent preservation areas and consist of Navy land,

where private occupation (private, commercial, or industrial) requires payment of a fee for the

use of the public area. Beach areas are constant targets of economic exploitation and improper

tourism and need constant surveillance. In this context, developing remote and semi-automated

methods of surveillance of property misuse becomes fundamental.

Therefore, the instance segmentation of multispectral remote sensing images demonstrates

a high potential to establish an effective action with a solid preventive impact due to the rapid

infraction detection. However, the procedure should be improved, including other activities

without prior authorization in coastal areas such as landfills, deforestation, construction, fences,

or other improvements, which could be developed in future lines of research.
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3.5 Conclusion

The automatic remote sensing detection of tourist infrastructure in beach areas is essential for

government surveillance, requiring quick and periodic information for decision-making. The

coastal regions of Brazil are government property, being areas with specific taxation for use and

environmental protection. This study proposed a methodology based on instance segmentation

to identify Straw Beach Umbrellas (SBUs), the most common tourist structure on Brazilian

beaches. The developed methodological approach integrates different solutions for the use of

instance segmentation in remote sensing data: (1) multi-channel models, (2) small object de-

tection, and (3) classification of large areas. Therefore, we modified Detectron2’s Mask-RCNN

model to account for multi-channel image inputs in TIFF format, compared different scaling

ratios on the original image and improved the existing method for classifying large images using

the sliding window technique. Our results show that increasing image dimensions significantly

improve the AP metric from 30% to 58%. In addition, the less strict metric (AP50) showed

results from 74% to 94%. Image scaling is a computationally expensive solution, so we initially

considered the original image dimensions of 64x64 pixels. Even though we evaluated up to 8

times the original dimensions (resulting in a 512x512 image), a two-times resizing already pro-

vides a significant increase. The research needs to define a trade-off between computational cost

and the quality of predictions.

Another problem is the accumulation of errors on the frame edges, which intensify with

overcrowded objects. Our innovative proposal to use double edge classification (DEG) solved

the problem simply and efficiently. The architecture of all exposed methods is a suitable solution

for accurately detecting small objects in large areas using multispectral data, providing insightful

information for public managers. For example, statistical analysis of the SBUs on a 3,072x2,048

test image identified 148 objects with an average size of 5.8m2. The bounding box centroid

establishes the exact geographic location. Future studies on this area will consider more beach

elements, exploring objects and background elements, and other segmentation tasks such as

panoptic segmentation.
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Chapter 4

Box-Free Instance Segmentation

with non-Touching Objects

This chapter introduces a novel procedure to obtain instance-level predictions from semantic

segmentation models in targets that are always apart from each other, facilitating procedures

such as extracting polygons from the objects.

4.1 Presentation

The great challenge for the Brazilian energy sector is to expand its energy production capacity

while maintaining a high share of renewable sources in the energy mix. One of the most im-

portant factors is to guarantee its commitments to reduce greenhouse gas emissions (GHGs),

established by the energy sector through the Intended Nationally Determined Contributions

(INDC) (Lima et al., 2020) and in line with the Paris agreement ratified by Brazil in September

2016 (Tollefson, 2020). The primary source of Brazilian energy is hydroelectricity, which has

been the primary geopolitical strategy for the energy sector since the 1960s. This development

model has made the nation the most dependent on hydroelectric energy in the world. In fact,

Brazil has a great advantage in having a hydro-energy base, a renewable, storable, and funda-

mental source for stability in meeting the countrys energy demand, especially since large plants

are beneficial for regulating the demands at a reasonable time when the energy loads fluctuate.

However, most sites with hydropower potential have already been explored for energy gen-

eration, and the unexplored large-scale projects are mostly located in the Amazon region. This

region imposes massive restrictions on constructing new hydropower plants in the country due

to significant socio-economic and environmental impacts, compromising fragile ecosystems and

entailing high costs in the long term (Jiang et al., 2018; Mayer et al., 2021). Recently, the Belo

Monte project, with an installed capacity of 11.23 GW, illustrates the challenges of installing

hydroelectric dams in the Amazon region. The project had a budget of US$ 13.1 billion and

flooded an area greater than 7,000 km2, bringing challenges to mitigate environmental (Castro-

Diaz et al., 2018; Gauthier et al., 2019; Gauthier and Moran, 2018; Runde et al., 2020) and
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socio-economic impacts (Bro et al., 2018; Calvi et al., 2020), demanding efforts in terms of

population resettlement (Mayer et al., 2021).

Ensuring energy security in the face of the country’s economic growth and maintaining a

portfolio of renewable sources leads to a redirection of investments, efforts, and priorities for the

decentralization of renewable technologies with an increase in the reliability of the supply of the

electrical system and risk reduction. In this scenario, solar and wind energy acquire prominence

in this reduction in hydroelectric participation and sustain a mostly renewable share in the mix

as it is currently (Ferraz de Andrade Santos et al., 2020). The hydroelectric source represented

83% of installed capacity at the beginning of the century, and the expectation is to reduce to

46% by 2031, according to the Brazilian government’s Ten-Year Energy Plan (PDE-2031) and

considering the most remarkable water scarcity recorded in 2021, the biggest within the last

90 years (Brasil et al., 2022). Thus, the contribution of hydroelectricity in the last decade has

gradually decreased for these new alternatives that have reached the gigawatt-scale (Mendes

and Sthel, 2018). Besides, relying on a single natural energy source brings security issues since

these renewable energies are susceptible to climatic variations, with a possible need to activate

thermoelectric plants to meet domestic demands (Hunt. et al., 2018). Several studies point out

this problem and analyze moments of the recent energy crisis in the country (Melo et al., 2019;

Mendes and Sthel, 2017, 2018; Reichert and Souza, 2021).

In addition, wind and solar energy allow a decentralized production closer to the consumer,

and technological advances promote the constant reduction of generation costs, overcoming

technical barriers and making these sources increasingly competitive due to economic gains and

efficiency. Among the advantages of wind and solar energy systems are carbon-free energy

sources with low environmental impact, potential to mitigate greenhouse gas emissions, low

operating and maintenance costs, high availability, strengthening of the ends of the network,

reduction of energy transmission losses, and increased in the overall efficiency of the electrical

system (Sampaio and González, 2017).

According to the Brazilian National Electricity Agency (ANEEL) data from the beginning

of 2022, the number of wind power plants in operation was 809, with a granted power of 21.5

GW and supervised power of 21.4 GW which represents 11.77% of the Brazilian electricity

mix. The number reaches 1190 units with a granted power of 34.9 GW from the wind farms

under construction and construction not started. In Brazil, the Northeast region is the most

promising and favorable for wind energy conversion due to adequate conditions (Filgueiras and

Thelma Maria, 2003).

Inspecting wind plant constructions is fundamental for the effectiveness and control of public

policies. In Brazil, ANEEL is responsible for regulating the expansion of installed capacity and

monitoring the progress of plant construction (Orlandi et al., 2021). However, inspection is

carried out directly on-site through the displacement of qualified professionals at high costs. The

expectation of wind energy growth tends to have many projects with low energy production,

increasing the number of processes to be evaluated and urgently requiring process automation.

Periodic satellite images are a promising tool for monitoring works in the electricity sector,

being a low-cost alternative for the surveillance of construction stages. Therefore, remote sens-
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ing studies for the detection of infrastructure in the electricity sector have recently increased,

especially in solar energy mapping: urban photovoltaic solar panels (Bradbury et al., 2016; Jie

et al., 2020; Zhuang et al., 2020), water photovoltaic (Xia et al., 2022), and photovoltaic solar

plants (Costa et al., 2021; Plakman et al., 2022; Zhang et al., 2021). On the other hand, wind

farm detection works are scarce because they are narrow objects and complex arrangement,

need for high resolution imaging and use of high-performance detection methods. Considering

a continental country, automatic detection is crucial to minimize human activity, such as visual

inspection. In this context deep learning methods are the current state-of-the-art for image

classification, especially with advances in Convolutional Neural Networks (CNN), which allow

the detection of the small, medium, and high-level features (Lecun et al., 2015; Nogueira et al.,

2017). In the field of pattern recognition in the electricity sector, methodologies for mapping

solar panels have proved to be highly efficient, including by ANEEL itself (Costa et al., 2021).

The main objective of this study is to create a low-cost system using deep learning and

remote sensing images to monitor wind farms. The results search to reduce the costs of technical

visits and make decisions more quickly and accurately. Since the study areas are extensive, the

present research created a personalized pipeline for this task, such as sliding windows and object

counting. This methodology is the first to use remote sensing images and artificial intelligence

to map wind farms, which can be an avant-garde method to save and enhance public decisions

in this sector.

4.2 Materials and Methods

The present research had the following methodological steps (Figure 4.1): (2.1) Data, (2.2) deep

learning approach, (2.3) sliding windows using the best model, and (2.4) semantic to instance

conversion using GIS.

Figure (4.1) Methodological flowchart.
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4.2.1 Data

Study Area Selection and Image Acquisition

The study areas seek to represent the main concentrations of wind farms spread across the

Brazilian territory (Figure 4.2). In this context, the research covered a wide variety of back-

ground landscapes, from coastal areas with the presence of dunes to inland regions with different

uses and land cover and covering Brazil from the northeast to the south. This research used the

panchromatic images of the China-Brazil Earth Resources Satellite CBERS 4A sensor (2-m res-

olution), the sixth CBERS family satellite developed by the space technical cooperation between

Brazil and China (Vrabel et al., 2021). These images combine the advantages of free distribu-

tion (significant cost reduction) and high resolution from the Panchromatic Wide Scan camera.

Other possibilities for high-resolution images such as aerial surveys or using orbital satellites

(GeoEye-1 (41 cm), WordView-2 (46 cm), WordView-3 (31 cm), WordView-4 (31 cm), Planet

Labs (50 cm), QuickBird (61 cm), and IKONOS-2 (1 m)) would represent a significant increase

in the cost of monitoring for a country with a continental extension. Besides, other sensors with

free data (such as Sentinel-2 or Landsat-8) have difficulties detecting wind farms due to the low

resolution. For example, Sentinel-2 images (10 meters resolution) have limitations compared

to the CBERS-4A image (Figure 4.3). This study used 21 CBERS 4A scenes throughout the

Brazilian territory, incorporating various environments with wind farms in the database. The

CBERS 4A provides images with a periodicity of 31 days, bringing monthly updates to each

region.

Image Annotation

The mapping of all wind farms for the 21 CBERS 4A scenes used on-screen visual interpretation.

The visual interpretation of the wind farm installation considered the following features: (1)

foundation concrete, a circular base with a diameter of approximately 20 meters; (2) wind

turbines containing blades that rotate the rotor with the force of the wind; and (3) the shadow

areas. One of the most significant difficulties in the computer vision community is dealing

with small objects, defined as elements with less than 322 pixels (Lin et al., 2014; Tong et al.,

2020). Although wind farms are a prominent object in height, they are not notable in remote

sensing orbital images with a nadir view due to their reduced width. Despite shadows in most

remote sensing studies are considered a significant problem as they hide the intended objects

(de Carvalho et al., 2021a), an unconventional approach integrates the shadow features into the

analysis, occupying a more significant area coverage and facilitating the wind farm detection

(Shen et al., 2017).

Deep learning samples

Orbital remote sensing images have extensive dimensions, requiring in the classification and

training the subdivision of the images into small patches with a dimension of 128x128 pixels,

suitable for including a wind farm. Every wind plant had at least one 128x128 sample, and we
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Figure (4.2) Study area.
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Figure (4.3) Example of the shadows produced by the wind plants considering Sentinel (a, b,
and c) and CBERS 4A images (a1, b1, c1).

added at least 20 samples using background-only information. From the 21 CBERS-4A scenes,

14 were for training, 3 for validation, 3 for testing, and an additional scene for evaluation of the

sliding window procedure (Table 4.1). The final dataset included 4544, 257, and 220 patches for

training, validation, and testing, respectively.

4.2.2 Deep learning approach

Deep learning models

Instance segmentation models such as the Mask-RCNN (He et al., 2020) are the primary ap-

proach for recognizing individual objects at a pixel level. However, instance segmentation models

for orbital remote sensing may present additional difficulties regarding semantic segmentation:

(1) more structured information data requirement (e.g., COCO (Lin et al., 2014)); (2) increasing

object detection parameters (e.g., anchor boxes) and procedures (e.g., ROI alignment); (3) image

reconstruction by sliding windows becomes challenging; and (4) worse pixel metrics, especially

for small objects. Since the wind farms and their shadows do not touch each other, it is simple

to convert semantic features to instance features using post-segmentation methods (de Carvalho

et al., 2021a; Mou and Zhu, 2018).

Therefore, we used semantic segmentation models to classify all input image pixels (Garcia-

Garcia et al., 2017; Guo et al., 2016). The models usually present a structure with a contraction

(extraction of meaningful features) and extension (restoring the image dimension) paths. Since

this is the first deep learning approach for this target, this investigation compared five state-of-

the-art semantic segmentation architectures: U-Net (Ronneberger et al., 2015a), DeepLabv3+
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Table (4.1) Dataset information considering the state, location (latitude and longitude), num-
ber of wind plants, number of patches, and the set (train, validation, test or sliding windows
(SW)). The dataset considered the following Brazilian states: Bahia (BA), Ceará (CE), Piauí
(PI), Rio Grande do Norte (RN), Rio Grande do Sul (RS), and Rio de Janeiro (RJ).

State Location # Of wind plants # Of patches Train/val/test
BA 42°40’48,852"W 14°4’17,174"S 407 656 Train
BA 41°27’37,008"W 11°51’22,643"S 113 290 Train
BA 41°15’58,126"W 11°2’6,711"S 250 228 Train
BA 42°35’57,95"W 14°24’38,101"S 303 377 Train
BA 41°23’53,288"W 10°31’20,718"S 225 251 Train
BA 40°42’49,748"W 7°40’6,644"S 270 288 Train
CE 39°42’39,391"W 3°4’52,63"S 174 250 Train
CE 39°19’57,904"W 3°16’45,851"S 233 315 Train
PI 41°32’16,008"W 8°39’0,225"S 309 323 Train
RJ 41°4’37,302"W 21°34’28,83"S 18 45 Train
RN 36°26’53,947"W 5°14’40,991"S 203 285 Train
RN 35°55’58,156"W 5°20’52,179"S 818 836 Train
RS 53°19’10,675"W 33°35’48,462"S 305 340 Train
RS 49°35’52,656"W 28°27’51,075"S 60 60 Train
BA 40°58’22,055"W 10°5’0,823"S 113 124 Validation
PB 36°43’49,184"W 6°58’1,276"S 59 101 Validation
RS 52°13’4,441"W 32°13’40,063"S 32 32 Validation
PI 40°37’23,185"W 7°59’46,973"S 98 118 Test
RN 36°12’37,606"W 5°44’52,836"S 53 62 Test
RS 52°21’33,646"W 32°25’18,929"S 40 40 Test
RN 37°2’11,031"W 5°7’59,359"S 382 - SW test
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(Chen et al., 2018), Feature Pyramid Network (FPN) (Lin et al., 2017), and U-Net++ (Zhou

et al., 2018b). Furthermore, the model evaluation considered three backbones: Efficient-net-B7

(Tan and Le, 2019a), ResNeXt-101 (Xie et al., 2017), and ResNet-101 (He et al., 2016). The

hyperparameters remained the same to ensure cohesion between the different models: learning

rate of 0.0001, batch size of 20, and 100 epochs. The image processing used a computer equipped

with an NVIDIA RTX 3090 and i9 processor for all experiments.

Accuracy metrics

Most of the accuracy metrics of semantic segmentation models come from the confusion matrix.

As our problem is binary, there are four possibilities: true positives (TP), true negatives (TN),

false positives (FP), and false negatives (FN). However, wind farms and their shadows, being

small objects, have a high percentage of background data, increasing the presence of true neg-

atives. Thus, the main metric for our analysis is the Intersection over Union (IoU), expressed

by TP((TP+FN+FP)). This metric considers both types of errors (FP and FN) and does not

consider the TN. Even though this metric is the most relevant, we also evaluated the overall

accuracy ((TP+TN)((TP+TN+FN+FP))), precision (TP((TP+FP))), recall (TP((TP+FN))),

and f-score ((2*precision*recall)((precision+recall))).

4.2.3 Sliding windows for large image classification

Large-scale image segmentation should use a sliding window (SW) approach, considering an

image subdivision into sizes equivalent to the training samples with an overlap area demarcated

by the stride value between the windows. Thus, the SW approach performs the classification

in sequential frames (from left to right and top to bottom). The stride value in semantic

segmentation is essential, where smaller stride values bring greater overlap area and better results

as the average of overlapping pixels minimize errors (da Costa et al., 2021b; de Albuquerque

et al., 2020b). However, the computational cost also increases. The situation in question presents

a trade-off in performance and computational cost.

Most SW studies consider amorphous and large targets, and few studies have compared the

different strides for small objects. This investigation evaluated four stride values (16, 32, 64,

and 128), considering an independent scene with a high concentration of wind power stations.

The predictions generate probabilities between 0 and 1, where the average overlapping pixels

improve the accuracy. For this purpose, the ranking metrics that evaluate classifiers over variable

thresholds are adequate, so we used Precision Area-Recall Under the Curve (PR-AUC Receiver

Operating Area Under the Curve (ROC AUC).

4.2.4 Semantic to instance segmentation conversion using GIS

In the present study, the conversion from semantic to instance features allows fast object counting

using an approach from two studies developed for car detection (de Carvalho et al., 2021a; Mou

and Zhu, 2018). The semantic segmentation of contacting targets can be undesirably grouped

into a single element. The cited studies isolate the grouped objects by inserting a buffer around
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the individual objects, generating a result that separates the inside of the objects containing

individual attributes. In our study, an attractive property of wind farms is that they are always

far enough away from each other. In other words, there will never be a scenario of merging many

predictions into a single polygon. For this reason, we do not need to add borders to objects to

be able to separate them.

This process can be easily adapted to GIS platforms like ArcGIS by applying a raster pro-

cedure to the polygon. As the elements are far from each other, the number of polygons tends

to be the number of wind farms. However, there may be noisy predictions in some semantic

segmentation results, misleading the counting procedure. Thus, we can eliminate polygons rep-

resented by a certain number of pixels. In this study, we eliminated polygons with areas below

350m2, since the wind plants present on average more than 800m2.

4.3 Results

4.3.1 Model evaluation and comparison

Table 4.2 lists the results considering the different architectures and backbones. The IoU and

F-score are usually the most appropriate in choosing the best model since they consider FP and

FN errors. For both IoU and F-score, the best model used the LinkNet architecture with the

Eff-B7 backbone, but the U-Net and U-Net++ models presented similar scores. DLv3+ and

FPN presented more than 3% difference in the best models from the other three. Interestingly,

only three of the 15 different models presented a recall score higher than the precision score.

The accuracy analysis shows to be very misleading since most of the pixels are background, and

most models presented very high scores near 100%.

Figure 4.4 shows examples from the test set for the best model (LinkNet with the Eff-B7

backbone). The results clearly demonstrate that the models could understand distinct shadow

representations, which is very accurate for mapping wind plants. Nonetheless, there are some

spots in which the algorithm may bring some errors. Figure 4.5 shows three examples of possible

errors that may occur. The first row shows lookalike features, erroneously detecting a wind plant

shadow. The second and third examples show discontinuity errors with relevance in the raster

to polygon conversion due to the possibility of giving misleading results.

Table 4.3 lists the training period for each model and the inference time on a single 128x128

frame. For DeepLabv3+, U-Net, FPN, and LinkNet, the training period for a single epoch

presented a similar behavior among the three backbones, in which Eff-B7 > X-101 > R-101.

The U-Net++ had a higher training period for X-101 than the rest. Note that the overall

behavior tends to be preserved, but changing the computer configurations may vary the results.
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Table (4.2) Dataset information considering the state, location (latitude and longitude), num-
ber of wind plants, number of patches, and the set (train, validation, test or sliding windows
(SW)). The dataset considered the following Brazilian states: Bahia (BA), Ceará (CE), Piauí
(PI), Rio Grande do Norte (RN), Rio Grande do Sul (RS), and Rio de Janeiro (RJ).

Architecture Backbone Accuracy Precision Recall F-score IoU
DLv3+ Eff-B7 99.58 79.61 79.77 79.69 66.24

X-101 99.57 78.01 79.96 78.97 65.25
R-101 99.56 79.01 78.11 78.56 64.69

U-Net Eff-B7 99.63 83.13 80.31 81.69 69.05
X-101 99.63 85.17 77.60 81.21 68.36
R-101 99.61 81.99 78.94 80.44 67.28

LinkNet Eff-B7 99.66 84.30 82.55 83.41 71.55
X-101 99.62 82.99 79.04 80.97 68.02
R-101 99.62 82.39 79.74 81.04 68.13

FPN Eff-B7 99.59 80.28 79.20 79.73 66.30
X-101 99.58 79.11 79.39 79.25 65.63
R-101 99.58 80.41 78.46 79.42 65.87

U-Net++ Eff-B7 99.64 83.86 80.74 82.27 69.88
X-101 99.63 85.17 77.60 81.21 68.36
R-101 99.61 81.99 78.94 80.44 67.28

Table (4.3) Training period (TP) (in seconds), and inference time (IT) (in milliseconds) con-
sidering a computer equipped with an NVIDIA RTX 3090 (24 GB RAM) with an i9 processor.

Architecture Backbone TP (s) IT (ms)
DLv3+ Eff-B7 65 42.98

X-101 40 21.58
R-101 23 14.50

U-Net Eff-B7 58 48.17
X-101 40 23.16
R-101 28 16.44

LinkNet Eff-B7 62 44.44
X-101 38 22.82
R-101 29 16.98

FPN Eff-B7 60 44.77
X-101 37 23.27
R-101 27 16.81

U-Net++ Eff-B7 64 43.30
X-101 65 21.81
R-101 48 16.62
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Figure (4.4) Image patches from the test set considering the original CBERS 4A image, the
deep learning prediction, and the ground truth image.
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Figure (4.5) Image patches from the test set considering the original CBERS 4A image, the
deep learning prediction, and the ground truth image. The spots in red are highlighted areas
that show in more detail the areas with errors.

4.3.2 Sliding windows approach

Table 4.4 lists the results considering different stride values for the ROC AUC and PR-AUC

scores. The scene presented 19,968x19,968-pixel dimensions, and varying the dimensions would

directly affect the mapping time since the number of necessary iterations would change. This

scene using a 128-pixel stride, which corresponds to no overlapping pixels, takes nearly 22

minutes to complete. The time necessary quickly escalates when reducing the stride. The time

nearly quadruplicated when reducing the stride by two. Within those tests, the metrics keep

climbing when reducing the strides. However, the improvement tends to get lower each time.

Figure 4.6 shows some differences in predictions with distinct strides. The quality of the data
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segmentation improves by decreasing the stride, but the main information is knowing where the

wind farms are. Thus, the stride choice for practical applications will depend on the types of

errors present (such as continuity errors) and the computational resources.

Table (4.4) Receiver Operation Characteristic (ROC AUC), Precision-recall (PR AUC) area
under the curve, Intersection over Union (IoU), and mapping time using different stride values.

Stride 16 Stride 32 Stride 64 Stride 128
ROC AUC 98.23 97.96 95.94 94.03
PR AUC 87.22 85.41 82.27 71.68
IoU 69.38 68.95 66.28 60.78
Mapping time (hr:min:sec) 22:01:21 5:30:20 01:22:32 00:21:58

Figure (4.6) Differences in the results from the sliding windows approach using different stride
values.

4.3.3 Final GIS classification

Figure 4.7 shows the final representation with the targets in shapefile format after the raster

to polygon operation. Noisy representations are prevalent errors that, in this situation, would

bring misleading results since we can estimate the number of wind power plants as the number

of polygons. Noisy polygons are predominantly much smaller than those in wind farms. Wind

farms average more than 900m2, while errors are generally less than 350m2. Thus, elimination

using a size threshold value is a viable solution to avoid this type of error.
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Figure (4.7) Results using GIS software, in which the different colored objects represent dif-
ferent instances from wind plants.
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To prove this case, Table 5 lists the per-object results, in which the accuracy is over 90%,

showing the efficiency of the overall method. The elimination procedure significantly impacts this

kind of analysis since the total number of eliminated noisy features was 1,092, which would lower

the presented metrics considerably and provide misleading results for inspection and decision-

making. Another interesting result is the absence of false negatives. False positives are shadow-

like features of wind farms that are difficult even for humans to identify. Figure 4.8 shows four

examples of false positive errors, in which 4.8A is a similar tower structure, and 4.8B, 4.8C,

and 4.8D are preliminary constructions in the location of wind plants, which presents similar

structures and shadows.

Table (4.5) Results for the final prediction.

Metric Result
True Positives 369
False Positives 37
False Negatives 0
accuracy 90.88

Figure (4.8) Four examples of overestimation errors in the final classification.
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4.4 Discussion

The diversification of the Brazilian energy mix with renewable sources and the establishment of

alternatives to hydroelectric plants are fundamental strategies to be in line with the commitment

to reduce carbon emissions of the 2030 Agenda and minimize the dependence on hydropower,

which could bring energy security concerns in case of long periods of drought. In this sense, the

expansion of energy production needed to meet future demands will rely on more decentralized

and intermittent sources such as wind and solar. The construction of wind farms has increased

significantly due to the vast resource of this natural source in the Brazilian territory and gov-

ernment actions to reduce the risk that allows a high power generation capacity at competitive

costs (Rego and de Oliveira Ribeiro, 2018; Simas and Pacca, 2014). The recent prospect of

accelerated growth in wind generation capacity makes it imperative that regulatory agencies

invest in technological innovations that quickly satisfy regulatory demands. In order to ensure

the production capacity, it is essential that the Government and market players can track and

oversee the progress of the construction of new wind power sites.

Developing a technological system based on remote sensing images and deep learning es-

tablishes an important tool and database capable of continuous monitoring that can improve

inspection with reduced human work and promote other innovations in spatial analysis. Be-

sides, ongoing surveillance based on free remote sensing data encourages investors to adhere

and comply with the regulatory process and allows special attention to be given to disclosing

information on investments in wind energy production. Spatial information, constantly updated

and available for public consultation, allows the temporal evaluation of investments in infras-

tructure, favoring investors, community, and public agencies in planning significant decisions in

the electricity sector.

Therefore, this research establishes an automated pipeline solution for monitoring the con-

struction of wind farms using remote sensing and deep learning methods, achieving low costs,

high frequency, and coverage of large areas. Furthermore, this is the first remote sensing study

that uses deep learning architectures to detect wind farms by establishing an extensive database

containing a wide distribution in tropical scenarios. This first deep learning dataset for wind

energy is publicly available and could be an effective tool for application in other regions of the

world. The results of the different CNN models reach a high accuracy, where the best model was

the LinkNet architecture with Eff-B7 backbone. However, the U-Net and U-Net++ models also

using the Eff-B7 backbone obtained close accuracy metrics. Unlike other targets such as cars,

buildings, or solar plants, the detection of wind farms with their inherent shadows relativizes the

error found, as it is not the real representation of the intended object. Therefore, the pixel-level

error representing the fine adjustments to the edges of objects is less relevant than the object-

level error that verifies the presence or not of the wind farm. This error analysis is also suitable

for image reconstruction using the sliding window, where results with a stride value of 64 may

be adequate considering the processing time. The image reconstruction results are compatibles

with other studies (da Costa et al., 2021b; de Albuquerque et al., 2020b), improving accuracy

with decreasing stride value.
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Finally, the proposed pipeline generates results categorized as instance segmentation from

the coupling of semantic segmentation models with GIS applications. The nature of the target

(sufficiently separate) allows for a simple, inexpensive, and quick approach to segmenting wind

farm instances. This approach differs from other targets, such as vehicle detection, which requires

additional steps to recognize individual objects (de Carvalho et al., 2021a; Mou and Zhu, 2018).

4.5 Conclusion

The present research aimed to create an entire pipeline using deep learning, remote sensing,

and GIS platforms to detect wind plants. The deep learning section provided an extensive

database with a wide intraregional characteristic in the full extension of the Brazilian territory.

This database may be used to train new models and apply them in different countries. Even

if the characteristics in other countries seem too different, it can be used as a transfer learning

mechanism, requiring fewer samples from other countries to work well. We compared five archi-

tectures and three backbones, totaling 15 different models, in which we found that the LinkNet

architecture with the Efficient-net-B7 backbone provided the best results. We have configured

this instance segmentation problem as a semantic segmentation problem since the target char-

acteristics allow easy separation, and semantic segmentation models are simpler and easier to

compare. The sliding windows approach showed an essential tradeoff between performance and

computational time, which can be adjusted depending on the demands. The GIS is the last part

that brings the essential and relevant information by simply using a raster to polygon procedure

and eliminating little polygons, usually noisy features. This entire pipeline is straightforward

and can be easily adapted to other targets in the electric sector, such as power plants, and in

other countries and regions.
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Chapter 5

Box-Free Instance Segmentation

with Touching Objects

This chapter introduces an alternative procedure to obtain instance-level predictions without

the complexity of traditional instance segmentation models, which require bounding boxes,

classification, and segmentation. Our alternative procedure uses semantic segmentation models

with borders in the data preparation. This chapter addresses this topic on extremely crowded

objects, in our case, vehicles. The results from this chapter were submitted to IEEE Journal of

Selected Topics in Applied Remote Sensing, and it is currently in the second round of review.

5.1 Presentation

Usually, the city’s infrastructure was not designed to absorb population growth and road traffic,

which has reached high congestion levels in many urban centers worldwide. The accentuated

growth in the number of vehicles makes monitoring and managing urban traffic highly complex

and necessary. In this context, automatic vehicle detection based on remote sensing images

is a powerful tool for various applications such as traffic monitoring, air pollution, congestion

studies, public safety, parking utilization, disaster management, and rescue missions. Periodic

image acquisition provides information on the number and location of vehicles in different urban

environments, allowing coverage of large areas and proper monitoring of moving targets.

Vehicle detection is a widely studied topic in the computer vision community, containing

several studies with ground-view and aerial-view images. These two approaches present marked

differences in vehicle representation, in which ground images emphasize the vehicle faces, while

the top view of the vehicle acquires straight shapes (Ji et al., 2019a; Sakhare et al., 2020). An-

other significant difference is that the vehicle’s spatial resolution in aerial images is significantly

lower than in terrestrial images. In-ground view images, several literature reviews address ad-

vanced driver assistance systems (ADAS) for autonomous vehicles using image processing and

vehicle detection from various onboard handling sensors such as radar, monocular camera, and

camera binocular (Feng et al., 2021; Janai et al., 2020; Wang et al., 2019). In addition, several
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studies use images from surveillance cameras on roads (Song et al., 2019), on top of buildings

(Xi et al., 2019), pedestrian bridges (Fachrie, 2020), among others.

Despite the broad applicability of ground images and videos, vehicle detection from high-

resolution aerial and satellite images allows for a synoptic understanding of city patterns, guiding

crucial public policies such as urban planning and traffic management. Vehicle detection using

aerial view imagery includes different strategies and sensors such as unmanned aerial vehicles

(UAV), airplanes, or orbital platforms, which provide data at different heights and resolutions.

Even though skilled professionals may easily distinguish vehicles from different urban fea-

tures, the rapid and automatic classification is a challenging task since the vehicles: (a) are small

objects; (2) present high variability in shape, color, and size; (3) appear in different background

settings; (4) present different brightness and contrasts among the city; (5) may be crowded (e.g.,

parking lots); (6) may be occluded by other objects, such as trees and buildings; and (7) have

many look-alikes in the city. Figure 5.1 shows six examples of difficult areas to identify the

vehicles, where A and B present shadows, C and D show a large concentration of vehicles, and

E presents look-alikes (the tombs are very similar to cars when seen from this angle), and F

presents occluded cars by the building roof.

Figure (5.1) Six examples (A, B, C, D, E, and F) of difficult regions to classify cars in the
urban setting.

The Deep Learning (DL) methods currently represent state-of-the-art vehicle detection, sur-

passing traditional algorithms. These advances are strongly related to Convolutional Neural

Networks (CNN), which apply kernels along with the image, obtaining low, middle, and high-

level features and enhancing the classification results. Vehicle detection using deep learning may
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present different approaches, such as object detection (Zhao et al., 2019), semantic segmentation

(Guo et al., 2018), and instance segmentation Hafiz and Bhat (2020). In object detection, the

DL outputs bounding boxes around the car. Instance segmentation generates bounding boxes

and a segmentation mask, and semantic segmentation outputs a class-aware segmentation mask.

Most studies on vehicles address object detection that focuses on delineating the targets’

bounding box, while instance segmentation, which aims at mapping each object at the pixel

level, is still little explored. A challenge in the individual segmentation of vehicles is the lower

performance for small objects that, when they are very close, coalesce into a single group (Mou

and Zhu, 2018; Tayara et al., 2018). Furthermore, deep instance segmentation methods require a

large amount of data, especially considering small object detection. Therefore, training requires

a much more complex annotation (since it requires the polygons from each object), containing

all possible variations and apparition locations to not depend on a given scenario. The Common

Objects in Context (COCO) (Lin et al., 2014) dataset defined small objects with less than 322

pixels and results considering the small objects are nearly half of the performance of medium

and large objects.

More recently, artificial intelligence has an upcoming trend that aims to enhance results and

practical solutions by using a data-centric rather than a model-centric approach. The central

concept behind this is that the model performance is already very high and that enhancing

the data would bring better benefits. One pillar of the model-centric approach is the selection

of more informative samples within the dataset. In this context, active learning is a promising

methodology to obtain quality labeled data sequentially. In remote sensing, images often present

vast dimensions, and the integration of commonly used GIS software may be an excellent ally

for active learning in object detection since: (a) we may see the entire data at once, (b) It is

very straightforward to manipulate and correct polygon data, and (c) we may use other facilities

such as polygon shapefiles to choose where to gather the data.

The present research aimed to advance in three fields (data generation through iterative

learning, deep learning method, and dataset):

• Iterative learning procedure for data generation: A novel proposition for integrating

DL with commonly used GIS software by iteratively correcting erroneous areas, being less

time-consuming and laborious.

• Bounding Box-Free instance segmentation: a novel instance segmentation method that

uses object interiors and contours to isolate them and output separate instances.

• BSB Vehicle Dataset: A city-scale dataset with polygons shapefiles.
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5.2 Related Works

In the last two decades, different strategies have been developed and described for vehicle de-

tection through aerial and orbital images. In this trajectory, two main approaches stand out (Li

et al., 2020a; Shen et al., 2021; Shi et al., 2021): (a) methods based on superficial learning and

(b) deep learning-based methods.

5.2.1 Early vehicle detection studies using a shallow-learning based approach

Considering vehicle detection approaches based on superficial learning, Hinz (2003) proposed

a generic subdivision into explicit and implicit models. The explicit model describes a vehicle

in 2D or 3D (representation of a box or wire-frame structure), considering the car detection

from a "top-down" or "bottom-up" model. The implicit model considers the collection of mul-

tiple features of a region of the image and their statistics gathered in vectors followed by a

classification process (single classifier, combination of classifiers, or hierarchical model). In the

present analysis, we considered the following groups of algorithms: (a) pixel-wise classification

and segmentation (including threshold segmentation method, segmentation based on pixel clus-

tering, segmentation based on edge detection and region growth method, segmentation based on

inter-frame difference or background difference); (b) object-based classification; object detection

(obtaining the bounding box without vehicle segmentation) from multiple features and machine

learning within a sliding window approach.

The threshold segmentation method was widely used in different pre-processed images to

highlight vehicles, such as Principal Component Analysis (PCA), Bayesian Background Trans-

formation (BBT), and gradient-based method (Sharma et al., 2006); Morphological grayscale

method and background difference (vehicle enhancement by subtraction between the original

image and the road background image) (Zheng et al., 2013). Cheng et al. (2012) perform pixel-

wise classification for vehicle detection using Dynamic Bayesian Networks (DBNs), considering

features that comprise pixel-level information and the relationship between neighboring pixels

in a region (location analysis of features and color attributes).

Object-based methods use image segmentation to split an image into separated regions and

classify them instead of pixels (Hossain and Chen, 2019). Different vehicle detection surveys

use object-oriented image classification, considering: (a) eCognitionő classification (Holt et al.,

2009); (b) segmentation using Otsu Threshold, feature extraction (geometric-shape properties,

gray level features, and Hu moments), and statistical classifier (Eikvil et al., 2009); and (c)

superpixel-based image segmentation, HOG features, and SVM (Chen et al., 2016).

Vehicle detection methods have increased significantly by combining more robust descriptor

extraction procedures with machine learning methods for object detection (Table 5.1). There-

fore, vehicle detection uses an image scan through a pre-trained classifier. Among the methods

of extraction and selection of features, the most used were: Haar-like features, Histogram of

Oriented Gradient (HoG), Histogram of Gabor Coefficient (HGC), and Local Binary Patterns

(LBP), Local Steering Kernel (LSK), bag-of-words (BoW) and Scale Invariant Feature Trans-

form (SIFT). Several studies have improved the description of cars by combining different re-
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source extraction methods. The most used machine learning methods were the Support Vector

Machines (SVM) and Adaptive Boosting (AdaBoost) in the classification step. However, the

literature also describes the use of other methods to compare and improve detection accuracy

and efficiency, such as k-Nearest Neighbor (k-NN), Decision Trees (DT), Random Forests (RF),

Dynamic Bayesian Network (DBN), Partial Least Squares (PLS). Some associations between

feature extraction methods and classifiers had more significant propagation for detecting vehi-

cles such as HoG + SVM (Dalal and Triggs, 2005) and Haar-like + AdaBoost called Viola-Jones

(Viola and Jones, 2001). However, the shallow-learning-based methods do not sufficiently de-

scribe and generalize vehicle detection in complex backgrounds. Some studies to minimize errors

have restricted vehicle detection to certain circumstances: (a) only along roads, considering the

use of masks from a buffer area (Leitloff et al., 2014; Moranduzzo and Melgani, 2014a,b; Nguyen

et al., 2007; Zheng et al., 2013); (b) exclusion of objects elevated above a certain height from

the DEM (e.g., buildings and vegetation) (Tuermer et al., 2013); and correlation of cars in con-

secutive frames (Cao et al., 2011). Also, most of these methods are sensitive to the in-plane

rotation of objects (detecting only in a specific orientation) and to changes in lighting, such as

Viola-Jones.

In the transition from traditional to DL methods, some studies use deep architecture only

to extract highly descriptive features combined with a machine learning classifier. In this ap-

proach, the following propositions stand out: Deep Boltzmann Machines (DBMs) and weakly

supervised learning (Han et al., 2015), multilayer deep resource generation model using DBMs

and Multiscale Hough Forest Model (Yu et al., 2015, 2016), CNN and Exemplar-SVMs (Cao

et al., 2016), and CNN and SVM (Ammour et al., 2017).

5.2.2 Deep learning-based vehicle detection

A significant milestone in CNN’s dominance in computer vision was its success in the ImageNet

Large Scale Visual Recognition Challenge in 2012 (Krizhevsky et al., 2017). DL-based vehicle

detection studies have intensified in the following years, with an annual increase making it

the dominant method today. Deep learning architecture networks perform better than shallow

learning-based methods due to the following reasons (Sevo and Avramovic, 2016): (a) operates

both for feature extraction and classification; (b) CNN improves automatic feature generation

with the ability to learn local characteristics of different orders, inherently exploiting spatial

dependence; and (c) less time-consuming. Different deep learning approaches have been applied

in vehicle detection, such as object detection, semantic segmentation, and instance segmentation.

Object Detection

Vehicle studies using object detection are dominant due to fast target detection, improving

real-time monitoring efficiency. However, these methods do not allow a precise mapping of their

contours obtained with semantic and instance segmentation. Table 5.2 presents the main studies

of vehicles using object detection methods. A subdivision of the object detection algorithms is

two-stage object detection and one-stage object detection.
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Table (5.1) Studies developed for the detection of cars using different feature extraction approaches (shallow-learning-based features) and
classification, in which the feature extraction methods described are: Color Probability Maps (CPM), Haar-like features (Hlf), Histogram
of Gabor Coefficients (HGC), Histogram of Oriented Gradients (HoG), Local Binary Patterns (LBP), Local Steering Kernel (LSK), Local
Ternary Pattern (LTP), Opponent Histogram (OH), Scale Invariant Feature Transform (SIFT), Integral Channel features (ICFs), Bag-of-
Words (BoW), Vector of Locally Aggregated Descriptors (VLAD), Pairs of Pixels Comparisons (PPC), Road Orientation Adjustment (ROA),
Template Matching (TM), and Hough Forest (HF). The classification methods are Adaptive Boosting (AdaBoost), Decision Trees (DT),
Deformable Part Model (DPM), Dynamic Bayesian network (DBN), k-Nearest Neighbor (k-NN), Partial Least Squares (PLS), Random
Forests (RF), and Support Vector Machines (SVM). The images used in the articles are Unmanned Aerial Vehicle (UAV), Google Earth (GE),
and Wide Area Motion Imagery (WAMI).

Article Features Classifier Image
Leberl et al. (2007) HoG, Hlf, LBP AdaBoost aerial
Nguyen et al. (2007) HoG, Hlf, LBP AdaBoost aerial
Grabner et al. (2008) LBP, HoG, and Hlf AdaBoost aerial
Cao et al. (2011) HoG SVM UAV
Gleason et al. (2011) HoG and HGH k-NN, SVM, DT, and RF aerial
Kembhavi et al. (2011) HoG, CPM, PPC PLS aerial
Liang et al. (2012) HoG and Hlf AdaBoost and SVM WAMI
Shao et al. (2012) HoG, LBP, and OH SVM aerial
Tuermer et al. (2013) HoG AdaBoost aerial
Moranduzzo and Melgani (2014a) SIFT SVM UAV
Moranduzzo and Melgani (2014b) HoG SVM UAV
Leitloff et al. (2014) Hlf AdaBoost and SVM aerial
Liu and Mattyus (2015) ICFs + HoG AdaBoost UAV and GE
Madhogaria et al. (2015) HoG SVM and Causal MRF UAV
Razakarivony and Jurie (2016) HOG, LBP, and LTP SVM, DPM, TM, and HF aerial
Xu et al. (2016) HoG and Hlf SVM and AdaBoost UAV
Cao et al. (2017) SIFT Multi-Instance Learning satellite
Xu et al. (2017) Hlf + ROA AdaBoost UAV
Zhou et al. (2018a) LSK + BOW SVM UAV and satellite
Liu et al. (2019a) LSK + VLAD Directed-Acyclic-Graph SVM aerial
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Two-step methods first generate several bounding boxes around potential objects called re-

gion proposals, and then a classifier determines the objects presence. The classification of each

potential object slows down the process, focusing on detection accuracy. As examples of two-

stage object detection algorithms highlight Regions with CNN features (R-CNN) (Girshick et al.,

2014), its variants Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2017), and Mask

R-CNN (He et al., 2020).

One-stage object detection processes images through a single neural network, detecting and

classifying multiple objects simultaneously and ensuring speed. These methods focus on the

detection speed but have limitations in detecting crowded groups of small objects. Among these

algorithms, You Only Look Once (YOLO) (Redmon et al., 2016), You Only Look Twice (YOLT)

(Van Etten, 2018), and Single Shot Multibox Detector (SSD) (Liu et al., 2016) are the most

prevalent.

Semantic and instance segmentation

Vehicle studies with semantic and instance segmentation present less quantity than those de-

veloped with object detection methods. Tayara et al. (2018) performed a Fully Convolutional

Regression Network (FCRN), whose training stage uses the input image and ground truth data

that describes each vehicle as a 2-D Gaussian function distribution. Therefore, the vehicle’s

original format acquires a simplified elliptical shape in the ground truth and output images.

The vehicle segmentation uses a threshold value in the predicted density map, generating a

binary mask. Although the method avoids grouping cars and favors counting, vehicles take on a

different form described by the Gaussian function, which has a low precision at the pixel level.

In contrast, Mou and Zhu (2018) sought an instance segmentation of vehicles with pixel-level ac-

curacy, where cars appear well delimited in a distinct physical instance. In this context, a severe

problem is the differentiation of vehicles in contact that agglutinated in a single instance. The

solution proposed by the authors was to establish an architecture that subdivided the central

vehicle regions and their limits instead of treating the vehicle problem as a single unit. Reksten

and Salberg (2021) recently used the Mask R-CNN with an image normalization strategy to suit

different environments and an accurate road mask to filter driving vehicles from those parked.

Other studies combine a prior segmentation followed by vehicle detection. Audebert et al.

(2017a) used the deep-learning-based segment-before-detect method containing three steps: (a)

semantic segmentation using a fully convolutional network to infer pixel-level class masks; (b)

vehicle detection by regressing the bounding boxes of connected components; and (c) object-

level classification using CNN architectures (LeNet, AlexNet, and VGG-16). Yu et al. (2019)

developed a convolutional capsule network with the following steps: (a) superpixel segmented,

(2) labeling patches into vehicles or background using convolutional capsule network, and (3)

non-maximum suppression to eliminate repetitive detections. Tao et al. (2019) performed a scene

classification with deep learning followed by different vehicle detectors and post-processing rules

according to the scene context.
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Table (5.2) Related works using object detection algorithms, considering the method and data type. The data types are separated into seven
categories: (1) satellite, (2) aerial, (3) UAV, (4) ultrahigh-resolution UAV, (5) Google Earth (GE), (6) Cameras at the top of the building,
and (7) several. Acronyms for the methods: Residual Feature Aggregation (RFA), Generative Adversarial Network (GAN), and You Only
Look Once (YOLO).

Paper Method Data

Chen et al. (2014) Hybrid Deep Convolutional Neural Network (HDNN) 5
Qu et al. (2016) Two-step detection: BING to extract region proposals and feature extraction for classification with CNN 1
Deng et al. (2017) Two CNNs: AVPN to predict bounding boxes of the targets, and VALN for inferring type and orientation. 2
Tang et al. (2017) An improved vehicle detection method based on Faster R-CNN. 3
Xu et al. (2017) Vehicle detection using the Faster R-CNN 3
Zhong et al. (2017) Method based on Cascaded Convolutional Neural Networks 2
Koga et al. (2018) Hard Example Mining (HEM) to the Stochastic Gradient Descent training of a CNN classifier. 7
Liu et al. (2018d) Real-Time Ground Vehicle Detection based on CNN. 3
Zhu et al. (2018) Development of the Deep Vehicle Counting Framework based on Enhanced-SSD 4
Benjdira et al. (2019) Comparison between YOLOv3 (best model) and Faster R-CNN 3
Chen et al. (2019) Detection model based on two CNNs that adopt the VGG-16 model 2
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5.3 Material and methods

5.3.1 Study area and image acquisition

The entire city of Brasilia was the study area (Figure 5.2). Large regions with many mapped look-

alike features and different scenarios favor learning DL models. The image has 57,856 x 42,496

spatial dimensions, and 0.24-meter resolution obtained by the Infraestrutura de Dados Espa-

ciais do Distrito Federal (IDE/DF) (https://www.geoportal.seduh.df.gov.br/geoportal/,

accessed on January 8, 2022). In this scenario, a car has approximately 20 (length) x 10 (width)

pixel dimensions.

Figure (5.2) Study area.

5.3.2 Semi-supervised iterative learning

Manually identifying all the cars in a city is very time-consuming. So, the solution is to seek

alternatives to automate the generation of datasets correctly. For example, if a very good

annotator took five seconds to label a single car, it would take over 200 hours to label 150,000

vehicles. Thus, we proposed a novel semi-supervised approach using Geographic Information

System (GIS) data to increase operability (Figure 5.3). Briefly, the method consists in labeling

a portion of the image for training the model and then using the model to classify the entire

57,856 x 42,496-pixel image. Then, we converted the predictions into the shapefile format easily
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edited in ArcMap, corrected the areas that present the most errors, and included them in the

training data.

Figure (5.3) Proposed semi-supervised pipeline.

The proposed procedure to increase the training database reconciles incremental and cu-

mulative learning, selecting samples that improve model performance. An effective database

expansion design aims to achieve greater incremental accuracy in subsequent predictions. The

procedure is cumulative, using the entire set of labeled samples present in each step. The seg-
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mentation model increases its performance until the accuracy values do not vary significantly,

i.e., the decrease in the incremental accuracy is due to the depletion of informative data.

Ground truth

The manual annotations and corrections used the ArcMap software, considering a polygon shape-

file for each vehicle since it is much easier to manipulate when compared to raster (mask) data.

We applied a 1-pixel buffer (0.24 meters in the corresponding image) with a negative distance

to generate the borders inside the polygon features. The first training procedure used training

samples made from scratch. Subsequent iterations used the DL predictions as the primary raw

data, with corrections for the areas with the most errors. The number of verified and corrected

areas increases after each iteration using the semi-supervised approach, increasing the dataset.

Deep learning sample generator software

The capture of DL samples must be in strategic areas. The present research proposed a novel

method for selecting samples using the Point shapefile. This procedure allows choosing critical

points where wrong predictions become part of new training after correction, quickly improving

the model’s detection capacity with much less laborious work. The developed DL sample gener-

ator from Point Shapefiles became a module in the Abilius Software program that receives three

inputs: (1) the original image, (2) the ground truth image, and (3) the point shapefiles. The pro-

gram requires inputs in the same projection, and the user may choose the size of the image tiles

generated. The software uses the point shapefile to center the image tiles and crops the image

and its corresponding ground truth image. This software outputs the annotations for instance

segmentation, considering the COCO annotation format (Lin et al., 2014), which is compatible

with Region CNN methods (Girshick et al., 2016), such as the Mask-RCNN (He et al., 2020)

and similar methods. Using point shapefiles also enables the user to generate samples close to

each other, a powerful augmentation technique.

Deep learning approach

Usually, region-based instance segmentation underperforms on small objects, and semantic seg-

mentation does not present distinct classification for different instances, unable to differentiate

adjacent vehicles. The conversion of a conventional semantic segmentation model to a polygon

shapefile with touching vehicles (Figure 4A) acquires a single polygon. Semantic segmentation

models are the most used among the remote sensing community, mainly because of the good

per-pixel results and simplicity of models and annotation formats. To solve this problem, we

adopted a similar solution proposed by Mou and Zhu (2018). Instead of multitasking learning,

we adopted a multiclass learning procedure in which the contour class competes against the

vehicle class.

The model output subdivides the vehicle into two parts (edge and interior) (Figure 5.4B).

Deleting the edges isolates the individual vehicles, and all previously touching cars will be at

least 2 pixels apart from each other. The next step is to develop a function to attribute a
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different value to each vehicle. This proposed method generates a list with all contours, using

the OpenCV function (findContours) (Bradski and Kaehler, 2008), and iteratively converts

the contours to a mask attributing different values from 1 to N, being N the total number of

distinct vehicles (Figure 5.4C). Aiming to optimize computational resources, we adapted the

polygon2mask function from the scikit-image package (van der Walt et al., 2014) that generates

an array with zeros every time it is called, which is costly due to the enormous image dimensions.

Thus, we only create an array with zeros once. In each iteration, we attribute different values

to the generated mask (one object at a time), guaranteeing distinct values for each vehicle.

Figure (5.4) Theoretical outputs from semantic segmentation algorithms, in which A is a nor-
mal semantic segmentation strategy, B is segmentation with boundaries, C is instance segmen-
tation by removing the boundaries, and D is our proposed solution to restore the correct size
maintaining distinct predictions.

Now, the predictions are distinct for each object. However, since the objects are small, a

1-pixel error at the edges is considerable and not as precise. The edge restoration uses the

instance array as the input. The first step is to apply 1-pixel padding in the entire image. Then

we make eight copies of the original array dislocated in different directions: (1) up, (2) down, (3)
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left, (4) right, (5) upright, (6) up-left, (7) down-right, and (8) down-left. Then we sum all arrays

considering only pixels with zero value and remove the initial padding (recovering the images

original shape). This procedure enlarges the object edges, independent of the object orientation,

resulting in the same semantic information (Figure 5.4A), but with different instances for each

object (Figure 5.4D).

Despite the variety of semantic segmentation models, the present study used a single com-

bination throughout the iterative learning process since the primary goal is not to develop a

new DL architecture but to make an efficient procedure for large areas per-pixel vehicle detec-

tion separating different instances. The configuration used the Semantic Segmentation Models

repository (Yakubovskiy, 2020) and considered the U-net architecture Ronneberger et al. (2015b)

with the Efficient-net-B7 backbone (Tan and Le, 2019b). Nevertheless, to present a more ro-

bust comparison, we evaluated the DeepLabv3+ (Chen et al., 2017), Pyramid Scene Parsing

Network (PSPNet) (Zhao et al., 2017), Feature Pyramid Network (FPN) (Lin et al., 2017), and

LinkNet (Chaurasia and Culurciello, 2017) on final generated dataset, all of which using the

Efficient-net-B7 backbone.

The hyperparameters were the same for all training iterations: (a) 300 epochs, (b) Adam

optimizer, and (c) batch size of five. The method considered the cross-entropy loss function

with weights (0.1 for background, 0.6 for vehicles, 0.3 for the contour) and 15% of the images

as validation, saving the model with the lowest cross-entropy loss. The dataset expansion used

two augmentation strategies: the random horizontal and vertical flip, both with probabilities of

50%.

We compared the proposed method with the Mask-RCNN model (He et al., 2020) to evaluate

the differences between a box-free method (ours) and a box-based method. In this context, the

Detectron2 software is open source Wu et al. (2019), being one of the most widely used in

instance segmentation. It is important to state that there are limitations in comparing box-

free and box-based methods because: (1) the hyperparameters are different, (2) the models

are different (both architectures and backbones), (3) the data format is different (e.g., instance

segmentation models require data in the COCO annotation format). The proposed annotation

tool simultaneously provides semantic segmentation ground truth and COCO annotations for

compatibility with box-based methods.

Three backbone configurations were tested (ResNeXt-101 (Xie et al., 2017), ResNet-101

(He et al., 2016), and ResNet-50), all of which presents pre-trained weights, which speeds the

training process. For box-based methods, a very substantial augmentation includes scaling the

image dimensions, which increases the number of pixels for the object class, increasing results.

In this regard, we considered two scenarios. The first considered the original image dimen-

sions (256x256), and the second scenario scaled the image to 1024x1024-pixel dimension. This

augmentation strategy is much harder for semantic segmentation models (using our computer

configurations, requiring a more robust GPU) since the computational cost would increase sub-

stantially, running out of memory. In contrast, the instance segmentation models allow this

strategy since the segmentation masks are performed only for the proposed boxes. Despite the

differences, the comparison is valid to understand if our proposed method is better at pixel-level
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accuracy, even using augmentations for the box-based instance segmentation methods that are

not valid for our proposed method. In both cases, we used random horizontal and vertical flips.

The training used 10,000 iterations, two images per batch, and the other parameters as default.

Large image classification

The dimensions of the training images are 256x256, which is smaller than the entire image. Thus,

we considered a sliding window approach with a 128-pixel stride to classify the whole image.

The stride size smaller than the image dimensions results in overlapping pixels. A traditional

way is to take the mean average among the overlapping pixels. This approach reduces errors

at the borders of the frames, exemplified in recent works (Costa et al., 2021; da Costa et al.,

2021b; de Albuquerque et al., 2020b). A drawback of using this method is the computational

cost. The time to classify an image increases non-linear when reducing the stride value. Since

our image presents large dimensions, we did not consider smaller stride values.

5.3.3 Model evaluation

The model evaluation considered a test set of 50 images with 256x256-pixel dimensions (same as

dimensions for training and validation), and three independent testing areas (Figure 5.5), con-

sidering different difficulty scenarios. The first considered areas with no occlusion and significant

difficulties for the cars (Figure 5.5A), with 2560x2560-pixel dimensions. The second scenario is

a parking lot with many crowded vehicles (Figure 5.5B) with 2304x2304-pixel dimensions. The

third scenario cover residential areas with a building generating shadow and regions of occlu-

sion (Figure 5.5C) with 1560x1560-pixel dimensions. The semantic segmentation of the entire

test area used a sliding window with 128-pixel steps. Meanwhile, the instance segmentation

(Mask-RCNN) of the testing areas used the mosaic method developed by Carvalho et al. (2021).

The accuracy analysis compares the predicted results and the ground truth data in supervised

learning tasks. The confusion matrix is a standard structure for all tasks, yielding four possible

outcomes: true positives (TP), true negatives (TN), false positives (FP), and false negatives

(FN). For semantic segmentation tasks, the confusion matrix analysis is per pixel. There are

many possible metrics such as overall accuracy, precision, recall, and f-score, among others.

Since we aim to evaluate how the metrics improve iteratively, we chose the Intersection over

Union (IoU), widely adopted as one of the most critical semantic segmentation metrics. The

IoU is given by:

IoU =
|A ∩ B|

|A ∪ B|
=

TP

TP + FP + FN
(5.1)

In which A ∩ B is the area of intersection and A ∪ B is the area of union. The analysis con-

sidered: (a) IoU for the test set and the three testing areas (considering the proposed expanded

border algorithm and without considering the borders) at each iteration; and (b) per-object

metrics in the testing areas (T1, T2, and T3). The object analysis had four classifications: (1)

correct predictions, (2) partial predictions, (3) false positives, and (4) false negatives.
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Figure (5.5) Zoom from the three separate testing areas A, B, and C.

59



5.4 Results

5.4.1 Training iterations

The final version of the dataset used a total of five iterations. The total number of point

shapefiles was 1066, with training samples in various scenarios (Figure 5.6). Each iteration

considered point shapefiles in areas where the errors did not disappear in previous iterations

(to see if the mistakes disappeared). Still, at each iteration, the concentration of points had

different focuses. For example, the second training focused on eliminating look-alike features,

which already give a good boost in performance metrics, with an easy correct the error, since

we only need to delete some polygons. The fourth training had the minimum number of points

since the areas required more corrections (e.g., parking lots), being more laborious. The proposed

procedure effectively uses the results of the DL model in repeated corrections of pseudo-labels.

Gradually, the predictions become more reliable, minimizing errors and manual correction labor

in each interaction.

5.4.2 Metrics

Pixel metrics

Table 5.3 lists the results for IoU on the four separate testing sets (Test Area 1, Test Area

2, Test Area 3, and Test Set), considering each training step. There is an evident rise in the

metrics when increasing the number of training samples on the same independent test areas.

Test Area 1 (T1) had the highest results, and it is indeed the easiest since there are no shadows

and occluded cars. Test area 2 (T2) has a parking lot with many crowded vehicles, presenting

more errors. Test Area 3 (T3) has many regions with shadows, and partial vehicles had the

lowest IoU, bringing to light the difficulty in some areas, even for human specialists. The test

set has fifty 256x256 samples all around the city, with varying difficulty levels. The IoU of the

test set is approximately the average of the distinct testing areas (81.88).

Table (5.3) IoU results for our proposed method in the BSB vehicle dataset considering the
expanded (exp.) border algorithm and not considering the borders, for each train iteration.

Train # Type T1 T2 T3 Test Set

1
No border 63.19 63.67 51.97 52.60
Exp. Border 80.80 77.23 66.89 66.03

2
No border 64.41 64.65 54.41 63.52
Exp. Border 86.73 79.94 74.75 80.39

3
No border 60.40 62.27 52.43 61.49
Exp. Border 87.69 82.31 75.95 80.73

4
No border 62.83 62.39 55.81 63.39
Exp. Border 88.03 81.98 78.44 81.06

5
No border 63.98 64.13 56.24 64.51
Exp. Border 88.37 81.31 77.10 82.45
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Figure (5.6) Study area with the Point Shapefiles (training points) used in each training, in
which the training is cumulative.
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Table lists the results considering different architectures using the Efficient-net-B7 backbone.

For all models, the same behavior was still present, in which the expanded border algorithm had

a higher value than without using the borders, showing that the method is not dependent on

the model architecture used, but on the preparation of data. The PSPNet was by far the worst

model, and the difference between the expanding border algorithm and without the borders

was the lowest, showing that better models enhance the proposed algorithm even more. The

DLv3+, LinkNet, and FPN presented slightly worse results than the U-net, demonstrating that

the U-net was the best choice for this problem.

Table (5.4) IoU results considering the DeepLabv3+, LinkNet, PSPNet, and FPN architectures
considering the expanded (exp.) border algorithm, and not considering the borders.

Model Type T1 T2 T3 Test Set

DLv3+
No border 63.33 59.58 50.64 62.55
Exp. Border 86.36 74.27 67.04 78.05

LinkNet
No border 66.47 63.50 53.73 64.93
Exp. Border 86.78 79.33 70.31 81.31

PSPNet
No border 61.92 57.46 51.43 63.86
Exp. Border 79.48 61.96 58.92 69.78

FPN
No border 62.83 62.39 55.81 63.10
Exp. Border 88.03 81.98 78.44 78.26

When comparing the IoU using our growing border algorithm to recover initial values without

considering the borders, the results are very distinct, with a difference greater than 15% in the

IoU metric. Also, the metrics remain very similar even when increasing the number of training

samples. A possible explanation is error compensation, not bringing insightful information on

the testing data.

Figure 5.7 shows the semantic segmentation result, with and without borders. The visual re-

sults demonstrate that the proposed method expands vectorially 1 pixel on the edges, consisting

of a fast process. Furthermore, the instances show an efficient separation. Figure 5.7B (second

row) demonstrates that the traditional predictions would merge the vehicles into a single poly-

gon if we have not differentiated them with the borders. Expanding edges on different instances

retrieves the same semantic prediction information but with the distinction of the vehicles.

Table 5.5 lists the same testing areas but considers the Mask-RCNN algorithm. Region algo-

rithms rely on some procedures to enhance the classification of small objects. The results show

that using the Mask-RCNN with scaling the input image to 1024x1024 spatial dimensions (four

times the original size) improves the results in more than 5% of IoU for all backbones. However,

pixel metrics results are still far from the results using semantic segmentation architectures, in

which the best model (ResNeXt-101) was more than 10% lower in IoU than the U-net model.

Per object metrics

Table 5.6 lists the per object metrics (Correct predictions, partial predictions, false negatives,

and false positives) on the three separate testing areas (T1, T2, and T3), considering the best

model (containing all training samples). T1 classified all objects, showing that vehicles without
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Figure (5.7) Representation of two examples considering the vehicles with no borders and with
expanded borders, in which the borders are highlighted in red.

Table (5.5) IoU results for the Mask-RCNN with ResNeXt-101 (X-101), ResNet-101 (R-101),
and ResNet-50 (R-50) backbones considering scaling augmentation (1024x1024 pixel dimen-
sions) and without scaling augmentation (original 256x256 pixel dimensions) in the BSB vehicle
dataset.

backbone scaling T1 T2 T3 Test Set

X-101
Yes 80.14 76.75 66.65 72.22
No 75.41 63.88 55.17 67.06

R-101
Yes 80.54 72.32 64.93 72.02
No 76.13 65.01 55.51 65.80

R-50
Yes 81.24 75.40 65.59 71.85
No 79.40 66.59 55.32 66.49
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shadows, occlusion, and crowded areas have very high precision. On the other hand, T3, with

many shadow areas and occlusion, had the highest incidence of errors, with 21 false negatives

and 25 false positives. Considering that there were 430 correct predictions, the accuracy was

still greater than 90%.

Table (5.6) Per object metrics: Correct Predictions (CP), Partial Predictions (PP), False Neg-
atives (FN), and False Positives (FP).

T1 T2 T3
CP 89 395 430
PP 1 1 9
FN 0 5 21
FP 1 9 25

5.4.3 Semantic to instance segmentation results

Figure 5.8 shows three zoomed areas considering the traditional semantic segmentation method

(first two rows) and our proposed box-free instance segmentation method. Both figures consider

the same model. The first row (Figures 5.8A, 5.8B, and 5.8C) shows in yellow the merged cars,

considering many vehicles in the same polygon, while the green cars were already independent

even without our method. The second row (Figures 5.8A1, 5.8B1, and 5.8C1) shows the outlines

of the polygons.

The third and fourth rows (Figures 5.8A2, 5.8B2, 5.8C2, 5.8A3, 5.8B3, and 5.8C3) show

our proposed method considering the expanding border algorithm and separation into instance

predictions. The fourth row shows cars in which each independent vector is represented by a

different color, demonstrating that the method is efficient for separating vehicles in precise pixel

classification. Besides, interpreting these results gets much more straightforward, estimating the

sizes of the vehicles and more accurate counting.

5.4.4 Error analysis

Even though the results were very accurate, some regions contain limitations. The training

procedure used many look-alikes features to train a better model. However, the number of

look-alikes in a city is extensive, introducing some mistakes (Figure 5.9B, 5.9C, 5.9E, and 5.9F).

Some crowded areas may raise some errors by joining two cars (Fig. 5.9A and 5.9D).

5.4.5 Final city-scale classification

The final city classification presented much fewer errors when compared to the first training.

However, some errors were still present, as shown in the previous section. Figure 5.10 shows the

final classified image with a manual correction using two GIS specialists. The data is publicly

available with 122,567 vehicles (car, bus, truck, and boat) (Carvalho et al., 2022).

64



Figure (5.8) Visual comparison of the traditional semantic segmentation results without using
the border procedure (first two rows), and the proposed method (last two rows).
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Figure (5.9) Errors in the classification procedure, and errors present from the conversion from
polygon to raster.

5.5 Discussion

5.5.1 Integration with GIS software

To the best of our knowledge, this research is the first to use semi-supervised iterative learning

with GIS platform integration. We created a tool to generate the DL samples with corresponding

ground truth data for semantic (PNG mask) and instance segmentation (COCO annotation

format) to extract the best out of this method. A significant advantage of this method is

understanding the misclassifications zones at each iteration, enabling choosing appropriate areas

to continue the training with a substantial decrease in the laborious work. Generating training

samples from point shapefiles allows a dataset augmentation by selecting points in strategic

regions, enabling the acquisition of many samples in a limited space. This iterative approach

stays in hand with Koga et al. (2018), supplying the algorithm with complex examples (e.g.,

look-alikes). Our method allows obtaining the exact points in which the algorithm confuses with

hard examples, being able to supply those mistaken areas back to training, rapidly improving

results.

The shapefile data is easy to manipulate, correct polygons, generate borders, and change

classes, among others, reducing problems such as publicly available data with many errors in

the ground truth data. Another great benefit is for end-users since the visualization of the data

in those GIS platforms has many facilities, such as counting, choosing a specific area for analysis,

and getting the average size of the objects. Therefore, DL and GIS systems may work as allies

for generating better predictions in less time.
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Figure (5.10) Final image classification with three zoomed areas A, B, and C.
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5.5.2 Box-Free instance segmentation

The instance segmentation results for vehicle mapping pursue two goals: (a) high separability

between objects and (b) high per-pixel precision. The traditional instance segmentation models

are region-based methods with a segmentation branch like the Mask-RCNN. These box-based

models have high object separability, but their pixel delimitation is lower than semantic segmen-

tation models. Conversely, traditional semantic segmentation models cannot separate objects

but have high per-pixel accuracy. Therefore, the present study seeks a different approach from

the traditional methods of instance segmentation, adapting the configuration of the input data

and the image post-processing procedures to obtain, from semantic segmentation methods, re-

sults of the instances with greater precision. We proposed a box-free instance segmentation

method using semantic segmentation models with object separation by turning the interiors of

the borders into distinct polygons and restoring the original object size. The border approach

accurately isolates the objects, making it easy to attribute unique values to each vehicle using

non-learning post-processing steps. Mou and Zhu (2018) had already introduced the usage of

borders to separate instances. Even though the method is very interesting and effective, we

incorporated the expanding border algorithm for more precise mapping. Our procedure uses a

straightforward and fast vectorized approach to recover the 1-pixel at the borders of each object.

In the literature, another proposal is by Tayara et al. (2018) which uses dots to represent each

car with a Gaussian elliptical shape, but the segmentation masks for each vehicle are ellipticals

differing from the car shapes, applied only for counting.

The proposed box-free instance segmentation method demonstrated a competitive and su-

perior performance to the Mask R-CNN with different backbones and with and without image

scaling. The application of image scaling is suitable for small objects (area <322 pixels) de Car-

valho et al. (2021c), Tong et al. (2020), such as cars, increasing their detection capability. In

tests restricted to Mask R-CNN, the best result considered ResNeXt-101 and image scaling

to 1024x1024 pixel dimensions. However, the best Mask R-CNN result was lower than our

method using U-net with Efficient-net-B7 backbone (72% versus 82%). Therefore, the proposed

method generated high-quality maps with distinct polygons for each object and presented a good

pixel-wise accuracy, demonstrating adequation for this task. Our proposed solution substitutes

learning methods for object detection with non-learning methods, reducing the entire process’s

complexity. For example, the Mask-RCNN algorithm loss function is the sum of mask loss,

classification loss, and box regression. In our proposed solution, we use a single loss function.

We simplified the data preparation process, eliminating the bounding boxes or storing any in-

formation in JSON files for use with other software. The training procedure only requires the

image with its corresponding mask (with the borders). A simple change in the data preparation

process allows the application of instance segmentation with more precise pixel-wise results.

The step of restoring the original object size by expanding its borders by 1 pixel is a crucial

factor in increasing accuracy metrics, reaching 15% more IoU than without the edge regardless

of the architecture tested. Considering that the cars in the analyzed images have a dimension

of 20x10 pixels, a perfect prediction only limited to the interior would reach only 72% IoU. The
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better the model results, the greater the IoU differences between the result with and without the

edge growth algorithm. (table IV). These results imply the procedure of augmenting the vehicle

dataset using iterative learning, which must consider the features with reconstituted edges to

delineate the objects better and compensate for errors. In addition, the evaluation of metrics

per polygon in three test areas surpassed in all cases 90% in accuracy and recall. These results

demonstrate an ideal scenario with good pixel mapping and the ability to distinguish different

instances.

The large-area predictions using DL are an important topic that may be improved. Previous

work shows that sliding windows with low step values correct errors at frame edges, improving

results (Audebert et al., 2017a; Costa et al., 2021; da Costa et al., 2021b; de Albuquerque

et al., 2020b). It takes about one hour to classify our entire study area (57,856 x 42,496-pixel

dimensions) using a 128-pixel stride. Future studies may evaluate the usage of parallel computing

to accelerate this process.

This method can be easily adapted to other remote sensing targets (e.g., airplanes, buildings,

houses, swimming pools). There is no need to use the borders for some targets that do not

appear crowded, such as swimming pools, since the predictions will already be separated when

extracting the polygons from the predicted mask. There are two possibilities for multiple targets

at once: (1) create a new class for each contour, and (2) create a single contour class for all

classes. In both cases, the loss function would remain the same. However, depending on how

balanced the classes are, it might be necessary to use weights on each class. This methodology

could be enhanced to fulfill other segmentation tasks, such as panoptic segmentation (Kirillov

et al., 2019) in remote sensing datasets, such as the BSB Aerial Dataset (de Carvalho et al.,

2022b).

5.5.3 Vehicle dataset

A promising trend in Artificial Intelligence considers data-centric approaches, which consist of

leveraging the data quality. In the present research, we aimed for a precise pixel-wise classifica-

tion maintaining different instances for each object, being very relevant for vehicle studies since

most vehicle datasets aim to use object detection models (only bounding boxes) (Azimi et al.,

2021; Drouyer, 2020; Lin et al., 2020; Zeng et al., 2021). Some multi-class datasets also include

vehicles (Xia et al., 2018a; Zamir et al., 2019). The iSAID dataset only comprises vehicles,

for instance, segmentation tasks, with COCO annotation format annotations. Although object

detection is very promising for counting vehicles, it requires adjustments (e.g., bounding box ori-

entation) to obtain precise information (e.g., size), making the labeling procedure more complex.

To obtain pixel information about the cars to generate a map, it is crucial to get the boundaries

of each object. Our proposed method can obtain pixel-wise instance-level predictions with the

same information required for a traditional semantic segmentation model, a box-free method.

Furthermore, our proposed dataset stores polygonal data, facilitating additional adjustments

such as dividing into more classes or refining labeled data.
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Most vehicle studies use images with resolutions better than 20 cm. VAID (Lin et al., 2020)

and VEDAI have the highest resolution (12.5cm) among the data sets. Our dataset has a pixel

resolution of 0.24 meters, and the proposed method distinguished different instances at nearly

twice the resolution of most datasets. The limitation of our dataset is that, for example, some

distinguish sedans, which would be very difficult in our data. Therefore, our approach increases

efficiency with a better resolution and is more suitable for separating into more classes (e.g.,

sedans, buses).

5.6 Conclusion

The present research presented three contributions: (a) a box-free instance segmentation method,

(b) a semi-supervised iterative approach to generate a high-quality dataset, and (c) the BSB

vehicle dataset. The proposed DL method shows better results when compared to the Mask-

RCNN architecture with a pixel-wise IoU difference greater than 12%. We show that it is crucial

to consider the borders for evaluating the pixel-wise mask, being very relevant to the proposed

method to restore the objects original size. The semi-supervised iterative approach stabilized

results in the fifth iteration, with a total of 1066 DL samples of 256x256 spatial dimensions. Our

DL tool is a promising approach to generating datasets since it enables us to tackle strategic ar-

eas by inserting a point shapefile, significantly reducing laborious work. Finally, two specialists

refined the BSB Vehicle Dataset containing more than 120 thousand unique vehicle polygons

that are easily manipulated to other tasks.

The resolution in this research presents information very close to WorldView3 satellite im-

agery. Future research may consider the usage of more spectral bands in satellite data to enhance

predictions. The results of our data are much better in situations without shadows and occlu-

sion. For the generation of aerial imagery datasets, the researchers should consider training and

evaluating the data in specific day periods with fewer shadows.
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Chapter 6

Panoptic Segmentation

This chapter introduces the most novel image segmentation approach, which is still unexplored

in the remote sensing field. This chapter introduces the first panoptic segmentation dataset

that contains "things" and "stuff" classes and introduces software that converts GIS data into

the panoptic segmentation format. The results from this chapter were published in Remote

Sensing.

6.1 Presentation

Even though panoptic segmentation has excellent potential in remote sensing data, an image

annotation that varies according to the segmentation task is a crucial step for its expansion.

Semantic segmentation is the most straightforward approach, requiring the original image and

its corresponding ground truth images. The instance segmentation has a more complicated an-

notation style, which requires the bounding box information, the class identification, and the

polygons that constitute each object. A standard approach is to store all of this information

in the Common Objects in Context (COCO) annotation format (Lin et al., 2014). Panop-

tic segmentation has the most complex and laborious format, requiring instance and semantic

annotations. Therefore, the high complexity of panoptic annotations leads to a lack of re-

mote sensing databases. Currently, panoptic segmentation algorithms are compatible with the

standard COCO annotation format (Kirillov et al., 2019). A significant advantage of using the

COCO annotation format is compatibility with state-of-the-art software. Nowadays, Detectron2

Wu et al. (2019) is one of the most advanced algorithms for instance and panoptic segmenta-

tion, and most research advances involve changes in the backbone structures, e.g., MobileNetV3

(Howard et al., 2019), EfficientPS (Mohan and Valada, 2021a), Res2Net (Gao et al., 2021).

Therefore, this format enables vast methodological advances. However, a big challenge in the

application of remote sensing is the adaptation of algorithms to its peculiarities, which include

the image format (e.g., GeoTIFF and TIFF) and the multiple channels (e.g., multispectral and

time series), which differ from the traditional Red, Green, and Blue (RGB) images used in other

fields of computer vision (Carvalho et al., 2021).
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The increase in complexity among DL methods (panoptic segmentation > instance segmen-

tation > semantic segmentation) reflects the frequency of peer-reviewed articles across each DL

approach (Figure 6.1). On the web of science and Scopus databases considering articles up

to January 1, 2022, we evaluated four searches filtering by topic and only considering journal

papers: (1) remote sensing AND semantic segmentation AND deep learning; (2) remote sensing

AND instance segmentation AND deep learning; (3) remote sensing AND panoptic segmentation

AND deep learning and (4) panoptic segmentation. Semantic segmentation is the most com-

mon approach using DL in remote sensing, while instance segmentation has significantly fewer

papers. On the other hand, panoptic segmentation has only one research published in remote

sensing (Hua et al., 2021), in which the authors used the DOTA (Xia et al., 2018b), UCAS-

AOD (Liu et al., 2018a), and ISPRS-2D (https://www2.isprs.org/commissions/comm2/wg4/

benchmark/semantic-labeling/, accessed on February 7, 2022) datasets, none of which are

made for the panoptic segmentation task. We found two other studies, in which the first focuses

on change detection in building footprints using bi-temporal images (Khoshboresh-Masouleh

and Shah-Hosseini, 2021), and the second use for different crops (Garnot and Landrieu, 2021).

Although both studies implement panoptic models, they do not use "stuff" categories apart from

the background, which is very similar to an instance segmentation approach.

Figure (6.1) Temporal evolution of the number of articles in deep learning-based segmentation
(semantic, instance, and panoptic segmentation) for the (A) Web of Science and (B) Scopus
databases.

Even though the panoptic task is laborious, tools for easing the panoptic data preparation

and integration with remote sensing peculiarities may present a significant breakthrough. The

panoptic predictions retrieve countable objects and different backgrounds, guiding public poli-
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cies and decision-making with complete information. The absence of remote sensing panoptic

segmentation research alongside databases for this task represents a substantial gap. One of

the notable drawbacks in the computer vision community regarding traditional images is the

inference time, which exalts models like YOLACT and YOLACT++ Bolya et al. (2019, 2020)

due to the ability to handle real data time, even compromising the accuracy metrics a little.

This problem is less significant in remote sensing as the image acquisition frequency is days,

weeks, or even months, making it preferable to use methods that return more information and

higher accuracy rather than speed performance.

The advancements of DL tasks are strictly related to the disposition of large publicly avail-

able datasets, as in most computer vision problems, mainly after the ImageNet dataset (Deng

et al., 2009). These publicly available datasets encourage researchers to develop new meth-

ods to achieve ever-increasing accuracy and, consequently, new strategies that drive scientific

progress. This phenomenon occurs in all tasks, shown by progressively better accuracy results

in benchmarked datasets. What makes the COCO and other large datasets attractive to test

new algorithms is: (1) an extensive number of images; (2) a high number of classes; and (3) the

variety of annotations for different tasks. However, up until now, the publicly available datasets

for remote sensing are insufficient. First, there are no panoptic segmentation datasets. Second,

the instance segmentation databases are usually monothematic, as many building footprints

datasets such as the SpaceNet competition (Van Etten et al., 2018).

A good starting point for a large remote sensing dataset would include widely used and

researched targets, and the urban setting and its components is a very hot topic with many

applications: road extraction (Guo et al., 2020a; He et al., 2019a; Kestur et al., 2018; Lian and

Huang, 2020; Mokhtarzade and Zoej, 2007; Senthilnath et al., 2020; Wu et al., 2021; Xu et al.,

2018), building extraction Abdollahi et al. (2020); Bokhovkin and Burnaev (2019); Griffiths and

Boehm (2019); Milosavljevic (2020); Rastogi et al. (2020); Sun et al. (2021); Yi et al. (2019),

lake water bodies (Chen et al., 2018; Guo and Wang, 2020; Weng et al., 2020), vehicle detection

(Ammour et al., 2017; Audebert et al., 2017b; Mou and Zhu, 2018), slum detection (Wurm et al.,

2019), plastic detection (Jakovljevic et al., 2020), among others. Most studies address a single

target at a time (e.g., road extraction, buildings), and panoptic segmentation would enable vast

semantic information of images.

This study aims to solve these issues in panoptic segmentation for remote sensing images

from data preparation up to implementation, presenting the following contributions:

1. BSB Aerial Dataset: a novel dataset with a high amount of data and commonly used

thing and stuff classes in the remote sensing community, suitable for semantic, instance,

and panoptic segmentation tasks.

2. Data preparation pipeline and annotation software: a method for preparing the

ground truth data using commonly used Geographic Information Systems (GIS) tools (e.g.,

ArcMap) and an annotation converter software to store panoptic, instance, and semantic

annotations in the COCO annotation format, that other researchers can apply in other

datasets.
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3. Urban setting evaluation: evaluation of semantic, instance, and panoptic segmentation

metrics and evaluation of difficulties in the urban setting.

The remainder of this paper is organized as follows. The materials and methods section

describes the study area, how the annotations were made, our proposed software, the Panoptic-

Feature Pyramid Network (FPN) architecture, and the metrics used for evaluation. Next, the

results section shows the outcomes and visual results. In the discussion, we present four topics

of discussion retrieving the main contributions from this study (annotation tools, remote sensing

datasets, difficulties in the urban setting, an overview of the panoptic segmentation task, and

limitations and future works. Finally, we present the conclusions in the last section.

6.2 Material and Methods

The present research had the following methodology (Figure 6.2): (2.2) Data; (2.3) Conversion

Software; (2.4) Panoptic Segmentation model; and (2.5) Model evaluation.

Figure (6.2) Methodological flowchart.

6.2.1 Data

Study Area Selection

The study area was the city of Brasília (Figure 6.3), the capital of Brazil. Brasília was built and

inaugurated in 1960 by President Juscelino Kubitschek to transfer the capital of Rio de Janeiro

(in the coastal zone) to the country’s central region, aiming at modernization and integrated

development of the nation. The capital’s original urban project was designed by the urban

planner and architect Lúcio Costa, who modeled the city around Paranoá Lake with a top-view

appearance of an airplane. The urban plan includes housing and commerce sectors around a

series of parallel avenues 13 km long, containing zones dedicated to schools, medical services,

shopping areas, and other community facilities. In 1988, United Nations Educational, Scientific

and Cultural Organization (UNESCO) declared the city a World Heritage Site.

The city presents suitable characteristics for DL tasks: (1) it is one of the few planned cities

in the world presenting well-organized patterns, which eases the process of understanding each
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Figure (6.3) Study area.

class; (2) the buildings are not high, which reduces occlusion and shadows errors due to the

photographing angle; (3) the city contains organized portions of houses, buildings, and com-

merce, facilitating the annotation procedure; and (4) it has many socio-economical differences

in many parts of the city, bringing information that might be useful to many other cities in the

world. The city setting is very suitable for developing panoptic segmentation applications since

it presents countable objects (e.g., cars and houses) and amorphous targets (e.g., vegetation and

lake) that wouldn’t be correctly represented by using only an instance or semantic segmentation

approach.

Image Acquisition And Annotations

The aerial images present the RGB channels and spatial resolution of 0.24 meters over Brasilia

cover an area of 79.40 km2, obtained by the Infraestrutura de Dados Espaciais do Distrito Federal

(IDE/DF) (https://www.geoportal.seduh.df.gov.br/geoportal/, accessed on February 7,

2022). We made vectorized annotations using the ArcMap software considering fourteen urban

classes (three "stuff" and eleven "thing" categories). Table 6.1 lists the panoptic categories with

their annotation pattern, and Figure 6.4 shows three examples from each class. The vehicles

presented the most polygons (84,675), whereas the soccer fields had only 89. This imbalance
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among the different categories is widespread due to the nature of the urban landscape, i.e., there

are more cars than soccer fields in cities. The understanding of this imbalance is an essential

topic for investigating DL algorithms in the city setting. Since there is high variability in the

permeable areas, we made a more generalized class considering all types of natural lands and

vegetation, being the class with the highest number of annotated pixels (803,782,026). The

vehicle and boat polygons were obtained from de Carvalho et al. (2021e).

Table (6.1) Category, numeric label, thing/stuff, and the number of instances used in the BSB
Aerial Dataset. The number of polygons in the stuff categories receives the ’-’ symbol since it is
not relevant.

Category Label Thing/Stuff Polygons Pixels

Background 0 - - 112,497,999
Street 1 Stuff - 167,065,309
Permeable Area 2 Stuff - 803,782,026
Lake 3 Stuff - 117,979,347
Swimming pool 4 Thing 4,835 3,816,585
Harbor 5 Thing 121 214,970
Vehicle 6 Thing 84,675 11,458,709
Boat 7 Thing 548 189,115
Sports Court 8 Thing 613 3,899,848
Soccer Field 9 Thing 89 3,776,903
Com. Buiding 10 Thing 3,796 69,617,961
Res. Buiding 11 Thing 1,654 8,369,418
Com. Building Block 12 Thing 201 30,761,062
House 13 Thing 5,061 42,528,071
Small Construction 14 Thing 4,552 2,543,032

6.2.2 Conversion Software

DL methods require extensive collections of annotated images with different object classes for

training and evaluation. Different open-sourced annotation software has been proposed, contain-

ing high-efficiency tools for the creation of polygons and bounding boxes, such as Labelme (Rus-

sell et al., 2008; Torralba et al., 2010), LabelImg (https://github.com/tzutalin/labelImg,

accessed on February 7, 2022), Computer Vision Annotation Tool (CVAT) (Sekachev et al.,

2019), RectLabel (https://rectlabel.com, accessed on February 7, 2022), Labelbox (https:

//labelbox.com), and Visual Object Tagging Tool (VoTT) (https://github.com/microsoft/

VoTT, accessed on February 7, 2022).However, the elaboration of annotations in remote sensing

differs from other computer vision procedures that use traditional photographic images (e.g.,

cellphone photos), containing some particularities, such as georeferencing, projection, multiple

channels, and GeoTIFF files. There is a gap in specific annotation tools for remote sensing.

In this context, a powerful solution for expanding the terrestrial truth database for DL is to

take advantage of the extensive mapping information stored in a GIS database. GIS programs

already have several editing, and manipulation tools developed and improved for geo-referenced

data. Recently, a specific annotation tool for remote sensing is the LabelRS based on ArcGIS
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Figure (6.4) Three examples of each class from the proposed BSB Aerial Dataset: (A1-3) street,
(B1-3) permeable area, (C1-3) lake, (D1-3) swimming pool, (E1-3) harbor, (F1-3) vehicle, (G1-
3) boat, (H1-3) sports court, (I1-3) soccer field, (J1-3) commercial building, (K1-3) residential
building, (L1-3) commercial building block, (M1-3) house, and (N1-3) small construction.

(Li et al., 2021), considering semantic segmentation, object detection, and image classification.

However, LabelRS is based on ArcPy scripts dependent on ArcGIS, not fully open-source, and

does not operate with panoptic annotations.

The present study develops a module within the Abilius software that converts GIS vector

data into COCO-compatible annotations widely used in DL algorithms (Figure 6.5) (https:

//github.com/abilius-app/Panoptic-Generator). The proposed framework generates sam-

ples from vector data in shape format to JavaScript Object Notation (JSON) files in the COCO

annotation format, considering the three main segmentation tasks (semantic, instance, and

panoptic). The use of GIS databases provides a practical way to expand the free community-
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maintained datasets, minimizing the time-consuming and challenging process of manually gener-

ating large numbers of annotations for different classes of objects. The tool generates annotations

for the three segmentation tasks in an end-to-end approach, in which the annotations are ready

to use, requiring no intermediary process and reducing labor-intensive work. Besides, it is es-

sential to note that the conversion from raster data to polygons may bring imprecision at a

pixel level since points represent the polygons. This imprecision can be minimized by changing

the approximation function for the polygon generation. However, when considering more points

for each polygon, the computational power increases, and those approximation differences are

imperceptible for the spatial resolution of our images. This tool was crucial to building the

current dataset, but it also applies to other scenarios, since it just requires other researchers to

follow our proposed pipeline using GIS software.

Figure (6.5) Flowchart of the proposed software to convert data into the panoptic format,
including the inputs, design, and outputs.

Software Inputs

To automatically obtain the semantic, instance, and panoptic annotations, we proposed a novel

pipeline with four inputs (considering the georeferenced images in the same system): (a) the

original image (Figure 6.6A); (b) semantic image (Figure 6.6B); (c) sequential ground truth

image (Figure 6.6C) (each thing object has a different value), and (d) the point shapefiles

(Figure 6.6D). The class-agnostic image is a traditional semantic segmentation ground truth, in
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which each class receives a unique label, easily achieved by converting from polygon to raster

in GIS software. The sequential ground truth (which will become the panoptic images) requires

a different value for each polygon that belongs to the thing categories. First, we grouped all

the stuff classes since these classes do not need a unique identification. The subsequent thing

classes receive a unique value for each polygon using sequential values in the attribute table.Point

shapefiles play a crucial role in generating the DL samples since it uses the point location as

the centroid of the frame. Our proposed method using point shapefiles provides the following

benefits: (a) more control over the selected data in each set; (b) allows augmenting the training

data by choosing points close to each other; and (c) in large images, there are areas with much

less relevance, and the user may choose more significant regions to generate the dataset. Apart

from the inputs, the user may choose other parameters such as spectral bands and spatial

dimensions. Our study used the RGB channels (other applications might require more channels

or less depending on the sensor) and 512x512-pixel dimensions.

Software Design

Given the raw inputs, the software must crop tiles in the given point shapefile areas. For each

point shapefile, it crops all input images considering the point as the centroid, meaning that if

the user chooses a tile size of 512x512, the frame will present a distance from the centroid of

256 pixels in the up, down, right, and left directions (resulting in a squared frame with 512x512

dimensions). Now, for each 512x512 tile, we must gather the image annotations semantic,

instance, and panoptic segmentation tasks, given as follows:

• Semantic segmentation annotation: Pixel-wise classification of the entire image with

the same spatial dimensions from the original image tiles. Usually, the background (i.e.,

unlabeled data) has a value of zero. Each class presents a unique value.

• Instance segmentation annotation: Each object requires a pixel-wise classification, bound-

ing box, and class of each bounding box for each object. Since there is more information

when compared to the semantic segmentation approach, most software adopts the COCO

annotation format, e.g., Detectron2 Wu et al. (2019). For instance segmentation, the

COCO annotation format uses a JSON file requiring for each object the: (a) identifica-

tion, (b) image identification, (c) category identification (i.e., the label of the class), (d)

segmentation (polygon coordinates), (e) area (total number of pixels), (f) bounding box

(four coordinates) (https://cocodataset.org/#format-data, accessed on February 7,

2022).

• Panoptic segmentation annotation: The panoptic segmentation combines semantic and

instance segmentation. It requires a folder with the semantic segmentation images in

which all thing classes have zero value, and the instance segmentation JSON file and an

additional panoptic segmentation JSON file. The panoptic JSON is very similar to the

instance JSON, but considering an identifier named isthing, in which the thing category

is one and stuff is zero.
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Figure (6.6) Inputs for the software in which (A) is the original image, (B) Semantic image,
(C) sequential image, and (D) the point shapefiles for training, validation, and testing.

The semantic segmentation data is the most straightforward, and its output cropped tiles

are already in the format to apply a semantic segmentation model. Nevertheless, the semantic

image plays a crucial role in the instance and panoptic JSON construction. The parameters

designed to build the COCO annotation JSONS for instance and panoptic segmentation were

the following:

• Image identification: Each cropped tile receives an ascending numeration. For example,

there are 3,000-point shapefiles in the training set, and the image identifications range

from 1 to 3,000.

• Segmentation: We used the OpenCV C++ library for obtaining all contours in the sequential
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image. The contour representation is in tuples (x and y). For each distinct value, the

proposed software gathers all coordinates separately according to the COCO annotation

specifications. The polygon information will only be stored in the instance segmentation

JSON, but these coordinates will guide the subsequent bounding box process.

• Bounding box: Using the polygons obtained in the segmentation process enables the extrac-

tion of minimum and maximum points (in the horizontal and vertical directions). There

are many possible ways to obtain the bounding box information using four coordinates.

However, we used the top-left coordinates associated with the width and height.

• Area: We apply a loop to count the number of pixels of each different value on the sequential

image.

• Category identification: This is where the segmentation image is so important. The se-

quential image does not contain any class information (only that each thing class has

a different value). For each generated polygon, we extract the category value from the

semantic image to use it as the category identification label.

• Object identification: This method is different for the instance and panoptic JSONS. In

the instance JSON, the identification is a sequential ascending value (the last object in

the last image will present the highest value, and the first object in the first image will

present the lowest value), and it only considers the thing classes. In the panoptic JSON,

the identification is the same as the object number in sequential order, and it considers

thing and stuff classes.

Apart from these critical parameters, we did not consider the possibility of crowded objects

(our data has all separate instances), so the is_crowd parameter is always zero. The user must

specify which classes are stuff or things. The sequential input data is an image with single-

channel TIFF format transformed in our software to a three-channel PNG image compatible

with Detectron2 software, converting from a decimal number to base-256.

Software Outputs

The software outputs the images and annotations in a COCO dataset structure. The algorithm

produces ten folders, an individual folder for annotations in JSON format, and three folders for

each set of samples (training, validation, and testing) referring to the original image, panoramic

annotations, and semantic annotations. In the training-validation-test split, the training set

usually presents most of the data for the purpose of learning the specific task. However, the

training set alone is not sufficient to build an effective model since, in many situations, the model

overfits the data after a certain point. The validation set allows tracking the trained model

performance on new data while still tuning hyperparameters. The test set is an independent set

to evaluate performance. Table 6.2 lists the number of tiles in each set and the total number

of instances. Our proposed conversion software allows overlapping image tiles, which may be

valuable in the training data functioning as a data augmentation method. However, this would
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lead to biased results if applied in the validation and testing sets. In this regard, we used the

graphic Buffer analysis tool from the ArcMap software, considering the dimensions generating

512x512 squared buffers to verify that none of the sets were overlapping.

Table (6.2) Data split into the three sets with their respective number of images and instances,
in which all images present 512x512x3 dimensions.

Set Number of tiles Number of instances

Training 3,000 102,971
Validation 200 9,070

Test 200 7,237

6.2.3 Panoptic Segmentation Model

With the annotations in the correct format, the next step was to use panoptic segmentation DL

models. Panoptic segmentation networks aim to combine the semantic and instance results using

a simple heuristic method (Kirillov et al., 2019). The model presents two branches: semantic

segmentation (Figure 6.7B) and instance segmentation (Figure 6.7C). Figure 6.7 shows the

Panoptic-FPN architecture, which use the FPN (Lin et al., 2017) as a common structure for

both branches (Figure 6.7A. We considered two backbones, the ResNet-50 and ResNet-101.

Semantic Segmentation Module

Semantic segmentation models are the most used among the remote sensing community, mainly

because of the good results and simplicity of models and annotation formats. There are a wide

variety of architectures such as the U-net (Ronneberger et al., 2015b), Fully Convolutional Net-

works (FCN) (Zhang et al., 2018b), DeepLab (Chen et al., 2018). The semantic segmentation

using the FPN presents some differences when compared to traditional encoder-decoder struc-

tures. FPN predictions with different scales (P2, P3, P4, P5) are resized to the input image

spatial resolution by applying bilinear upsampling, in which the sampling rate is different for

each prediction to obtain the same dimensions as shown in Figure 6.7B. The elements present

in the things category all receive the same label (avoiding problems with the predictions from

the instance segmentation branch).

Instance Segmentation Module

Instance segmentation had a significant breakthrough with the Mask-RCNN (He et al., 2020).

This method relies on the extension of Faster-RCNN (Girshick, 2015), a detector with two stages:

(a) Region Proposal Network (RPN); and (b) box regression and classification for each Region of

Interest (ROI) from the RPN. However, aiming to perform pixel-wise segmentation, the Mask-

RCNN added a segmentation branch on top of the Faster-RCNN architecture. First, the method

applies the RPN on top of different scale predictions (e.g., P2, P3, P4, P5) and proposes several

anchor boxes in more susceptible regions. Then, the ROI align procedure standardizes each

bounding box dimension (avoiding quantization problems) as shown in Figure 6.7C. The last
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step considers a binary segmentation mask for each object alongside the bounding box with its

respective classification.

Figure (6.7) Simplified Architecture of the Panoptic Feature Pyramid Network (FPN), with
its semantic segmentation (B) and instance segmentation (C) branches. The convolutions are
represented by C2, C3, C4, and C5 and the predictions are represented by P2, P3, P4, and P5.

Model Configurations

The loss function for the Panoptic-FPN model is the combination of the semantic and instance

segmentation losses. The instance segmentation encompasses the bounding box regression, clas-

sification, and mask losses. The semantic segmentation uses a traditional cross-entropy loss

among the stuff categories and a class considering all thing categories together.

Regarding the model hyperparameters, we used: (a) stochastic gradient descent (SGD) opti-

mizer, (b) learning rate of 0.0005, (c) 150,000 iterations, (d) five anchor boxes (with sizes 32, 64,

128, 256, and 512), (e) three aspect ratios (0.5, 1, 2), (f) one image per batch. We trained the

model using ImageNet pre-trained weights and unfreezing all layers. Moreover, we evaluated the

metrics on the validation set with a period of 1,000 iterations and saved the final model with the

highest PQ metric. To avoid overfitting and increase performance (mainly on the small objects),

we used three augmentation strategies: (a) random vertical flip (probability chance of 50%), (b)

random horizontal flip (probability chance of 50%), and (c) resize the shortest edge with 640,
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672, 704, 736, 768, and 800 possible sizes. The data processing used a computer containing an

Intel i7 core and NVIDIA 2080 GPU with 11GB RAM.

6.2.4 Model Evaluation

In supervised learning tasks, the accuracy analysis compares the predicted results and the ground

truth data. Each task has different ground truth data and, therefore, different evaluation met-

rics. However, the confusion matrix is a common structure for all tasks, yielding four possible

results: true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Sections 2.4.1, 2.4.2, and 2.4.3 explain the semantic, instance, and panoptic segmentation met-

rics, respectively.

Stuff Evaluation

For semantic segmentation tasks, the confusion matrix analysis is per pixel. The most straight-

forward metric is the pixel accuracy (pAcc):

pAcc =
TP + TN

TP + TN + FP + FN
(6.1)

However, in many cases, the classes are imbalanced, bringing imprecise results. The mean

pixel accuracy (mAcc) takes into consideration the number of pixels belonging to each class,

performing a weighted average.

Apart from PA, the intersection over union (IoU) is the primary metric for many semantic

segmentation studies, mainly because it penalizes the algorithm for FP and FN errors:

IoU =
|A ∩ B|

|A ∪ B|
=

TP

TP + FP + FN
(6.2)

In which: A ∩ B: the area of intersection; A ∪ B: the area of union.

For a more general understanding of this metric, we may use the mean IoU (mIoU), which

is the average IoU of all categories or the frequency weighted IoU (fwIoU) which is the weighted

average of each IoU considering the frequency of each class.

Thing Evaluation

Instance segmentation metrics take into consideration both the bounding box predictions and

the mask quality. The most common approach to instance segmentation problems uses standard

COCO metrics (Bolya et al., 2020; Cai and Vasconcelos, 2018; Gao et al., 2021; He et al., 2020;

Huang et al., 2019). The primary metric in evaluation is the average precision (AP) (Lin et al.,

2014), also known as the area under the precision-recall curve:

AP =
∫ 1

0
Precision (Recall) dRecall, (6.3)

in which:

Precision =
TP

TP + FP
(6.4)
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Recall =
TP

TP + FN
(6.5)

The COCO AP metrics consider different IoU thresholds from 0.5 to 0.95 with 0.05 steps,

which is useful to measure the quality of the bounding boxes compared to the original image.

The secondary metrics consider specific IoU thresholds: AP50 and AP75, which use IoU values of

0.5 and 0.75, respectively. Besides, the evaluation considers different sized objects (APS , APM ,

and APL): (1) small objects (< 322 pixels); (2) medium objects (322 pixels < area < 962 pixels);

and (3) large objects (> 962 pixels).

Panoptic Evaluation

The Panoptic Quality (PQ) is the primary metric for evaluating the Panoptic Segmentation task

(Gao et al., 2021; Kirillov et al., 2019; Mohan and Valada, 2021a), and it is the current metric

for the COCO panoptic task challenge, being defined by:

PQ =

∑

(p,g)∈T P IoU (pred, GT )

|TP | + 1
2 |FP | + 1

2 |FN |
(6.6)

In which p is the DL prediction, and g is the ground truth. The expression above is the

multiplication of two metrics, the Segmentation Quality (SQ) and Recognition Quality (RQ),

expressed by:

SQ =

∑

(p,g)∈T P IoU(pred, GT )

|TP |
(6.7)

RQ =
TP

|TP | + 1
2 |FP | + 1

2 |FN |
(6.8)

6.3 Results

6.3.1 Metrics

The metrics section presents (3.1.1) semantic segmentation metrics, (3.1.2) instance segmenta-

tion metrics, and (3.1.3) panoptic segmentation metrics. The semantic segmentation metrics

are related to the stuff classes in a per-pixel analysis. The instance segmentation classes relate

to the thing classes using traditional object detection metrics, such as the AP. The panoptic

segmentation metrics englobes both types of features.

Semantic Segmentation Results

Table 6.3 lists the general metrics for the three stuff categories (street, permeable area, and lake),

considering the mIoU, fwIoU, mAcc, and pAcc for the Panoptic-FPN model with the ResNet-50

and ResNet-101 backbones. The validation and test results were very similar, in which the R101

backbone presented slightly better results among all metrics. In the validation and test sets, the

metric with the most considerable difference between the ResNet-50 and ResNet-101 backbones

was the IoU (0.514 and 1.484 difference in the validation and test set, respectively).
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Table 6.4 lists the accuracy results of each "stuff" class for the validation and test sets. In

addition to the three stuff classes (lake, permeable area, and street), the analysis creates another

class merging the "thing" classes (we defined it as "all things"). Some samples have a single-

class predominance, such as lake and permeable area, increasing the accuracy metric due to the

high proportion of correctly classified pixels. The "lake" class presented the highest IoU for the

validation (97.1%) and test (97.8%) sets, mainly because it presents very distinct characteristics

from all other classes in the dataset. The permeable area achieves a slightly lower accuracy (IoU

of 95.384 for validation and 96.275 for the test) than the lake class because it encompasses many

different intraclass features (e.g., trees, grass, earth, sand). The "street" class, widely studied in

remote sensing, presented an IoU of 88% and 90% for validation and testing. These IoU values

are significant considering the difficulty of street mapping even by visual interpretation due to

the high interference of overlapping objects (e.g., cars, permeable areas, undefined elements)

and the challenges with shaded areas.

Table (6.3) Mean Intersection over Union (mIoU), frequency weighted (fwIoU), mean accuracy
(mAcc), and pixel accuracy (pAcc) results for semantic segmentation in the BSB Aerial Dataset
validation and test sets.

Backbone mIoU fwIoU mAcc pAcc

Validation set

R50 92.129 92.865 95.643 96.271
R101 92.643 93.241 95.769 96.485

Difference 0.514 0.376 0.126 0.214
Test set

R50 92.381 93.404 95.772 96.573
R101 93.865 94.472 96.339 97.148

Difference 1.484 1.068 0.567 0.575

Table (6.4) Segmentation metrics (Intersection over Union (IoU) and Accuracy (Acc)) for each
stuff class in the BSB Aerial dataset validation and test sets considering the ResNet101 (R101),
ResNet50 (R50) backbones, and their difference (R101-R50).

Category
R101 R50 Difference

IoU Acc IoU Acc IoU Acc

Validation set

All things 89.962 95.060 89.402 94.882 0.56 0.178
Street 88.079 91.773 86.933 91.799 1.146 -0.026
Perm.
Area

95.384 98.090 95.286 97.786 0.098 0.304

Lake 97.148 98.153 96.993 98.105 0.155 0.048
Test set

All things 90.718 94.563 89.142 93.041 1.576 1.522
Street 90.607 93.600 89.129 93.844 1.478 -0.244

P. Area 96.275 98.775 95.559 98.120 0.716 0.655
Lake 97.859 98.459 95.665 98.013 2.194 0.446

The R101 backbone presented better IoU results for all categories. The most significant
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difference was the street category in the validation set (1.146) and the lake in the test set

(2.194). The R50 backbone presented a higher value for the street class in the validation (0.026)

and test sets (0.244). Since the balancing of the classes is not even, the IoU provides more

insightful results when compared to the accuracy.

Instance Segmentation Results

Table 6.5 lists the results for the standard COCO metrics (AP, AP50, AP75, APS , APM , and

APL) for the thing classes, considering the bounding box (Box) and segmentation mask (mask),

from the two backbones (ResNet-101 (R101) and ResNet-50 (R50)). The validation and test

results were very similar to those occurring in the stuff classes. However, the primary metric

(AP) differences among the two backbones (R101 R50) were more considerable in the test set

regarding the box metrics, with a difference of nearly 1.6%. The R101 backbone had higher

values in almost all derived metrics, except for the AP75 box metric in the validation set and

the APmedium in the test set.

Although the overall metrics showed better performance for the R101 backbone, the analysis

by class presents some classes with slightly better results for the R50 backbone (Table 6.6). In

the validation set, five of the eleven classes had higher values in the ResNet-50 backbone (harbor,

boat, soccer field, house, and small construction). This effect was less frequent in the test set,

showing only the boat class with superiority of the ResNet-50 backbone in the box metric and

three classes (swimming pool, boat, and commercial building) in the mask metric.

Table (6.5) COCO metrics for the thing categories in the BSB Aerial Dataset validation set
considering two backbones (ResNet-101 (R101) and ResNet-50 (R50)) and their difference (R101
R50).

Back-
bone

Type AP AP50 AP75 APS APM APL

Validation set

R101
Box 47.266 69.351 50.206 26.154 51.667 55.680

Mask 45.379 68.331 50.917 24.064 49.490 57.882

R50
Box 45.855 68.258 51.351 25.806 49.732 48.678

Mask 42.850 68.553 48.863 21.213 47.686 47.040

Difference
Box 1.411 1.093 -1.145 0.348 1.935 6.993

Mask 2.529 2.778 2.054 2.851 1.804 10.842
Test set

R101
Box 47.691 67.096 52.552 28.920 49.795 57.446

Mask 44.211 65.271 49.394 25.016 49.377 58.311

R50
Box 44.642 64.306 50.727 28.636 49.881 53.298

Mask 41.933 62.821 47.640 23.631 50.027 52.204

Difference
Box 3.049 2.790 1.825 0.284 -0.086 4.148

Mask 2.278 2.450 1.754 1.385 -0.650 6.107
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Table (6.6) AP metrics for bounding box and mask per category considering the thing classes in
the BSB Aerial Dataset validation set for the ResNet101 (R101) and ResNet50 (R50) backbones
and their difference (R101-R50).

Category
R101 R50 Difference

Box AP Mask AP Box AP Mask AP Box AP Mask AP
Validation set

Swimming pool 55.495 53.857 53.121 51.974 2.374 1.883
Harbor 37.137 21.079 39.415 24.300 -2.278 -3.221
Vehicle 55.616 56.573 54.568 55.893 1.048 0.680
Boat 30.582 36.216 35.329 37.265 -4.747 -1.049
Sports court 56.681 55.193 46.906 42.494 9.775 12.699
Soccer field 34.866 39.569 39.619 41.767 -4.753 -2.198
Com. building 32.114 31.799 28.592 28.471 3.522 3.328
Com. building block 66.283 63.192 52.149 47.606 14.134 15.586
Residential building 67.046 57.615 63.512 54.312 3.534 3.303
House 57.555 56.697 59.907 57.470 -2.352 -0.773
Small construction 26.550 27.381 31.284 29.800 -4.734 -2.419

Test set

Swimming pool 53.561 50.044 51.546 50.520 2.015 -0.476
Harbor 42.429 22.837 31.409 17.270 11.02 5.567
Vehicle 56.371 57.689 55.695 57.311 0.676 0.378
Boat 26.190 31.210 30.698 34.875 -4.508 -3.665
Sports court 46.018 45.515 40.566 40.672 5.452 4.843
Soccer field 46.279 45.831 36.832 33.886 9.447 11.945
Com. building 42.516 37.709 41.145 40.265 1.371 -2.556
Com. building block 70.971 67.465 69.341 63.679 1.63 3.786
Residential building 54.829 47.397 51.774 44.640 3.055 2.757
House 62.395 59.886 57.861 58.396 4.534 1.490
Small construction 26.046 20.740 24.202 19.746 1.844 0.994

Panoptic Segmentation Results

Table 6.7 lists the results for the panoptic segmentation metrics (PQ, SQ, and RQ), which are

the main metrics for evaluating this task. In hand with the previous stuff and thing results,

the ResNet-101 backbone presented the best metrics in most cases, except for the RQstuff in

the validation set and the SQthings in the test set. Overall, the main metric for analysis (PQ)

had nearly a 2% difference among the backbones. The low discrepancies among the different

architectures suggest that in situations with lower computational power, the usage of a lighter

backbone still presents close enough results.

6.3.2 Visual Results

Figure 6.8 shows five test and validation samples, including the original images and predic-

tions from the Panoptic-FPN model using the ResNet-101 backbone. The results demonstrate

a coherent urban landscape segmentation, visually integrating countable objects (things) and

amorphous regions (things) in an enriching perspective toward real-world representation. Among
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Table (6.7) COCO metrics for panoptic segmentation in the BSB Aerial Dataset validation and
test sets considering the Panoptic Quality (PQ), Segmentation Quality (SQ), and Recognition
Quality (RQ).

Backbone Type PQ SQ RQ

Validation Set

R101
All 65.296 85.104 76.229

Things 59.783 82.876 71.948
Stuff 85.508 93.272 91.925

R50
All 63.829 84.886 74.550

Things 57.958 82.777 69.674
Stuff 85.354 92.617 92.432

Difference
All 1.467 0.218 1.679

Things 1.825 0.099 2.274
Stuff 0.154 0.655 -0.507

Test Set

R101
All 64.979 85.378 75.474

Things 58.354 83.171 69.997
Stuff 89.272 93.468 95.558

R50
All 62.230 85.315 72.179

Things 55.239 83.344 65.956
Stuff 87.864 92.540 94.998

Difference
All 2.749 0.063 3.295

Things 3.115 -0.173 4.041
Stuff 1.408 0.928 0.560

the ten image pairs, there is at least one representation of each of the fourteen classes. As shown

in the metrics section, the results present no evident discrepancies in the validation and testing

data, demonstrating very similar visual results in both sets. The segmented images show the

high ability to visually separate the different instances, even in crowded situations like cars in

parking lots. Furthermore, the stuff classes are very well delineated, showing little confusion

among the street, permeable areas, and lake classes. The set of established classes allows a

good representation of the urban landscape elements, even considering some class simplifica-

tions. Therefore, panoptic segmentation congregates multiple competencies in computer vision

for satellite imagery interpretation in a single structure.

6.4 Discussion

The panoptic segmentation task imposes new challenges in the formulation of algorithms and

database structures, covering particularities of both object detection and semantic segmentation.

Therefore, panoptic segmentation establishes a unified image segmentation approach, which

changes digital image processing and requires new annotation tools and extensive and adapted

datasets. In this context, this research innovates by developing a panoptic data annotation tool,

establishing a panoptic remote sensing dataset, and being one of the first evaluations of the use

of panoptic segmentation in urban aerial images.

89



Figure (6.8) Five pair examples of validation images (V.I.1-5) and test images (T.I.1-5) with
their corresponding panoptic predictions (V.P.1-5 and T.P.1-5).

6.4.1 Annotation Tools for Remote Sensing

Many software annotation tools are available online, e.g., LabelMe (Russell et al., 2008). Nev-

ertheless, those tools have problems with satellite image data because of large sizes and other
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singularities that are uncommon in the traditional computer vision tasks: (a) image format (i.e.,

satellite imagery is often in GeoTIFF, whereas traditional computer vision uses PNG or JPEG

images), (b) georeferencing, and (c) compatibility with polygon GIS data. The remote sensing

field made use of GIS software long before the rise of DL. With that said, there are extensive col-

lections of GIS data (urban, agriculture, change detection) that other researchers could apply DL

models. However, vector-based GIS data requires modifications to use DL models. We proposed

a conversion tool from GIS data that automatically crops image tiles with their corresponding

polygon vector data stored in shapefile format to panoptic, instance, and semantic annotations.

The proposed tool is open access and works independently, without the need to use proprietary

programs such as LabelRS developed by ArcPy and dependent on ArcGis (Li et al., 2021). Our

proposed pipeline and software enable the users to choose many samples for training, validation,

and testing in strategic areas using point shapefiles. This method of choosing samples presents

a huge benefit compared to methods such as sliding windows for image generation. Finally,

our software enables the generation of the three segmentation tasks (instance, semantic, and

panoptic), allowing other researchers to exploit the field of desire.

6.4.2 Datasets

Most transfer learning applications use trained models from extensive databases such as the

COCO dataset. Nevertheless, remote sensing images present characteristics that may not yield

the most optimal results using traditional images. These images contain diverse targets and

landscapes with different geometric shapes, patterns, and textural attributes, representing a

challenge for automatic interpretation. Therefore, the effectiveness of training and testing de-

pends on accurately annotated ground truth datasets, which requires much effort to build large

remote sensing databases with a significant variety of classes. Furthermore, the availability of

open access encourages new methods and applications, as seen in other computer vision tasks.

Lin et al. (2019) performed a complete review of remote sensing image datasets for DL meth-

ods, including tasks of scene classification, object detection, semantic segmentation, and change

detection. In this recent review, there is no panoptic segmentation database, demonstrating a

knowledge gap. Most datasets consider limited semantic categories or target a specific element,

such as building (Benedek et al., 2012; Ji et al., 2019b; Van Etten et al., 2018), vehicle (Drouyer,

2020; Lin et al., 2020; Zeng et al., 2021), ship (Hou et al., 2020; Huang et al., 2018; Wei et al.,

2020), road (Das et al., 2011; Maggiori et al., 2017), among others. Regarding available remote

sensing datasets for various urban categories, one of the main is the iSAID (Waqas Zamir et al.,

2019), with 2,806 aerial images distributed in 15 different classes, for instance segmentation and

object detection tasks.

The scarcity of remote sensing databases with all cityscape elements makes mapping difficult

due to highly complex classes, numerous instances, and mainly intraclass and interclass elements

commonly neglected. Adopting the panoptic approach allows us to relate the content of interest

and the surrounding environment, which is still little explored. Therefore, organizing large
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datasets into panoptic categories is a key alternative to mapping complex environments such as

urban systems that are not reached even with enriched semantic categories.

The proposed BSB Aerial Dataset contains 3,400 images (3,000 for training, 200 for valida-

tion, and 200 for testing) with 512x512 dimensions containing fourteen common urban classes.

This dataset simplified some urban classes, such as sports courts instead of tennis courts, soccer

fields, and basketball courts. Our dataset considers three stuff classes, widely represented in

the urban setting, such as roads. The availability of data and the need for periodic mapping of

urban infrastructure by the government allows for the constant improvement of this database.

6.4.3 Difficulties in the Urban Setting

Although this study shows a promising field in remote sensing with a good capability of iden-

tifying thing and stuff categories simultaneously, we observed four main difficulties in image

annotation and possible results in the urban setting (Figure 6.9): (1) shadows, (2) occlusion

objects, (3) class categorization, and (4) edge problem on the image tiles. Shadows entirely or

partially obstruct the light and occur under diverse conditions from the different objects (e.g.,

clouds, buildings, mountains, and trees), requiring well-established ground rules to obtain consis-

tent annotations. Therefore, the shadow presence is a source of confusion and misclassification,

reducing image quality for visual interpretation and segmentation and, consequently, negatively

impacting the accuracy metrics (Wang et al., 2017) (Figure 6.9A1, 6.9A2, and 6.9A3). Specif-

ically, urban landscapes have a high proportion of areas covered by shadows due to the high

density of tall objects. Therefore, urban zones aggravate the interference of shadows, causing

semantic ambiguity and incorrect labeling, which is a challenge in remote sensing studies (Lin

et al., 2019; Liu et al., 2018b). DL methods tend to minimize shading effects, but errors occur

in very low-light locations. Another fundamental problem in computer vision is the occlusion

that impedes object recognition in satellite images. Commonly, there are many object occlusions

in the urban landscape, such as vehicles partially covered by trees and buildings, making their

identification difficult even for humans (Figure 6.9B1, 6.9B2, and 6.9B3).

Like the occlusion problem, the objects that rely on the tile edges may present an insufficient

representation. In monothematic studies, the authors may design the dataset to avoid this

problem. However, for the panoptic segmentation task, which aims for an entire scene pixel-

wise classification, some objects will be partial representation no matter how large we choose

the image tile (Figure 6.9D1, 6.9D2, and 6.9D3). Our proposed annotation tool enables the

authors to select each tile’s exact point, which gives data generation autonomy to avoid very

few representations (even though the problem will still be present). By choosing large image

tiles, the percentual representation of edge objects will be lower and tends to have a smaller

impact on the model and accuracy metrics but increasing the image tile also requires more

computational power.
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Figure (6.9) Three examples of (1) shadow areas (A1, A2, and A3), (2) occluded objects (B1,
B2, B3), (3) class categorization (C1, C2, and C3), and (4) edge problem on the image tiles (D1,
D2, and D3).

Finally, the improvement of urban classes in the database is ongoing work. This research

sought to establish general and representative classes, but the advent of new categories will

allow for more detailed analysis according to research interests. For example, our vehicle class

encompasses buses, small cars, and trucks, and our permeable area class contains bare ground,

grass, and trees as shown in Figures 6.9C1, 6.9C2, and 6.9C3.
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6.4.4 Panoptic Segmentation Task

The remote sensing field is prone to using panoptic segmentation, mainly when referring to

satellite and aerial images that do not require real-time processing. Most images have a frequency

of at least days apart from each other, making some widely studied metrics such as inference

time much less relevant. In remote sensing, the more information we can get simultaneously, the

better. However, panoptic segmentation presents some non-trivial data generation mechanisms

that require information for both instance and semantic segmentation. The existing panoptic

segmentation studies that develop novel remote sensing datasets do not fully embrace the "stuff"

classes (Garnot and Landrieu, 2021; Khoshboresh-Masouleh and Shah-Hosseini, 2021).

The panoptic segmentation may represent a breakthrough in the remote sensing field for

the ability to gather countable objects and background elements using a single framework,

surpassing some difficulties of semantic and instance segmentation. Nonetheless, the models’

data generation process and configuration are much less straightforward than other methods,

highlighting the importance of shortening this gap.

6.4.5 Limitations and Future Work

The high diversity of properties in remote sensing images (different spatial, spectral, and tem-

poral resolutions) and the different landscapes of the Earth’s surface make it challenging to

formulate a generalized DL dataset. In this sense, our proposed annotation tool is suitable for

creating datasets considering different image types. Future research on panoptic segmentation in

remote sensing should progress to include images from various sensors, allowing faster advances

in its application.

Furthermore, an important advance for panoptic segmentation is to include occlusion sce-

narios. Currently, the panoptic segmentation and its subsequent metrics (PQ, SQ, and RQ)

require no overlapping segments, i.e., it considers only the visible pixels of the images. The

usage of top-view images is very susceptible to classifying non-visible areas (occluded targets).

Those changes would require adaptations in the models and metrics.

Practical remote sensing applications also require mechanisms for classifying large regions.

Those methods usually use sliding windows, which have different peculiarities for pixel-based

(e.g., semantic segmentation) and box-based methods (e.g., instance segmentation). The se-

mantic segmentation approach use sliding windows with overlapping pixels, in which overlapped

pixels are averaged. This averaging procedure attenuates the borders and enhances the metrics

(Costa et al., 2021; da Costa et al., 2021a; de Albuquerque et al., 2020a). The instance seg-

mentation proposals use sliding windows with a half-frame stride value, which allows identifying

the elements as a whole and eliminating partial predictions (Carvalho et al., 2021; de Carvalho

et al., 2021c). There is no specific method for using a panoptic segmentation framework using

sliding windows.
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6.5 Conclusions

The application of panoptic, instance, and semantic segmentation often depends on the desired

outcome of a research or industry application. Nevertheless, a research gap in the remote sensing

community is the lack of studies addressing panoptic segmentation, one of the most powerful

techniques. The present research proposed an effective solution for using this unexplored and

powerful method in remote sensing by: (a) providing a large dataset (BSB aerial dataset)

containing 3,400 images with 512x512 pixel dimensions in the COCO annotation format and

fourteen classes (eleven "thing" and three "stuff" categories), being suitable for testing new DL

models, (b) providing a novel pipeline and software for easily generating panoptic segmentation

datasets in a format that is compatible with state-of-the-art software (e.g., Detectron2), and

(c) leveraging and modifying structures in the DL models for remote sensing applicability, and

(d) making a complete analysis of different metrics and evaluating difficulties of this task in the

urban setting. One of the main challenges for preparing a panoptic segmentation model is the

image format, which is still not well documented. We proposed an automatic converter from GIS

data to panoptic, instance, and semantic segmentation formats. GIS data was widespread even

before the DL rise, and the number of datasets that could benefit from our method is enormous.

Besides, our tool allows the users to choose the exact points in large images to generate the DL

samples using point shapefiles, which brings more autonomy to the studies and allows better

data choosing. We believe this work may increase other studies on the panoptic segmentation

task with the BSB Aerial Dataset, the annotation tool, and the baseline comparisons using well-

documented software (Detectron2). Moreover, we evaluated the Panoptic-FPN model using two

backbones (ResNet-101 and ResNet-50), showing promising metrics for this method’s usage in

the urban setting. Therefore, this research shows an effective annotation tool, a large dataset for

multiple tasks, and their application on some non-trivial models. Regarding future studies, we

discussed three major problems to be addressed: (1) augmenting the dataset with images with

different spectral bands and spatial resolution, (2) expanding the panoptic idea for occlusion

scenarios in remote sensing, and (3) adapting methods for classifying large images.
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Chapter 7

Rethinking Panoptic Segmentation

This chapter uses the previously developed dataset, bringing a novel and simpler methodology

to obtain panoptic predictions while still using semantic segmentation models. Basically, this

chapter removes the complexity of box-based methods using learning mechanisms and exchanges

by non-learning simple image processing steps. The results from this chapter were submitted to

IEEE Geoscience and Remote Sensing Letters, and it is currently past the first round of review.

7.1 Presentation

As shown in the previous chapter, the panoptic segmentation task is very little exploited in the

remote sensing community. The previous chapter addressed a methodology for adjusting GIS

data to the commonly used COCO panoptic annotation format. The fewer number of panoptic

segmentation papers can also be explained by additional difficulties in the data preparation,

model configuration, and necessary post-processing applications for remote sensing, explained

as follows.

First, the panoptic segmentation models require the data in a specific structured format.

For example, Detectron2 (Wu et al., 2019) (one of the most used open software for instance and

panoptic segmentation) needs the data in the Common Objects in Context (COCO) annotation

format (Lin et al., 2014). In this context, de Carvalho et al. (2021b) pointed out this issue and

proposed a conversion software from GIS raster data to panoptic data in the COCO format.

However, the proposed pipeline presents many steps. In contrast, the semantic segmentation

data only demands a ground truth image, requiring the conversion from polygon shapefile to

raster data in Geographic Information System (GIS) software.

Second, the box-based panoptic segmentation models (e.g., Panoptic-FPN (Kirillov et al.,

2019), EfficientPS (Mohan and Valada, 2021b)) use an instance segmentation module (usually

the Mask-RCNN He et al. (2017)), introducing a complexity to the entire process. For exam-

ple, the loss function for the instance segmentation module includes box regression, mask loss,

and classification loss, and there is a higher number of hyperparameters (e.g., anchor box sizes,

aspect ratios). The semantic segmentation models usually use a single loss function, and few

hyperparameters are necessary. Therefore, some studies target instance segmentation from se-
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mantic segmentation models, considering a border insertion approach to identify unique objects

(de Carvalho et al., 2021a; Heidler et al., 2021; Mou and Zhu, 2018). However, these studies

considered a single class, and leverages are necessary to expand this approach to multiclass

panoptic segmentation.

Finally, large image classification using deep learning requires a sliding window approach.

To the best of our knowledge, there are still no attempts to extend panoptic segmentation

models for large scene classification. The semantic segmentation method generally considers the

classification of consecutive frames, where a stride smaller than the frame dimension results in

overlapping pixels, the average of which results in smoothed edges and better accuracy metrics

(de Albuquerque et al., 2020a). The instance segmentation approach is a little more complicated,

in which the authors use a half-frame stride value and non-maximum suppression to maintain

only the largest bounding boxes, which represents a total prediction (Carvalho et al., 2021).

This study proposes an interpretation of panoptic segmentation as an extension of the seman-

tic segmentation task with a few post-processing steps that do not require learning methods for

unique object segmentation. We replace the instance segmentation module for a simple change

in the data preparation (apply borders on polygons that may merge) and a few post-processing

steps (isolate object interiors, attribute unique values, and expand objects with deleted bor-

ders). This approach reduces the number of steps in the data generation process, the models do

not need instance segmentation modules, and it enables the implementation of sliding windows

straightforwardly.

7.2 Materials and Methods

7.2.1 Dataset

The BSB Aerial Dataset (de Carvalho et al., 2021b) is a publicly open panoptic dataset contain-

ing 3,400 image tiles and polygon shapefiles compatible with Geographic Information Systems

(GIS) software. The image data includes the Red, Green, and Blue (RGB) channels obtained

by an aerial flight over the city of Brasília, Brazil. The spatial resolution is 24 centimeters,

sufficient to observe features such as cars. The shapefile contains fourteen classes, three "stuff"

(road, permeable area, lake), and eleven "thing" categories (swimming pool, harbor, ground ve-

hicle, water vehicle, sports court, soccer field, commercial building, commercial building block,

house, small construction).

7.2.2 Preparation Pipeline Using GIS software

The BSB Aerial Dataset (de Carvalho et al., 2021b) obtained the panoptic annotations from the

development of software for converting GIS data to the COCO annotation format, requiring a

semantic segmentation and a sequential mask (that is, each polygon belonging to the "things"

category has a single value). In contrast, the present proposition only requires a single mask

without needing a conversion system, containing all elements belonging to the "things" category

individually separated.
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However, semantic segmentation models present problems in uniquely identifying objects

of the same class that are in contact since the prediction will merge many objects in a single

polygon. One solution is to insert borders in objects to isolate their interiors and generate

individual polygons. Some classes are prone to merge (e.g., cars and houses, see Fig 7.1C and

7.1D), while others will never have this problem (e.g., harbor and residential buildings, see Fig

7.1A and 7.1B).

Figure (7.1) Examples of non-merging categories (A and B), and merging categories (C and
D).

We subdivided the "things" categories into (1) merging classes and (2) non-merging classes.

We applied a negative buffer for all merging "thing" classes, creating a 1-pixel border inside

the polygon features and avoiding overlapping. Border areas correspond to their own classes

(i.e., vehicle contour, boat contour, house contour), making it easy to apply weights to each

class based on its representation. Seven of the eleven thing classes had merging possibilities

(vehicle, boat, sports court, commercial building, commercial building block, house, and small

construction), resulting in 22 classes. The dataset considered 3,000, 200, and 200 image tiles

(512x512 pixel dimensions) for training, validation, and testing.

7.2.3 Deep Learning Model

Any semantic segmentation model can be adapted to obtain panoptic predictions. This study

used the U-net architecture (Ronneberger et al., 2015a) with the Efficient-net backbone (Tan and

Le, 2019a). The U-net is an encoder-decoder structure in which the encoder extracts features

and the decoder restores the image dimensions for precise pixel classification. The Efficient-net
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backbone is a convolutional neural network that uses the width, depth, and resolution scal-

ing, presenting eight configurations from B0 (less complex, i.e., fewer parameters) to B7 (more

complex). The Efficient-net-B5 is the most complex configuration that runs in our graphics

processing unit (NVIDIA RTX with 11GB RAM). We compared three levels of complexity:

Efficient-net-B0, Efficient-net-B3, and Efficient-net-B5.

To ensure the comparison, the model training used the same: (a) hyperparameters (Adam

optimizer, batch size of 4, 200 epochs, and learning rate of 0.0001), (b) loss function (weighted

cross-entropy loss, in which the weights used the number of pixels of the most represented

class divided by the number of pixels from the current class), and (c) augmentations (random

horizontal and vertical flips with 50% probability). The definition of the best model considers

the least loss of validation.

7.2.4 Semantic to Panoptic Segmentation Algorithm

Our model outputs a pixel-wise classification with semantic labels, but the borders are vital for

separating each instance adequately (avoiding possible class merges). The proposed algorithm

then receives five inputs: (1) the semantic segmentation prediction (with borders), (2) a list of

stuff classes, (3) a list of thing classes, (4) a list of thing classes that have borders, (5) a list of

minimum polygon area for each class, and (6) a list of priority classes. The process considers

four steps for each class (https://github.com/osmarluiz/semantic2panoptic):

1. Create a list with the polygon coordinates using OpenCV find contours.

2. Rank order the polygons by their area and eliminate polygons according to a predefined

threshold value adjusted per category to avoid noisy representations (e.g., a 10-pixel rep-

resentation of houses is probably a noisy representation).

3. Transform each polygon (set of coordinates) to mask (filled pixels). This step can attribute

distinct values to each object - in which each object receives a different number in ascending

order. This procedure considers closed polygons with their outer contours and may present

errors in overlapping object cases (e.g., swimming pool on top of a building), breaking the

panoptic principle of non-overlapping classes. To solve this problem, we must ensure the

order of priority, resulting in a single value for each pixel.

4. If the object is a thing class with borders, we apply the expanding border (EB) algorithm,

which makes eight copies of the semantic prediction with a 1-pixel dislocation in all di-

rections (up, down, left, right, up-right, up-left, down-right, and down-left) and apply the

logical OR operation to all channels. This procedure results in one-pixel expansion for all

objects with deleted borders maintaining the correct individual value for each one. Since

the borders are inside each polygon, in principle, the expanding border algorithm will not

result in overlap between close objects.
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7.2.5 Sliding Window Approach

In semantic segmentation, using low stride values in the sliding windows generate overlapping

pixels, which smoothens the frame borders and presents better accuracy metrics (de Albuquerque

et al., 2020a). However, if we apply the overlapping pixels on the panoptic predictions, each

pixel’s values would change according to the number of overlaps, bringing wrong results. We

must apply the sliding window on the semantic predictions (with borders), and the semantic to

the panoptic algorithm is only applied in the final image. We reported the metrics on the sliding

window with a stride value of 16 pixels (32 times smaller than the frame dimension).

7.2.6 Accuracy Analysis

The accuracy analysis evaluated three investigations: (1) ablation study to verify the EB al-

gorithm varying the model backbone, (2) panoptic segmentation evaluation, and (3) sliding

window evaluation. The performance of the EB algorithm used per-pixel metrics since it is just

a fine adjustment of the polygons, and per-polygon metrics would be a little informative. The

Intersection over Union (IoU) is adequate due to a low class-imbalance effect, being expressed by:
T P

T P +F P +F N
, where TP, FP, and FN represent true positives, false positives, and false negatives.

Then, with the best model, we used the traditional panoptic segmentation metrics pro-

posed by Kirillov et al. (2019). The Panoptic Quality (PQ) is the multiplication of the Seg-

mentation Quality (SQ): SQ =
∑

(p,g)∈T P
IoU(p,g)

|T P | with the Recognition quality (RQ): RQ =
T P

|T P |+ 1
2

|F P |+ 1
2

|F N |
, where p and g are the prediction and ground truth. It is important to note

that this metric considers a TP as an object with an IoU above 0.5.

Finally, the evaluation of the sliding window approach considered the frequency of merged

objects that are not represented by per-pixel metrics or by the panoptic metric. This analysis

considered a new independent image of 2560x2560 pixels (25 times larger than the frames used

for training) containing a parking lot (i.e., many situations for merging vehicles) and many

houses. We evaluated TP, FP, FN, and merged polygons in this test area, where a TP is a

polygon greater than 0.5 IoU.

7.3 Results and Discussion

7.3.1 Expanding Border Algorithm

Table 7.2 lists the IoU results with and without the EB algorithm for the three models. Even for

elements that did not use EB, there is a small difference in the metrics due to the find countors

procedure that may present a slight pixel dislocation. Those differences were consistently lower

than 1%. Using more parameters increased the IoU and made the EB algorithm more effective,

in which the difference between using the EB algorithm was 3.29% (70.01 against 66.72), 3.01%

(69.72 against 66.71), and 2.18% (67.09 against 64.91) for the Efficient-net-B5, Efficient-net-B3,

and Efficient-net-B0. Even though the border expansion increases the objects by only 1 pixel,

the smaller objects are significantly affected. The vehicle class presents a difference of nearly
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20% in the IoU score, showing the importance of the method for obtaining accurate predictions.

For larger object classes, i.e., soccer field (SF), commercial building (CB), commercial building

block (CBB), house, and small construction (SmC), the expanding border algorithm presented

higher results, but with much less difference.

7.3.2 Semantic to Panoptic Segmentation

Table 7.3 lists the panoptic segmentation metrics (PQ, RQ, and SQ) for the best model (U-net

with the Efficient-net-B5 backbone). The SQ presented metrics over 65% for all categories,

and apart from the soccer field, all RQ metrics were above 50%. Since the PQ metric is the

multiplication of SQ and RQ, five categories presented values below 50%: harbor (2), sports

court (3), soccer field (2), commercial building(1), and small construction (1). When considering

the mean average (mAvg), those classes with much lower values than the rest (e.g., soccer

field) have a great impact, emphasizing the importance of evaluating them separately. Another

supplementary metric that gives an overall perspective is the weighted average, which brings

results nearly 20% higher since most classes that ate more recurring have less representation.

Especially regarding soccer fields, the deep learning models may present difficulties since it is a

kind of permeable area.

Figure 7.2 shows an example image from the test set (A) with its corresponding semantic

segmentation ground truth (B), the prediction with borders (C), and the prediction after ap-

plying the proposed semantic to the panoptic algorithm (D), demonstrating the efficiency of

separating objects using this method and providing accurate panoptic segmentation predictions.

This approach can be regarded as an evolution to Mou and Zhu (2018), and de Carvalho et al.

(2021a) methods, with the application for instance segmentation purposes.

7.3.3 Sliding Window Approach

Figure 7.3 shows the original RGB image (Fig. 7.3A), a zoom area (Fig. 7.3A1), and their

respective panoptic predictions (Fig. 7.3B and Fig. 7.3B1). The sliding window method has

an increasing computational cost when decreasing the stride value. Using a low stride value for

extremely large areas may compromise the inference time. In our study, this independent test

area with 2560x2560 pixel dimensions registered 3, 10, 38, 127, 435, 1837 seconds for strides of

512, 256, 128, 64, 32, and 16 pixels, respectively.

Table 7.1 lists the results for the sliding window approach for the 2560x2560-pixel test

area. The image contained five classes (swimming pool, vehicle, sports court, house, and small

constructions). The vehicles were the most prevalent class and presented 805 correct, 25 false

positives, and 7 merged objects. Even though merging is something we want to avoid as much

as possible, the ratio of merges by correct predictions is less than 1% for all classes.

The method proposed shows to be very efficient for mapping regions from remotely sensed

images. This approach may limit other problems in the computer vision community that require

real-time processing. In remote sensing, this issue is not much relevant since the frequency of

images is at least days apart from each other. Semantic segmentation models may present noisy

101



Figure (7.2) Example from the test set considering the: (A) original image, (B) semantic
segmentation ground truth, (C) prediction with the borders, (D) panoptic prediction.

Table (7.1) Per object metrics and analysis on all classes for the 2560x2560 image considering:
road, permeable area (PA), lake, swimming pool (SP), harbor, vehicle, boat, soccer field (SF),
commercial building (CB), commercial building block (CBB), residential building (RB), house,
and small construction (SmC).

SP vehicle SC house SmC
TP 82 805 3 196 101
FP 2 25 1 6 11
FN 0 0 0 2 1
merged 0 7 0 3 0
accuracy 97.62 96.18 75.00 94.68 90.18
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Figure (7.3) Original 2560x2560-pixel image (A) with its corresponding sliding windows panop-
tic results (A1) and a zoomed area from the image (A1) and prediction (B1).
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Table (7.2) Intersection over Union (IoU) results for the three backbones, considering expanded border (EB) algorithm, and with no
expanding borders (NB) for the fourteen classes: road, permeable area (PA), lake, swimming pool (SP), harbor, vehicle, boat, soccer field
(SF), commercial building (CB), commercial building block (CBB), residential building (RB), house, and small construction (SmC). "*"
denotes objects that presented borders.

road PA lake SP harbor vehicle* boat* SC* SF CB* CBB* RB house* SmC* mIoU
Efficient-net-B5

EB 83.56 91.86 97.28 67.06 53.61 83.75 51.69 67.60 52.20 66.82 70.75 84.32 78.18 31.38 70.01
NB 83.56 91.86 97.28 66.86 53.20 60.17 43.85 64.02 51.84 65.09 69.1 84.61 74.05 28.7 66.72
Dif 0 0 0 0.20 0.41 23.58 7.84 3.58 0.36 1.73 1.65 -0.29 4.13 2.68 3.29

Efficient-net-B3

EB 82.37 91.07 97.38 64.78 55.77 81.27 42.82 62.40 71.48 63.39 72.83 82.93 77.58 30.03 69.72
NB 82.37 91.07 97.38 64.58 55.47 59.91 37.25 59.62 69.45 61.63 70.25 83.02 73.13 28.70 66.71
Dif 0 0 0 0.20 0.30 21.63 5.57 2.78 2.03 1.76 2.58 -0.09 4.45 1.33 3.01

Efficient-net-B0

EB 82.00 89.66 96.44 63.74 42.81 77.65 32.65 65.17 68.11 63.72 72.37 81.08 75.79 28.08 67.09
NB 82.00 89.66 96.44 63.60 42.07 57.96 36.44 61.87 68.04 61.93 69.95 81.37 70.97 26.44 64.91
Dif 0 0 0 0.14 0.74 19.69 -3.79 3.30 0.07 1.79 2.42 -0.29 4.82 1.64 2.18

Table (7.3) Panoptic Quality (PQ), Segmentation Quality (SQ), and Recognition Quality (RQ) metrics for all classes: road, permeable
area (PA), lake, swimming pool (SP), harbor, vehicle, boat, soccer field (SF), commercial building (CB), commercial building block (CBB),
residential building (RB), house, and small construction (SmC) and their mean average (mAvg) and weighted average (wAvg). "*" denotes
objects that presented borders.

road PA lake SP harbor vehicle* boat* SC* SF CB* CBB* RB house* SmC* mAvg wAvg
PQ 78.10 89.16 93.26 58.63 38.03 66.14 60.06 42.21 11.60 46.19 52.54 70.76 63.19 46.69 47.41 65.15
SQ 79.47 89.85 95.06 75.04 65.99 68.70 75.95 80.99 92.81 83.75 90.40 83.30 82.60 74.06 81.28 71.49
RQ 98.28 99.23 98.11 78.14 57.63 96.27 79.07 52.12 12.50 55.16 58.12 84.95 76.50 63.04 58.33 91.13
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features, which are very small polygons. To solve this issue, we proposed a threshold to delete

the contours with an area smaller than a specific value, which can change for each class. Future

studies may benefit from applying learning mechanisms to obtain optimal threshold values for

each class. Even though the number of merged polygons is very low (shown by the ratio of

merges by true positive predictions), a possible solution for future studies is to make more

specific classes, e.g., separate vehicles into cars, buses, and trucks. In this way, the average size

of each target can help in the evaluation. For example, a car has an average dimension of 20x10

pixels, so if the prediction is double, it assumes the presence of two objects.

7.4 Conclusion

The present letter proposed an efficient algorithm to achieve panoptic predictions using seman-

tic segmentation models, achieving good per-pixel results and a good capability of separating

different instances. The data preparation is straightforward and can be quickly obtained in

GIS software by generating borders on the polygons (using a negative buffer to avoid overlap-

ping classes). The method introduced a non-learning method for separating different instances,

which reduces the total number of parameters. We show that any semantic segmentation model

applies; however, better models may yield better results for our expanding border algorithm.

Besides, great importance for remote sensing studies involves the classification of large areas,

and there are no works regarding this topic for panoptic segmentation. Our approach makes it

very easy to apply sliding windows since it uses the same semantic segmentation logic with the

semantic to panoptic algorithm as the last step.
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Chapter 8

Multispectral Panoptic

Segmentation

This chapter brings the first study considering the panoptic segmentation task in the beach

landscape and also using multispectral data. The results were submitted and accepted by the

IEEE International Geoscience and Remote Sensing Symposium, and expanded results were

published in the International Journal of Applied Earth Observations and Geo-Information.

8.1 Presentation

Many studies have been performed on panoptic segmentation for ground-level RGB images

(Cheng et al., 2020a; Xiong et al., 2019), medical images (Cha et al., 2021; Yu et al., 2020; Zhang

et al., 2018a), and videos (Kim et al., 2020; Qiao et al., 2021). Panoptic segmentation was first

explored in orbital or aerial remote sensing data (top-view images) only recently, presenting few

studies (de Carvalho et al., 2022c; De Carvalho et al., 2022; Garnot and Landrieu, 2021; Hua

et al., 2021; Khoshboresh-Masouleh and Shah-Hosseini, 2021). Among those studies, Garnot

and Landrieu (2021) used remote sensing peculiarities in terms of spectral bands. However, the

authors considered a dataset containing only "thing" classes. Khoshboresh-Masouleh and Shah-

Hosseini (2021) evaluated the change detection in very high-resolution Google Earth images but

only considered the building class (things). de Carvalho et al. (2022c) developed a dataset with

"thing" and "stuff" classes, but they used an aerial image only containing the RGB channels,

being very similar to traditional ground-level images. Finally, Hua et al. (2021) used datasets

previously designed for instance segmentation but adapted for the panoptic segmentation task,

considering only RGB images.

Therefore, the multispectral imaging dataset has not yet been explored in panoptic segmen-

tation. Satellite or aircraft-based images often present many different characteristics, such as

large spatial dimensions, varying number of channels, image format, and georeferencing (Car-

valho et al., 2021). Furthermore, in the field of remote sensing technologies for monitoring

the Earth’s surface, there is a wide variety of images (multispectral, hyperspectral, Synthetic

Aperture Radar (SAR), and thermal) coming from different platforms (satellites, Unmanned
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Aerial Vehicles (UAV), and aerial images). The particularities of orbital and aerial images differ

from datasets produced by the computer vision community such as Common Objects in Context

(COCO) (Lin et al., 2014), Mapillary Vistas (Neuhold et al., 2017), Cityscapes (Cordts et al.,

2016), which contains Red, Green, and Blue (RGB) images at a ground level. The development

of new tasks, such for instance segmentation (He et al., 2020), panoptic segmentation (Kirillov

et al., 2019) and eventual novel methods (Bolya et al., 2020; Gao et al., 2021; Mohan and Val-

ada, 2021a) are all designed in the first moment for those traditional ground-level RGB images.

Therefore the orbital and aerial image peculiarities require specific software and methodologies

to extract the most out of it since even preliminary stages such as generating image tiles with

a specific size and annotation format may be challenging (de Carvalho et al., 2022c; Li et al.,

2021). Most software that is openly available today, such as Facebook’s Detectron2 (Wu et al.,

2019) is designed with specifications for RGB images with three channels in conventional formats

such as Joint Photographics Experts Group (JPEG) and Portable Network Graphics (PNG).

Adapting those configurations may not be straightforward, making using some new methods

much harder in satellite or aircraft-based remote sensing.

The continuous monitoring and inspection of tourist activity along the beaches is essential

for achieving effective public and environmental policies. In this context, panoptic segmentation

from the remote sensing images can facilitate the inspection process. However, few beach studies

used remote sensing data with deep learning. The beach scene is mainly composed of small

objects, which are represented by few pixels even with high-resolution images, being a significant

challenge. Deep learning models generally perform poorly on small targets due to their noisy

representation and confusion with other targets (de Carvalho et al., 2021d; Tong et al., 2020).

This study aims to introduce panoptic segmentation with multispectral remote sensing data,

providing theory, application, and methods contributions as follows:

1. We aim to verify the importance of band selection within the panoptic segmentation task

and compare the conceptual results of panoptic, instance, and semantic segmentation.

2. A viable and state-of-the-art application for beach inspection, being the first study to

explore panoptic segmentation in the beach setting, providing a novel dataset comprising

thirteen classes and benchmark results for panoptic and semantic segmentation.

3. The panoptic segmentation task was initially developed for RGB images, and the present

research carried out changes in the original code to allow the joint processing of a varying

number of spectral bands. Besides, this study adjusted the ResNeXt-101 backbone for

Panoptic-FPN.

107



8.2 Material and methods

8.2.1 Study area

The study area is located in the Praia do Futuro region, Fortaleza, Brazil, with intense tourist

and economic activity. Figure 8.1A shows the study area highlighted in yellow borders, and

Figure 8.1B shows a zoomed area containing tourist umbrellas, beach umbrellas, suns, straw

sun, trees, buildings, and swimming pools.

Figure (8.1) Study Area, in which (A) shows the region in Brazil, (B) shows a more detailed
zoom of the beach area considered in this study, and (C) shows a larger zoom to show what
kind of elements is visible with the WorldView-3 images.

8.2.2 Image acquisition and annotations

We used WorldView-3 images provided by the European Space Agency with a total area of

400 km2. The high-resolution WV-3 images contain eight (1.24 meters) spectral bands and a

panchromatic band (0.3 meters). We applied the Gram-Schmidt pan-sharping method to obtain

a high-resolution color image, conjugating the spatial information from the panchromatic band

and spectral information from the multispectral bands.
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Geographic Information System (GIS) specialists performed manual annotations considering

fourteen distinct features, all listed in the table 8.1. Six of these classes were "things", and eight

were "stuff" categories. The most numerous class was the straw umbrella, with nearly 4,000

distinct polygons and nearly no pixels with no classes. Figure 8.2 shows the annotation pattern,

containing three examples of each interest class demarcated by a colored polygon.

The images were cropped into smaller image tiles with their corresponding annotations in

the COCO format, which is the standard format for Detectron2’s Panoptic-FPN model. These

annotations require JSON files with specifications for each image, containing the information

regarding the "thing" classes (such as bounding boxes) and "stuff" classes. The conversion of

the GIS data to the panoptic format used the software developed by de Carvalho et al. (2022c),

considering a GIS attribute table where each polygon has two columns with the class value and

the polygon value (or unique IDs), in case of the thing category. The software requires point

shapefiles to generate the smaller samples, in which each point is the centroid of the frame. We

chose a sample size of 128x128 pixels. We used the image from 2017 to generate all training

samples totaling 3,200. Using the image from 2018, we chose the validation and test samples,

300 of each. Choosing points manually is frequently better than random since we can select

high-priority areas. Since the validation and test samples are in the same image, we assured

that there was no overlap between them.

Table (8.1) Categories (in which SP, SBU, and TU stand for swimming pool, straw beach
umbrella, and tourist umbrella), labels, type (thing or stuff), number of polygons, and number
of pixels in the Panoptic Beach Dataset

Category Label type polygons pixels

Background 0 - - -
Ocean 1 stuff - 47,799,957

W. Sand 2 stuff - 3,874,445
Sand 3 stuff - 7,944,837
Road 4 stuff - 2,113,790

Vegetation 5 stuff - 1,814,849
Grass 6 stuff - 1,814,967

Sidewalk 7 stuff - 1,360,113
Vehicle 8 thing 531 52,196

SP 9 thing 55 33,118
Construction 10 thing 457 1,097,025

SBU 11 thing 3,653 247,723
TU 12 thing 805 45,129

Crosswalk 13 thing 46 34,138
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Figure (8.2) Examples of annotations for each class. The highlighted segments show the class
corresponding to the written labels, in which we considered: Ocean, Wet Sand, Sand, Road,
Vegetation, Grass, Sidewalk, Vehicle, Swimming Pool (SP), Construction, Straw Beach Umbrella
(SBU), Tourist Umbrella (TU), and Crosswalk.

8.2.3 Deep Learning experiments

The experiments were subdivided into panoptic and semantic segmentation. The panoptic seg-

mentation approach considered an analysis of different spectral band compositions using three

models. Then, we evaluated our dataset using the semantic segmentation task considering 15

models for the best spectral band composition. Note that there is no need to perform an isolated

instance segmentation approach since we can retrieve instance-only results from the panoptic

models. All experiments were conducted on a computer with an NVIDIA RTX 3090 graphics

card with 24GB RAM and an i9 processor.
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Panoptic Segmentation

This research aims to compare different configurations of spectral bands using the Panoptic-

FPN (Kirillov et al., 2019) model, the pioneer model in panoptic segmentation studies. The

primary motivation for using FPN to predict semantic segmentation is to establish a simple,

single-network baseline, which allows executing the semantic and instance segmentation steps in

a chained way and considering a joint task of panoptic segmentation. This model is present in the

Detectron2 software that allows implementation and contains detailed documentation for future

improvements and replication. The software uses the Pytorch library, which is also widely used,

making the code easier to understand. The Panoptic-FPN model comprises two branches: (1)

instance segmentation and (2) semantic segmentation. Both branches use a common structure,

which is the FPN. The instance segmentation branch uses a Mask-RCNN model and aims

to identify the "things" elements (He et al., 2020). The semantic segmentation branch uses

upsampling in the feature maps and targets the "stuff" classes. The two branches are combined

using a simple heuristic method for combining the instance level "thing" predictions and the

background "stuff" elements. The Detectron2 (Wu et al., 2019) software is the most appropriate

to do experiments in this task because the documentation is very robust. Previous studies

proposed modifications and adaptations for well functioning in remote sensing datasets (Carvalho

et al., 2021; de Carvalho et al., 2022c), which has not yet been done to other models. We

evaluated three backbones using the Panoptic-FPN model, namely the ResNeXt-101, ResNet-

101, and ResNet-50.

We had to leverage the Detectron2 software for working with TIFF multispectral images,

allowing it to use a varying number of input bands. Our experiments considered five tests from

the pan-sharpening images, considering: (1) all eight spectral bands, (2) RGB +NIR1+NIR2,

(3) RGB + NIR1, (4) RGB + NIR2, and (5) only RGB. All trained models, apart from the

input spectral dimensions, use the same specifications. The z-score normalization for each

channel allowed a faster convergence in the training phase.

Regarding the model hyperparameters, we used: (a) stochastic gradient descent (SGD) opti-

mizer; (b) 0.0005 learning rate; (c) 150,000 iterations; (d) anchor boxes with sizes 8, 16, 32, 64,

128; (e) three aspect ratios (0.5, 1, 2); (f) one image per batch. We evaluated the validation set

for every 5,000 iterations, in which the final model considered the best Panoptic Quality results.

Besides, we considered the following augmentation steps: (a) random vertical flip (probability

chance of 50%), (b) random horizontal flip (probability chance of 50%), and (c) rescaling the

image dimensions to 800x800 pixels. The augmentation processes in the training set resulted in

9,600 different image combinations in the training phase.

Semantic Segmentation

Even though the panoptic and semantic tasks present different objectives, the comparison is valid

for analyzing the pros and cons of each approach. The semantic segmentation field has been much

more explored in the remote sensing community, and the various models and implementations

are better documented. The way we have constructed our dataset enables researchers to use
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different tasks. In the semantic segmentation analysis, we compared five architectures (U-

Net (Ronneberger et al., 2015b), U-Net++ (Zhou et al., 2018b), DeepLabv3+ (Chen et al.,

2018), FPN (Lin et al., 2017), LinkNet (Chaurasia and Culurciello, 2017)) and three backbones

(Efficient-net-B7 (Tan and Le, 2019b), ResNet-101 (He et al., 2016), and ResNeXt-101 (Xie

et al., 2017)). All models considered the same loss function (cross-entropy) and hyperparameter

settings, including 0.0005 learning rate, batch size of 25, Adam optimizer, and 300 epochs.

8.2.4 Accuracy Analysis

This study considers panoptic and semantic segmentation models that show remarkable dif-

ferences. The Panoptic segmentation task involves three distinct types of evaluations: "stuff",

"thing", and panoptic metrics. The per-pixel metrics suitable for semantic segmentation are the

same as for the "stuff" evaluation. The difference is that the panoptic model only considers the

"stuff" classes (for the stuff evaluation), and semantic segmentation considers all classes.

The "stuff" evaluation considered: (a) mean Intersection over Union, (b) frequency weighted

IoU (fwIoU), (c) mean Accuracy (mAcc), and (d) pixel accuracy (pAcc). The mIoU corresponds

to the mean average from all classes considering their area of intersection (A ∩ B) divided by

the area of union (A ∪ B), in which A is the deep learning prediction and B is the ground truth.

The fwIoU is similar but assigns weights according to the number of representations instead of

a mean average. The pixel accuracy is simply the number of correctly classified pixels divided

by the total number of pixels, and the mean Accuracy is the average among the accuracies from

all different classes. Due to the differences between the types of segmentation, we define mIoU

to denote the mean across all categories (semantic segmentation) and mIoUstuff to denote the

mean across the stuff categories (panoptic segmentation). The semantic segmentation evaluation

considered the mIoU and mIoUstuff metrics.

In the thing evaluation (instance segmentation), the COCO Average Precision (AP) is the

primary metric not only in the COCO challenge (Lin et al., 2014) but also in many studies

(Bolya et al., 2020; Cai and Vasconcelos, 2018; Gao et al., 2021; He et al., 2020; Huang et al.,

2019). The AP is a ranking metric expressed as the area under the precision-recall curve. In

order to calculate precision and recall, we must identify the correctly predicted elements. The

COCO metric uses different IoU thresholds between the predicted and ground truth bounding

boxes. The primary AP metric considers 10 IoU thresholds, from 0.5 to 0.95, with 0.05 steps.

To exclusively evaluate a more and less strict version, the AP50 and AP75 use the 0.5 and 0.75

thresholds.

Finally, the Panoptic metrics are: Panoptic Quality (PQ), Segmentation Quality (SQ), and

Recognition Quality(de Carvalho et al., 2022c; Gao et al., 2021; Kirillov et al., 2019; Mohan

and Valada, 2021a). The PQ is the primary metric for this task, being the multiplication of the

SQ by RQ, where SQ is
∑

(pred,GT )∈T P
IoU(pred,GT )

|T P | and RQ is T P

|T P |+ 1
2

|F P |+ 1
2

|F N |
, in which pred,

GT, TP, FN, and FP stands for the deep learning prediction, ground truth data, true positives

(elements with an IoU greater than 0.5), false negatives, and false positives, respectively.
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8.3 Results

This section is subdivided in three parts: (1) panoptic segmentation evaluation, (2) semantic

segmentation evaluation, and (3) visual results that show the differences of semantic, instance,

and panoptic segmentation.

8.3.1 Panoptic Segmentation evaluation

Panoptic metrics

Table 8.2 lists the panoptic segmentation results for the PQ, SQ, and RQ metrics. Our models

were selected from the validation set based on the best PQ performance, being the main met-

ric for evaluation. ResNeXt-101 was the best backbone for all band compositions, followed by

ResNet-101. Using all spectral bands provided the best PQ, SQ, and RQ results. The composi-

tion with only RGB bands obtained a significantly lower accuracy, showing that the NIR1 and

NIR2 bands are significant for classifying typical targets in the beach scenario.

Table (8.2) Panoptic Quality (PQ), Segmentation Quality (SQ), and Recognition Quality (RQ)
results for the ResNet-50, ResNet-101, and ResNeXt-101 backbones. The best results are in bold.

Spectral bands PQ SQ RQ
ResNeXt-101

All 65.90 81.23 80.83
RGB+NIR1+NIR2 65.43 80.90 80.49
RGB+NIR1 64.82 80.67 79.94
RGB+NIR2 64.37 80.65 79.50
RGB 61.23 79.32 76.89

ResNet-101
All 64.88 79.51 80.80
RGB+NIR1+NIR2 64.60 79.89 80.40
RGB+NIR1 64.41 80.10 79.94
RGB+NIR2 64.30 80.87 79.13
RGB 61.21 79.45 76.66

ResNet-50
All 63.04 78.54 79.71
RGB+NIR1+NIR2 62.65 79.52 78.33
RGB+NIR1 62.52 78.91 78.73
RGB+NIR2 62.20 79.90 77.48
RGB 60.87 79.18 76.51

Stuff evaluation results

Table 8.3 lists the macro results for the stuff categories. In contrast to the panoptic metrics, using

all bands did not yield the maximum results, even though they were very close. The panoptic

models use a loss function that considers many elements, and there may be a tradeoff between

some of them to yield the best results The RGB-only composition was considerably lower than

the rest. When analyzing this behavior per class (Table 8.4), Wet Sand, Road, and Grass classes

presented considerably lower results. The difference of RGB-only metrics considering the other

classes did not show much difference, showing that depending on the classes being evaluated,
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the RGB bands can be satisfactory. Moreover, an exciting result is that most of the classes

showed values above 80% in IoU, showing that the targets in the beach setting are suitable for

expanding monitoring with deep learning methods.

Table (8.3) Metric analysis for the "stuff" categories, considering Mean Intersection over Union
(mIoUstuff ), frequency weighted (fwIoUstuff ), mean accuracy (mAccstuff ), and pixel accuracy
(pAccstuff ) results for semantic segmentation in the Beach dataset. The best results for each
class are in bold.

spectral bands mIoUstuff fwIoUstuff mAccstuff pAccstuff

ResNeXt-101-32x8d
8 bands 85.35 88.48 91.88 93.74
RGB+NIR1+NIR2 85.58 88.63 92.02 93.84
RGB+NIR1 85.10 88.34 91.91 93.63
RGB+NIR2 84.32 87.65 91.24 93.29
RGB 81.49 85.89 89.88 92.17

ResNet-101
8 bands 84.76 88.23 91.41 93.57
RGB+NIR1+NIR2 85.53 88.78 91.93 93.90
RGB+NIR1 85.57 88.83 91.96 93.93
RGB+NIR2 85.10 88.47 91.92 93.73
RGB 82.27 86.44 90.02 92.54

ResNet-50
8 bands 84.02 87.37 90.93 93.08
RGB+NIR1+NIR2 84.31 87.57 91.32 93.21
RGB+NIR1 83.58 86.88 91.47 92.74
RGB+NIR2 82.88 86.53 90.62 92.56
RGB 82.24 86.10 90.19 92.33

Table (8.4) Intersection over Union (IoU) results for the "stuff" categories per class in the Beach
dataset, in which (1) ocean, (2) Wet Sand, (3) Sand, (4) Road, (5) Vegetation, (6) Grass, and
(7) sidewalk. The best results for each class are in bold.

spectral bands 1 2 3 4 5 6 7
ResNeXt-101

All 96.40 87.72 92.49 90.09 83.84 74.00 76.54
RGB+NIR1+NIR2 96.73 89.04 92.46 89.48 83.74 74.48 77.06
RGB+NIR1 97.69 90.52 92.14 88.97 82.50 72.32 76.00
RGB+NIR2 95.06 85.20 92.24 89.19 83.56 72.46 76.05
RGB 94.93 80.84 91.49 83.29 82.48 63.62 74.75

ResNet-101
All 98.64 90.91 91.83 87.01 82.34 71.31 74.13
RGB+NIR1+NIR2 98.63 92.16 92.22 87.01 83.39 72.90 75.83
RGB+NIR1 97.95 91.31 92.71 87.57 83.40 73.23 76.79
RGB+NIR2 96.78 88.06 92.65 87.46 84.62 73.39 75.92
RGB 96.33 84.21 91.67 80.97 82.40 69.60 72.54

ResNet-50
All 97.96 90.30 90.97 85.81 81.84 72.19 73.81
RGB+NIR1+NIR2 97.79 87.87 91.05 86.04 82.82 73.70 75.21
RGB+NIR1 97.04 87.94 90.53 86.21 82.57 73.10 73.21
RGB+NIR2 95.74 86.29 91.34 85.44 82.56 71.10 73.51
RGB 95.51 84.67 90.94 83.06 82.59 68.57 74.54
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Thing evaluation results

Table 8.5 lists the COCO metrics (AP, AP50, AP75) results for the "thing" classes. The ResNeXt-

101 presented the best values for all combinations considering the AP metric. Even though the

ResNet-101 and ResNet-50 presented the worst values for the main metric, the AP50 was superior

for many configurations. The influence of band composition on the things classes was much less

significant, in which none of the classes had a significantly worst behavior. The main factor for

results for the thing classes is the backbone.

Table (8.5) COCO metrics for the thing categories in the Beach Dataset considering the usage
of different spectral bands: (1) all (eight spectral bands), (2) Red, Green, and Blue (RGB) with
NIR1 and NIR2, (3) RGB with NIR1, (4) RGB with NIR2, and (5) only RGB. The best results
for Box and Mask are in bold.

Spectral bands Type AP AP50 AP75

ResNeXt-101

All
Box 60.05 83.66 59.51
Mask 53.39 82.23 55.35

RGB+NIR1+NIR2
Box 59.31 83.00 63.21
Mask 54.67 81.85 56.38

RGB+NIR1
Box 59.48 82.89 66.35
Mask 54.52 79.92 59.30

RGB+NIR2
Box 59.11 83.43 60.61
Mask 54.19 81.82 55.45

RGB
Box 59.52 83.27 64.74
Mask 53.70 81.19 58.70

ResNet-101

All
Box 57.30 87.22 61.35
Mask 50.49 85.18 54.05

RGB+NIR1+NIR2
Box 56.69 87.30 60.65
Mask 51.23 85.52 54.23

RGB+NIR1
Box 58.38 85.01 61.96
Mask 52.36 83.56 54.84

RGB+NIR2
Box 57.52 82.93 61.34
Mask 53.13 80.25 58.95

RGB
Box 56.34 83.84 61.77
Mask 48.97 82.55 50.82
ResNet-50

All
Box 51.54 86.31 52.78
Mask 46.24 83.92 45.30

RGB+NIR1+NIR2
Box 52.72 85.35 55.78
Mask 44.87 83.13 45.77

RGB+NIR1
Box 50.85 82.67 53.78
Mask 46.09 80.49 50.61

RGB+NIR2
Box 51.10 83.51 53.15
Mask 45.82 82.41 49.62

RGB
Box 50.21 82.53 53.13
Mask 44.43 78.60 47.84
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Table (8.6) COCO metrics for the thing categories in the Beach Dataset considering the usage
of different spectral bands: (1) all (eight spectral bands), (2) Red, Green, and Blue (RGB)
with NIR1 and NIR2, (3) RGB with NIR1, (4) RGB with NIR2, and (5) only RGB. The
evaluated classes are: (8) vehicle, (9) SP, (10) construction, (11) straw beach umbrella, (12)
tourist umbrella, and (13) crosswalk. The best results for Box and Mask are in bold.

Spectral bands Type 8 9 10 11 12 13
ResNeXt-101

All
Box 60.67 58.23 56.75 39.42 74.25 70.72
Mask 54.47 49.17 54.61 33.75 63.65 64.71

RGB+NIR1+NIR2
Box 61.36 59.61 58.38 39.18 73.65 63.68
Mask 56.31 49.71 57.13 35.38 66.80 62.68

RGB+NIR1
Box 61.05 57.43 58.38 35.58 71.19 73.26
Mask 55.39 47.89 56.98 33.20 63.62 70.05

RGB+NIR2
Box 58.85 57.56 57.93 37.76 72.55 70.01
Mask 53.98 46.84 55.56 34.38 67.70 66.65

RGB
Box 61.96 56.71 58.09 39.62 70.06 70.73
Mask 55.10 46.03 55.50 35.86 65.96 63.77

ResNet-101

All
Box 59.70 54.96 58.15 47.16 58.17 65.63
Mask 52.63 44.63 54.69 41.21 53.52 56.22

RGB+NIR1+NIR2
Box 60.14 53.28 59.02 48.74 61.69 57.27
Mask 52.38 45.91 57.13 45.03 55.84 51.12

RGB+NIR1
Box 58.44 56.08 58.84 44.65 66.00 66.26
Mask 52.06 49.55 58.00 40.32 59.06 55.23

RGB+NIR2
Box 59.06 56.42 59.68 45.18 69.99 54.79
Mask 53.02 50.66 56.90 41.44 63.45 53.34

RGB
Box 59.23 58.94 55.48 45.23 55.12 64.03
Mask 49.36 50.45 53.86 42.08 47.51 50.55

ResNet-50

All
Box 59.68 51.26 53.09 40.52 46.49 58.17
Mask 51.74 42.16 50.50 32.28 40.12 59.63

RGB+NIR1+NIR2
Box 57.08 53.47 53.81 37.43 51.90 62.65
Mask 48.82 41.97 50.68 31.94 43.65 52.15

RGB+NIR1
Box 59.08 55.46 52.16 29.12 49.89 59.37
Mask 53.84 48.90 50.27 26.97 43.47 53.09

RGB+NIR2
Box 62.48 49.46 54.28 35.48 49.13 55.75
Mask 53.51 48.18 52.01 28.31 41.63 51.28

RGB
Box 59.99 49.04 52.97 32.85 47.77 58.65
Mask 50.47 44.34 49.38 28.98 37.70 55.60

8.3.2 Semantic segmentation results

This section shows the benchmark results for the Beach Dataset considering the semantic seg-

mentation task. Table 8.7 lists the mIoU metrics for each model. Note that the metrics shown

here are different from the mIoUstuff since we are now considering all classes. For an easier

comparison of this section with the panoptic models, we also incorporated the mIoUstuff . The

FPN model presented the highest mIoU (77.44) and mIoUstuff (85.67) results. These results

are slightly higher than the mIoUstuff from the best panoptic model (85.58). Within the dif-

ferent architectures, the Efficient-net-B7 was the best backbone, followed by ResNeXt-101. The

differences across architectures was smaller than across backbones.
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Table (8.7) Semantic segmentation model metrics considering all spectral brands. The best
results are in bold.

Architecture Backbone mIoU mIoUstuff

U-Net Eff-B7 75.56 85.63
ResNeXt-101 73.25 84.05
ResNet-101 71.49 83.19

DeepLabv3+ Eff-B7 75.68 85.44
ResNeXt-101 73.67 83.95
ResNet-101 71.73 83.17

U-Net++ Eff-B7 75.71 85.35
ResNeXt-101 73.47 83.84
ResNet-101 69.13 82.09

LinkNet Eff-B7 74.74 84.42
ResNeXt-101 73.78 83.45
ResNet-101 69.11 81.28

FPN Eff-B7 77.44 85.67
ResNeXt-101 73.52 84.21
ResNet-101 72.61 83.17

8.3.3 Visual Results

Figure 8.3 shows five examples from the test set considering the original image, and the panoptic,

instance, and semantic predictions. The concept of panoptic segmentation changes the presen-

tation configuration where each stuff category has a unique color, while thing categories has

unique values, and consequently colors for each object. Therefore, this technique brings a new

approach to the cartographic representation of land use/land cover maps, which usually adopts

a pixel classification. The Panoptic-FPN model generates a JSON for each predicted image,

retrieving more attributes of each element, such as the bounding box and the class, favoring

other ways of visualizing the data. We removed the bounding boxes for visual purposes, as

overlapping information would make the image cluttered. Even though some metrics do not

seem very high, mainly related to the nature of small objects, the model can predict crowded

correctly and numerous elements in a single image from a visual perspective. The results show

that "thing" targets close to each other tend to merge the predictions, making it very difficult

to separate different instances, as shown in Fig 8.3A3 and E3. The beach setting has many

amorphous elements, which are disconsidered by the instance predictions, demonstrating that

the panoptic segmentation aggregates the benefits of both methods.

8.4 Discussion

This research adapted the original Panoptic-FPN code of the panoptic segmentation to per-

form the joint processing of all available multispectral bands and to couple the ResNeXt-101

backbone, considering multiclass "thing" and "stuff". The panoptic segmentation task presents

a much larger complex in the model design compared to the instance and semantic segmenta-

tion task. The loss function encompasses both instance and semantic segmentation losses. The

instance segmentation also presents a complexity since it involves segmentation loss, bounding

box regression loss, and classification loss. All of those elements associated with a large number

117



Figure (8.3) Six examples with the original image (considering the RGB bands) and the pre-
diction. The predictions maintained the same colors for the stuff classes, and each thing class
presents a varying color.

of classes may present fluctuations when comparing the models. For example, the AP metrics

for the individual targets may show a higher metric for a single target given a model, this is

why it is essential to analyze the macro metrics since they provide an overall view of the model,
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and they should primarily focus on identifying and building the best model.

The investigation used the Panoptic-FPN model of Detectron2 software proposed by Meta

Artificial Intelligence Research and used and tested globally. Unlike semantic segmentation,

which has several models developed, panoptic segmentation has a restricted number of mod-

els that still lack detailed documentation. We compared the Panoptic-FPN architecture with

three different backbones (ResNeXt-101, ResNet-101, and ResNet-50). This study evaluated

different compositions of spectral bands within the panoptic segmentation. This approach al-

lows quantifying the gain in accuracy with the use of multispectral data. The Panoptic-FPN

model using ResNeXt-101 backbone and all bands obtained better results in all panoptic metrics

(PQ, SQ, and RQ). Even though the panoptic segmentation results were similar using all bands,

RGB + NIR1 + NIR2, RGB + NIR1, and RGB + NIR2, the spectral characteristics from

remotely sensed data can enhance the results significantly when compared to the traditional

RGB channels with nearly 5% worse than the rest in the PQ. This deep learning survey was

also the first to use multiple remote sensing targets in the beach setting.

The results can guide other researchers in selecting bands for future studies in a beach sce-

nario. Similar studies achieved some complementary results to our findings. Carvalho et al.

(2021) compared RGB and all bands from the Landsat-8 sensor for center pivot mapping using

instance segmentation models, where the authors found that using all bands had a 3% increase

in the metric AP. In a semantic segmentation study, Barros et al. (2022) found that the NIR

band was almost sufficient to map vineyards. Furthermore, the remote sensing field has many

opportunities for studies using multichannel inputs, especially considering time series and mul-

tispectral data (Carvalho et al., 2021; de Albuquerque et al., 2021b). Recent studies have used

a time-series sequence as the input, in which each time represents a different channel (de Albu-

querque et al., 2021a; de Bem et al., 2021; Li et al., 2020b). In many of these studies, we can

see that introducing new information is complementary to deep learning studies until it reaches

the point when new information is redundant. This significant analysis allows primary bands to

be selected instead of all available bands, reducing the computational cost.

However, the panoptic segmentation task is challenging to compare with other deep learning

and machine learning methods because the evaluation criteria are very different from other

methodologies, such as instance and semantic segmentation that do not have the categories

together of "stuff" and "thing." Recently, De Carvalho et al. (2022) proposed a novel way to

approach panoptic segmentation with semantic segmentation models, which could also be an

alternative way to address a more robust model comparison in future studies. Despite the

difficulty in a metric-wise comparison, we can evaluate the benefits of each task, especially

when using a visual comparison. As shown in the results section, the IoU results for semantic

segmentation models are very accurate for some classes. However, the beach targets are crowded

in many cases, such as the beach straw umbrellas (the most numerous category). For targets like

this, it is very hard to retrieve relevant information, such as the number of individual elements,

since the semantic predictions tend to aggregate many of the targets that are close to each other,

similar to what happens in vehicle detection (de Carvalho et al., 2022a; Mou and Zhu, 2018).

On the other hand, the instance segmentation also has limitations to important classes such
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as sand, sidewalks, and roads. The panoptic segmentation emerges as a viable and interesting

solution for handling the beach setting with many objects and backgrounds. Our novel proposed

dataset presents different characteristics than other panoptic segmentation datasets, formed by

RGB and ground-level images (Cityscapes, COCO, and Mapillary Vistas). Although the BSB

Aerial Dataset (de Carvalho et al., 2022c) consists of aerial photos for panoptic segmentation,

the available channels are RGB. The present dataset contains orbital multispectral images,

considering images composed of up to 8 bands from the WV-3 sensor. Changing the RGB

inputs to include all available spectral bands produces better results. Using ground-level RGB

dataset transfer learning for multispectral imaging can still provide some leverage to reduce the

training period as low-level features such as corners are similarly represented. Even so, transfer

learning between different sensor data sets is complicated as each sensor has different amounts

of spectral bands with different characteristics of the spectrum range, providing less accurate

transferability. A possible solution and future studies would include building a dataset using

various sensors simultaneously, covering a wide range of spectral and spatial behaviors.

Most of the classes are in the range of small objects. The small objects are a great difficulty

since their representation is much less significant, bringing difficulties for classification. In many

datasets such as COCO, the APsmall metrics is much lower than the rest. The results may

be affected by the size of the objects. In a previous study in this same region, de Carvalho

et al. (2021d) analyzed only the class Straw Beach Umbrella with different scaling dimensions,

in which they upscaled the image up to 8 times the original size. The AP metric nearly doubled

by a simple operation. One of the augmentation steps in our research was to resize the image

to 800x800 spatial dimensions, a typical and default setting in the Detectron2 software. The

nature of the metrics is not favorable for achieving high results since small displacements in the

bounding boxes significantly affect the metric, which does not happen for larger objects. Tong

et al. (2020) made a review article on small objects, in which they stated that increasing the

dimensions is one of the simplest forms of increasing results. Kisantal et al. (2019) created a

method for increasing the representation of small objects. Even though this solution is up-and-

coming and can indeed increase the results, in some situations, the fact that the objects are

small is enough to bring the metric down, and sometimes in visual results, the prediction is very

accurate.

Finally, the results proved to be entirely satisfactory in the landscape of Praia do Futuro,

an important area for government inspection for having high tourist activity on public lands.

Therefore, the model has immediate application in the periodic monitoring of this urban beach

with constant misuse of public property. However, a limitation of the present investigation

is that the model is only suitable for beaches with similar characteristics (same composition

of sediments, vegetation, and tourist infrastructure). Therefore, future research should include

various beach settings, regions, and countries. In addition, future research may test other images,

such as drones.
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8.5 Conclusion

This study pioneered the panoptic segmentation tasks in the beach setting, considering high-

resolution WorldView-3 images with 0.31-meter resolution and a multispectral dataset with

"things" and "stuff" classes. Since most computer vision developments use RGB image datasets,

we evaluated different configurations of band arrangements and found that the combination

of the near infra-red (NIR) and the RGB bands can significantly improve results. The beach

setting’s main panoptic metric (PQ) differed by nearly 5%. The difference in using all eight

multispectral bands with RGB + NIR1 and NIR2 is very shallow, and in situations with fewer

computational resources, using fewer bands will not affect the results. The Panoptic-FPN ar-

chitecture with the ResNeXt-101 backbone performed better for panoptic metrics than the

ResNet-101 and ResNet-50.

The panoptic segmentation presents a new possibility for developing inspection solutions in

the beach areas. We can simultaneously retrieve crucial information about individual objects,

such as their size and abundance. Future research aims to develop methodologies for mapping

large regions, encompassing sliding window methods, which are still unexplored for panoptic

segmentation, and using other images such as aerial images and unmanned aerial vehicles.
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Chapter 9

Concluding Remarks

The present dissertation assessed different segmentation methods based on deep learning (seman-

tics, instance, and panoptic) applied to remote sensing data (RGB and multispectral images),

embracing a wide variety of models. Furthermore, the dissertation proposed new methodological

approaches considering instance and panoptic segmentation methods with and without bounding

boxes.

The first analysis of the dissertation evaluated box-based instance segmentation methods

(Mask-RCNN) for detecting small objects observed on multispectral images. One of the most

significant difficulties among box-based methods is predicting extensive areas since the deep

learning samples are often much smaller. In this regard, only recently, a proposition was made

using sliding windows using non-maximum suppression. This dissertation proposes a method

by incorporating the double edge classifier (DEG), reducing the number of possible errors in the

final image. Still using box-based methods, the topic regarding small objects is very relevant yet

little explored. Therefore, image scaling can be a straightforward solution rather than optimizing

many parameters and other settings. The AP metric improved nearly 100% by increasing the

image dimensions eight times, but doubling the image already has significant improvements.

This study was very relevant since all practical applications using box-based methods would

require some methodology for large image classification, which can guide practical results and

other researchers for enhancing this method.

Even though we have built a successful box-based method for small objects, semantic seg-

mentation models are better at a pixel level and more straightforward for training and classifying

large regions. This limitation happens because the mask in each region of interest has reduced

dimensions (28x28) which compromises an exact delineation. On the other hand, semantic seg-

mentation models are very precise at a pixel level but present difficulties in recognizing unique

objects since cluttered predictions tend to merge (representation of multiple elements by a sin-

gle polygon). To make the most out of semantic segmentation models’ accuracy, we proposed

a novel box-free method that considers the object’s borders. Borders can isolate the objects’

interiors, assigning different values to each prediction and enabling us to achieve instance seg-

mentation results with non-learning methods. The evaluation of this procedure considered the

vehicle class, which has many examples, and its manual annotation is highly labor-intensive. In
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this regard, the present research proposes the first pipeline using a semi-supervised approach

with GIS and deep learning. The proposed method creates datasets quickly and efficiently from

the separation of a set of tests that evaluates the convergence of the model, suitable for any

other remote sensing target. Our dataset contained more than 120 thousand different vehicles,

which are considered the most crucial zones of Brasilia.

Panoptic segmentation is the latest method that provides a complete understanding of the

scene, suppressing the main difficulties of semantic and instance segmentation and obtaining

instance-level predictions for objects while still mapping the background classes. However, no

study used panoptic segmentation in the remote sensing field. One of the main reasons for this

lack of research is the difficulty in building panoptic segmentation datasets due to the quantity

of information required. The panoptic data requires box information and semantic information.

The most conventional is the COCO annotation format which is still very little friendly for other

users. Thus, we have built software that gathers GIS data and transforms it into the COCO

panoptic format. Our methodology requires a few easy steps in any GIS database by providing

some information in the attribute tables. This research created the first panoptic dataset using

remote sensing data with software development and pipeline considering fourteen classes. GIS

data and vectors have been used very long before the rise of deep learning, and our proposed

method enables other researchers to quickly transform databases to the panoptic format and

use panoptic segmentation models such as the Panoptic-FPN. This first study considered aerial

RGB images, and to extend this work to different remote sensing data, we applied the same

methodology in the beach setting using multispectral data. Further research on this topic

includes augmenting this dataset with more samples and making a more thorough comparison

to see the importance of the multispectral bands in the Panoptic-FPN model.

Apart from the difficulty in the data generation, the remote sensing community is more

adapted for using semantic segmentation models than instance and panoptic. The semantic

segmentation models have a more straightforward data preparation process since they only

require the ground truth image. This facility makes the use of semantic segmentation ten

times greater than instance segmentation. We also proposed a box-free solution for obtaining

panoptic predictions. In top-view images, some elements can touch others from the same class

(e.g., cars), but other classes never touch each other (e.g., swimming pools). Therefore, there are

two categories to isolate the objects considering touching objects and non-touching objects. Our

solution extended the vehicles’ methodology and proposed the first sliding window approach

for panoptic predictions. This research can be handy in practical scenarios since the sliding

windows approach is simplified.

Finally, most datasets consider a modal perspective, i.e., the annotations are done only in

the visible parts of the images. The amodal approach to identifying non-visible parts of objects

has not yet been applied in remote sensing. In future studies, we aim to adopt the semantic,

instance, and panoptic segmentation to the amodal perspective.
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