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Resumo

Contexto: Como qualquer sistema de software, as linhas de produtos de software evoluem.
Ainda assim, a maioria do estado da arte das técnicas de análise de linha de produto não
considera esse fato e executa a análise do zero em cada etapa da evolução. No caso da
análise de confiabilidade, isso significa que, dependendo do cenário de evolução, os cál-
culos para as partes não afetadas do software são refeitos obtendo os mesmos resultados
parciais. Isso desperdiça recursos computacionais, o que é especialmente problemático
porque essas análises são demoradas, dado o desafio de lidar com o problema de explosão
de estado combinado com a variabilidade inerente às linhas de produtos.

Objetivo: Propomos um método implementado na ferramenta ReAnaE para realizar
análises incrementais de confiabilidade da linha de produtos, em que os resultados da
análise e artefatos são reutilizados sempre que possível ao longo do histórico de evolução
da linha de produtos.

Método: ReAnaE potencializa os esforços de análise anteriores, armazenando etapas
de análise intermediárias e traçando cenários de evolução para primitivas computacionais
da análise que afetam esses artefatos. A análise de impacto resultante facilita a reutilização
consistente de artefatos de análise anteriores e a atualização daqueles afetados pelo cenário
de evolução em questão.

Resultados: ReAnaE tem um desempenho melhor em termos de tempo e espaço do
que a ferramenta ReAna, alcançando melhorias de até 10 vezes para linhas de produtos
maiores, o que resulta em melhorias de até uma ordem de magnitude no número de
variantes que podem ser analisadas.

Conclusão: ReAnaE melhora em relação ao estado da arte em análise de confiabil-
idade de linha de produtos, tornando possível analisar modelos mais complexos de forma
eficiente.

Palavras-chave: Confiabilidade, Linha de produtos de software, Análise Feature-Family-
based, Evolução de software

vi



Abstract

Context: As any software system, software product lines evolve. Still, most state-of-
the-art product-line analysis techniques do not consider this fact and perform analysis
from scratch in each evolution step. In the case of reliability analysis, this means that,
depending on the evolution scenario, computations for unaffected parts of the software are
redone obtaining the same partial results. This wastes computational resources, which
is especially problematic since these analyses are time-consuming, given the challenge
of coping with the state explosion problem compounded with the variability inherent to
product lines.

Objective: We propose a method implemented in the ReAnaE tool to perform
incremental product-line reliability analysis, in which analysis results and artifacts are
reused whenever possible across the evolution history of the product line.

Method: ReAnaE leverages previous analysis efforts by storing intermediate anal-
ysis steps and by tracing evolution scenarios to computational primitives of the analysis
affecting these artifacts. The resulting impact analysis facilitates consistently reusing
previous analysis artifacts and updating the ones affected by the evolution scenario at
hand.

Results: ReAnaE has a better performance in terms of both time and space than
the state-of-the-art tool ReAna, achieving up to 10-fold improvements for larger product
lines, which results in up to an order of magnitude improvement in the number of variants
that can be analyzed.

Conclusion: ReAnaE improves over the state of the art in product-line reliability
analysis, making it possible to efficiently analyze more complex models.

Keywords: Reliability, Software Product Lines, Feature-Family-based Analysis, Software
Evolution
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Chapter 1

Introduction

A software product line is a family of software systems that share a common set of technical
core assets (code, models, etc.), with preplanned extensions and variations to address the
needs of specific customers or markets [2]. To model commonalities and variabilities,
software product line engineering leverages the concept of features—i.e., prominent or
distinctive user-visible aspects, qualities, or characteristics of a software system [3]. So,
different software products (also known as variants) can be generated from the common
set of assets according to a given feature selection. Software product lines are able to
reduce production costs, increase quality, and decrease time-to-market [4], which makes
them well accepted in both industry [5, 6, 7, 8, 9, 10, 11, 12] and academia [2, 4, 13, 14, 15].

The number of possible products of a product line increases exponentially with the
number of available features, making it infeasible to quality-check each product individ-
ually. Thus, ensuring the quality of all variants is time-consuming and error-prone. This
fact has motivated researchers to devise product-line analysis techniques that leverage
existing commonality to avoid redundant effort [16, 1]. These techniques can reduce the
computational effort of analyzing variants that co-exist—sometimes called variability in
space [17].

1.1 Problem Statement
As with other kinds of software systems, product lines evolve, which amounts to vari-
ability in time [17]. Existing product line analysis techniques [18] are mostly unaware
of variability in time. Therefore, whenever a product line evolves (e.g., a new feature is
added), the analysis is performed again over the new set of products. This way, assets
and variants that remain the same in both evolution steps, called revisions, of the product
line are redundantly analyzed.
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In the same fashion, there is already evidence from studies that use evolution-aware
tools for analysis, such as the REVISER tool, which updates the results of static analyses
for a broad class of data flow analysis for each evolution step [19]. REVISER, however,
does not consider variability in space.

There has been an effort to bridge the gap between variability in time and variability
in space, for instance, in the form of higher-order deltas [20] and 175% modeling [21], but
there is still a gap in simultaneously dealing with both dimensions, not only for reliability
analysis techniques.

Problem Statement: The feature-family-based reliability analysis is not
evolution-aware.

1.2 Proposed Solution
To close this gap, we present a strategy to perform evolution-aware reliability analysis
of software product lines. For this purpose, we build on an existing feature-family-based
product-line reliability analysis technique [1]. Our evolution-aware product line analysis
consists of identifying evolved assets, then tracing the impact of each change to interme-
diate analysis steps and corresponding results. The evolved assets are analyzed, and the
results are combined with the ones that were considered unchanged. This consolidation
is performed using the same algorithms that are employed when analyzing the product
line from scratch. Hence, we are able to deal with variability in time using product-line
analysis techniques designed to cope with variability in space [17].

To evaluate our evolution-aware product line analysis, we implement it in the tool
ReAnaE, which is an evolution-aware extension of ReAna [1]. We empirically compare
ReAna and ReAnaE in four different evolution scenarios for six subject product lines.
Our results indicate that, overall, ReAnaE has a better performance in terms of both
time and space, achieving up to 10-fold improvements for larger product lines, and up to
an order of magnitude improvement in the number of variants that can be analyzed.

1.3 Contributions
In summary, our contributions are as follows:

• We present an evolution-aware method for feature-family-based reliability analysis
of product lines.
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• We design and implement the method in the publicly available tool ReAnaE.1

• We report on an empirical study comparing the evolution-aware ReAnaE with a
tool that handles only variability in space.

1.4 Outline
The remainder of this work is organized as follows:

• Chapter 2 lays the fundamental concepts for the research presented.

• Chapter 3 refines the research problem statement, scoping each type of software
product line evolution scenario that was studied.

• Chapter 4 presents the method for evolution-aware product-line reliability analysis
and introduces ReAnaE, an extension of the ReAna tool, capable of applying the
proposed method.

• Chapter 5 presents the empirical study comparing the evolution-aware method with
the original method.

• Finally, Chapter 6 presents the conclusion, the limitations, related work, and future
work.

1https://dspl4c2.github.io/tool
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Chapter 2

Background

This chapter presents fundamental concepts related to our work and important for the
understanding of the problem.

2.1 Software Product Lines
Software product lines provide a form of mass customization by enabling the construction
of software products based on reusable components [4]. By reusing parts to build products,
software product line engineering is able to increase quality while reducing development
costs and production time.

Managing variability is a key principle in software product line engineering. Such
variability is typically represented by features, which are graphically represented by a tree
called feature diagram, which models the relationships and constraints among features [3].
A product line with n features gives rise to up to 2n distinct products. Each product
is generated by choosing a valid feature selection, which respects the relationships and
constraints from the feature model.

Variability is implemented in assets that are associated with features or combinations
thereof. In the annotation-based approach, one uses special annotations throughout the
code to associate snippets with features [4]. It is a simpler technique to be performed
and supported by almost all programming environments (e.g., #ifdef’s in C/C++). The
composition-based approach keeps the code of each feature in separate units, such as
modules or containers, and the final product is created by composing the units, according
to the mapping between features and units. A product line can be defined as a triple
(FM,CK,AB), consisting of a feature model FM , an asset base AB (either composition-
or annotation-based), and a configuration knowledge CK, which relates features to assets
or parts thereof [22].
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Analyzing a product line is a non-trivial task. As each product has different character-
istics, it is important to establish analysis techniques that can analyze the product line as
a whole. Applying traditional software analysis techniques to each individual product is
often infeasible, considering that the number of products might grow exponentially with
the number of features.

2.2 Product-Line Reliability Analysis
Dependability is an integrating concept tha encompasses as attributes availability, reli-
ability, safety, integrity, and maintainability [23]. Some attributes, such as availability,
security, and reliability, are inherently probabilistic. In these cases, the concept of abso-
lute correctness is replaced by bounds on the probability that certain behavior may occur
[24, 23]. We considered software reliability from a user’s perspective. Such user-oriented
reliability of a software program in a given user environment is defined as the probability
that the program will give the correct output with a typical set of input data from that
user environment [25].

To analyze the behavior of product lines, we can use probabilistic models that are
variational [26]. Markov chains are commonly used to specify probabilistic behavior. A
Discrete-Time Markov Chain (DTMC) is a kind of Markov Chain where each transition
take values in a discrete space. We resort to Parametric Markov Chains (PMC), which
extend DTMCs with the capacity to represent variable transition probabilities. The tran-
sition probabilities are defined at modeling time, representing the possible behavior of the
system. These variables can be leveraged to represent product line variability [27, 16].

Product line analyses aim at determining properties that are valid for all products.
Thüm et al. [18] classify product line analyses techniques along three dimensions: product-
based (one analyzes every software product individually), feature-based (all domain arti-
facts implementing a certain feature are analyzed in isolation), and family-based (operates
only on domain artifacts and incorporates the knowledge about valid feature combina-
tions). Product-based strategies perform reliability analysis on products derived from
behavioral diagrams, which is infeasible for a large number of products. In a feature-
based analysis, the artifacts of each feature are analyzed in isolation, and family-based
analysis seeks to analyze the commonality between the features of the entire product line,
incorporating existing knowledge between them. These strategies can be combined dur-
ing the analysis, as in the case of the feature-family-based analysis, where the first step
partially analyzes the features in isolation and then composes the resulting information,
generating the analysis of the entire product line.
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Figure 2.1: Oxygenation Sequence Diagram.

2.3 Feature-Family-Based Reliability Analysis
To tame the exponential blowup of the configuration space, Lanna et al. [1] proposed
a feature-family-based reliability analysis technique, implemented in the ReAna tool.
The method employs a divide-and-conquer strategy in which pre-computed reliabilities of
individual behavioral model fragments associated to features are combined to compute the
reliability of the whole product line in a single pass [1]. To achieve this, ReAna performs
three main steps: transformation, feature-based analysis, and family-based analysis.

As a running example, let us consider the Body Sensor Network Dynamic Product
Line [28]. Feature Oxygenation refers to functionality where a sensor captures vital signal
from a patient, informing the control bus of any signals received. Optionally, data can be
persisted in according to features Sqlite or Memory, depending on the choice when (re-
)configuring the product. Figure 2.1 presents an excerpt of the sequence diagram for the
optional behavior of analyzing oxygenation data. Interactions between components are
annotated with probabilistic values denoting their success rates. Additionally, the diagram
is annotated with variability by means of optional fragments whose guard conditions are
propositional expressions over features, representing presence conditions [29].

6



Figure 2.2: Transformation step.

Transformation step. ReAna first converts the behavioral models and their in-
herent variability shown in Figure 2.1 into a dedicated data structure called Runtime
Dependency Graph (RDG) [1]. The RDG is a representation of the product line, which
contains configurability information with its probabilistic behavior. Figure 2.2 shows the
result of the transformation step. Each RDG node has a corresponding stochastic model
(FDTMC) [27] associated with the behavioral models, and each edge represents depen-
dency between the latter. In the Figure 2.2, the Oxygenation fragment depends on the
SQLite and Memory fragments.

Feature-based step. This step is performed by analyzing the FDTMC of each RDG
node individually, taking a compositional approach according to the existing dependencies
between the nodes. To analyze each FDTMC, we use a parametric model checker, such as
PRISM [30] or PARAM [31]. Then, each RDG node is augmented with the corresponding
reliability expression. Figure 2.3 shows the feature-based step being applied to the RDG
resulting from the transformation step. The SQLite and Memory nodes, which have no
dependents, have their expressions defined only by constants, while the Oxygenation node
has its expression with variables that depend on other nodes.

Family-based step. To carry out the family-based analysis, ReAna lifts the expres-
sions generated per feature by the model checker using a variational data structure, the
Algebraic Decision Diagram (ADD) [32]. This way, when the variables of an expression
resulting from the feature-based step are substituted by an ADD, the reliability of the
entire product line is computed by a bottom-up evaluation of the ADDs along the RDG
guided by the constraints imposed by the feature model [1]. Figure 2.4 shows the resulting
ADD from such evaluation. Dashed lines represent the absence of a feature. The absence

7



Figure 2.3: Feature-based step.

Figure 2.4: Family-based step.

of the Oxygenation feature results in the neutral value for multiplication 1. Choosing
the Sqlite and Memory features leads to a value of 0. Since they are mutually exclusive,
choosing both features would lead to an invalid feature selection. All paths leading to a
non-zero terminal are valid configuration.
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Chapter 3

Problem Statement

State-of-the-art product-line reliability analysis methods do not address evolution. If one
applies such analysis and the model evolves, one has to perform once again all computa-
tional analysis steps. Nevertheless, since some parts of the model might not be affected
by the evolution, and given that some reliability analyses exploit compositionality, there
is an untapped potential for reuse of intermediate analysis results. In this chapter, we
scope this problem with the help of four evolution scenarios.

3.1 Evolution Scenarios
A product line can evolve in various ways, such as adding new features, changing de-
pendencies, or modifying internal behavior [33]. We can decompose complex evolution
scenarios into primitive ones, involving addition, removal, and update of problem and
solution space artifacts as well as the mapping between them [34, 35]. We concentrate on
feature, message, and fragment addition as well as changes in presence conditions, since
these are observed to occur frequently (as identified in previous work that have considered
the evolution of highly configurable systems, such as the Linux kernel [36, 33, 37]). In
what follows, we describe and illustrate these scenarios as well as outline a correspond-
ing change impact analysis in the reliability analysis computed by ReAna, pinpointing
optimization opportunities.

We illustrate these evolution scenarios starting from the sequence diagram in Fig-
ure 2.1. ReAna generates the RDG given in Figure 3.1 (after the transformation step in
Figure 2.2) and the expressions in Figure 2.3 (after the feature-based step).

New feature In the first evolution scenario, we add the new optional File feature and
its corresponding behavioral model fragment to the product line, as shown in Figure 3.3.
When analyzing the product line obtained in this evolution scenario, ReAna first yields

9



Figure 3.1: RDG of feature Oxygenation.

Figure 3.2: RDG with File feature added and the impact on the parent node.

the RDG shown in Figure 3.2, which shows that the new feature modifies Oxygenation’s
node dependencies.

Figure 3.4 illustrates the feature-based analysis step. Comparing it with Figure 2.3,
we see that the reliability expression for Oxygenation changed from Expression 3.1 to
Expression 3.2:

0.9996 · rSqlite · rMemory (3.1)

0.9996 · rSqlite · rMemory · rFile (3.2)

However, the expressions for nodes Sqlite and Memory are not affected. Thus, run-
ning ReAna with the entire evolved product line as input unnecessarily recomputes the
expressions and ADDs related to Sqlite and Memory, which are exactly the same as in
the previous version.

Addition of messages In the second evolution scenario, we add two new messages to
the behavioral diagram of the Oxygenation feature, as shown in Figure 3.5. In this case,
analyzing the evolved model results in an RDG with the same topology as the original,
but with a new model in the Oxygenation node. As a result, the expression generated
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Figure 3.3: Sequence diagram with feature File added.

in the feature-based step remains the same for the Memory and Sqlite nodes, but the
expression for the Oxygenation node changes from Expression 3.3 to Expression 3.4:

0.9996 · rSqlite · rMemory (3.3)

0.9998 · rSqlite · rMemory (3.4)

Applying ReAna after this evolution scenario results not only in computing the new
expression for Oxygenation and evaluating it, but also in unnecessarily recomputing and
evaluating the expressions for Memory and Sqlite.

Addition of a behavioral fragment For the third evolution scenario, consider the
inclusion of a fragment in the behavioral model of the Oxygenation feature. In this case,
there is no addition of a new feature to the product line with its associated behavioral
model, but just a fragment in a behavioral model of an existing feature. There is a change
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Figure 3.4: Feature-based step with new File feature added.

in the RDG topology, however the added node does not represent a new feature. Figure 3.6
shows the behavioral diagram with a new fragment and Figure 3.7 shows the feature-based
step applied in this scenario, yielding the expression 0.9996·rSqlite·rMemory·rNewFrag.
Applying ReAna after this evolution scenario implies unnecessary analysis. There is no
need to recomputing the expression of Sqlite and Memory.

This scenario is similar to the first evolution scenario. However, although the number
of nodes in the RDG increases, the size of the product line configuration space remains
the same. This requires a smaller variational data structure during the family-based step.

Change in presence condition Finally, the fourth evolution scenario changes the
guard condition of a specific fragment in a sequence diagram. This scenario does not
change the RDG topology or the expressions generated by the feature-based step, pre-
serving the original scenario as Figure 2.3. However, the family-based step recomputes the
ADDs of features that had the presence condition changed. Applying ReAna after this
evolution scenario results in unnecessarily computing the expression of all RDG nodes, as
there was no change in the behavioral models of the product line.

Summary In all scenarios, part of the expressions to be computed and evaluated re-
main the same with respect to the original model. The family-based analysis step is
performed based on expressions that are generated along the RDG structure. Figure 3.8
shows a comparison of nodes impacted on the RDG for the different evolution scenarios.
Depending on the modifications generated in the RDG, applying a new feature-family-
based analysis to the entire model entails that a significant part of the calculations have
the same result as the analysis made in previous models. Thus, there is computational
waste resulting from the fact that the analysis is not evolution-aware.
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Figure 3.5: Sequence diagram with new messages added.
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Figure 3.6: Sequence Diagram with new fragment.

Figure 3.7: Feature-based step with new fragment in Oxygenation feature.
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Figure 3.8: Comparison of the impact of each evolution scenario on the RDG.

15



Chapter 4

Method and Supporting Tool

In this chapter, we present a method for performing evolution-aware feature-family-based
reliability analysis and the supporting tool ReAnaE. Initially, Section 4.1 overviews the
method, and Section 4.2 provides its functional description. We also present ReAnaE´s
logical view (Section 4.3), its architecture (Section 4.4), and its implementation (Section
4.5).

Figure 4.1: Evolution-aware feature-family-based reliability analysis of product lines
(adapted from Lanna et al. [1]).
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4.1 Method Overview
Our proposed method avoids redundant computation by reusing reliability analysis results
from previous versions of the product line. It extends the original variability-aware relia-
bility analysis method proposed by Lanna et al. [1] to make it evolution-aware. Similar
to the original, our extended method is a feature-family-based analysis. Figure 4.1 pro-
vides an overview of the method, which adds a preparation step before the three phases
described in Section 2.3.

When a product line is analyzed for the first time, the preparation step is skipped.
In this case, our method works almost exactly as the one by Lanna et al. [1]. The only
difference lies in the last step (step 4 – family-based evaluation), in which the ADDs cor-
responding to the partial reliability values for each RDG node are persistently stored.
Whenever the product line in question evolves, these intermediate results are available
to speed up the analysis of its new revision. The first step (i.e., preparation) of the
evolution-aware reliability analysis consists of loading the results obtained from the pre-
vious revision. After that, the input behavioral models are transformed into an RDG as
they would in the original method (step 2 – transformation). However, before proceeding
to the feature-based evaluation (step 3), we determine which RDG nodes were impacted
by evolution (according to the scenarios and corresponding impact analyses presented in
Section 3.1) and mark them as such. Then, each node in a path from the RDG root to a
marked node is also marked, to account for indirect impact. So, during the feature-based
step, only the FDTMCs corresponding to impacted nodes go through parametric model
checking. This saves analysis time by not computing reliability expressions that would be
unchanged. Finally, the family-based step is performed to recursively compute reliability
ADDs. At this point, the computation for a marked node may require the reliability ADD
for a node that was not impacted by evolution. Whenever that happens, we reuse existing
data (step 1), instead of proceeding recursively. This way, our method saves analysis time
by avoiding unnecessary operation of ADDs.

It is worth noting that, during the family-based step, the technique proposed by Lanna
et al. [1] reuses the reliability ADDs computed for RDG nodes on which more than
one other node depends. Our evolution-aware method leverages the same memoization
strategy to reuse reliability ADDs computed for previous revisions of unchanged nodes.
Thus, the evolution-aware reliability analysis method handles variability in both space
and time using similar mechanisms.

Moreover, the main difference between the two analysis methods is that, in our
evolution-aware method, the actual memoization data structure is pre-populated with
ADDs that were previously persisted. Hence, we may consider that the analytical com-
plexity of our extended method is the same as the one reported by Lanna et al. [1]. This
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means that differences in performance are expected to arise from practical issues, such as
disk access and ADD ordering (cf. Chapter 5).

4.2 Functional Description of the Method
We now present a functional formulation of our method. In the following, we denote
the evolution-aware reliability analysis by function φ′, which takes as input a behavioral
model m in RDG form and an evolution function δ according to the scenarios described
in Chapter 3. It outputs an ADD representing the reliability of the model resulting from
evolving m with δ:

φ′(m, δ) =



φ(m) δ = id

φ(mδ) deps(rm) = ∅

φind
(
rδm,map

(
φ′(·, δ), deps(rm)

)) ∨{message(δ), pc(δ)}
φind

(
rδm, φ(δ) : map

(
φ′(·, δ), deps(rm)

)) ∨ newFeature(δ),

newFragment(δ)


φind

(
rm,map

(
φ′(·, δ), deps(rm)

))
otherwise

We use mδ to denote application of the evolution function δ on model m, and rδm to
denote the root of this model. Function φ is the feature-family-based analysis computed
by ReAna, and φind denotes its node-wise definition, receiving as arguments a behavioral
model at a node and a list of reliability ADDs from each dependency of that node. It then
performs the feature-based step at this node, resulting in expression e, followed by the
family-based step, evaluating e with the list of ADDs. We overload φ(δ) to denote φ(m′)
if δ adds a new fragment or feature m′. For conciseness, we denote a lambda abstraction
λs → f(s) by f(·). Moreover, colons are used to denote prepending an element as the
head of a list—that is, a : b denotes the list where a is the head and b is the tail.

The case-wise definition of φ′ examines the evolution function in relation to the node
under application. The two base cases happen when the evolution is the identity function
or the current node has no dependencies. The next two cases examine whether the
evolution applies one of the four evolution scenarios to the current node. Finally, we
examine the case where the evolution applies to some node that is not the current one,
in which the function is simply mapped to each of the dependencies.
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ReAnaE’s soundness is stated as follows. For every behavioral modelm and evolution
function δ, we have that φ′(m, δ) = φ(mδ). In other words, ReAnaE and ReAna yield
the same result. The intuition behind this fact is that φ′ unfolds φ along the evolved
sub-models of m (cf. cases 3–6 of the definition of φ′) until it can reuse previous analyses,
eventually bootstrapping from φ (cases 1 and 2 of the definition of φ′). The proof follows
by induction on the well-founded relation induced by m and case analysis on δ. This
result is contingent on the correctness of the impact analysis discussed in Chapter 3.

4.3 ReAnaE´s Logical View
ReAnaE performs evolution-aware feature-family-based reliability analysis of software
product lines from feature and UML behavioral models. ReAnaE takes as input a
UML activity diagram representing the coarse-grained behavior, a set of UML sequence
diagrams, representing the fine-grained behavioral of each activity, and a feature model
described in conjunctive normal form (CNF). The behavioral models used were created by
SPL-Generator tool1 and the conjunctive normal form by FeatureIDE [38]. The behavioral
models can also be created in MagicDraw tool2. As output, the tool computes the ADD
representing the reliability of all products in the product line and prints the reliability of
all possible configurations.

Listing 4.1 shows an excerpt of a behavioral model used as input to the tool. The model
is in XML and contains information about the activity diagram (Lines 4-18), sequence
diagram (Lines 24-34), messages (Lines 26-30), and guard conditions (Lines 25 and 32)
present in the product line.

Listing 4.1: Excerpt from a behavioral model of BSN product line
1 <SplBehavioralModel name=" translatedBSN ">
2 <ActivityDiagram name=" AD_SPL_0 ">
3 <Elements >
4 <ActivityDiagramElement name="Start node" type=" StartNode "/>
5 <ActivityDiagramElement name=" Capture " type=" Activity ">
6 <RepresentedBy seqDiagName =" Capture "/>
7 </ ActivityDiagramElement >
8 <ActivityDiagramElement name="End node" type=" EndNode "/>
9 <ActivityDiagramElement name=" Reconfiguration " type="

Activity ">
10 <RepresentedBy seqDiagName =" Reconfiguration "/>
11 </ ActivityDiagramElement >

1https://github.com/SPLMC/spl-generator/
2https://www.3ds.com/products-services/catia/products/no-magic/magicdraw/
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12 <ActivityDiagramElement name=" DecisionNode_0 " type="
DecisionNode "/>

13 <ActivityDiagramElement name=" QoSChange " type=" Activity ">
14 <RepresentedBy seqDiagName =" QoSChange "/>
15 </ ActivityDiagramElement >
16 <ActivityDiagramElement name=" Situation " type=" Activity ">
17 <RepresentedBy seqDiagName =" Situation "/>
18 </ ActivityDiagramElement >
19 </ Elements >
20 <Transitions >
21 ...
22 </ Transitions >
23 </ ActivityDiagram >
24 <SequenceDiagrams >
25 <SequenceDiagram guard="true" name=" QoSChange ">
26 <Message name="" probability ="0.999" source ="Mock lifeline "

target =" Lifeline_0 " type=" asynchronous "/>
27 <Message name=" getQoSRequired " probability ="0.999" source ="

Mock lifeline " target =" Lifeline_0 " type=" synchronous "/>
28 <Message name=" returnQoSRequired " probability ="0.999" source

="Mock lifeline " target =" Lifeline_0 " type=" synchronous "/>
29 <Message name=" notifyChange " probability ="0.999" source ="

Mock lifeline " target =" Lifeline_0 " type=" synchronous "/>
30 <Message name=" replyNotify " probability ="0.999" source ="Mock

lifeline " target =" Lifeline_0 " type=" synchronous "/>
31 </ SequenceDiagram >
32 <SequenceDiagram guard=" Memory " name="n6">
33 ...
34 </ SequenceDiagram >
35 ...
36 ...

The other input to ReAnaE is the feature model in CNF. Figure 4.2 shows the
input for BSN. In this way, it is possible to determine during the analysis which product
configurations are valid for the analyzed product line.

Figure 4.2: CNF input for BSN.
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The output is an ADD representing the reliability of the entire product line, and the
list of all possible product configurations and their reliability values.
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Figure 4.3 shows the ADD of the Capture fragment, which represents an intermediate
calculation performed during the BSN analysis. The ADD is topologically ordered and
going from the root to the leaf choosing the presence (continuous line) or not (dotted line)
of the fragment determines the reliability of the chosen configuration.

To carry out the evolution-aware analysis, ReAna also needs to perform the reading
and persistence of the ADD. Data reading is performed if the analysis is an evolved model.
In this way, at the beginning of the ReAnaE execution, if the model under analysis is
an evolved model, the intermediate ADD used in previous analyses are read from disk.
Data persistence is performed at the end of the ReAnaE execution. In this way, all ADD
resulting from the analysis are stored on disk.

4.4 ReAnaE´s Architecture
As an extension of ReAna, three new components were added to ReAnaE, for it to
be able to address variability in time: data reading, data persistence, and new feature-
family-based analysis.

Figure 4.4: UML Package Diagram of ReAnaE.

The handling of ADD is performed by the CUDD library, present at ReAna. To perform
reading and persistence, methods from the CUDD library are also used. The new feature-
family-based analysis implements the IReliabilityAnalysisResults interface present
in Strategies package of ReAna. During evolution-aware analysis, all RDG nodes that
were impacted in the evolution step are first identified. For this, from the list of fragments
that have undergone modifications, a depth-first search in RDG is performed to determine
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all nodes that depend on them, as they will also need to be recalculated as impacted nodes.
For those who were not impacted, the corresponding ADDs read from disk is reused. For
impacted nodes, a new analysis will be computed. Figure 4.4 shows ReAnaE´s packet
diagram. In dashed line are the new modules that were added in ReAna so that it was
possible to perform the evolution-aware analysis.

ReAna implements different analysis strategies for product lines. In this work, we
used the feature-family-based analysis because it obtained the best results, according
to the study by Lanna et. al [1]. The feature-family-based analysis implements the
IReliabilityAnalysisResults interface. To implement the method proposed by this
research in Section 4.1, it was necessary to implement the evolution-aware part. This
analysis depends on the ADD Reading and Persistence package, which had to be added
to ReAna, as shown in Figure 4.4. In addition, in order to develop it, we used the
DDDMP package native from CUDD to manipulate ADD.

Figure 4.5: UML Class Diagram of ReAnaE.

Figure 4.5 shows a class diagram of the main elements introduced in ReAnaE to
allow the construction of the evolution-aware method. We highlighted in green the main
functions that needed to be created in the tool. The CommandLineInterface contains
ReAnaE’s main class. It initializes the instrumentations for key analysis metrics, time
and memory collection. From it, the Analyzer class is started, which is mainly respon-
sible for organizing all the analyses to be done. It orchestrates the analysis tasks and
initializes the main components used: jadd, created to manage and manipulate ADD
through the CUDD library; featureModel, which has all the ADD variables that will
be used; expressionSolver, which encapsulates the model checker used in the analy-
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sis and is responsible for solving the expression resulting from it. The Analyzer class
has been extended to manage evolution-aware feature-family-based analysis as well. The
CommandLineInterface calls two of the main methods created, responsible for reading
the persisted analysis data and for persisting the analysis results. For this, the JADD
class, responsible for the ADD operations, needed to be expanded, adding DDDMP pack-
age methods to perform the read and dump operations of the ADD structure. The
FeatureFamilyBasedAnalyzer class is responsible for orchestrating the feature-family-
based analysis. It has been extended to support evolution-aware analysis as well. When
the analysis deals with an evolved model, the evaluateReliabilityWithEvolution method
will be responsible for performing the analysis. In addition, it is responsible for checking
all nodes impacted by evolution, through the evolution primitives applied in the models.

4.5 ReAnaE´s Implementation
ReAnaE was developed in Java and the source code is open and publicly available3. To
be able to perform the evolution-aware analysis, the key extensions to ReAna are related
to reading, analysis and persistence of ADDs.

Listing 4.2: Method to read a persisted ADD
1 public ADD readADDpreviousAnalysis ( String fileName ) {
2 Pointer <?> input = CUtils .fopen(fileName , CUtils . ACCESS_READ );
3

4 IntValuedEnum < BigcuddLibrary . Dddmp_VarMatchType > varMatchMode =
BigcuddLibrary . Dddmp_VarMatchType . DDDMP_VAR_MATCHIDS ;

5 int mode = BigcuddLibrary . DDDMP_MODE_TEXT ;
6 Pointer <Byte > file = Pointer . pointerToCString ( fileName );
7 Pointer <DdNode > node = BigcuddLibrary . Dddmp_cuddAddLoad (dd ,
8 varMatchMode ,
9 null ,

10 null ,
11 null ,
12 mode ,
13 file ,
14 input);
15

16 CUtils . fclose (input);
17 ADD retrievedADD = new ADD(dd , node , variableStore );
18 return retrievedADD ;
19 }

3https://dspl4c2.github.io/tool
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Listing 4.2 shows the method created to read a ADD persisted in previous analyses.
This method is called at the beginning of ReAnaE´s execution, if it is an evolved model.
To read the persisted data, we use DDDMP, a native package from the CUDD library.
To call DDDMP (Lines 7-14), we pass as parameters: variable dd, the pointer responsible
for managing the library (Line 7); variables varMatchMode and mode, the type flags used
(Lines 8 and 12); variable file, the persisted ADD file name (Line 13); and variable
input, the type of access (Line 14). With the returned file, we call the original ReAna
function responsible for creating an ADD (Line 17).

Listing 4.3: Main method of ReAnaE’s evolution-aware analysis
1 public IReliabilityAnalysisResults evaluateReliabilityWithEvolution (

RDGNode node , ConcurrencyStrategy concurrencyStrategy , String
idChangedFragment , Map <String , ADD > previousAnalysis ) throws
CyclicRdgException {

2

3 List <RDGNode > dependencies = getImpactedNodesDFS (node ,
idChangedFragment , previousAnalysis );

4

5 // Feature -based analysis
6 List <Component <String >> expressions = firstPhase .

getReliabilityExpressions ( dependencies , concurrencyStrategy );
7

8 // Lift expressions to ADD operators
9 List <Component <Expression <ADD >>> liftedExpressions = expressions

. stream ()
10 .map( helper :: lift)
11 . collect ( Collectors . toList ());
12

13 // Family -based analysis
14 ADD reliability = newSolveFromMany ( liftedExpressions ,

previousAnalysis );
15

16 return new ADDReliabilityResults ( result );
17 }

Listing 4.3 shows the evolution-aware feature-family-based method. This method is
called every time the analyzed model has already been analyzed before. Otherwise, Re-
Ana’s feature-family-based analysis is called.

The first step of the analysis is to compute the nodes impacted by evolution (Line
3). according to the evolution scenarios described in Chapter 3. The method makes an
depth-first search of the RDG and finds all nodes that were impacted by the evolution
scenario and return them. Following our method proposed in Section 4.1, the analysis will
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only be computed on the impacted nodes. For the rest, we use the calculations performed
in previous analyzes that were persisted on disk, retrieved as seen in Listing 4.2.

For the feature-based step (Line 6), it was not necessary to change the ReAna analysis
method. The difference is that, instead of calculating the expressions of all nodes, only
the list of nodes that were impacted by evolution are passed as an argument. In this
step, using PARAM, a parametric model checking analysis of the reliability present in the
FDTMC of each node is performed.

After generating the expressions in the feature-based step, the method lifts each ex-
pression to perform arithmetic operations over variational data (Line 9), in this case the
chosen structure is the ADD.

Finally, the family-based step (Line 14) computes an ADD representation of node
reliability, evaluating each of the reliability expressions. However, for evolution-aware
analysis, the reliability expressions will only be those of the impacted nodes.

Listing 4.4: Method to persist the ADD
1 public void dumpADD ( String functionName , ADD add , String fileName ) {
2 Pointer <?> output = CUtils .fopen(fileName , CUtils . ACCESS_WRITE );
3

4 Pointer <Byte > ddname ;
5 if ( functionName == null || functionName . isEmpty ())
6 ddname = null;
7 else
8 ddname = Pointer . pointerToCString ( functionName );
9

10 String [] orderedVariableNames = variableStore . getOrderedNames ();
11 BigcuddLibrary . Dddmp_cuddAddStore (dd ,
12 ddname ,
13 add. getUnderlyingNode (),
14 Pointer . pointerToCStrings ( orderedVariableNames ),
15 null ,
16 BigcuddLibrary . DDDMP_MODE_TEXT ,
17 BigcuddLibrary . Dddmp_VarInfoType . DDDMP_VARIDS ,
18 Pointer . pointerToCString ( fileName ),
19 output );
20 CUtils . fclose ( output );
21 }

At the end of this analysis, we have an ADD with reliability values representing the
entire product line, which was calculated taking advantage previous analyzes. The ADD
of existing fragments will be persisted before the completion of the ReAnaE execution,
so that they can be used in future evolutions of the models. Listing 4.4 shows the code
to perform the persistence of the ADD generated during the analysis. The core of the

27



method is the call to the CUDD library to dump the ADD (Lines 11-19). In addition to the
flags requested by the function (Lines 16-17), the function receives the ADD information
that is persisted: variable ddname (Line 8) contains the ADD name; variable add is the
contents of the ADD; variable orderVariableNames (Line 10) is an array with the name
of all ADD variables; and variable fileName is the name of the text that will be written.
After executing the method, the ADD will be persisted in text mode and can be read in
a new analysis.
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Chapter 5

Evaluation

In this chapter, we describe an experiment conducted to assess the proposed evolution-
aware product-line reliability analysis implemented by ReAnaE. First, Section 5.1 defines
the experiment. Section 5.2 presents its planning. Section 5.3 then reports results and
performs an analysis. Section 5.4 discusses the findings resulting from the results, and
Section 5.5 discusses threats to validity. The replication package of the experiment is
publicly available.1

5.1 Definition
We use the Goal Question Metric (GQM) method [39] to structure the experiment. Ta-
ble 5.1 synthesizes the goal of our investigation.

Table 5.1: GQM goal

Purpose Assess
Issue Correctness and Performance
Object Evolution-aware product-line reliability analysis
Viewpoint Software engineer
Context Evolving model-based software product lines

To achieve the goal, considering the state-of-the-art evidence on reliability analysis,
we choose as a baseline the analysis implemented by ReAna [1]. We address performance
in terms of time and space. The corresponding questions and metrics are as follows:

• Question 1: Does the proposed evolution-aware method yield the same results as
the analysis implemented by ReAna ?

1https://dspl4c2.github.io/empirical
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– Metric M1.1: Raw difference between the reliability values for each configu-
ration in both analyses.

• Question 2: Is the proposed evolution-aware technique faster than the analysis
implemented by ReAna?

– Metric M2.1: Execution time of the analysis.

• Question 3: Does the proposed evolution-aware technique require less space than
the analysis implemented by ReAna?

– Metric M3.1: Memory consumption of the analysis.

Correctness (Question 1) was empirically assessed by comparing the output of both
approaches for a random subset of configurations of a given evolved version of a product
line. Each valid configuration given as input yields a value in the closed Real interval
[0,1], denoting the reliability of the corresponding product. Metric M1.1 is calculated by
comparing the output of the evolution-aware feature-family reliability analysis and the
output of its non-evolution-aware counterpart. A formal proof of correctness is outside
the scope of this work and is regarded as future work.

To address Questions 2 and 3, we measured the time and space required by each
approach. For the time measure (M2.1), we considered the wall-clock time spent during
analysis, including the time to persist the ADD at the end. Thus, for the evolution-aware
analysis, the time taken to read the data persisted in the previous evolution and the time
spent to persist the data after the current analysis is included in the total analysis time.
For the space measure (M3.1), we considered the peak memory usage during the analysis.

5.2 Planning

5.2.1 Hypothesis Formulation

The dependent variables of our experiment are analysis time and space consumption. The
independent variable is the analysis method, one treatment being the proposed evolution-
aware method implemented by ReAnaE and the other the method implemented by
ReAna. To address our research questions, we define two hypotheses:

Null Hypothesis 1 (H0): There is no difference between ReAnaE’s and ReAna’s
reliability value.

Alternative Hypothesis 1 (H1): ReAnaE yields a different reliability value than
ReAna.
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Null Hypothesis 2 (H0): There is no difference between ReAnaE’s and ReAna’s
analysis time.

Alternative Hypothesis 2 (H1): ReAnaE’s analysis time is different than Re-
Ana’s.

Null Hypothesis 3 (H0): There is no difference between ReAnaE’s and ReAna’s
memory consumption.

Alternative Hypothesis 3 (H1): ReAnaE’s memory consumption is different than
ReAna’s.

5.2.2 Subject System Selection

We analyze six different product lines and 20 evolved versions thereof according to four
evolution scenarios (Chapter 3). We have selected these product lines because previous
studies have analyzed them [27, 40, 1], their variability models were available, and they
have distinct and comprehensive characteristics, both in behavior and in the number of
existing features. In addition, we take advantage of the description of the feature and
behavioral models available in the work by [1]. Table 5.2 shows the characteristics of
each product line model in terms of the number of features, products, and behavioral
fragments.

Table 5.2: Initial version of product lines used for empirical evaluation.

# Features # Products # Behavioral fragments
EMail [41] 10 40 15
MinePump [42] 11 128 28
BSN [28] 16 298 19
Lift [43] 10 512 11
InterCloud [44] 54 110592 56
TankWar [41] 144 4.21×1018 88

The TankWar and InterCloud product lines have a greater number of features and
product configurations. These are two lines that require greater computational effort for
analysis. The other product lines, although with a similar amount of existing features,
have very different structures. The BSN product lines have mandatory, or, optional, and
alternative features, as well as greater depth in the feature model structure. The Lift
product line has only optional features, all of which are children of the root. The Email
line, on the other hand, has only one mandatory feature and the other optional children
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of the root. Finally, the MinePump product line has mandatory, optional, and alternative
features.

For this work, the evolution of the software product line occurs in the models. We
stress each evolution scenario to observe the behavior of the proposed analysis method.
As our behavioral models are composed of features, fragments, messages and presence
conditions, we chose each one of them to be evolved, in order to handle as much as
possible real scenarios. For each of the original six subject product lines, we have applied
different evolution scenarios (cf. Chapter 3):

1. In Evolution Scenario 1, each one of the 20 evolution steps adds an optional feature
and a corresponding behavioral fragment. This way, each evolution step doubles
the size of the product line’s configuration space.

2. Evolution Scenario 2 adds messages to an existing behavioral fragment such that,
at each evolution step, 10 messages with random success probabilities are added
to a fragment belonging to a node below the root of the RDG. The source and
destination lifelines are also chosen at random.

3. Evolution Scenario 3 adds a fragment with a guard condition equal to True to a pre-
existing behavioral fragment at each evolution step. The added fragment contains 10
messages, each one with random success probabilities. The source and destination
lifelines of the messages in this fragment were also chosen randomly.

4. Lastly, Evolution Scenario 4 evolves the given product line by changing the presence
condition of a behavioral fragment. It changes the fragment’s presence condition
by either strengthening it (increasing conjunction of feature atoms) or weakening it
(increasing disjunction of feature atoms).

5.2.3 Experiment Design and Analysis Procedures

We applied each treatment 10 times to each subject system (original version of the product
line and 20 corresponding evolved versions) in all evolution scenarios. For each version,
we analyzed the results using statistical tests to address any biased results or possible
outliers. We applied standard tests for equality of the pairs of samples. If both samples
were normally distributed with equal variance, we applied a t-test; if they had different
variance, we applied Welch’s t-test. Whenever one of the data sets, at least, was not
normally distributed, we applied Mann-Whitney U test. The significance level for all
tests was 0.01.
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5.2.4 Instrumentation and Operation

To obtain the analysis time data, we used the System.nanoTime() method from the Java
standard library, reporting the times before and after the execution of the treatments.
This way, we are able to determine the total analysis time as the difference between the
time at the end of the run and the time at the start of the run. Memory usage was
collected by the CUDD 2.5.1 library2 during ADD manipulation. This value represents
the peak RAM used when performing the analysis. The diff command is used to verify
the correctness of the executions, by comparing the reliability values of the analyzes.

In terms of preparation, we selected 21 behavioral models and corresponding feature
models from each product line (representing the starting state and each of the 20 successive
evolutions). These artifacts were used as input for each of the treatments, which were
packaged into executable .jar files. Shell scripts carried out execution according to the
experiment design. After each run, data regarding time and memory consumption were
persisted on disk. Before starting the analysis of another product line, the machine was
restarted to avoid any bias related to the use of swap memory. In cases where some kind
of error occurred on the machine, causing a significant increase in execution time, we
repeated the analysis for the 2 treatments, to ensure sufficient precision in the results.
We ran the experiment on an Intel Core i7-8565U 1.80GHz machine with 16 GB of RAM
and 2 GB of swap memory, running 64-bit Ubuntu 18.04.

5.3 Results and Analysis
In Section 5.3.1, we present the correctness assessment of the proposed analysis method.
In Sections 5.3.2 to 5.3.5, we present the performance results of each of the proposed
evolution scenarios. All analysis data are available in the Appendix A.

5.3.1 Correctness

In principle, Question 1 could be answered by comparing the reliability result of all
possible feature configurations for all models. However, for Evolution Scenario 1, as the
quantity of products in each product line grows exponentially, it is infeasible to compare
all outputs generated by the two treatments. Thus, M1.1 metric was calculated in two
steps. The first one was to compare corresponding leaf nodes of the ADDs resulting from
the reliability analyses, and check whether the necessary condition that their reliability
values matched, which they did. Second, we randomly selected a sample of 50 feature
configurations and compared the reliability values. This was done for all models, and

2https://davidkebo.com/source/cudd_versions/cudd-2.5.1.tar.gz
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the result was the same for the evolution-aware technique and its non-evolution-aware
counterpart. The results generated and the script for reproducing the analysis can be
found in the repository3.

For Evolution Scenarios 2, 3 and 4, except for TankWar product line, it was possible
to compare the reliability values for all possible generated products. The result of the
comparison between the evolution-aware treatment and the non-evolution-aware counter-
part was the same in all cases, confirming that the proposed method obtained indeed
the same results as the original method. All analysis data are available in Appendix A
(A.1 through A.6).

5.3.2 Evolution Scenario 1

Null Hypotheses 2 and 3 were rejected for most models. The statistical tests rejected Null
Hypothesis 2 in 84.31% of the cases, and in 75.58% of these, the evolution-aware analysis
was faster. Figure 5.1 shows the result of the time consumption to analyze the original
and evolved models of Lift, Email, BSN, MinePump, InterCloud, and TankWar. The
horizontal axis represents the evolution of each model, while the vertical axis represents
the time consumption in seconds to perform the model analysis, on a logarithmic scale.

With respect to memory consumption, Null Hypothesis 3 was rejected in 97,05% of
the tests, and in 86.86% of these, the evolution-aware analysis consumed less memory.
Figure 5.2 shows the result of the memory consumption to analyze the same product
lines. The horizontal axis represents the evolution of each model, while the vertical axis
represents the memory consumption in megabytes to perform the model analysis, on the
logarithmic scale.

In this evolution scenario, analysis time and memory consumption of both treatments
exhibited exponential growth on the evolved models, which is related to doubling the
configuration space at each evolution step. Still, the evolution-aware treatment was able
to analyze more evolution steps in the Email, InterCloud, MinePump, and TankWar than
the original treatment. In addition, there was a substantial reduction in analysis time
in models with a greater number of features, which are the InterCloud (54 features) and
TankWar (144 features) product lines.

Findings for Evolution Scenario 1: The evolution-aware technique was more
efficient in the analysis time in 63.72% of the analysis runs and in the memory

consumption in 84.30% of the analysis runs.

3htttp://reanaEresults
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Figure 5.1: Analysis time for Evolution Scenario 1.

5.3.3 Evolution Scenario 2

Null Hypotheses 2 and 3 were rejected for most models. The statistical tests rejected Null
Hypothesis 2 in 98.33% of the cases, and in 100% of these, the evolution-aware analysis
was faster than its counterpart. Figure 5.3 shows the result of the time consumption to
analyze the subject systems. The horizontal axis represents the evolution of each model,
whereas the vertical axis represents the time consumption in seconds to perform the model
analysis, on a linear scale.

Null Hypothesis 3 was rejected in 100% of the cases, and in 100% of these the evolution-
aware treatment consumed less memory in the analysis than its counterpart. Figure 5.4
shows the result of the memory consumption to analyze the subject systems. The hor-
izontal axis represents the evolution of each model, whereas the vertical axis represents
the memory consumption in megabytes to perform the model analysis, on the linear scale.

In contrast to Evolution Scenario 1, Evolution Scenario 2 maintained a linear growth
in the analysis time for the smaller product lines and an almost constant analysis time for
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Figure 5.2: Memory consumption for Evolution Scenario 1.

the TankWar product line. In most models, the analysis time was below 1 second, except
for TankWar, whose analysis can take over a minute. As this scenario does not increase
the number of features or the number of products, the most pronounced results appears
in product lines that were originally large.

Findings for Evolution Scenario 2: The evolution-aware technique was more
efficient with respect to time and memory consumption in 98.33% and 100% of

the analyses, respectively.

5.3.4 Evolution Scenario 3

Null Hypotheses 2 and 3 were rejected in most models. The statistical tests rejected Null
Hypothesis 2 in 90% of the cases, and in 100% of these, the evolution-aware analysis was
faster than its counterpart (cf. Figure 5.5). Null Hypothesis 3 was rejected in 99.16% of
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Figure 5.3: Analysis time for Evolution Scenario 2.

the cases, and in 100% of these the evolution-aware consumed less memory in the analysis
than its counterpart (cf. Figure 5.6).

This evolution scenario also shows a linear growth in the analysis time for the smaller
product lines and an almost constant analysis time for the TankWar product line. As
in Evolution Scenario 2, in most models, the analysis time was below 1 second, taking
minutes only in TankWar. As this scenario also does not increase the number of features
or the number of products, the most pronounced results appears in product lines that
were originally large.

Findings for Evolution Scenario 3: The evolution-aware technique was more
efficient with respect to time and memory consumption in 90% and 99.16% of the

analyzes, respectively.
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Figure 5.4: Memory consumption for Evolution Scenario 2.

5.3.5 Evolution Scenario 4

After running the analyses on both scenarios, Null Hypotheses 2 and 3 were rejected in
most models, which we explain next.

Strengthening scenario: The statistical tests rejected Null Hypothesis 2 in 67.94%
of the cases, and in 100% of these, the evolution-aware analysis was faster than its coun-
terpart (cf. Figure 5.7). Null Hypothesis 3 was rejected in 100% of the cases, and in 100%
of these the evolution-aware consumed less memory in the analysis than its counterpart
(cf. Figure 5.8).

Weakening scenario: The statistical tests rejected the Null Hypothesis 2 in 64.10%
of the cases, and in 100% of these, the evolution-aware analysis was faster than its coun-
terpart (cf. Figure 5.9). Null Hypothesis 3 was rejected in 100% of the cases, and in 100%
of these the evolution-aware consumed less memory in the analysis than its counterpart
(cf. Figure 5.10).
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Figure 5.5: Analysis time for Evolution Scenario 3.

Findings for Evolution Scenario 4: The evolution-aware technique was more
efficient with respect to time in 67.94% of the strengthening scenarios analyzed

and in 64.10% of the weakening scenarios analyzed. Regarding memory
consumption, the evolution-aware technique was more efficient in 100% of the

cases.

5.4 Discussion
Our empirical results show that, in most analysis scenarios, the evolution-aware method
was more efficient than the original method, both in terms of execution time and memory
consumption. To better understand the results, we further instrumented the source code
to highlight additional timing information, such as disk access and time spent in the
feature-based and family-based steps. We found that the computational gain of ReAnaE
arises from both the feature-based and family-based steps. In the product lines with larger
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Figure 5.6: Memory consumption for Evolution Scenario 3.

configuration spaces, most of the analysis time savings occurred in the family-based step.
In the product lines with smaller configuration spaces, most of the analysis time savings
occurred in the feature-based step. In situations where ReAna outperformed ReAnaE,
the difference can be explained by the additional time needed to store and retrieve ADDs,
considering that the time in the feature-based and family-based steps were similar.

Table 5.3 provides a comparison of the analysis time spent on the latest evolved model
for each product line and all evolution scenarios. This way, it is possible to understand the
cause of the difference in the time spent in the feature-based and family-based steps. For
each model, the table shows (a) the total number of nodes in the RDG, (b) the number
of nodes impacted by the evolution step, (c) the time spent in the feature-based step in
both treatments, and (d) the time spent in the family-based step in both treatments.

In Evolution Scenario 1, where an optional feature is added in each evolution step,
the product line configuration space doubles with each evolution, which makes ADD op-
erations progressively slower. Consequently, the family-based step dominates analysis
time, as it is apparent in the last two columns of Table 5.3. Since evolution-aware anal-
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Figure 5.7: Analysis time for Evolution Scenario 4 with strengthening.

ysis performs the family-based step only on impacted nodes, the overall analysis time
decreases.

For the remaining evolution scenarios, no features are added. In these scenarios, the
biggest gains in analysis time were observed in the feature-based step. As the product
lines originally had a small configuration space, except for TankWar, the time spent in
the family-based step to calculate the ADD was in the order of milliseconds, and so forth
for the successive evolutions. In this case, the evolution-aware treatment reduced most
of the analysis time in the feature-based step, by avoiding generating the parametric
reliability expression for all nodes, taking advantage of previously performed calculations.
This represents the biggest savings in analysis time, as we can see by comparing columns
ReAna’s feature-based step and ReAnaE’s feature-based step of Table 5.3. In the case of
TankWar, the saving was greater in the family-based step due to its larger configuration
space.

In the majority of cases, ReAnaE achieved significantly better results, both in terms
of analysis time and memory consumption, which shows the potential of the evolution-
aware method. The extent of the gains of using the method depends on the product
line: with larger configuration spaces, it is possible to obtain greater benefits, as we have
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Figure 5.8: Memory consumption for Evolution Scenario 4 with strengthening.

observed for InterCloud and TankWar.

5.5 Threats to Validity
A possible threat to internal validity would be the fact that we do not account for the time
spent in some relevant tasks of the analysis method, such as reading the previous results
and rebuilding the RDG structure, which could lead to an underestimated time penalty.
To mitigate this threat, both treatments were instrumented such that the timer starts
right at the beginning of the analysis and stops just after the end of persistence of the
ADDs generated during the analysis. This instrumentation captures the characteristics
of each treatment during the whole analysis method.

The way in which the product lines evolved might threaten internal validity, since all
evolution steps follow the same pattern of evolving an RDG node just below the root
node. We followed this pattern to focus on the evolution effects to the analysis method
and to isolate the results from interference of other factors such as RDG node depth level
and the reuse of results by more than one RDG node (reuse sharing). However, since the

42



0 2 4 6 8 10

10−0.45

10−0.4

10−0.35

10−0.3

Evolution step

T
im

e
(s
)

Lift

ReAna
ReAnaE

0 2 4 6 8 10

10−0.4

10−0.3

Evolution step

T
im

e
(s
)

Email

ReAna
ReAnaE

0 2 4 6 8 10 12

10−0.4

10−0.3

Evolution step

T
im

e
(s
)

BSN

ReAna
ReAnaE

0 2 4 6 8

10−0.4

10−0.3

10−0.2

Evolution step
T
im

e
(s
)

MP

ReAna
ReAnaE

0 2 4 6 8 10 12 14 16 18 20

100

100.1

Evolution step

T
im

e
(s
)

IC

ReAna
ReAnaE

0 2 4 6 8 10 12 14 16 18 20

101.4

101.6

101.8

102

Evolution step

T
im

e
(s
)

TW

ReAna
ReAnaE

Figure 5.9: Analysis time for Evolution Scenario 4 with weakening.

evolution scenarios were not evaluated at different positions of the RDG structure, the
results may not reflect the full picture of the analysis method.

As a corollary of the previous threat, our implementation might be overfitting to
the particular evolution scenarios considered, since we knew beforehand which are their
changes at the RDG structure and their impacts to the analysis. There might be other
evolution scenarios that impact the RDG structure and the analysis method other than
the scenarios considered in this evaluation. Thus, as the evolution scenarios set is not
complete, we can not assert the current implementation of the analysis method will per-
form similarly to other evolution types, but the ones that we analyzed are nevertheless
scenarios that are relevant in practice.

A threat to internal validity would be an incidental and undesired treatment inter-
action between different analysis runs due to high cache memory usage required for the
analysis method. To mitigate this threat, the system was rebooted by the end of the eval-
uation of a product line and its evolution steps. Thereby, we seek to ensure all resources
were accordingly released and all analyses start with the same use of system resources.

Finally, a threat to external validity arises from the selection of the subject systems. To
mitigate this threat, we selected systems commonly used by the community as benchmarks
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Figure 5.10: Memory consumption for Evolution Scenario 4 with weakening.

to evaluate variability-aware model checking techniques [42, 43]. To mitigate the risk of
our approach not being generalizable, we applied it to further product lines (InterCloud
and TankWar), whose configuration spaces resemble the ones of real-world applications.

44



Table 5.3: Feature-based step (FeBS) and family-based step (FaBS) analysis time com-
parison

SPL Model Total
nodes

Impacted
nodes

ReAna’s
FeBS (ms)

ReAnaE’s
FeBS (ms)

ReAna’s
FaBS (ms)

ReAnaE’s
FaBS (ms)

Evol. Scenario 1
Lift 17 27 3 124 26 371463 380891
Email 19 33 3 164 21 283492 98446
BSN 20 36 3 124 21 855445 885695
MinePump 18 41 3 177 20 560607 213660
InterCloud 19 70 3 215 18 354910 50506
TankWar 9 87 3 272 20 169580 6869
Evol. Scenario 2
Lift 20 11 2 129 10 4 1
Email 20 14 2 138 11 8 3
BSN 20 16 2 150 11 8 6
MinePump 20 24 2 161 15 13 4
InterCloud 20 52 2 522 12 27 3
TankWar 20 79 2 273 9 1758 314
Evol. Scenario 3
Lift 20 31 3 149 32 12 7
Email 20 34 3 234 120 14 3
BSN 20 36 3 181 29 16 8
MinePump 20 44 3 184 26 18 6
InterCloud 20 72 3 329 108 41 4
TankWar 20 99 3 305 18 1734 327
Evol. Scenario 4 - Strengthening
Lift 9 11 1 56 9 7 2
Email 9 14 1 69 11 8 2
BSN 12 16 1 85 11 12 6
MinePump 8 23 1 101 13 19 4
InterCloud 20 52 1 180 10 30 4
TankWar 20 79 1 225 9 1867 322
Evol. Scenario 4 - Weakening
Lift 9 11 1 56 10 7 1
Email 9 14 1 100 10 9 3
BSN 12 16 1 75 10 18 6
MinePump 8 23 1 96 14 15 4
InterCloud 20 52 1 163 11 28 2
TankWar 20 79 1 226 9 2683 314
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Chapter 6

Conclusion

We proposed an evolution-aware software product line analysis method that is capable
of performing reliability analysis by taking advantage of intermediate calculations from
previous analysis runs. In particular, through evolution primitives, which define possible
evolution scenarios for the product line, the method identifies which parts were impacted,
this way avoiding unnecessary calculations during the analysis.

To evaluate this method, we have developed an extension of the ReAna tool, called
ReAnaE, for feature-family-based reliability analysis of product lines. At the end of
an analysis run, ReAnaE persists the data from the intermediate calculations. In a
subsequent evolution-step, we identify which calculations will not be needed and retrieve
the information that was persisted to use during the analysis. In this way, our method is
able to work with variation in time in product line analysis.

For the empirical evaluation, we compared the original feature-family-based analysis
method (ReAna) and our new evolution-aware extension (ReAnaE). For this purpose,
we analyzed six different product lines using an experiment setup that implements both
analysis methods, comparing running time and memory consumption. In most of the
evaluation scenarios, the evolution-aware method was able to perform faster and less
memory-consuming analyses, even considering the extra time required to read and persist
the data. ReAnaE was able to analyze a larger number of evolution-steps in certain
product lines, for which the complete analysis effort otherwise exceeded the available
resources.

Overall, we believe our method and analysis tool are a step towards improved efficiency
of the feature-family-based reliability analysis.
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6.1 Limitations
Although our method has achieved expressive results in most of the empirical analyzes
performed, there are some limitations.

Types of evolution primitives. Our evolution scenarios were based on 4 differ-
ent types of evolution primitives: add feature; add message; add fragment; and change
presence condition. However, some other evolution primitives can be defined to make it
closer to the real scenario, such as deleting features, deleting messages, deleting fragments,
change order of messages, change components names and so on.

Pre-defined evolution primitives. Each evolution scenarios was pre-defined before
the analysis and it was known to ReAnaE the part of the behavioral model that was
modified in evolution. Thus, the tool cannot automatically identify which part of the
model has gone through any of the evolution primitives.

Transformation steps. Our method reuses previous analyzes for the feature-family-
based reliability analysis. However, some preparatory steps for performing the analysis
are required by the tool, such as the transformation step for creating the RDG. In this
phase, there is no optimization to reuse the analysis done previously.

Evolution scenarios. Product line models maintained a evolution pattern by adding
features, messages, or fragments directly to the root. The evolution primitives applied at
other levels of depth in the RDG bring different impacts on the analysis.

6.2 Related Work
Family-based analyses are inherently monolithic and expensive to perform when evolution
is considered. This work tackles the challenge of combining variability in time and space
by approaching it from the feature-family-based analyses perspective. In what follows, we
discuss related work that considers the evolution dimension in product line analysis and
beyond.

Thüm et al. [17] discussed the existing techniques and challenges regarding analysis
with variation in time and space. They defined variation in space as being the variants that
must coexist and variation in time as the fact that there are several revisions of software
that are being replaced. The authors discussed the existing challenges of approaches that
deal with variation in space to be able to analyze variation in time, and vice versa. Our
proposed method addresses this problem by using an analysis that deals with variation in
space, in the case feature-family-based, to deal with variation in time, identifying change
impacts on evolved models and only performing analysis in the modified parts, updating
the analysis result where necessary.
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Our work is based on the ReAna tool, a model-based approach for reliability analysis
of software product lines developed by Lanna et al. [1]. ReAna performs a feature-
family-based analysis relying on a graph structure to represent the behavioral models. A
parametric analysis is performed on each node of the model to later lift the expressions
for an ADD structure, on which the tool is able to determine the reliability for the
entire product line. Our work builds on this strategy, making it capable of performing
an evolution-aware analysis of the product line, reducing the computational effort of
performing an analysis from scratch with each evolution of the model.

Ghezzi and Sharifloo [16] also proposed a model-based approach to product line anal-
ysis for non-functional properties. To avoid product-by-product analysis, they proposed a
compositional technique that reuses the intermediate results to calculate the overall prop-
erties. The behavior of the product line is organized through a tree, in which the nodes
are related to expressions resulting from the analysis performed by a parametric model
checker. To determine the reliability of the product as a whole, a bottom-up analysis of
the tree is performed, where the root result represents the product reliability. The strat-
egy can be considered feature-product-based, since it divides the behavioral models into
small units to later evaluate them and obtain the reliability of a product. This approach
differs from our proposal, since it does not perform a feature-family-based analysis and,
more importantly, it is not able to handle variability in time as the model evolves.

Lity et al. introduced higher-order delta modeling [20, 21], which aims at combining
concepts from variability modeling with evolution concepts. The key idea is to provide an
integrated modeling approach that includes variability and evolution. As a consequence,
the evolution history is captured by the modeling formalism and can be leveraged to
provide change impact analysis [20]. The work acts in a compositional way, and establishes
possible evolution operators, similar to what we present in our evaluation. Lity et al.
extend this work by proposing the 175%model formalism [21]. In the context of annotative
product lines, 150% models embed the entire variability space into a single model to
leverage single system analysis for the context of variable systems. The 175% model
embeds evolution over time into such models. A bidirectional transformation between
higher-order delta models and 175% models is also presented. The formalism was not
extended to the context of reliability analysis, so a proper comparison remains as future
work.

Schröter et al. [45] proposed the notion of feature model interfaces. The main concept
is that complex feature models can be organized as a set of smaller feature models that
expose interfaces, thus allowing to perform the analysis on these parts separately and
recompose complete analysis results from these parts. As a consequence, if a change is
local, it is possible to simply re-analyze this subpart and re-compose the analysis results.
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However, different from our work, this concept only considers analysis at the feature
model level. They prove compositionality properties and also perform an empirical study
using an industrial feature model. The study illustrates the potential for compositional
analysis, since in more than half of the considered evolution scenarios, the feature model
interface is sufficient to reduce the need for computing analyses over the entire feature
model.

Angerer et al. [46] propose a configuration-aware change impact analysis approach.
The approach embeds variability information into system dependence graphs, to enable
identifying which products might be impacted by a change. The results show that com-
puting the change impact is not expensive, and that it is important to have such an
approach especially in complex systems. For instance, the results show that, on aver-
age, 5 configuration options (features) are affected by a change. In extreme cases, there
might be over 30 configuration options to reason, which could be difficult to reason about,
without tool support. This approach differs from our work as it seeks to determine the
impact of an evolution through the use of standard control flow and data flow analysis
in the source code. Furthermore, the search for the impact generated on evolution would
be interested in the associated maintenance tasks and not in non-functional requirements
analysis such as reliability.

In the context of evolution-aware analysis that does not tackle variability, Artz and
Bodden [19] proposed REVISER, an approach to update the data flow inter-procedural
analysis in incremental programs changes. It traces the changes made to the program
by comparing the control-flow graph of two versions. Then, it identifies the modified
locations and propagates the change by updating the analysis results. This way, it is
able to reduce computational effort, considering that the data update does not need to
be done on the whole program, but only on the modified parts. REVISER, however,
does not consider variability, which is inherent in product lines. Our proposed method
is similar with respect to Reviser’s concept of propagating analysis updates only in parts
affected by the evolution. Furthermore, it is capable of handling the variability present
in the models.

6.3 Future Work
Our method and the developed tool have some limitations. In future work, some improve-
ments could be made:

Automatic evolution identification. To perform the evolution-aware analysis,
the label of the included fragment is standardized in the evolved models, and thus the
ReAnaE can identify which node was impacted. We intend to provide a method of com-
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parison between the evolved model and previous models, so that the evolution primitives
can be identified automatically, regardless of labels, or previous knowledge by the tool,
or amounts of evolution primitives.

Method generalization. At the moment, the proposed method works with an
evolution-aware analysis for the feature-family-based strategy. However, the method of
reuse of intermediate calculations during the analysis also applies to other strategies, given
that the re-analysis of unmodified parts of a software is a common problem. In this way,
we aim to generalize the proposed method to cope with different analysis strategies [18].

Formal proof. We also plan to formalize the method, proving its soundness using a
proof assistant. We would like to prove the following theorem, based on Equation 4.2: for
every compositional model m and evolution function δ, we have that φ′(m, δ) = φ(mδ). In
other words, the evolution-aware analysis and the original analysis yield the same result
when evolving compositional model m with evolution function δ.
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Appendix A

Analysis data for all evolution steps
of all product lines

In the following tables, RO denotes the original reliability analysis (ReAna) and RE de-
notes the evolution-aware reliability analysis (ReAnaE). Runtime analyses are in seconds
and memory consumption in megabytes. Boldface indicates that the treatment is supe-
rior and statistically significantly in the model analyzed. Standard deviation in shown in
parentheses.

Table A.1: Evolution Scenario 1 (adding new feature): BSN

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
BSN 0 0.52 (0.07) 0.6 (0.3) – 35.57 35.56 –
BSN 1 0.6 (0.1) 0.8 (0.2) – 35.59 31.57 Large
BSN 2 0.6 (0.1) 0.7 (0.2) – 35.56 31.70 Large
BSN 3 0.6 (0.1) 0.7 (0.2) – 36.66 32.66 Large
BSN 4 0.6 (0.1) 0.6 (0.1) – 37.64 32.66 Large
BSN 5 0.6 (0.2) 0.8 (0.2) – 39.57 32.66 Large
BSN 6 0.55 (0.07) 0.6 (0.1) – 41.62 33.64 Large
BSN 7 0.6 (0.1) 0.7 (0.2) – 41.62 34.61 Large
BSN 8 0.6 (0.2) 0.9 (0.4) – 41.62 35.54 Large
BSN 9 0.57 (0.04) 0.8 (0.2) Large 44.66 38.58 Large
BSN 10 0.69 (0.09) 0.9 (0.2) Large 49.62 43.70 Large
BSN 11 1.0 (0.1) 1.4 (0.5) – 27.55 28.66 Large
BSN 12 2.46 (0.09) 1.8 (0.3) Large 27.54 35.20 Large
BSN 13 2.3 (0.03) 2.8 (0.2) Large 47.05 40.97 Large
BSN 14 4.5 (0.1) 5.0 (0.3) Large 86.63 76.11 Large
BSN 15 8.7 (0.1) 9.4 (0.2) Large 268.91 211.16 Large
BSN 16 17.9 (0.3) 19.7 (0.3) Large 608.02 378.20 Large
BSN 17 39.4 (0.6) 42.3 (0.6) Large 295.00 381.41 Large
BSN 18 117.0 (4.0) 90.7 (0.5) Large 1203.29 555.84 Large
BSN 19 419.0 (6.0) 249.0 (7.0) Large 2472.90 1258.10 Large
BSN 20 870.0 (10.0) 930.0 (10.0) Large 4766.50 4607.50 –

56



Table A.2: Evolution Scenario 1 (adding new feature): Email

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Email 0 0.52 (0.05) 0.52 (0.05) – 34.61 34.61 –
Email 1 0.6 (0.2) 0.39 (0.06) Large 34.62 30.59 Large
Email 2 0.5 (0.2) 0.36 (0.01) Large 34.62 31.54 Large
Email 3 0.5 (0.2) 0.36 (0.02) – 35.59 31.55 Large
Email 4 0.6 (0.1) 0.38 (0.04) Large 35.59 31.57 Large
Email 5 0.5 (0.1) 0.39 (0.05) Large 36.69 31.60 Large
Email 6 0.5 (0.1) 0.379 (0.008) Large 37.65 32.66 Large
Email 7 0.51 (0.06) 0.4 (0.02) Large 38.59 32.66 Large
Email 8 0.6 (0.1) 0.41 (0.01) Large 40.66 34.58 Large
Email 9 0.7 (0.2) 0.45 (0.02) Large 42.58 36.66 Large
Email 10 1.1 (0.4) 0.53 (0.01) Large 27.56 39.68 Large
Email 11 1.5 (0.3) 0.66 (0.01) Large 51.80 47.54 Large
Email 12 2.4 (0.1) 1.02 (0.08) Large 69.87 29.62 Large
Email 13 4.33 (0.08) 1.71 (0.08) Large 76.18 55.31 Large
Email 14 8.5 (0.1) 3.21 (0.1) Large 283.84 72.34 Large
Email 15 17.2 (0.4) 6.4 (0.05) Large 190.83 193.90 Large
Email 16 34.5 (0.4) 12.94 (0.04) Large 585.92 174.48 Large
Email 17 70.3 (1.0) 26.31 (0.1) Large 797.90 527.69 Large
Email 18 144.7 (0.8) 54.7 (0.2) Large 1261.30 655.70 Large
Email 19 300.0 (6.0) 114.8 (0.5) Large 2671.90 1217.90 Large
Email 20 – 244.0 (2.0) – – 2402.90 –

Table A.3: Evolution Scenario 1 (adding new feature): InterCloud

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
IC 0 1.24 (0.09) 1.3 (0.2) – 40.73 40.73 –
IC 1 1.1 (0.1) 0.93 (0.05) Large 43.01 24.49 Large
IC 2 1.05 (0.01) 0.92 (0.09) Large 47.07 24.53 Large
IC 3 1.1 (0.1) 0.92 (0.07) Large 49.07 24.70 Large
IC 4 1.12 (0.04) 0.96 (0.07) Large 51.06 24.50 Large
IC 5 1.3 (0.2) 0.95 (0.06) Large 56.86 27.09 Large
IC 6 1.3 (0.08) 0.96 (0.08) Large 63.05 28.50 Large
IC 7 1.6 (0.1) 1.0 (0.1) Large 79.05 30.40 Large
IC 8 2.02 (0.03) 1.03 (0.06) Large 111.05 30.60 Large
IC 9 2.7 (0.1) 1.09 (0.1) Large 179.04 32.60 Large
IC 10 4.0 (0.2) 1.04 (0.08) Large 303.09 36.61 Large
IC 11 4.3 (0.1) 1.1 (0.1) Large 319.18 40.60 Large
IC 12 4.6 (0.1) 1.4 (0.1) Large 341.18 50.02 Large
IC 13 5.5 (0.1) 1.8 (0.1) Large 385.17 66.22 Large
IC 14 4.43 (0.03) 2.7 (0.2) Large 229.20 97.81 Large
IC 15 7.64 (0.06) 4.3 (0.2) Large 379.19 160.62 Large
IC 16 14.68 (0.06) 8.4 (0.1) Large 152.60 292.62 Large
IC 17 29.3 (0.3) 16.3 (0.1) Large 629.39 561.22 Large
IC 18 80.0 (9.0) 36.7 (0.2) Large 1891.32 591.15 Large
IC 19 440.0 (30.0) 80.2 (0.3) Large 4170.30 1237.50 Large
IC 20 – 174.4 (0.9) – – 2468.70 –
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Table A.4: Evolution Scenario 1 (adding new feature): Lift

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Lift 0 0.49 (0.03) 0.48 (0.02) – 32.68 32.68 Medium
Lift 1 0.44 (0.08) 0.39 (0.06) – 33.64 31.55 Large
Lift 2 0.42 (0.03) 0.37 (0.01) Large 33.63 32.66 Large
Lift 3 0.43 (0.06) 0.39 (0.01) – 34.59 32.66 Large
Lift 4 0.5 (0.1) 0.4 (0.01) – 35.59 33.62 Large
Lift 5 0.49 (0.09) 0.44 (0.02) – 37.62 35.55 Large
Lift 6 0.55 (0.06) 0.493 (0.008) – 40.66 38.58 Large
Lift 7 0.62 (0.07) 0.63 (0.02) – 46.58 44.66 Large
Lift 8 0.8 (0.03) 0.89 (0.01) Large 27.54 28.66 Large
Lift 9 1.25 (0.07) 1.5 (0.02) Large 40.03 39.67 Large
Lift 10 3.02 (0.07) 3.16 (0.03) Large 49.08 58.11 Large
Lift 11 5.6 (0.2) 9.0 (0.1) Large 120.86 79.74 Large
Lift 12 9.75 (0.06) 23.0 (0.2) Large 334.87 324.65 Large
Lift 13 20.2 (0.2) 57.4 (0.3) Large 237.15 182.18 Large
Lift 14 42.5 (0.2) 140.6 (0.8) Large 738.81 547.74 Large
Lift 15 90.3 (0.6) 312.0 (2.0) Large 1027.50 773.30 Large
Lift 16 188.9 (0.8) 692.0 (5.0) Large 1751.50 1681.10 Large
Lift 17 406.0 (3.0) 1490.0 (7.0) Large 3405.70 3502.30 Large

Table A.5: Evolution Scenario 1 (adding new feature): MinePump

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
MP 0 0.6 (0.1) 0.54 (0.02) – 36.66 36.66 –
MP 1 0.5 (0.1) 0.47 (0.09) – 37.62 31.56 Large
MP 2 0.45 (0.09) 0.46 (0.08) – 37.65 31.57 Large
MP 3 0.5 (0.1) 0.47 (0.06) – 38.60 32.66 Large
MP 4 0.46 (0.02) 0.45 (0.06) – 39.55 32.66 Large
MP 5 0.52 (0.08) 0.44 (0.06) – 41.81 33.62 Large
MP 6 0.54 (0.03) 0.48 (0.04) Large 44.66 34.60 Large
MP 7 0.66 (0.09) 0.5 (0.05) Large 50.58 36.66 Large
MP 8 0.83 (0.07) 0.55 (0.03) Large 27.54 39.54 Large
MP 9 1.17 (0.06) 0.72 (0.07) Large 48.30 47.54 Large
MP 10 1.91 (0.09) 1.01 (0.08) Large 49.77 28.66 Large
MP 11 3.45 (0.07) 1.6 (0.1) Large 30.20 51.22 Large
MP 12 6.9 (0.1) 2.95 (0.08) Large 253.25 42.99 Large
MP 13 13.82 (0.08) 5.8 (0.07) Large 381.75 189.55 Large
MP 14 27.9 (0.3) 11.7 (0.1) Large 361.33 371.26 –
MP 15 57.36 (0.07) 24.27 (0.1) Large 1030.91 773.90 Large
MP 16 124.0 (2.0) 50.5 (0.4) Large 1777.89 754.25 Large
MP 17 263.0 (1.0) 109.0 (2.0) Large 2567.70 834.50 Large
MP 18 546.0 (2.0) 244.0 (5.0) Large 2334.10 1837.30 Large
MP 19 – 551.0 (10.0) – – 3472.70 –
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Table A.6: Evolution Scenario 1 (adding new feature): TankWar

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
TW 0 124.0 (2.0) 123.3 (0.8) – 391.16 393.05 –
TW 1 166.0 (1.0) 27.9 (0.1) Large 425.05 214.40 Large
TW 2 166.1 (0.7) 28.2 (0.6) Large 424.45 279.16 Large
TW 3 167.0 (1.0) 23.2 (0.2) Large 437.61 563.40 Large
TW 4 166.5 (0.7) 23.1 (0.2) Large 457.40 580.80 Large
TW 5 167.3 (0.8) 23.7 (0.2) Large 491.67 592.14 Large
TW 6 169.1 (0.5) 24.3 (0.1) Large 568.54 603.97 Large
TW 7 174.5 (1.0) 25.5 (0.2) Large 288.41 214.21 Large
TW 8 205.0 (2.0) 27.7 (0.1) Large 838.36 214.32 Large
TW 9 352.0 (3.0) 33.1 (0.3) Large 1098.90 233.34 Large
TW 10 – 42.0 (0.2) – – 342.05 –
TW 11 – 57.6 (0.6) – – 538.45 –
TW 12 – 95.0 (2.0) – – 1141.91 –
TW 13 – 199.0 (3.0) – – 2577.16 –

Table A.7: Evolution Scenario 2 (adding new message): BSN

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
BSN 0 0.52 (0.09) 0.52 (0.07) – 35.57 35.56 –
BSN 1 0.51 (0.09) 0.42 (0.05) Large 34.62 28.68 Large
BSN 2 0.45 (0.03) 0.39 (0.02) Large 35.56 28.68 Large
BSN 3 0.47 (0.08) 0.39 (0.02) Large 35.59 28.66 Large
BSN 4 0.48 (0.09) 0.41 (0.03) Medium 35.58 28.66 Large
BSN 5 0.47 (0.04) 0.39 (0.02) Large 35.60 28.68 Large
BSN 6 0.51 (0.1) 0.41 (0.03) Large 36.66 28.68 Large
BSN 7 0.47 (0.03) 0.42 (0.03) Large 36.68 28.68 Large
BSN 8 0.48 (0.02) 0.41 (0.02) Large 36.76 28.66 Large
BSN 9 0.51 (0.09) 0.41 (0.02) Large 37.64 28.69 Large
BSN 10 0.49 (0.03) 0.44 (0.03) Large 37.64 28.68 Large
BSN 11 0.5 (0.04) 0.43 (0.02) Large 38.62 28.68 Large
BSN 12 0.51 (0.03) 0.43 (0.03) Large 39.59 29.52 Large
BSN 13 0.5 (0.1) 0.43 (0.02) Large 39.60 29.63 Large
BSN 14 0.55 (0.08) 0.43 (0.02) Large 40.67 29.64 Large
BSN 15 0.53 (0.07) 0.42 (0.02) Large 40.68 29.63 Large
BSN 16 0.55 (0.08) 0.43 (0.02) Large 41.66 29.63 Large
BSN 17 0.53 (0.04) 0.43 (0.01) Large 42.61 29.63 Large
BSN 18 0.55 (0.04) 0.43 (0.02) Large 43.58 29.66 Large
BSN 19 0.57 (0.05) 0.44 (0.03) Large 43.97 29.65 Large
BSN 20 0.57 (0.03) 0.44 (0.03) Large 44.66 29.64 Large
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Table A.8: Evolution Scenario 2 (adding new message): Email

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Email 0 0.52 (0.05) 0.52 (0.05) – 34.61 34.61 –
Email 1 0.45 (0.07) 0.38 (0.03) Large 32.69 27.56 Large
Email 2 0.47 (0.08) 0.4 (0.03) Large 32.68 27.54 Large
Email 3 0.46 (0.09) 0.38 (0.03) Large 32.68 27.55 Large
Email 4 0.46 (0.06) 0.4 (0.03) Large 33.65 27.55 Large
Email 5 0.45 (0.03) 0.4 (0.03) Large 33.65 27.54 Large
Email 6 0.45 (0.03) 0.4 (0.03) Large 33.62 27.56 Large
Email 7 0.46 (0.03) 0.4 (0.03) Large 34.63 27.68 Large
Email 8 0.49 (0.08) 0.4 (0.03) Large 34.63 27.70 Large
Email 9 0.47 (0.03) 0.4 (0.03) Large 35.57 27.70 Large
Email 10 0.5 (0.07) 0.41 (0.02) Large 35.58 27.70 Large
Email 11 0.46 (0.02) 0.4 (0.02) Large 35.70 28.66 Large
Email 12 0.51 (0.09) 0.41 (0.03) Large 36.68 28.68 Large
Email 13 0.5 (0.03) 0.41 (0.02) Large 36.69 28.66 Large
Email 14 0.51 (0.05) 0.42 (0.03) Large 37.62 28.66 Large
Email 15 0.56 (0.09) 0.42 (0.03) Large 38.61 28.68 Large
Email 16 0.5 (0.1) 0.42 (0.03) Large 38.62 28.68 Large
Email 17 0.51 (0.04) 0.42 (0.03) Large 39.57 28.66 Large
Email 18 0.53 (0.03) 0.42 (0.03) Large 40.69 28.66 Large
Email 19 0.56 (0.06) 0.43 (0.03) Large 41.64 28.68 Large
Email 20 0.6 (0.1) 0.42 (0.02) Large 41.62 28.68 Large

Table A.9: Evolution Scenario 2 (adding new message): InterCloud

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
IC 0 1.24 (0.09) 1.3 (0.2) – 40.73 40.73 –
IC 1 1.17 (0.08) 0.88 (0.05) Large 42.69 19.05 Large
IC 2 1.2 (0.1) 0.86 (0.05) Large 42.69 18.64 Large
IC 3 1.3 (0.1) 0.87 (0.05) Large 42.71 18.64 Large
IC 4 1.2 (0.1) 0.88 (0.03) Large 42.74 18.85 Large
IC 5 1.2 (0.1) 0.88 (0.03) Large 42.74 18.84 Large
IC 6 1.2 (0.1) 0.9 (0.02) Large 42.73 19.24 Large
IC 7 1.2 (0.1) 0.89 (0.04) Large 44.73 19.04 Large
IC 8 1.3 (0.2) 0.88 (0.05) Large 44.72 21.64 Large
IC 9 1.2 (0.2) 0.88 (0.03) Large 44.72 21.24 Large
IC 10 1.3 (0.2) 0.89 (0.03) Large 42.94 21.85 Large
IC 11 1.3 (0.1) 0.9 (0.05) Large 44.77 22.04 Large
IC 12 1.2 (0.1) 0.89 (0.04) Large 44.74 21.44 Large
IC 13 1.28 (0.1) 0.9 (0.03) Large 46.74 22.04 Large
IC 14 1.3 (0.1) 0.89 (0.03) Large 46.77 21.84 Large
IC 15 1.3 (0.1) 0.9 (0.03) Large 48.78 22.04 Large
IC 16 1.3 (0.08) 0.91 (0.04) Large 48.78 21.64 Large
IC 17 1.3 (0.1) 0.9 (0.04) Large 50.77 21.64 Large
IC 18 1.3 (0.1) 0.9 (0.04) Large 50.76 21.24 Large
IC 19 1.3 (0.1) 0.91 (0.03) Large 52.76 21.05 Large
IC 20 1.3 (0.2) 0.92 (0.03) Large 52.81 21.05 Large
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Table A.10: Evolution Scenario 2 (adding new message): Lift

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Lift 0 0.49 (0.03) 0.48 (0.02) – 32.68 32.68 Medium
Lift 1 0.41 (0.02) 0.38 (0.02) Large 31.57 27.56 Large
Lift 2 0.42 (0.02) 0.38 (0.03) Large 32.66 27.57 Large
Lift 3 0.5 (0.1) 0.38 (0.02) – 32.66 27.55 Large
Lift 4 0.44 (0.03) 0.37 (0.03) Large 32.68 27.56 Large
Lift 5 0.45 (0.01) 0.38 (0.02) Large 33.66 27.56 Large
Lift 6 0.45 (0.04) 0.38 (0.02) Large 33.64 27.55 Large
Lift 7 0.48 (0.09) 0.39 (0.02) Large 34.61 27.56 Large
Lift 8 0.45 (0.03) 0.39 (0.03) Large 34.62 27.56 Large
Lift 9 0.46 (0.02) 0.39 (0.02) Large 35.59 27.55 Large
Lift 10 0.49 (0.07) 0.39 (0.03) Large 35.59 27.57 Large
Lift 11 0.47 (0.04) 0.4 (0.03) Large 36.68 27.55 Large
Lift 12 0.48 (0.03) 0.39 (0.02) Large 37.64 27.55 Large
Lift 13 0.53 (0.08) 0.4 (0.02) Large 37.64 27.55 Large
Lift 14 0.49 (0.03) 0.4 (0.03) Large 38.59 27.55 Large
Lift 15 0.5 (0.1) 0.41 (0.03) Large 39.69 27.56 Large
Lift 16 0.5 (0.03) 0.41 (0.03) Large 40.67 27.68 Large
Lift 17 0.54 (0.08) 0.41 (0.03) Large 41.65 27.70 Large
Lift 18 0.53 (0.04) 0.41 (0.03) Large 42.62 27.70 Large
Lift 19 0.6 (0.1) 0.41 (0.03) Large 43.57 27.70 Large
Lift 20 0.6 (0.1) 0.41 (0.02) Large 44.47 28.66 Large

Table A.11: Evolution Scenario 2 (adding new message): MinePump

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
MP 0 0.6 (0.1) 0.54 (0.02) – 36.66 36.66 –
MP 1 0.46 (0.03) 0.42 (0.02) Large 36.66 28.68 Large
MP 2 0.45 (0.03) 0.4 (0.02) Large 36.68 28.66 Large
MP 3 0.5 (0.1) 0.4 (0.02) Large 36.66 28.66 Large
MP 4 0.47 (0.03) 0.4 (0.02) Large 36.66 28.68 Large
MP 5 0.5 (0.1) 0.4 (0.03) Large 36.66 28.66 Large
MP 6 0.5 (0.1) 0.41 (0.02) Large 36.66 28.68 Large
MP 7 0.5 (0.1) 0.43 (0.03) – 37.63 28.67 Large
MP 8 0.51 (0.1) 0.41 (0.02) Large 37.62 28.66 Large
MP 9 0.49 (0.03) 0.42 (0.03) Large 37.62 28.68 Large
MP 10 0.5 (0.1) 0.42 (0.02) Large 38.59 28.68 Large
MP 11 0.5 (0.1) 0.42 (0.02) Large 38.59 28.68 Large
MP 12 0.54 (0.09) 0.43 (0.04) Large 38.64 28.69 Large
MP 13 0.52 (0.03) 0.42 (0.01) Large 39.56 28.66 Large
MP 14 0.56 (0.07) 0.45 (0.02) Large 39.58 28.69 Large
MP 15 0.54 (0.03) 0.42 (0.02) Large 39.59 28.68 Large
MP 16 0.57 (0.09) 0.43 (0.02) Large 40.66 28.67 Large
MP 17 0.57 (0.09) 0.43 (0.03) Large 40.67 28.68 Large
MP 18 0.55 (0.04) 0.43 (0.02) Large 40.66 29.62 Large
MP 19 0.59 (0.07) 0.43 (0.02) Large 40.66 29.65 Large
MP 20 0.59 (0.09) 0.43 (0.02) Large 42.61 29.64 Large
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Table A.12: Evolution Scenario 2 (adding new message): TankWar

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
TW 0 124.0 (2.0) 123.3 (0.8) – 391.16 393.05 –
TW 1 130.0 (1.0) 24.1 (0.1) Large 397.72 274.11 Large
TW 2 130.0 (2.0) 19.6 (0.1) Large 396.24 269.81 Large
TW 3 129.0 (2.0) 19.5 (0.2) Large 395.80 269.01 Large
TW 4 129.0 (2.0) 18.9 (0.1) Large 397.01 269.52 Large
TW 5 129.0 (2.0) 18.91 (0.07) Large 395.79 269.49 Large
TW 6 129.0 (2.0) 19.0 (0.1) Large 397.38 269.23 Large
TW 7 129.0 (2.0) 19.0 (0.1) Large 396.74 270.97 Large
TW 8 130.0 (2.0) 19.1 (0.4) Large 397.98 269.85 Large
TW 9 130.0 (2.0) 19.1 (0.1) Large 399.88 270.73 Large
TW 10 130.0 (1.0) 19.0 (0.2) Large 398.03 270.93 Large
TW 11 129.8 (0.9) 19.0 (0.2) Large 399.32 270.67 Large
TW 12 129.3 (1.0) 18.9 (0.1) Large 399.30 268.58 Large
TW 13 129.0 (1.0) 18.9 (0.08) Large 398.83 269.94 Large
TW 14 128.6 (0.7) 19.0 (0.2) Large 400.13 269.13 Large
TW 15 129.2 (0.7) 19.0 (0.1) Large 400.35 269.34 Large
TW 16 129.0 (1.0) 19.0 (0.1) Large 403.06 269.73 Large
TW 17 129.0 (1.0) 19.0 (0.1) Large 403.13 269.62 Large
TW 18 130.0 (0.7) 19.1 (0.1) Large 403.00 270.31 Large
TW 19 129.5 (0.7) 19.0 (0.2) Large 403.88 270.45 Large
TW 20 130.0 (1.0) 18.95 (0.09) Large 403.56 269.76 Large

Table A.13: Evolution Scenario 3 (adding new fragment): BSN

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
BSN 0 0.52 (0.09) 0.52 (0.07) – 35.57 35.56 –
BSN 1 0.45 (0.03) 0.41 (0.03) – 35.60 29.65 Large
BSN 2 0.5 (0.1) 0.41 (0.03) Medium 35.60 29.65 Large
BSN 3 0.47 (0.04) 0.43 (0.05) – 36.47 29.65 Large
BSN 4 0.47 (0.03) 0.43 (0.05) – 36.66 29.65 Large
BSN 5 0.5 (0.05) 0.42 (0.04) Large 36.66 29.65 Large
BSN 6 0.49 (0.03) 0.42 (0.03) Large 37.64 30.60 Large
BSN 7 0.5 (0.03) 0.43 (0.02) Large 37.65 30.63 Large
BSN 8 0.52 (0.03) 0.44 (0.02) Large 38.60 30.63 Large
BSN 9 0.53 (0.06) 0.43 (0.03) Large 38.61 30.64 Large
BSN 10 0.53 (0.03) 0.44 (0.02) Large 39.58 31.09 Large
BSN 11 0.7 (0.2) 0.44 (0.03) Large 39.58 31.55 Large
BSN 12 0.52 (0.04) 0.46 (0.06) Large 40.66 31.56 Large
BSN 13 0.54 (0.03) 0.45 (0.03) Large 40.66 31.58 Large
BSN 14 0.61 (0.07) 0.47 (0.03) Large 41.62 31.58 Large
BSN 15 0.6 (0.08) 0.47 (0.04) Large 41.63 31.70 Large
BSN 16 0.61 (0.1) 0.48 (0.03) Large 42.61 32.66 Large
BSN 17 0.61 (0.09) 0.49 (0.08) Large 42.61 32.66 Large
BSN 18 0.6 (0.05) 0.49 (0.08) Large 42.60 32.66 Large
BSN 19 0.63 (0.07) 0.47 (0.03) Large 42.61 32.68 Large
BSN 20 0.64 (0.08) 0.49 (0.07) Large 43.57 33.64 Large
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Table A.14: Evolution Scenario 3 (adding new fragment): Email

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Email 0 0.52 (0.05) 0.52 (0.05) – 34.61 34.61 –
Email 1 0.44 (0.03) 0.39 (0.03) Large 32.66 28.68 Large
Email 2 0.46 (0.05) 0.42 (0.06) – 33.64 28.67 Large
Email 3 0.46 (0.04) 0.42 (0.06) Large 34.59 29.65 Large
Email 4 0.5 (0.06) 0.4 (0.02) Large 34.60 29.64 Large
Email 5 0.5 (0.09) 0.42 (0.02) Large 35.58 30.50 Large
Email 6 0.49 (0.08) 0.43 (0.05) Large 36.66 30.61 Large
Email 7 0.48 (0.03) 0.41 (0.03) Large 36.66 31.57 Large
Email 8 0.51 (0.04) 0.43 (0.02) Large 37.64 31.59 Large
Email 9 0.7 (0.2) 0.43 (0.02) Large 38.59 32.66 Large
Email 10 0.53 (0.09) 0.45 (0.03) Large 39.55 32.68 Large
Email 11 0.53 (0.04) 0.46 (0.03) Large 40.67 33.65 Large
Email 12 0.57 (0.05) 0.48 (0.05) Large 41.64 34.63 Large
Email 13 0.58 (0.04) 0.47 (0.02) Large 42.62 35.60 Large
Email 14 0.7 (0.1) 0.5 (0.04) Large 43.59 36.67 Large
Email 15 0.57 (0.03) 0.51 (0.03) Large 44.66 37.64 Large
Email 16 0.6 (0.03) 0.5 (0.03) Large 45.63 38.60 Large
Email 17 0.62 (0.03) 0.51 (0.03) Large 47.57 39.56 Large
Email 18 0.63 (0.05) 0.54 (0.03) Large 48.66 40.66 Large
Email 19 0.67 (0.1) 0.53 (0.04) Large 48.66 41.65 Large
Email 20 0.7 (0.1) 0.56 (0.03) Large 50.60 42.63 Large

Table A.15: Evolution Scenario 3 (adding new fragment): Lift

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Lift 0 0.6 (0.5) 0.37 (0.009) Large 32.66 31.56 Large
Lift 1 0.42 (0.03) 0.42 (0.03) – 32.18 30.61 Large
Lift 2 0.5 (0.1) 0.42 (0.02) – 32.68 30.61 Large
Lift 3 0.5 (0.1) 0.43 (0.03) – 32.66 30.60 Large
Lift 4 0.45 (0.03) 0.43 (0.03) – 33.66 30.60 Large
Lift 5 0.5 (0.2) 0.42 (0.02) Large 33.66 31.57 Large
Lift 6 0.5 (0.1) 0.44 (0.02) – 34.59 31.56 Large
Lift 7 0.47 (0.03) 0.44 (0.02) – 34.64 31.56 Large
Lift 8 0.5 (0.1) 0.44 (0.03) Large 35.60 31.54 Large
Lift 9 0.52 (0.05) 0.45 (0.03) Large 35.59 31.57 Large
Lift 10 0.6 (0.1) 0.46 (0.03) – 36.66 32.66 Large
Lift 11 0.52 (0.09) 0.46 (0.06) – 36.68 32.68 Large
Lift 12 0.53 (0.06) 0.46 (0.03) Large 37.64 32.68 Large
Lift 13 0.52 (0.04) 0.48 (0.05) – 37.63 32.66 Large
Lift 14 0.6 (0.1) 0.47 (0.03) Large 38.62 32.69 Large
Lift 15 0.56 (0.04) 0.5 (0.05) Large 38.62 33.65 Large
Lift 16 0.58 (0.1) 0.5 (0.06) Large 39.11 33.65 Large
Lift 17 0.61 (0.08) 0.48 (0.03) Large 38.62 33.65 Large
Lift 18 0.6 (0.1) 0.49 (0.02) Large 39.57 33.65 Large
Lift 19 0.57 (0.04) 0.51 (0.02) Large 39.60 34.59 Large
Lift 20 0.59 (0.03) 0.5 (0.02) Large 40.67 34.63 Large
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Table A.16: Evolution Scenario 3 (adding new fragment): IC

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
IC 0 1.24 (0.09) 1.3 (0.2) – 40.73 40.73 –
IC 1 1.2 (0.07) 0.87 (0.03) Large 42.69 20.25 Large
IC 2 1.2 (0.1) 0.89 (0.05) Large 42.68 20.85 Large
IC 3 1.18 (0.07) 0.9 (0.04) Large 42.71 20.65 Large
IC 4 1.21 (0.05) 0.89 (0.03) Large 44.74 20.25 Large
IC 5 1.25 (0.09) 0.9 (0.04) Large 44.75 22.64 Large
IC 6 1.26 (0.1) 0.91 (0.04) Large 45.73 23.24 Large
IC 7 1.3 (0.1) 0.94 (0.08) Large 46.73 23.85 Large
IC 8 1.25 (0.08) 0.9 (0.04) Large 46.72 25.65 Large
IC 9 1.3 (0.1) 0.94 (0.06) Large 46.97 25.84 Large
IC 10 1.28 (0.09) 0.93 (0.04) Large 48.75 28.05 Large
IC 11 1.28 (0.08) 0.94 (0.05) Large 48.74 27.84 Large
IC 12 1.32 (0.1) 0.95 (0.03) Large 50.79 30.04 Large
IC 13 1.33 (0.07) 0.97 (0.04) Large 52.79 30.24 Large
IC 14 1.33 (0.08) 0.99 (0.04) Large 52.80 32.05 Large
IC 15 1.32 (0.05) 0.99 (0.04) Large 54.78 33.04 Large
IC 16 1.4 (0.08) 1.0 (0.04) Large 56.77 34.24 Large
IC 17 1.38 (0.1) 1.01 (0.03) Large 58.78 35.65 Large
IC 18 1.4 (0.1) 1.0 (0.04) Large 58.82 37.04 Large
IC 19 1.4 (0.1) 1.02 (0.04) Large 60.83 39.84 Large
IC 20 1.4 (0.07) 1.03 (0.04) Large 62.81 39.84 Large

Table A.17: Evolution Scenario 3 (adding new fragment): MP

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
MP 0 0.6 (0.1) 0.54 (0.02) – 36.66 36.66 –
MP 1 0.49 (0.04) 0.42 (0.06) Large 36.66 29.54 Large
MP 2 0.5 (0.04) 0.41 (0.02) Large 36.68 29.63 Large
MP 3 0.53 (0.1) 0.42 (0.03) Large 37.63 29.63 Large
MP 4 0.53 (0.09) 0.45 (0.07) Medium 37.64 29.64 Large
MP 5 0.51 (0.03) 0.41 (0.04) Large 38.60 29.64 Large
MP 6 0.52 (0.03) 0.42 (0.03) Large 38.63 29.65 Large
MP 7 0.52 (0.02) 0.43 (0.02) Large 39.59 30.61 Large
MP 8 0.6 (0.1) 0.42 (0.02) Large 39.58 30.60 Large
MP 9 0.53 (0.03) 0.43 (0.03) Large 39.70 30.60 Large
MP 10 0.55 (0.03) 0.45 (0.03) Large 40.66 30.60 Large
MP 11 0.56 (0.03) 0.44 (0.03) Large 40.68 30.60 Large
MP 12 0.57 (0.04) 0.45 (0.03) Large 41.62 31.60 Large
MP 13 0.6 (0.1) 0.5 (0.1) – 41.64 31.59 Large
MP 14 0.61 (0.1) 0.44 (0.03) Large 42.62 31.60 Large
MP 15 0.61 (0.04) 0.46 (0.03) Large 42.62 31.60 Large
MP 16 0.6 (0.03) 0.46 (0.03) Large 43.58 31.60 Large
MP 17 0.61 (0.04) 0.46 (0.03) Large 43.57 32.66 Large
MP 18 0.62 (0.04) 0.47 (0.03) Large 44.66 32.69 Large
MP 19 0.66 (0.09) 0.47 (0.03) Large 44.66 32.68 Large
MP 20 0.66 (0.08) 0.47 (0.03) Large 44.66 32.69 Large
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Table A.18: Evolution Scenario 3 (adding new fragment): TW

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
TW 0 124.0 (2.0) 123.3 (0.8) – 391.16 393.05 –
TW 1 129.2 (0.8) 24.2 (0.1) Large 396.72 275.23 Large
TW 2 129.6 (0.7) 19.6 (0.05) Large 397.07 270.53 Large
TW 3 129.2 (0.7) 19.57 (0.07) Large 399.38 270.33 Large
TW 4 129.5 (0.9) 19.0 (0.1) Large 396.89 270.92 Large
TW 5 130.0 (1.0) 19.04 (0.09) Large 397.43 271.49 Large
TW 6 129.6 (0.8) 19.06 (0.08) Large 398.36 271.88 Large
TW 7 129.8 (0.9) 19.1 (0.1) Large 400.54 270.37 Large
TW 8 129.5 (0.8) 19.06 (0.08) Large 399.60 272.13 Large
TW 9 129.5 (0.5) 19.06 (0.09) Large 401.80 272.08 Large
TW 10 129.5 (0.5) 19.1 (0.1) Large 400.26 272.55 Large
TW 11 129.5 (0.5) 19.05 (0.08) Large 401.67 273.32 Large
TW 12 129.0 (1.0) 19.1 (0.1) Large 400.72 272.68 Large
TW 13 129.5 (0.6) 19.1 (0.1) Large 402.19 273.03 Large
TW 14 129.0 (0.6) 19.3 (0.2) Large 403.50 274.93 Large
TW 15 129.0 (0.9) 19.1 (0.2) Large 404.24 274.03 Large
TW 16 129.3 (0.9) 19.1 (0.1) Large 404.30 273.90 Large
TW 17 129.1 (0.8) 19.09 (0.09) Large 405.51 272.93 Large
TW 18 130.0 (1.0) 19.1 (0.08) Large 404.69 273.95 Large
TW 19 128.8 (0.8) 19.05 (0.06) Large 406.38 275.63 Large
TW 20 129.4 (0.8) 19.08 (0.09) Large 407.79 275.25 Large

Table A.19: Evolution Scenario 4 (change presence condition - strengthening): BSN

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
BSN 0 0.52 (0.09) 0.52 (0.07) – 35.57 35.56 –
BSN 1 0.46 (0.03) 0.4 (0.03) Large 34.61 28.68 Large
BSN 2 0.5 (0.1) 0.39 (0.03) Large 34.61 28.68 Large
BSN 3 0.5 (0.1) 0.4 (0.04) – 34.61 28.68 Large
BSN 4 0.5 (0.1) 0.44 (0.06) – 34.61 28.68 Large
BSN 5 0.46 (0.04) 0.4 (0.04) Large 34.61 28.68 Large
BSN 6 0.46 (0.02) 0.43 (0.08) – 34.62 28.68 Large
BSN 7 0.46 (0.02) 0.42 (0.07) Large 34.61 28.68 Large
BSN 8 0.46 (0.02) 0.44 (0.06) Medium 34.62 28.68 Large
BSN 9 0.5 (0.09) 0.42 (0.04) Large 34.63 28.68 Large
BSN 10 0.45 (0.02) 0.44 (0.07) – 34.63 28.68 Large
BSN 11 0.48 (0.06) 0.43 (0.06) – 34.64 28.68 Large
BSN 12 0.48 (0.05) 0.42 (0.03) Large 34.64 28.68 Large
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Table A.20: Evolution Scenario 4 (change presence condition - strengthening): Email

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Email 0 0.52 (0.05) 0.52 (0.05) – 34.61 34.61 –
Email 1 0.41 (0.02) 0.38 (0.03) – 32.68 27.54 Large
Email 2 0.44 (0.09) 0.4 (0.03) – 32.68 27.54 Large
Email 3 0.41 (0.02) 0.4 (0.03) – 32.68 27.54 Large
Email 4 0.42 (0.02) 0.4 (0.03) – 32.66 27.54 Large
Email 5 0.44 (0.03) 0.41 (0.04) – 32.67 27.54 Large
Email 6 0.42 (0.02) 0.4 (0.02) – 32.67 27.54 Large
Email 7 0.41 (0.02) 0.4 (0.03) – 32.66 27.54 Large
Email 8 0.44 (0.07) 0.39 (0.04) – 32.68 27.54 Large
Email 9 0.42 (0.02) 0.39 (0.03) – 32.67 27.54 Large

Table A.21: Evolution Scenario 4 (change presence condition - strengthening): InterCloud

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
IC 0 1.24 (0.09) 1.3 (0.2) – 40.73 40.73 –
IC 1 1.3 (0.2) 0.91 (0.05) Large 40.70 18.63 Large
IC 2 1.2 (0.1) 0.91 (0.05) Large 42.69 19.04 Large
IC 3 1.3 (0.2) 0.9 (0.04) Large 42.68 18.43 Large
IC 4 1.2 (0.1) 0.9 (0.04) Large 42.69 18.23 Large
IC 5 1.2 (0.2) 0.91 (0.05) Large 42.69 18.83 Large
IC 6 1.3 (0.2) 0.91 (0.04) Large 40.70 18.84 Large
IC 7 1.2 (0.2) 0.91 (0.04) Large 40.69 18.43 Large
IC 8 1.2 (0.1) 0.91 (0.05) Large 40.69 18.84 Large
IC 9 1.3 (0.1) 0.91 (0.04) Large 40.69 18.63 Large
IC 10 1.2 (0.2) 0.91 (0.04) Large 40.69 18.83 Large
IC 11 1.2 (0.2) 0.92 (0.04) Large 40.70 18.84 Large
IC 12 1.2 (0.1) 0.92 (0.04) Large 40.69 18.63 Large
IC 13 1.2 (0.1) 0.91 (0.04) Large 40.69 18.63 Large
IC 14 1.2 (0.1) 0.91 (0.04) Large 40.69 19.03 Large
IC 15 1.2 (0.1) 0.92 (0.04) Large 40.69 18.84 Large
IC 16 1.2 (0.2) 0.93 (0.04) Large 40.69 18.83 Large
IC 17 1.2 (0.1) 0.91 (0.04) Large 40.69 18.43 Large
IC 18 1.2 (0.1) 0.92 (0.03) Large 40.69 18.84 Large
IC 19 1.2 (0.1) 0.93 (0.01) Large 40.69 18.84 Large
IC 20 1.2 (0.1) 0.93 (0.02) Large 40.69 18.43 Large
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Table A.22: Evolution Scenario 4 (change presence condition - strengthening): Lift

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Lift 0 0.49 (0.03) 0.48 (0.02) – 32.68 32.68 Medium
Lift 1 0.4 (0.02) 0.37 (0.02) – 31.69 27.55 Large
Lift 2 0.4 (0.03) 0.37 (0.03) – 31.58 27.55 Large
Lift 3 0.4 (0.02) 0.37 (0.03) – 31.59 27.55 Large
Lift 4 0.4 (0.02) 0.37 (0.03) – 31.59 27.55 Large
Lift 5 0.4 (0.02) 0.36 (0.03) Large 31.58 27.55 Large
Lift 6 0.43 (0.08) 0.37 (0.03) Large 31.58 27.55 Large
Lift 7 0.44 (0.1) 0.4 (0.03) – 31.69 27.55 Large
Lift 8 0.4 (0.03) 0.37 (0.02) – 31.58 27.55 Large
Lift 9 0.43 (0.09) 0.38 (0.04) – 31.69 27.55 Large

Table A.23: Evolution Scenario 4 (change presence condition - strengthening): MinePump

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
MP 0 0.6 (0.1) 0.54 (0.02) – 36.66 36.66 –
MP 1 0.44 (0.03) 0.4 (0.04) Large 35.70 28.66 Large
MP 2 0.44 (0.03) 0.39 (0.03) Large 35.70 28.66 Large
MP 3 0.43 (0.04) 0.4 (0.04) – 35.70 28.66 Large
MP 4 0.5 (0.1) 0.4 (0.05) – 35.70 28.66 Large
MP 5 0.45 (0.03) 0.39 (0.04) Large 35.70 28.66 Large
MP 6 0.44 (0.03) 0.4 (0.04) – 35.70 28.66 Large
MP 7 0.45 (0.03) 0.39 (0.03) Large 35.70 28.66 Large
MP 8 0.47 (0.07) 0.4 (0.04) – 35.70 28.66 Large

Table A.24: Evolution Scenario 4 (change presence condition - strengthening): TankWar

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
TW 0 124.0 (2.0) 123.3 (0.8) – 391.16 393.05 –
TW 1 124.1 (0.8) 24.3 (0.2) Large 412.64 275.23 Large
TW 2 127.0 (1.0) 19.8 (0.1) Large 497.26 268.58 Large
TW 3 127.0 (1.0) 20.1 (0.3) Large 498.22 268.69 Large
TW 4 126.0 (1.0) 19.47 (0.09) Large 473.81 269.15 Large
TW 5 125.0 (1.0) 19.47 (0.1) Large 447.95 269.29 Large
TW 6 124.7 (1.0) 19.5 (0.2) Large 432.12 269.21 Large
TW 7 124.0 (1.0) 19.48 (0.08) Large 429.43 269.02 Large
TW 8 124.5 (0.7) 19.5 (0.1) Large 431.95 268.36 Large
TW 9 123.8 (0.6) 19.5 (0.1) Large 407.13 268.86 Large
TW 10 123.5 (0.8) 19.5 (0.1) Large 408.65 269.47 Large
TW 11 123.9 (0.7) 19.5 (0.1) Large 406.56 268.65 Large
TW 12 123.6 (0.8) 19.46 (0.08) Large 409.19 269.32 Large
TW 13 123.3 (0.4) 19.5 (0.1) Large 408.56 269.02 Large
TW 14 123.8 (0.6) 19.5 (0.1) Large 409.45 269.60 Large
TW 15 123.9 (0.8) 19.43 (0.09) Large 408.00 267.26 Large
TW 16 124.2 (0.7) 19.46 (0.1) Large 407.91 269.05 Large
TW 17 123.6 (0.9) 19.5 (0.1) Large 407.31 269.21 Large
TW 18 124.0 (1.0) 19.6 (0.4) Large 408.11 269.03 Large
TW 19 123.6 (0.8) 19.5 (0.2) Large 408.12 268.92 Large
TW 20 123.6 (0.9) 19.5 (0.09) Large 408.49 269.01 Large
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Table A.25: Evolution Scenario 4 (change presence condition - weakening): BSN

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
BSN 0 0.52 (0.09) 0.52 (0.07) – 35.57 35.56 –
BSN 1 0.5 (0.1) 0.41 (0.03) Medium 34.61 28.68 Large
BSN 2 0.47 (0.05) 0.42 (0.03) – 34.61 28.68 Large
BSN 3 0.48 (0.09) 0.42 (0.03) – 34.61 28.68 Large
BSN 4 0.46 (0.08) 0.41 (0.02) – 34.62 28.68 Large
BSN 5 0.47 (0.06) 0.42 (0.02) Medium 34.62 28.68 Large
BSN 6 0.47 (0.09) 0.41 (0.03) – 34.52 28.68 Large
BSN 7 0.46 (0.03) 0.42 (0.03) Large 34.61 28.68 Large
BSN 8 0.44 (0.03) 0.42 (0.03) – 34.61 28.68 Large
BSN 9 0.45 (0.03) 0.41 (0.03) – 34.62 28.68 Large
BSN 10 0.45 (0.02) 0.42 (0.03) Medium 34.61 28.68 Large
BSN 11 0.45 (0.02) 0.4 (0.03) Large 34.61 28.68 Large
BSN 12 0.46 (0.03) 0.42 (0.02) – 34.62 28.68 Large

Table A.26: Evolution Scenario 4 (change presence condition - weakening): Email

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Email 0 0.52 (0.05) 0.52 (0.05) – 34.61 34.61 –
Email 1 0.43 (0.04) 0.39 (0.03) – 32.68 27.54 Large
Email 2 0.41 (0.02) 0.38 (0.04) – 32.68 27.54 Large
Email 3 0.45 (0.09) 0.39 (0.04) – 32.66 27.54 Large
Email 4 0.4 (0.1) 0.39 (0.03) – 32.66 27.54 Large
Email 5 0.5 (0.1) 0.39 (0.03) – 32.67 27.54 Large
Email 6 0.4 (0.02) 0.38 (0.03) – 32.66 27.54 Large
Email 7 0.41 (0.02) 0.39 (0.03) – 32.67 27.54 Large
Email 8 0.42 (0.02) 0.39 (0.03) – 32.66 27.54 Large
Email 9 0.43 (0.04) 0.4 (0.03) – 32.67 27.54 Large
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Table A.27: Evolution Scenario 4 (change presence condition - weakening): InterCloud

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
IC 0 1.24 (0.09) 1.3 (0.2) – 40.73 40.73 –
IC 1 1.2 (0.1) 0.91 (0.05) Large 40.70 18.43 Large
IC 2 1.3 (0.2) 0.92 (0.05) Large 40.69 18.84 Large
IC 3 1.2 (0.1) 0.91 (0.05) Large 40.69 18.83 Large
IC 4 1.3 (0.2) 0.9 (0.05) Large 40.69 18.43 Large
IC 5 1.2 (0.2) 0.91 (0.05) Large 40.69 19.04 Large
IC 6 1.2 (0.1) 0.91 (0.06) Large 40.69 18.63 Large
IC 7 1.2 (0.1) 0.91 (0.05) Large 40.69 18.43 Large
IC 8 1.2 (0.2) 0.91 (0.04) Large 40.69 18.23 Large
IC 9 1.2 (0.1) 0.9 (0.04) Large 40.69 19.24 Large
IC 10 1.3 (0.2) 0.91 (0.05) Large 40.69 18.43 Large
IC 11 1.3 (0.2) 0.92 (0.05) Large 40.69 18.63 Large
IC 12 1.2 (0.1) 0.91 (0.04) Large 40.69 19.24 Large
IC 13 1.3 (0.2) 0.92 (0.05) Large 40.69 18.83 Large
IC 14 1.3 (0.1) 0.92 (0.05) Large 40.69 18.63 Large
IC 15 1.2 (0.1) 0.9 (0.04) Large 40.69 18.63 Large
IC 16 1.3 (0.2) 0.9 (0.05) Large 40.69 18.63 Large
IC 17 1.2 (0.1) 0.91 (0.05) Large 40.69 18.43 Large
IC 18 1.2 (0.2) 0.92 (0.04) Large 40.69 18.43 Large
IC 19 1.2 (0.1) 0.91 (0.03) Large 40.69 18.43 Large
IC 20 1.2 (0.1) 0.92 (0.03) Large 40.69 19.04 Large

Table A.28: Evolution Scenario 4 (change presence condition - weakening): Lift

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
Lift 0 0.49 (0.03) 0.48 (0.02) – 32.68 32.68 Medium
Lift 1 0.42 (0.06) 0.38 (0.03) – 31.59 27.55 Large
Lift 2 0.41 (0.03) 0.38 (0.04) – 31.59 27.55 Large
Lift 3 0.41 (0.03) 0.39 (0.04) – 31.58 27.55 Large
Lift 4 0.42 (0.03) 0.39 (0.03) – 31.58 27.55 Large
Lift 5 0.41 (0.02) 0.4 (0.03) – 31.59 27.55 Large
Lift 6 0.41 (0.03) 0.39 (0.03) – 31.59 27.55 Large
Lift 7 0.42 (0.02) 0.39 (0.03) – 31.58 27.55 Large
Lift 8 0.41 (0.03) 0.39 (0.04) – 31.58 27.55 Large
Lift 9 0.41 (0.03) 0.39 (0.03) – 31.58 27.55 Large

Table A.29: Evolution Scenario 4 (change presence condition - weakening): MinePump

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
MP 0 0.6 (0.1) 0.54 (0.02) – 36.66 36.66 –
MP 1 0.5 (0.1) 0.4 (0.04) Large 35.70 28.66 Large
MP 2 0.5 (0.1) 0.4 (0.04) Large 35.70 28.66 Large
MP 3 0.5 (0.1) 0.4 (0.04) – 35.70 28.66 Large
MP 4 0.46 (0.03) 0.4 (0.04) Large 35.70 28.66 Large
MP 5 0.46 (0.05) 0.42 (0.04) – 35.70 28.66 Large
MP 6 0.5 (0.2) 0.41 (0.04) – 35.70 28.66 Large
MP 7 0.46 (0.03) 0.4 (0.03) Large 35.70 28.66 Large
MP 8 0.45 (0.03) 0.4 (0.03) Large 35.70 28.66 Large
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Table A.30: Evolution Scenario 4 (change presence condition - weakening): TankWar

Model RO Time (s) RE Time (s) Effect Size RO Memory (MB) RE Memory (MB) Effect Size
TW 0 124.0 (2.0) 123.3 (0.8) – 391.16 393.05 –
TW 1 124.0 (0.6) 24.3 (0.3) Large 411.55 273.06 Large
TW 2 124.3 (0.4) 19.79 (0.07) Large 447.98 269.71 Large
TW 3 125.8 (0.9) 20.0 (0.2) Large 470.47 270.20 Large
TW 4 125.4 (0.5) 19.45 (0.07) Large 471.18 269.47 Large
TW 5 127.0 (0.7) 19.43 (0.1) Large 514.00 269.22 Large
TW 6 127.0 (0.7) 19.5 (0.1) Large 510.65 268.80 Large
TW 7 125.7 (0.6) 19.6 (0.4) Large 486.77 268.86 Large
TW 8 125.5 (0.6) 19.4 (0.09) Large 482.62 269.90 Large
TW 9 125.9 (0.6) 19.5 (0.1) Large 486.28 269.41 Large
TW 10 126.0 (0.9) 19.44 (0.08) Large 491.49 267.71 Large
TW 11 126.1 (0.9) 19.5 (0.2) Large 491.27 268.53 Large
TW 12 126.0 (0.8) 19.5 (0.2) Large 490.31 269.22 Large
TW 13 125.9 (0.7) 19.5 (0.1) Large 490.84 267.90 Large
TW 14 125.8 (0.7) 19.5 (0.2) Large 490.94 268.79 Large
TW 15 125.3 (0.7) 19.5 (0.1) Large 467.06 267.93 Large
TW 16 125.0 (0.8) 19.5 (0.1) Large 467.07 269.23 Large
TW 17 125.3 (0.7) 19.4 (0.1) Large 468.36 268.60 Large
TW 18 125.0 (0.5) 19.6 (0.3) Large 469.07 269.75 Large
TW 19 125.0 (1.0) 19.5 (0.1) Large 468.64 268.37 Large
TW 20 124.9 (0.5) 19.5 (0.1) Large 470.75 268.10 Large
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