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Abstract. This article presents an ablation study of the Actor-Critic
Architecture for Community Detection (AC2CD) developed upon Deep
Reinforcement Learning (DRL) and Graph Attention Networks (GAT).
In this work, the ablation study method is based on the explainable arti-
ficial intelligence approach, including execution time, memory, and GPU
usage to assess the AC2CD performance. The dataset used in the exper-
iments includes real-world data of an email network between members
of a European research institution (Email-Eu) with 1,005 nodes, 25,571
edges, and 42 communities available on the Stanford Snap Project. The
three hyperparameters used to analyze the architecture execution are
the learn rate, batch size, and n games, varying from 10%, 30%, 50%,
and 70%. With the achieved experimental results, we aim to find a set
of hyperparameters with optimal balance contributing to analysis that
might interest the DRL and GAT community.

Keywords: Ablation study · AC2CD · Hyperparameters.

1 Introduction

Undoubtedly, Machine Learning (ML) is no longer far from the reality of the
Artificial Intelligence (AI) community and the current society. Especially, Rein-
forcement Learning (RL) and Deep Reinforcement Learning (DRL), subfields of
ML area that refer to learning how to make decisions sequentially while being
influenced by the environment become mature in the past years [1]. The RL
goal is to map situations to actions that maximize a numerical reward signal
indicating how well the agent performs tasks. Agents learn through trial and
error, adjusting their actions to achieve the highest possible reward. And DRL
integrates deep learning into RL techniques to train an agent.

Given the advancement in research and the diverse applications of ML, specif-
ically RL, in various fields, including scientific and commercial domains, it be-
comes imperative to understand the impact of selecting specific components and
parameters for developing an ML system, given its complexity. Therefore, a com-
pelling approach to address this issue is to conduct an Ablation Study (AS) [2].
Indeed, the technique of AS has gained significant attention in the field of ML
in recent years, as presented in [3].
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The findings of this study can inform future research on optimizing actor-
critic architectures and potentially lead to the development of automated HPs
tuning techniques. Furthermore, investigating the impact of learning strategies
and other components on the optimization process contributes to the broader
understanding of DRL models and their transformation towards based Explain-
able Artificial Intelligence (XAI) [4].

Therefore, to understand the DRL advancements and the significance of AS
in AI, this article presents an AS approach using an actor-critic architecture
developed upon DRL and Graph Attention Networks (GAT) called AC2CD [5].
The AS aims to analyze and identify the components that significantly influence
the AC2CD algorithm when executing a real-world dataset of an email network
between members of a European research institution (Email-Eu) presented in
Section 4. We evaluate the AC2CD performance by empirically modifying spe-
cific Hyperparameters (HPs) within the algorithm.

This work contribution is to present an AS with the AC2CD architecture,
shedding light on the influential factors that contribute to the algorithm’s per-
formance. The insights gained from this study contribute to the ongoing efforts
to enhance the efficiency and effectiveness of DRL algorithms in real-world ap-
plications in the XAI direction.

The rest of the manuscript presents in Section 2 an overview of concepts,
definitions, and methods used in this work, in Section 3 related work, in Section 4
experimental method adopted in the AS, in Section 5 experimental results with
discussions, and finally, in Section 6 conclusion and directions for future work.

2 Background

The background presents in Section 2.1 an overview of AI concepts focusing on
ML, RL, DRL, and actor-critic applied to the community detection problem
with the AC2CD architecture. Section 2.2 presents the AS technique.

2.1 AI Overview

According to [1], the AI field is vast, encompassing various domains of knowledge
such as engineering, pharmacy, biology, medicine, and many others. Currently,
AI has branched out and formed subfields such as ML, culminating in new as-
pects of understanding such as XAI [6]. Since 1959, [7] defines ML as a field
of study that gives computers the ability to learn without being explicitly pro-
grammed. ML aims to emulate human intelligence through learning based on
the parameters of the environment and context in which the machine is em-
bedded [8]. Traditionally, AI can be divided into three main areas of study:
supervised learning, unsupervised learning, and RL.

RL is defined by [1] as a type of ML that operates through rewards given
by the model to the learner for each correct learning instance. The objective is
to learn mapping situations to actions in order to maximize the accumulated
reward. There are two essential characteristics: trial-and-error search refers to
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the learner’s attempts throughout the algorithm involving trial and error to
subsequently receive a reward upon successful execution; the delayed reward
refers to the consequences of the agent’s learning, which not only determine
the immediate reward but also the next state of the environment and future
rewards [9]. According to [10], DRL is an RL approach combined with deep
learning employed when decisions become too complex for RL alone, and a neural
network is used to estimate states instead of mapping all possible solutions. This
allows for a more manageable solution space in the decision-making process.

With the growth of ML approaches, various domains of knowledge have ben-
efited, however, systems using AI have become complex and difficult to un-
derstand and explain. As a result, a new approach to AI-based systems has
emerged with the goal of providing explainability to human users, highlighting
the strengths and weaknesses of the algorithm, and conveying an understand-
ing of how it will behave in the future. According to [6], XAI enables greater
transparency and interpretability in complex AI systems allowing users’ trust
and permitting humans to make informed decisions while effectively cooperat-
ing with such systems. By providing explanations for algorithmic decisions, XAI
bridges the gap between the black-box nature of traditional AI and the human
need for comprehensibility. This enhances the usability and ethical considera-
tions of AI applications across various domains.

Actor-Critic are temporal difference (TD) learning methods representing the
policy function independent of the value function. The policy function returns
a probability distribution over the actions that agents can take based on the
provided state or the strategy agents employ to achieve a goal. On the other
hand, the value function determines the expected return for an agent starting
in a particular state and continually acting under a specific policy [1, 11]. In
the actor-critic method, the actor is responsible for deciding which action to
take. The critic provides feedback to the actor on the quality of the action
and how it can be adjusted to achieve the goal [12]. In short, the actor-critic
is a hybrid architecture combining value-based and policy-based methods that
help to stabilize the training by reducing the variance. It provides a solution to
reducing the RL algorithm variance, training agents faster and better.

Community Detection is one of the fundamental problems in network anal-
ysis, belonging to the field of complex network studies. According to [13], the
community detection technique is characterized by having a community struc-
ture, where the nodes in the network can be grouped into sets such that each
set of nodes is densely connected. For [14], community detection is the pro-
cess of identifying relevant communities in a network that evolves as in a dy-
namic network. Community detection is key to understanding the structure of
complex networks. Community detection techniques are useful for social media
algorithms to discover people with similar opinions, similar functions, similar
purposes, and common interests vital to scientific inquiry and data analytics.
There are classic methods of community detection using spectral clustering and
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statistical inference. However, such methods are drop out, as deep learning tech-
niques demonstrate an increased capacity to handle high-dimensional graph data
with impressive performance.

Actor-Critic Architecture for Community Detection (AC2CD) is a DRL
architecture with an approach based on GAT, which are novel neural network
architectures that operate on graph-structured data, leveraging masked self-
attention layers [15]. It is employed to find an optimal community structure
in a dynamic social network while also serving as a learning component to select
actions and improve the value function [5]. Experimental work indicates that
AC2CD copes well with dynamic real-world social networks. Nevertheless, the
performance of such complex architecture motivates AS approach to enhance
performance to evaluate the growing size of dynamic social networks.

2.2 Ablation Study

The first idea of AS comes from speech recognition studies of [16]. Although not
a new idea, it is a relatively young AI research theme [4]. AS is defined by [17] as
a scientific method that involves highlighting or removing individual or blocks of
components from a system to prove and understand which aspects of a system
are vital through statistical analysis. Using statistics and analyzing the results
obtained from AS, it is possible to gain insights into the relative importance of
the parameters of architecture or model. With these insights, it is possible to
get improvements in the design, optimization, and interpretability of the system.
AS is a valuable tool for discovering the component’s influence in ML systems.
Through statistical analysis, it is possible to enhance the interpretability of ML
approaches.

The use of AS in XAI systems becomes interesting, considering its comple-
mentarity to understanding AI systems. The AS aims to understand the im-
portance of parameters and code blocks in an architecture or model [4]. This
study enables identifying and quantifying the influence of various components
on an algorithm, model, or architecture, leading to a better understanding of
the underlying mechanisms. This understanding is crucial for building trust and
ensuring transparency in AI systems.

3 Related Work

Related work focusing on AS and DRL using the actor-critic architecture is
presented in this section, with publications from 2018 to 2023. Table 1 presents
the related work outline. Note this work is the only one that includes GAT as
a novel convolution-style neural network architecture that operates on graph-
structured data. GAT is one of the most popular types of graph neural networks
applied to the community detection problem. But although GAT presents a
significant direction for ML research, it has received comparatively low levels of
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Table 1. Related work outline.

Reference AS DRL Actor-Critic GAT

Fan et al. (2023) [18]

Naqvi & Anggorojati (2022) [19]

Ye et al. (2022) [20]

da Silva Filho et al. (2022) [21]

Hessel et al. (2018) [22]

The AC2CD AS

attention, motivating this AS to assess its effectiveness through the AC2CD case
study.

The authors in [18] present a new approach using DRL and actor-critic for
a multi-agent system that analyzes and simulates an environment with multiple
intelligent agents across various domains. Additionally, an AS is conducted to
assess the effectiveness of the innovative components in the proposed method.
The results show that each component of the actor-critic algorithm is indispens-
able for good interception performance, including success rate, good reward, and
interception steps.

In [19], the authors explore the utilization of DRL for congestion control
in cellular network settings. Congestion control uses algorithms responsible for
regulating the data transmission rate in a network to prevent congestion. The
author employs an AS to identify the component that influences the algorithm
that uses the policy gradient method. Using the AS, the authors remove or
modify parameters to analyze the impact of the changes on the algorithm’s
performance. In conclusion, a higher reward for the method presented is not
always related to better networking performance.

In [20], the authors focus on the popularity of multi-agent DRL demand for
large-scale real-world tasks, which are hampered by the low sample efficiency of
the models and the high cost to collect data. Thus, AS is used to investigate, val-
idate and understand the contribution of each component in multi-agent actor-
critic methods. The authors propose PEDMA, a plugin unit for multi-agent DRL
that consists of three techniques: (i) parallel environments to accelerate the data
acquisition; (ii) experience augmentation that utilizes the permutation invari-
ance property of the multi-agent system to reduce the cost of acquiring data;
and (iii) delayed updated policies to improve the data utilization efficiency of
the multi-agent DRL model. Experiments on three multi-agent benchmark tasks
show that the multi-agent actor-critic model trained with PEDMA outperforms
the baselines and state-of-the-art algorithms.

The authors in [21] discuss the learning-to-optimize method for automatically
optimizing algorithms from data instead of using traditional HPs tuning. The
focus is on learning global optimization by DRL. The authors advocate that
learning to optimize is not a well-explored theme. It provides a direct framework
to learn an optimizer able to deal with the exploration-exploitation dilemma
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and that the applied techniques improved stability and generalization. Thus,
the authors conducted AS to investigate the significance of learning strategies
and components concerning this optimization.

In [22], the authors perform an AS to understand the contribution of the
components and parameters in the Deep Q-Network (DQN) algorithm that uti-
lizes DRL to address the challenge of learning in complex and high-dimensional
environments. In each ablation phase, an algorithm component is removed or
changed. Subsequently, the algorithm’s performance is analyzed. The authors
propose Rainbow to combine improvements in DRL. In experiments, the au-
thors examine six extensions to the DQN algorithm and empirically study their
combination. The results show that the combination provides state-of-the-art
performance on the Atari 2600 benchmark considering data efficiency and final
performance.

4 Experimental Method

Figure 1 presents the experimental method with three steps. The first step in-
cludes the dataset and baseline definitions. The dataset used refers to an email
network between members of a European research institution (Email-Eu) which
is available on the Snap Project website1. This dataset is called Email-Eu-Core
and is used as input to AC2CD. The second step includes the HPs variations
during the AC2CD executions (tunning). Finally, in the third step, we use the
AS to observe the importance of the selected HPs. The effect analysis focuses
on the execution time, GPU, and memory usage.

Fig. 1. Experimental method diagram.

The Email-Eu-Core dataset is used in the experiment, which is a directed
network representing an email network between members of a European research
institution. According to [23], the network is formed by an edge (u, v), where u
represents the person who sends at least one email to v. The communities in the
dataset represent the departments in the organization. There are 1, 005 nodes,

1 https://snap.stanford.edu/data/email-Eu-core.html
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25, 571 edges, and 42 communities, with the longest path being seven, and the
average clustering coefficient is 0.3994.

The experiments were performed on a computer composed of a CPU Intel®

Xeon Gold 5220R with 48 cores, 187GB of RAM, and two GPU NVIDIA®

V100S. The operating system used was Ubuntu and all external libraries were
provided by the Conda project.2

4.1 Experimental Definitions

The AS setup is based on I, the set of previously defined percentage variations
(10%, 30%, 50%, 70%). These percentage variation values were based on their
coverage and the comprehensiveness they provided with the conducted tests. We
defined three HPs of H for the experiments (learn rate, batch size, n games).
The learn rate (LR) determines the extent to which an agent learns from each
sample in the environment [24]. The batch size (BS) represents the number of
samples propagated during the training session [25]. Lastly, n games (NG) de-
fines the number of episodes the agent will process.

Definition 1 (Hyperparameters). refer to parameters set before the model
is trained, rather than being estimated from learning as they define the architec-
ture of the model [26]. They are used to configure an ML model and specify the
algorithm to minimize the loss function, for example.

The HPs and their respective values were chosen according to the suggestion
of the author of the AC2CD architecture, considering the previously analyzed
influence of each parameter on the developed algorithm. Therefore, the baseline
values for the execution of the experimental method regarding each HP of H are
40, 40, and 100 for the LR, BS, and NG, respectively.

Definition 2 (Baseline). is the reference for a particular ML study [4]. In our
case, it refers to the set of executions with the default values of the HPs used to
compare the variations of the selected HPs.

After the definition of HPs values for the baseline, the AC2CD architecture
integration with memory, and GPU profiler known as Scalene3 is done, the ex-
ecution of the AS started. This experiment’s objective is to define a set of HPs
values for each HP in H that makes the AC2CD consume less GPU and mem-
ory resources while accomplishing this in the fastest way possible. Scalene is
used since it outperforms other well-known profilers, such as cProfile, and mem-
ory profile4. Additionally, this tool performs profiling at the line level and per
function, providing functions information and specific lines of code responsible
for the program’s execution time, as can be verified in [27].

The execution of baseline values was performed using the percentages from
the set I for each hyperparameter (HP) in the set H. Subsequently, each HP was

2 Conda Project available at https://docs.conda.io/en/latest/
3 https://github.com/plasma-umass/scalene
4 https://pypi.org/project/memory-profiler/
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paired with another HP, with the first parameter fixed and the second parameter
tuned. For example, a fixed LR of 10% and a BS varying from 10% to 70% were
used, followed by a fixed learning rate of 30% and a tuning BS ranging from 10%
to 70%, and so on. Similarly, this process was repeated for the remaining HPs,
ensuring that all HPs were tuned in pairs with each other. This process tries to
capture the interaction among HPs.

Definition 3 (Manual Tuning of HPs). is a technique for adjusting the value
of an HP. We employed this method to vary four percentages outlined in the I
set. We used this approach in conjunction with the conceptualization of AS in
section 2.2 to determine the optimal configuration of GPU, memory, and time
consumption of the three HPs specified in the set H.

5 Results and Discussion

In this section, the GPU usage, memory usage, and runtime execution results
are presented for the AC2CD architecture after executing it with variations in
the percentage of the I set with the Email-Eu-Core dataset. The results of the
baseline execution were: 12.092 GiB for the memory GPU usage, 120.615 GiB
for main memory consumption, and 1h40m24s for runtime execution.

GPU Consumption

Figure 3 presents the GPU usage, considering the relation LR and BS. We ob-
serve that GPU usage is higher when only LR value is varied until 50% of
variation, along with the BS. Additionally, within this same variation, Figure 2
presents the Scalene interface where we can observe that the code segments re-
lated to agent learning and community applications for each node in the dataset
are the ones that consume the most GPU in this configuration.

Fig. 2. GPU rank usage in scalene
tool for LR fixed in 10%

Regarding the variation of LR along with NG, as we can see in Figure 4, the
fixed LR value at 30% and the NG varying in the percentages of I predominantly
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Fig. 3. GPU usage with LR and BS varia-
tion

Fig. 4. GPU usage with LR and NG vari-
ation

consume more GPU compared to other variations. More once, the agent learning
is the code block that consumes the most GPU in all variations.

With the BS fixed along with LR variations as shown in Figure 5, it can
be observed that the fixed BS at 10% and varying LR consumes more GPU in
most of the variations compared to other fixed BS values with LR variations.
Additionally, the GPU consumption remains relatively constant when only BS
is varied.

Regarding the variation of BS and NG shown in Figure 6, the GPU con-
sumption was found to be similar for the cases where both BS and NG are
varied together and when the BS is fixed at 10% with NG varying. Also here,
the agent learning stage is the code block of AC2CD that consumes the most
GPU in the context of these variations.

Fig. 5. GPU usage with BS and LR varia-
tion

Fig. 6. GPU usage with BS and NG vari-
ation
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As shown in Figure 7, the NG fixed at 70% with varying LR exhibited more
consistent results than the other variations. In Figure 8, the GPU consumption
for the NG varying along with BS was similar to the case where NG was fixed
at 70% with varying BS.

Fig. 7. GPU usage with NG and LR vari-
ation

Fig. 8. GPU usage with NG and BS vari-
ation

Memory Consumption

As observed in Figures 9,10,11,12,13,14, the memory consumption does not ex-
hibit as much variation with LR, BS and NG variations compared to the varied
GPU consumption. It is important to note that when LR, BS, and NG are
varied individually, the memory consumption remains constant, as seen in Fig-
ures 9,11,13, respectively. We can attribute this behavior to the fact that most
memory allocation in the AC2CD is used by tensors, preferentially stored in the
GPU.

It can also be observed in figure 9 and 11 that when the BS reaches a variation
of 70% with fixed values, the architecture tends to consume more memory. This
aspect can be attributed to the characteristic of the BS, where a wider BS leads
to faster learning but at the expense of higher memory consumption.

In figures 10 and 13, it is observable that when the NG is fixed at certain
percentage values and the LR is varied, there is a convergence in memory con-
sumption. On the other hand, when the LR is fixed at a certain percentage
value of I, and the NG is varied, the results show outliers but, in general, the
consumption remains relatively constant and lower than the previously men-
tioned scenario. This can be attributed to the direct influence of the LR on
memory usage, similar to the BS.

Runtime Execution

We can observe in Figure 15 that the execution time decreases according to
the percentage variations. On the other hand, in Figure 16, the execution time
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Fig. 9. Memory usage with LR and BS
variation

Fig. 10. Memory usage with LR and NG
variation

Fig. 11. Memory usage with BS and LR
variation

Fig. 12. Memory usage with BS and NG
variation

Fig. 13. Memory usage with NG and LR
variation

Fig. 14. Memory usage with NG and BS
variation

increases, and this happens because the NG parameter determines the number of
episodes that the agent will process during the execution of the architecture. In
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Figure 16, it is possible to see that the execution time does not increase because
when the LR is too big the execution is faster, this fact is a consequence that
we do not need too many iterations to converge to good values.

Fig. 15. Runtime execution with LR and
BS variation

Fig. 16. Runtime execution with LR and
NG variation

The execution time remained relatively constant when both BS and LR varied
together, as well as when BS varied alone, and the other HPs are kept at the
baseline value, as observed in Figure 17. Conversely, the results in Figure 18
demonstrate that when BS was fixed at a certain percentage while NG varied,
the execution time was consistently high. These findings suggest that the choice
of BS and NG can significantly impact the execution time of the algorithm.
Considering the results that consistently showed no decrease in execution time
when NG varied together with BS.

Fig. 17. Runtime execution with BS and
LR variation

Fig. 18. Runtime execution with BS and
NG variation

In Figures 19 and 20, when NG was fixed at 10 and LR and BS were var-
ied, there was a consistent pattern of execution time. This could possibly be
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attributed to the NG parameter having a stronger influence on the execution
time compared to LR and BS. When NG is fixed and the other parameters are
varied, the variation in execution time is not as pronounced, suggesting that the
impact on execution time is primarily driven by the variability of NG. These
findings suggest that optimizing the NG parameter may have a more significant
effect on controlling execution time compared to LR and BS.

Fig. 19. Runtime execution with NG and
LR variation

Fig. 20. Runtime execution with NG and
BS variation

6 Conclusion

The AS application in AC2CD reveals that it is important to carefully consider
the values of LR, BS, and NG in order to optimize GPU and memory con-
sumption as well as runtime execution. Based on the results obtained from our
experiments and analyses, it is evident that LR and BS have shown a strong
influence on GPU and memory usage, while NG has the most significant impact
on execution time. Therefore, the definition of a fixed value of LR, BS, and NG
as 70%, 50%, and 10%, respectively of the baseline value, proved to be a good
option for the HPs configuration of the architecture in terms of GPU usage,
considering the consumption ranged between 12 GiB and 13 GiB. Regarding
memory usage, a fixed value of LR, BS, and NG as 10% of the baseline value,
for each HP, emerged as a favorable configuration in terms of memory usage.
Lastly, in terms of execution time, the combination of a fixed LR and NG at
10% with a fixed BS at 50% proved to be a potential configuration for achieving
more efficient execution.

This work contribution is to present an AS with the AC2CD architecture,
shedding light on the influential factors that contribute to the algorithm’s per-
formance. The insights gained from this study contribute to the ongoing efforts
to enhance the efficiency and effectiveness of DRL algorithms in real-world ap-
plications in the XAI direction.
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In future work, we consider the implementation of AS for the remaining
HPs of the AC2CD architecture with other datasets and explore the potential
for automatic HP tuning. Additionally, investigating the impact of an AS on
the agent’s learning stage within the AC2CD architecture presents a promis-
ing research area for advancing the study of DRL models with a focus on XAI
transformations. This path of research holds the potential for significant ad-
vancements in understanding and interpreting the decision-making processes of
DRL models.
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