
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

On Termination by Dependency Pairs and
Termination of First-Order Functional Specifications

in PVS

Ariane Alves Almeida

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Mauricio Ayala-Rincón

Coorientador
Dr. César Augusto Muñoz

Brasília
2021

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

On Termination by Dependency Pairs and
Termination of First-Order Functional Specifications

in PVS

Ariane Alves Almeida

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Mauricio Ayala-Rincón (Orientador)
CIC e MAT/UnB

Dr. César Augusto Muñoz (Coorientador)
(NASA LaRC)

Dr. René Thiemann Dr. Mariano Miguel Moscato
Universität Innsbrück NIA/NASA LaRC FM Group

Dr. Edward Hermann Haeusler Dr. Vander Ramos Alves
PUC-Rio CIC/UnB

Prof.a Dr.a Genaína Nunes Rodrigues
Coordenadora do Programa de Pós-graduação em Informática

Brasília, 09 de Julho de 2021

Dedication

This thesis is dedicated to my parents and my husband.
They always supported and encouraged me in this endeavor.

Without the presence, love, and understanding of any of them,
I would not have been able to accomplish any of this.

The merit of this thesis is also theirs.

iii

Agradecimentos

I thank my advisor, Professor Dr. Maurício Ayala-Rincón, for all the time and effort
invested in guiding me in this work (and in previous ones) and for always demanding the
best from his students. Your support and constant availability were fundamental for the
conclusion of this stage of my academic life.

Also in the role of guiding me in this work, I thank Dr. César A. Muñoz, my co-
advisor. From our first interactions, always being very helpful and considerate with any
collaboration I needed.

I also really appreciate all contributions given by the referees who evaluated this
document and its presentation, Dr. René Thiemann, Dr. Mariano Moscato, Dr. Edward
Hermann Haeusler, Dr. Vander Ramos and Dr. Flávio de Moura. Every comment and
suggestion really enriched the work.

I am also grateful for the collaboration we were able to make between Prof. Mauricio,
Dr. César Muñoz, Dr. Mariano M. Moscato and me, which allowed me to work twice
in loco with them at National Institute of Aerospace (NIA/NASA LaRC), which was of
great value to my personal and academic growth.

Still on this subject, I also thank the NIA/NASA LaRC for allowing these visits, both
with all the bureaucratic part and for the financial support. I am very grateful for all the
help and welcome I received from the entire NIA/NASA team, the researchers I worked
with, and also their families, who made me feel at home during my stay in the US.

I also thank the University of Brasília, in particular the Department of Informatics
(CIC), for the wonderful work environment where we all are surrounded by encouraging
people. Everyone helped me somehow, from the guards, cleaning and secretariat staff,
professors and my laboratory and study friends, who always helped me think of new
perspectives in research, to review works and face this journey from beginning to end.

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior - Brasil (CAPES), through access to the Portal de Periódicos and a PhD schol-
arship through the Programa de Demanda Social. The work also had the support of the
Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF) for participation in relevant
scientific events and for the collaboration with the NIA/NASA LaRC team.

iv

Resumo

Embora indecidível, terminação é uma propriedade muito importante relacionada à cor-
reção de objetos computacionais. Ela garante que para cada entrada, não haverá execução
infinita, ou seja, a execução deve parar e fornecer algum resultado. Esta propriedade per-
mite, por exemplo, raciocinar sobre a correção de programas, uma vez que garantir que
alguma propriedade seja válida para cada saída depende da obtenção de uma saída a ser
verificada sempre que uma entrada for fornecida. Ao longo dos anos, várias estratégias de
semidecisão foram usadas para abordar esse problema e raciocinar sobre ele. No contexto
de Programas Funcionais (FPs), por exemplo, a análise pode ser feita por meio dos Gráfi-
cos de Contexto de Chamada, e no contexto de Sistemas de Reescrita de Termos (TRSs),
podem ser usados Pares Dependentes.

Este trabalho formaliza o Critério de Terminação por Pares Dependentes (Mais Inter-
nos), um critério muito conhecido para análise de terminação de TRSs, no assistente de
prova PVS. PVS é um assistente de prova com uma linguagem de especificação funcional
que permite lógica de ordem superior e realiza provas seguindo o Cálculo de Sequentes
de Gentzen. Também são apresentados vários Critérios de terminação formalizados para
FPs em uma linguagem simplificada que modela especificações em PVS (chamada PVS0) e
a formalização da equivalência entre eles, permitindo automação de provas de terminação
de especificações de funções recursivas de primeira ordem em PVS. O trabalho também
discute a possibilidade de navegar entre os critérios de terminação para TRSs e FPs com
o objetivo de aprimorar a automação para verificar terminação.

Palavras-chave: Termination, formalization, functional programs, term rewriting sys-
tems

v

Abstract

Although undecidable, termination is a very important property related to the correct-
ness of computational objects. It ensures that for every input, there will be no infinite
execution, i.e., the execution must stop and provide some result. This property allows,
for instance, reason about correctness of programs, since to guarantee that some prop-
erty hold for every output depends on obtaining an output to be analysed whenever an
input is provided. Through the years, several semi-decision strategies have been used to
address such problem and reason over it. In the context of Functional Programs (FPs),
for instance, the analysis can be done through the Calling Context Graphs, and in the
context of Term Rewriting Systems (TRSs), Dependency Pairs can be used.

This work formalizes the (Innermost) Dependency Pairs Termination Criterion, a very
well-known criteria for analyzing termination of TRSs, in the proof assistant PVS. PVS
is a proof assistant with a functional specification language that allows higher order logic
and performs proofs following the Gentzen Calculus of Sequents. It is also presented
several termination criteria formalized for FPs in a simplified language modeling PVS
specifications (called PVS0) and the formalization of the equivalence between them, al-
lowing automation for proving termination of recursive functions first-order specification
in PVS. The work also discusses the possibility of navigating between the termination
criteria for TRSs to FPs aiming to improve automation of verification for termination.

Keywords: Termination, formalization, functional programs, term rewriting systems

vi

Contents

1 Introduction 1
1.1 Work Organization . 6

2 Background 7
2.1 Functional Programs . 7
2.2 Term Rewriting Systems . 13

3 Termination Criteria 19
3.1 Ranking Functions . 20

3.1.1 Termination in the Prototype Verification System 23
3.2 The Size-Change Principle and Calling Context Graphs 25
3.3 Dependency Pairs . 28

4 Specification of DPs for TRSs and Termination Criteria for PVS0 33
4.1 Extension of TRS with DPs . 33
4.2 PVS0 . 38

4.2.1 Semantic termination of PVS0 . 42
4.2.2 Specification of Ranking Functions for PVS0 45
4.2.3 Specification of Size-Change based technologies 46

5 Formalization of termination by Dependency Pairs 51
5.1 Necessity for the Innermost Dependency Pairs Termination Criterion . . . 52
5.2 Sufficiency for the Innermost Dependency Pairs Termination Criterion . . . 55

5.2.1 Existence of mint Subterms . 57
5.2.2 Non-root Innermost Normalization of mint Terms 57
5.2.3 Existence of DPs . 62
5.2.4 Construction of Chained DPs . 63
5.2.5 Construction of the Infinite Innermost Dependency Chain 65

5.3 Formalization of DP termination for other rewriting relations 66
5.4 Library - TRS Theory Summary . 67

vii

5.5 Related work: other formalizations of DPs 74

6 Formalization of Termination Criteria in PVS0 76
6.1 Equivalence between semantic criteria . 76
6.2 Equivalence between TCC termination and semantic termination 78
6.3 Equivalence between TCC and SCP technologies 80
6.4 NASA PVS Library - PVS0 Theory Summary 83
6.5 NASA PVS Library - CCG Theory Summary 86

7 Connecting FP and TRS Termination Criteria 88
7.1 CC versus DP . 88
7.2 Evaluation versus Derivation . 92
7.3 Using the Dependency Pairs Termination Criterion for PVS0 Programs . . . 93
7.4 Related work . 98

7.4.1 A translation to orthogonal TRSs 98

8 Conclusion and Future Work 102

Bibliography 106

viii

Chapter 1

Introduction

Termination is a very important property related to the correctness of computational
objects, since it can guarantee that some output will eventually be provided to any in-
put. Once termination is guaranteed, it can be verified if the output of a program or
the reaction of a process is correct. Thus, developing mechanisms to verify termina-
tion of computational objects is of great interest, leading to the development of various
approaches to prove and disprove termination, enabling certification of termination.

However, termination of programs and processes is a well-known undecidable problem,
closely related to the undecidability of the Halting Problem [Tur37]. In general, the
undecidability of termination in a specific computational setting is proved by building
reductions of known computational models with known undecidable Halting Problem to
that setting. For instance, by reducing Turing Machines into Term Rewriting Systems
(for short, TRSs), it can be proved the undecidability of termination for TRSs [HL78],
a formal framework to reason about functional programs. Nevertheless, syntactic and
semantic restrictions, data structures, and heuristics can lead to solutions for subclasses
of undecidable problems such as termination.

Through the years, several methods to verify termination have been applied and fur-
ther developed to provide some automation to the process of checking termination for
different computational models, such as the λ-calculus, the rewriting systems and the
functional programs and others.

In the context of rewriting, termination can be checked by local analysis on the rules,
such as simplification orderings that include, for instance, lexicographic, multisets, recur-
sive paths, ranking function into ordinals [Der79, DM79a, Der82, Der87, YKS15, TSSY20,
Sch14]. Also, more sophisticated methods can be used, such as the Dependency Pairs Ter-
mination Criterion [Art96, AG97, AG98, AG00]. This criterion provides a robust mecha-
nism to analyze the termination of TRSs. Instead of locally checking the decreasingness
of rewrite rules, it is checked the decreasingness of the fragments of rewrite rules headed

1

by symbols that allow application of other rules. Indeed, a Dependency Pair consists of
the left-hand side (lhs) of a rewrite rule and a subterm of the right-hand side (rhs) of the
rule headed by defined symbols. Thus, a Dependency Pair expresses the dependency of a
function in other calls of any function, which could lead to an infinite derivation.

In the context of functional programs, local and general approaches are used to check
termination, such as:

• Ranking functions [Tur49], which are measures that must decrease over the argu-
ments of each possible (recursive) function call (data exchange point).

• Size-Change Principle [LJBA01], which aims to state the termination of a program
for any input by showing that an infinite computation would lead to an infinite
decrease over a well-founded order.

• The Calling Context Graph criterion [MV06] automates the analysis of the termina-
tion of recursive calls in a similar way to the Size-Change Principle. This approach
creates a graph whose vertices are Call Contexts (CC), which bring the information
of the parameters and the conditions, which lead to a recursive call in the definition
of another function. The idea is then to deduce the termination verifying that the
infinite execution of a program generates an infinite sequence of CCs, where the
current parameters of each context are related to the current parameters of the fol-
lowing context. This verification is done by providing a decreasing measure through
every cycle of the obtained graph.

The development of approaches for verifying termination, such as the ones mentioned
above, along with advances in theorem proving, enables the formal verification of algo-
rithms used in several applications to ensure their correctness. Formal verification can
be aided by proof assistants, allowing formalization of properties of algorithms, such as
termination, in a systematic way. For instance, in Coq [BC04], termination of well-typed
functions is guaranteed by the Calculus of Inductive Constructions on which the prover
is based. Termination of recursive functions are checked in ACL2 [KMM00] by incor-
porated syntactic conditions. In Isabelle, lexicographic order is used by default to try
stating termination, requiring a well-founded order to be manually defined when the de-
fault technique fails. In the Prototype Verification System (PVS) [ORS92] a measuring
function stating decrease over the formal and actual parameters of recursive functions
must always be provided by the user.

In particular, PVS is an interactive theorem prover based on classical higher-order logic
extensively used at NASA to verify safety-critical algorithms of autonomous unmanned
systems1, which usually are specified as recursive functions whose computations must be

1https://shemesh.larc.nasa.gov/fm/pvs/

2

https://shemesh.larc.nasa.gov/fm/pvs/

terminating. Thus, to provide ways to automate the verification of termination in PVS
specification is of great interest. This prover, such as others, uses decreasing measures as
its semantics of termination. In PVS the ranking functions must be provided by the user
as part of each recursive definition, and the decreasingness requirements are implemented
by the so-called termination Type Correctness Conditions (termination TCCs, for short).
Termination TCCs are proof obligations built by static analysis over the recursive defi-
nitions, stating that the measure of the actual parameters of each recursive call strictly
decreases regarding the measure of the formal parameters.

Take, for instance, the PVS definition of a recursive function occurrences over list of
naturals that counts how many times a given natural x occurs in a list l:

occurrences(l)(x) =
IF null?(l) THEN

0
ELSIF car(l) = x THEN

1 + occurrences (cdr(l))(x)
ELSE

occurrences (cdr(l))(x)

This function has recursive calls on the ELSIF and ELSE branches, both with the same
argument cdr(l). The measure length(l) can be provided by the user and can easily be
proven strictly decreasing on the argument of these calls (cdr(l)) regarding the input l.

For other functions, to provide such measure can be more challenging; analysing such
functions and their termination is a point of interest since the ’70s. Some of the functions
to illustrate this are the ones with nested calls as the McCarthy 91 function [MM69, MP70]
and those to generate the so-called Meta-Fibonacci sequences [Vaj89, chapter XII], such
as the Hofstadter [Hof79] and Conway [Mal91] sequences.

McCarthy 91 Hofstadter Conway
f91(x) =

IF x > 100 THEN
x− 10

ELSE
f91(f91(x+ 11))

h(x) =
IF x = 1 OR x = 2 THEN

1
ELSE

h(x− h(x− 1))+
h(x− h(x− 2))

c(x) =
IF x ≤ 2 THEN

1
ELSE

c(c(x− 1))+
c(x− c(x− 1))

3

Notice however that such measure can be defined, for instance, by observing the
behaviour of the function. Whenever the input n is such that n > 100, no recursive
step is performed, then the measure can be any c|c ≤ 100 and the decrease holds. If
n ≤ 100, the execution of the inner call leads to k nested calls adding 11 each time until it
exceeds 100, where the range of ten for numbers greater than two gives a pattern allowing
to obtain the amount of nested recursive steps before start executions without recursion
as f91(x) = f91k+1(f91(x+ 11 ∗ k)) where k = b (100−x)

11 c:

Range Expression f91k(x)
0 ≤ n ≤ 1 f919+1(n+ 99)
2 ≤ n ≤ 12 f918+1(n+ 88)

... ...
79 ≤ n ≤ 89 f911+1(n+ 11)
90 ≤ n ≤ 100 f911+0(n+ 0)

Then the value obtained will be some y > 100, which will decrease the amount of
nested calls by one and produce results decreased by 10. This will lead to a behavior of
obtaining results greater than 100 and smaller or equal to 100 alternately when the input
is y|90 ≤ y ≤ 100. The number of steeps in this scenario can be obtained by observing
the execution of the function:

Execution Steps
f91(100) = f91(f91(111)) = f91(101) = 91 3

f91(99) = f91(f91(110)) = f91(100) · · · 5
... ...

f91(91) = f91(f91(102)) = f91(92) · · · 21
f91(90) = f91(f91(101)) = f91(91) · · · 23

Then, for every 90 ≤ y ≤ 100 the number of steps in the execution of f91 is (101 −
y) ∗ 2 + 1. And, since by this analysis it is possible to state that f91(x) = f91k(x) =
f91k(f91(y)), that for all 90 ≤ y ≤ 100, f91(y) = 91 and that Steps(f91(91)) = 21, the
final measure can be given as:

Steps(f91, x) =
IF (x > 100) THEN

1
ELSE
k + [((101− (x+ k ∗ 11)) ∗ 2 + 1)] + k ∗ 21

Such measure can be required when specifying the f91 function. For instance, PVS

4

will generate the following termination TCCs for this function, where µ is a measuring
function that must be provided in the moment of the specification, which may not be
such an easy task, as seen in the previous discussion.:

∀(n : nat) :
¬(n > 100)⇒
µ(n+ 11) < µ(n)

and

∀(n : nat,
v : [{z : nat|µ(z) < µ(n)} → nat]) :
¬(n > 100)⇒
µ(v(n+ 11)) < µ(n)

To reason over properties of specifications of first-order functions in PVS, a simpli-
fied functional language model named PVS02 was defined. The PVS0 language is Turing-
Complete, and can model first order PVS functions with input and output of same type.
Thus the simplified language of PVS0 is adequate to show evidence of the correctness of
applying any sound termination criteria to check first-order PVS specifications. The veri-
fication of equivalence between different termination criteria provides a propitious setting
to automate termination analysis. Furthermore, proofs of properties such as termination
for PVS specifications are easier to provide in PVS0, since there are less elements to be
considered in this language.

The operational semantics of PVS0, just as of several functional languages, is defined
by eager evaluation. Such semantics can be modeled by the innermost normalization of
TRSs. There are several termination approaches for TRSs, from very syntactic to more
flexible and robust ones, such as the Dependency Pairs Criterion, which can be applied
for innermost reduction. If such criterion could be used to reason over PVS specifications,
it would be valuable to automate verifying their termination.

This work provides a formalization of the Dependency Pairs Termination Criterion
for innermost reduction in PVS. This formalization enriches the NASA PVS Library TRS
(a library on Term Rewriting Systems) with a new termination criterion, which allows
the possibility of investigate the possibility of using such a robust criterion to improve
the efforts of automating termination of PVS specifications. For such use, there must be
an equivalence between PVS0 specifications and TRSs and also between the criterion for
TRSs and the criteria for functional programs formalized in PVS0. The discussion on how
these equivalences could be reached is also initiated in this work.

2Theory PVS0 is available in the PVS nasalib https://shemesh.larc.nasa.gov/fm/pvs/
PVS-library/ and presented in [MARM+21].

5

https://shemesh.larc.nasa.gov/fm/pvs/PVS-library/
https://shemesh.larc.nasa.gov/fm/pvs/PVS-library/

1.1 Work Organization

The document presents its main contributions in Chapters 4 and 5, which discuss the
formalization of Dependency Pairs Termination in the PVS proof assistant. Also, it
collaborates with the NASA LaRC Formal Methods Group and other researchers from
the Universidade de Brasília in results for the PVS0 language presented in Chapter 6. The
presentation of these criteria and the contributions over them follow the structure below:

• Chapter 2 presents the background necessary, including functional programs and
term rewriting systems, their essential elements, operational semantics, and termi-
nation definitions.

• Chapter 3 discusses termination criteria for functional programs as Ranking Func-
tions [Tur49], Size-Change Termination Principle [LJBA01] and, Calling Context
Graphs [MV06]. Also, this chapter discusses the notion of Dependency Pairs Ter-
mination for term rewriting systems [AG97]. The former criteria are formalized for
the PVS0 functional language [MARM+21], and the latter is described in further
chapters in this work.

• Chapter 4 describes the specification of Dependency Pairs developed in this work
that extends the PVS theory for term rewriting systems, called TRS. Besides, it
describes the specification of termination criteria for the PVS0 language described
in the previous chapter.

• Chapter 5 presents the formalization of the Dependency Pairs Termination Crite-
rion for the innermost rewriting relation. Also, it explains how this formalization is
extended for the ordinary rewriting relation and for the Q-restricted rewriting rela-
tion as initially done in [ST10]. These results and details on how this formalization
extended the NASA PVS TRS library are published in [AAAR20].

• Chapter 6 presents the formalization in PVS of the termination criteria mentioned
in Chapter 3 for PVS0.

• Chapter 7 speculates about the application of the Dependency Pairs Termination
Criterion and its formalization in PVS to deal with automation of termination of
functional programs, as specified for the PVS0 language and discuss its relation with
the work from [KST+11], which aims the same goal for functions specified in Isabelle.

• Finally, Chapter 8 concludes and suggests future work.

6

Chapter 2

Background

Two computational models are overviewed in this work: Functional Programs and Term
Rewriting Systems. Assuming familiarity with both models, some basic notions regarding
them and their necessary elements to reason over termination are recalled.

2.1 Functional Programs

Functional programming is a well-known programming paradigm based on the pure ap-
plication of functions to input values. Thus, this approach is very close to mathematical
functions and allows the analysis of several properties in a more direct way.

In this work, a simplified model of first-order functional programs will be considered.
Let FName, Const, and Var be countable (in)finite sets of function symbols, constant
symbols, and variable names, respectively. Additionally, let Op be a finite set of operator
symbols that are interpreted as terminating built-in operators. Each f ∈ FName or
op ∈ Op is said to be of arity n if it is defined or interpreted using n formal parameters
(x0, ..., xn ∈ Var). The set of well-formed expressions Exp has the following grammar:

e := c | x | ite(e, e, e) | op(e, ..., e) | f(e, ..., e)

Where c ∈ Const, x ∈ Var, op ∈ Op, and f ∈ FName; arguments of f and op are
expressions given consistently with their arities. The if-then-else branching instruction
is denoted by ite and has three arguments: the guard, the then, and the else expressions.

The definition of an n-ary function f ∈ FName, uses the syntax f(x0, .., xn) := ef ,
where the expression ef is the body of the function. Variables occurring in ef are restricted
to belong to the formal parameters of the definition. A Functional Program (FP) P is a
sequence of non-mutually recursive function definitions.

7

Example 2.1.1 (Expression for the Ackermann’s function). Let =,+,−, and 0, 1 be,
respectively, binary operators and constants with their usual interpretation. Also, let n
and m be variable names. The Ackermann function over naturals is defined as:

ack(m,n) := ite(= (m, 0),
+(n, 1),
ite(= (n, 0),

ack(−(m, 1), 1),
ack(−(m, 1), ack(m,−(n, 1)))

To analyze the behavior of functions, it is necessary to get through its body (sub)
expression(s). This is achieved by the path position of each subexpression, given in
Definition 2.1.1.

Definition 2.1.1 (Positions of expressions). The set of positions of an expression e,
denoted as Pos(e), is the set of sequences or “paths” of naturals, where λ denotes the
empty sequence, recursively defined as:

Pos(e) :=



{λ} if e = c ∈ Const or e = x ∈ V ar;
{λ} ∪ ⋃2

i=0{iπ | π ∈ Pos(ei)} if e = ite(e0, e1, e2);
{λ} ∪ ⋃k

i=0{iπ | π ∈ Pos(ei)} if e = op(e0, ..., ek);
{λ} ∪ ⋃m

i=0{iπ | π ∈ Pos(ei)} if e = f(e0, ..., em).

For π ∈ Pos(e), e|π denotes the subexpression of e at path π.

Example 2.1.2 (Continuing Example 2.1.1). The expression −(m, 1) occurs at the posi-
tions 210 and 220 in the body of the definition of ack, for short, denoted as eack; that is
eack|210 = eack|220 = −(m, 1).

The functions usually refer to other functions or even themselves throughout their
body during their execution/evaluation. Such function calls require special attention in
the analysis of the existence of possible loops.

Definition 2.1.2 (Function Calls). Let f(x0, . . . , xnf) := ef be a function definition and
π ∈ Pos(ef) such that the ef |π = g(e0, . . . , eng), where g ∈ FName. This is called a
function call and is denoted as f(x0, . . . , xnf)

π−→ g(e0, . . . , eng), or for brevity f π−→ g,
or even simply as π, when no confusion arises. The expressions e0, . . . , eng are called the
actual parameters of the function call.

It is expected that function calls reference functions that are defined inside the pro-
gram. The actual parameters of these function calls are analyzed through eager evalua-

8

tion. Thus, for the evaluation, it is necessary to keep track of the actual parameters of
the function calls (Definition 2.1.3).

Definition 2.1.3 (State Transition). Consider a program P with function definitions
f(x0, . . . xnf) := ef , g(y0, . . . , yng) := eg. A state is a pair (f, δ), where δ is a map from the
formal parameters of f to expressions. If there is a function call in ef , f(x0, . . . , xnf)

π−→
g(e0, . . . , eng), then for the mapping δ′ on the formal parameters of g, defined as δ′(yi) 7→
eiδ, for i = 0, . . . , ng, we say that (f, δ) π−→ (g, δ′) is a state transition. A state transition
sequence is a sequence of states such that consecutive states form state transitions.

Example 2.1.3 (Continuing Example 2.1.2). The Ackermann function given in Example
2.1.1 has three recursive calls: one at position 21 (ack(−(m, 1), 1)); another one at posi-
tion 22 (ack(−(m, 1), ack(m,−(n, 1)))); and a last one at position 221 (ack(m,−(n, 1))).
Take as first state (ack, (u, v)), where (u, v) abbreviates the assignment β = {m/u, n/v},
for expressions u and v. Then, one has the state transition sequence below associated to
nested calls 221, 21, 22:

(ack, (u, v)) 221−→ (ack, (u,−(v, 1))) 21−→ (ack, (−(u, 1), 1)) 22−→
(ack, (−(−(u, 1), 1), ack(−(u, 1),−(1, 1))))

Below there is an infinite state transition sequence for the program ack:

(ack, (u, v)) 221−→ (ack, (u,−(v, 1))) 221−→ (ack, (u,−(−(v, 1), 1))) 221−→ · · ·

Since function calls happen in specific paths of function definitions, one can determine
the expressions for the guards of branching instructions that encompass the function call
by analyzing the prefixes of the path of a function call, as defined below.

Definition 2.1.4 (Calling Conditions). Let e be an expression and π ∈ Pos(e). The
calling conditions for π in e are recursively defined as:

CConds(π, e) :=



true if π = λ;
CConds(π′, ej) if e = op(..., ej, ...) and π = j · π′;
CConds(π′, ej) if e = f(..., ej, ...) and π = j · π′;
CConds(π′, e0) if e = ite(e0, e1, e2) and π = 0 · π′;
e0 ∧ CConds(π′, e1) if e = ite(e0, e1, e2) and π = 1 · π′;
¬e0 ∧ CConds(π′, e2) if e = ite(e0, e1, e2) and π = 2 · π′.

Each expression (ei or ¬ei) conjugated in calling conditions CConds(π, e) is a condition.
For an expression f(x0, ..., xn) := ef and π ∈ Pos(ef), CConds(π, ef) are called the calling
conditions of the expression ef |π. In particular, for an expression f(x0, ..., xn) := ef

9

which is the body of a program P and π ∈ Pos(ef), CConds(π, ef) are called the calling
conditions of the program P .

Example 2.1.4 (Continuing Example 2.1.3). For Ackermann, one has that:

CConds(21, eack) := ¬(= (m, 0)) ∧ = (n, 0)
CConds(221, eack) := ¬(= (m, 0)) ∧ ¬(= (n, 0))

For the operational semantics of FPs, let V al be the set of values whereupon the pro-
gram is defined. V al is enriched with a special additional distinguished and fresh value ♦
that represents “none”, and the boolean values TRUE and FALSE. There is an assign-
ment β : V ar → V al and a mapping I that interprets the primitive operators as total
built-in functions. Also, in this context I interprets constants (as zero-ary operators).

The semantic evaluation of expressions in a definition ef of a program, given an inter-
pretation I and an assignment β for the formal parameters of the definition of f , is given
by the function χ(e, β, n), for n ∈ N, below. This function returns a value whenever the
evaluation is possible, allowing at most n nested function calls, and ♦ otherwise.
Definition 2.1.5 (Semantic Evaluation). Let P be a program with an assignment β as
formal parameters, and e be any expression. For n ∈ N, an expression e is evaluated
recursively as χ(e, β, n) :=

♦ if n = 0; otherwise:
I(c) if e = c ∈ V al;
β(x) if e = x ∈ V ar;
♦ if e = ite(e0, e1, e2) and χ(e0, β, n) = ♦;
χ(e1, β, n) if e = ite(e0, e1, e2) and χ(e0, β, n) = TRUE;
χ(e2, β, n) if e = ite(e0, e1, e2) and χ(e0, β, n) = FALSE;
I(op)(χ(e0, β, n), if e = op(e0, ..., ek) and ∀(0 ≤ i ≤ k) : χ(ei, β, n) 6= ♦;

...,

χ(ek, β, n))
♦ if e = op(e0, ..., ek) and ∃(0 ≤ i ≤ k) : χ(ei, β, n) = ♦;
χ(eg, eg, β′, n− 1) if e = g(e0, ..., em), where for each formal parameter yi of g :

β′(yi) := χ(ei, β, n) 6= ♦;
♦ if e = g(e0, ..., em) and ∃(0 ≤ i ≤ m) : χ(ei, β, n) = ♦.

Semantic evaluation allows one to state semantic termination as below.

Definition 2.1.6 (Semantic Termination). Given a program P and a function body ef
for a function f in P , ef is said to be terminating by semantic evaluation, denoted as
Tχ(ef), if ∀(β) : ∃(n) : χ(ef , β, n) 6= ♦. P is said to be terminating, denoted as Tχ(P),
whenever Tχ(ef), for all ef in P .

Regarding semantic evaluation, for a given assignment, a function call will only be per-
formed if the conditions on its path hold. Furthermore, the values of the actual parameters

10

of the function call are determined during the evaluation. Thus, the state transitions (Def-
inition 2.1.3) must include adequate instantiations for the formal parameters of the calls,
as given in Definition 2.1.7.

Definition 2.1.7 (Nested Calls). Consider a function call f(x0, . . . , xnf)
π−→ g(e0, . . . , eng)

of a program P . Let β be an assignment from the formal parameters of f to V al. If there
exists n ≥ 0, such that if for each condition ec in CConds(π, ef), χ(ec, β, n) = TRUE
and for each actual parameter ei, for i = 0 . . . ng, of the nested call, χ(ei, β, n) 6= ♦,
then (f, β) π,n−→ (g, β′) is called an evaluated state transition or a nested call, where
the assignment β′ is defined from the formal parameters of g, y0, . . . , yng , such that
β′(yi) 7→ χ(ei, β, n). Additionally, a feasible sequence of nested calls is a sequence of
nested calls such that, for every two consecutive nested calls of the sequence, the second
state of a call and the first state of the next call are over the same function definition
and assignment, i.e. (fi, β) πi,n−→ (fj, β′), (fj, β′)

πj ,n−→ (fk, β′′), that can be abbreviated as
(fi, β) πi,n−→ (fj, β′)

πj ,n−→ (fk, β′′).

Notice that a sequence of nested calls is indeed a sequence of feasible state transitions
related to some possible program execution.

Example 2.1.5 (Sequence of Nested Calls for Ackermann). Continuing Example 2.1.4,
for the first state transition sequence, below it is given a related sequence of nested calls,
where assignments from the formal parameters of eack, m,n are abbreviated as pairs of
naturals.

(ack, (3, 1)) 221,7−→ (ack, (3, 0)) 21,6−→ (ack, (2, 1)) 22,5−→ (ack, (1, 3))

Notice however that the second (infinite) sequence in Example 2.1.4 is not feasi-
ble, since eack|221 = ack(m,−(n, 1)), and for every initial assignment from the for-
mal parameters of Ackermann to N, say β0, since the condition ¬ = (βi(n), 0) belongs
to CConds(221, eack), and no possible infinite assignments βi, i > 0, exist such that
βi(n) 7→ χ(eack,¬ = (n, 0), βi−1, ki) = TRUE, for some ki ∈ N:

(ack, β0) 221,k0−→ (ack, β1) 221,k1−→ (ack, β2) 221,k2−→ · · ·

Another notion of semantic termination can then be stated regarding the nested calls
of a program as below.

Definition 2.1.8 (Termination by Finite Nested Calls). A program P is said to be ter-
minating by finite nested calls, denoted as Tν(P), if there exist no infinite sequences of
assignments βi, and functions fi in the definition of P , and n, with i, n ∈ N, such that

(f0, β0) π1,n−→ (f1, β1) π2,n−→ · · · πi,n−→ (fi, βi)
πi+1,n−→ · · ·

11

It is possible to state the equivalence between the two notions of semantic termination,
given in Definitions 2.1.6 and 2.1.8, through the result of Lemmas 2.1.1 and 2.1.2 below.

Lemma 2.1.1 (Evaluation to ♦ produces infinite nested calls). Let f be a function defined
in a program P . If for all n ∈ N, χ(e, β, n) = ♦, then, for some f0 in the expression e

there is a sequence of infinite nested calls (f0, β0) π1,n−→ (f1, β1) π2,n−→ (f2, β2) π3,n−→ · · · .

Proof. It will be checked in general that there should exist a call at some position π of
the expression e of some function g, e|π = g(e1, . . . , eng), such that for all conditions c in
CConds(π, e), χ(ef , c, β, n) = TRUE for some n ∈ N, and χ(ef , g(e0, ..., eng), β, n) = ♦,
for all n ∈ N. This is proved by induction in e.

• If e = x or e = c, then the assumption that for all n ∈ N, χ(e, β, n) = ♦ does not
hold.

• If e = ite(e0, e1, e2), the call may happen in e0, e1 or e2. If for some n, χ(ef , e0, β, n) 6=
♦, there are two cases to consider. If χ(ef , e0, β, n) = TRUE, then for all n ∈ N,
χ(ef , e1, β, n) = ♦, and by induction hypothesis, there is a call at position π of e1

such that for all conditions c in CConds(π, e1), χ(ef , c, β, n) = TRUE for some n ∈
N, and χ(ef , e1|π, β, n) = ♦, for all n ∈ N. If χ(ef , e0, β, n) = FALSE, induction
is similarly applied to e2. Otherwise, the call that generates ♦ happens in the
condition itself since for all n ∈ N, χ(ef , e0, β, n) = ♦, and by induction hypothesis,
there is a call at position π of e0 such that for all conditions c in CConds(π, e0),
χ(ef , c, β, n) = TRUE for some n ∈ N, and χ(ef , e0|π, β, n) = ♦, for all n ∈ N. In
the three cases, i = 0, 1 and 2, consider that e|iπ = g(e1, . . . , eng).

• If e = op(e0, ..., em), for some 0 ≤ i ≤ m, it should happen that χ(ef , ei, β, n) = ♦,
for all n ∈ N. Thus, by induction hypothesis, there is a call at position π of ei such
that for all conditions c in CConds(π, ei), χ(ef , c, β, n) = TRUE for some n ∈ N,
and χ(ef , ei|π, β, n) = ♦, consider that e|iπ = g(e1, . . . , eng).

• If e = g(e0, ..., eng), then if for all 0 ≤ i ≤ ng, there is some n ∈ N, such that
χ(ef , ei, β, n) 6= ♦, the call that produces ♦ is this call itself. Otherwise, if for
some 0 ≤ i ≤ n, χ(ei, β, n) = ♦, for all n ∈ N, then induction is applied on
ei, and it should exist a π in ei, such that for all conditions c in CConds(π, ei),
χ(ef , c, β, n) = TRUE for some n ∈ N, and χ(ef , ei|π, β, n) = ♦ for all n ∈ N.

Thus, in all relevant cases, there is a call at some position π of e, e|π = g(e1, . . . , eng).
And according to the semantic evaluation, χ(ef , g(e0, ..., eng), β, n) = χ(eg, eg, β′, n− 1) =
♦, for all n ≥ 1, where for m large enough, the assignment β′ is given by β′(yi) :=
χ(ef , ei, β,m) 6= ♦, for all formal parameters yi of g. Let f0 = g and β0 = β′; proceeding

12

in the same manner for χ(ef0 , ef0 , β0, n), a nested call of the form (f0, β0) π1,n−→ (f1, β1), for
which once again one will have that χ(ef1 , ef1 , β1, n) = ♦, for all n ∈ N. In this manner,
the infinite sequence of nested calls is built.

Lemma 2.1.2 (Semantic Termination Equivalence). Given a program P , Tχ(P) iff Tν(P).

Proof. (⇐) By contraposition: if not Tχ(P), then there exist an f0 defined in P and an
assignment β on the formal parameters of ef0 such that for all k ∈ N, χ(ef , ef0 , β0, k) =
♦; by Lemma 2.1.1, this implies the existence of an infinite sequence of nested calls
(f0, β0) π1−→ (f1, β1) π2−→ Thus, by Definition 2.1.8, not Tν(P).

(⇒) Assuming Tχ(P) it will be proved by induction that there is no possible infinite
sequence of nested calls initiated from any evaluation of some function f0 in P with
assignment β0: (f0, β0) π1,k−→ · · · . Notice that this sequence is originated by an evaluation
of the form χ(ef0 , ef0 , β0, k). The lexicographic order on the pair k and the size of the
subexpression of ef0 being evaluated (in general at position π of ef0) is the used measure.
Assume a minimal pair of k and ef0 have been chosen such that it initiates an infinite
sequence of nested calls with assignment β. Starting from this evaluation, some function
call at position π′ in ef0 of the form g(e0, . . . , eng) is performed under assignment β. Thus,
we have three possibilities to build an infinite sequence of nested calls. If π is a position
in some argument, say ei, of this call, the evaluation χ(ef0 , ei, β, k) would give rise to an
infinite sequence, but this contradicts the minimality assumption. Another possibility is
that π happens in some condition c in CConds(π′, ef0); thus, the evaluation χ(ef0 , c, β, k)
gives rise to the infinite sequence of nested calls, but again this is a contradiction by
minimality assumption. Then, the sole remaining possibility is that the infinite sequence
of nested calls starts at position π itself, further by the evaluation χ(eg, eg, β′, k − 1),
where β′ is defined as β′(yi) 7→ χs(ef0 , ei, β, k), for all 0 ≤ i ≤ ng: (f0, β0) π,k−→ (g, β′) · · · ,
but this is not possible by minimality assumption.

2.2 Term Rewriting Systems

This section extends the background section of the paper [AAAR20]. Notations are com-
patible with those given in textbooks on rewriting [BN98, BKB+03].

The logical framework of Term Rewriting Systems is a well-known computational
model to reason over functional programs. Overall, TRSs consist of pairs of elements
(terms) which are related by a binary relation. Given any relation R, the notations R+

and R∗ denote, respectively, its transitive and reflexive-transitive closure. The relation
R∗ between two terms will be referred to as derivation. For a relation R and an element

13

s, if there exists t such that s R t holds, then s is said to be R-reducible, otherwise, it is
said to be in R-normal form, denoted by nf(R)(s).

The standard notation for terms, subterms, and positions will be followed in this work
(e.g. [BN98]).

Definition 2.2.1 (Term). Given a countable set of variables V and a signature Σ, a term
t ∈ T (Σ, V) is given as a variable or as a function symbol g applied to a tuple of terms of
length given by the arity of g according to the signature Σ. The set T (Σ, V) is given by
the terms freely generated from a set V according to a signature Σ.

Remark 1. The symbol root is used as a special operator that returns the root function
symbol of application terms, which is automatically created when the datatype for terms
is specified.

As in functional programs, the analysis over TRSs often relies on the structure of its
elements, such as the positions within terms (given as sequences of naturals, as usual)
and the subterms at such positions.

Definition 2.2.2 (Positions of terms). The set of positions of a term t, denoted as Pos(t)
includes the root position that is the empty sequence, denoted as λ, and if t is an appli-
cation, say g(t1, . . . , tn), all positions of the form {iπ | 0 ≤ i < n, π ∈ Pos(ti)}.

Definition 2.2.3 (Subterm and Replacement). Given a term s and a position π ∈ Pos(s),
the subterm of s at position π is denoted as s|π. The subterm relation is denoted by D:
sD s′, if there exists π ∈ Pos(s) such that s′ = s|π. If such given position π is such that
π 6= λ, s′ is called a proper subterm of s, which is denoted as s B s′. Notation s[π ← t]
is used to denote the term resulting from replacing the subterm s|π of s by the term t.

Example 2.2.1 (Subterm and Replacement). The term t = g(x, g(y, y)) has the following
subterms at respective positions, where only the first one is not a proper subterm:

t|λ = g(x, f(y, y))
t|0 = x

t|1 = g(y, y)
t|10 = y

t|11 = y

And the term g(g(x, x), g(y, y)) is obtained by replacing g(x, g(y, y))[0← g(x, x)]

Definition 2.2.4 (Rewrite rule). A rewrite rule is an ordered pair of terms, l and r,
called respectively the left-hand side (lhs for short) and the right-hand side (rhs for short),
denoted by l −→ r, such that l /∈ V and V ar(r) ⊆ V ar(l).

14

Definition 2.2.5 (Term Rewriting System (TRS)). Given a countable set of variables V
and a signature Σ, a TRS E is a set of rewrite rules that are ordered pairs of terms in
T (Σ, V).

Example 2.2.2 (TRS). Three rules below conform a TRS for the Ackermann function,
where s and 0 are the usual constructors for naturals.

a(0, y) −→ s(y)
a(s(x), 0) −→ a(x, s(0))
a(s(x), s(y)) −→ a(x, a(s(x), y))

The relations between terms define the operational semantics of TRSs, given by the
application of rewrite rules to terms to obtain reductions.

Definition 2.2.6 (Reduction and Normal Form). Given a TRS E, and terms s and t,
there is a reduction from s to t at position π ∈ Pos(s), denoted as s π−→E t (or just s π−→ t

if E is clear from context), if there exist some rule l −→ r ∈ E and some substitution σ

such that lσ = s|π and t = s[π ← rσ]. The term s is then reducible at position π.
If no specific position is given, but there exists some position π ∈ Pos(s) and term a

t such that s π−→ t, the term s is said to be reducible, and whenever t is given, the term s

is said to reduce to t, denoted as s −→E t. Since reduction is a relation, a term that is not
reducible is in normal form.

Example 2.2.3. Considering the TRS for Ackermann in Example 2.2.2, one has, in
general, that terms of the form a(0, sk(0)) reduce into sk+1(0), and terms of the form
a(s(0), sk(0)) derive into sk+2(0), for k > 0, where sk abbreviates k applications of s.
Also, terms of the form 0, s(0), etc are normal forms.

There are scenarios that require not only the pattern matching used in reductions but
also to solve more general problems, such as the equational problems discussed in Chapter
7. For such purposes the narrowing relation can be used [KK96].

Definition 2.2.7 (Narrowing). Given a TRS E, and terms s and t, s narrows to t at
position π, denoted as s E t, if π is a nonvariable position and there exist some rule
l −→ r ∈ E and most general unifier σ of s|π and l such that t = sσ[π ← rσ]. When
details such as the position, the rule and/or the position used are required, the notation
can include them in this order and them it may be written as s [π,l→r,σ] t. A narrowing
derivation s ∗σ t is a sequence of narrowings steps s ∗σ1 s

′ ∗σ2 · · ·
∗
σn t, where the

solution σ is given as σ = σn · · ·σ2σ1.

15

Example 2.2.4 (Narrowing). Add the following rules to the TRS for Ackermann in
Example 2.2.2:

?= (x, x) −→>

Narrowing the expression ?= (?= (a(x, y), s(s(0))),>) search for solutions to the equational
question ?= (a(x, y), s(s(0))):

• ?= (?= (a(x, y), s(s(0))),>) [{x/0}]
?= (?= (s(y), s(s(0))),>) [{y/s(0)}]

?= (>,>)
>, that correspond to the solution {x/0, y/s(0)};

• ?= (?= (a(x, y), s(s(0))),>) [{x/s(x′),y/0}]
?= (?= (a(x′, s(0)), s(s(0))),>) [{x′/0}]

?= (?= (s(s(0)), s(s(0))),>) ?= (>,>) >, that correspond to the solution
{x/s(0), y/0};

• ?= (?= (a(x, y), s(s(0))),>) [{x/s(x′),y/0}]
?= (?= (a(x′, s(0)), s(s(0))),>) [{x′/s(x′′)}]

?= (?= (a(x′′, a(s(x′′), 0))), s(s(0))),>) [{x′′/0}]
?= (?= (s(a(s(0), 0)), s(s(0))),>)

?= (?= (s(s(s(0))), s(s(0))),>), which gives no solution;

• Other narrowing derivations are possible, but they will not produce solutions.

In some specific implementations, such as the one used in this work to deal with chains
of Dependency Pairs, it is interesting to avoid reductions at the root position of terms.
For this, one uses the non-root reduction relation.

Definition 2.2.8 (Non-root Reduction). Denoted by >λ−→ , the non-root reduction relation
is induced by a TRS E and relates terms s and t whenever s π−→ t for some π ∈ Pos(s)
such that π 6= λ.

Example 2.2.5 (Non-root Reduction). Considering the TRS for Ackermann in Example
2.2.2 and the term a(s(s(0)), s(a(s(0), 0))):

a(s(s(0)), s(a(s(0), 0))) 10−→ a(s(s(0)), s(a(0, s(0)))) is a non-root reduction;
a(s(s(0)), s(a(s(0), 0))) λ−→ a(s(0), a(s(s(0)), a(s(0), 0)) is a reduction,
but is not a non-root reduction.

The positions where the reductions occur also lead to reductions strategies that allow,
for instance, to reason over such reductions and relate them with other strategies. This
is the case of the innermost reduction, a strategy that has an operational semantic close
to the one of the eager evaluation of functional programs.

16

Definition 2.2.9 ((Non-root) Innermost Reduction). A term s is said to be innermost
reducible at position π ∈ Pos(s) if nf(>λ−→)(s|π) and s

π−→ E t for some term t; this is
denoted as s π−→in t.

If no specific position is given, but there exists some position π ∈ Pos(s) and term t

such that s π−→in t, s is said to be innermost reducible, and whenever t is given, s is said
to innermost reduce to t; denoted as s −→in t.

Whenever the innermost reduction takes place at a position π 6= λ, one has a so-called
non-root innermost reduction, denoted as >λ−→in .

Example 2.2.6 (Non-root innermost reduction for Ackermann). Considering the TRS
for Ackermann in Example 2.2.2 and the term a(0, a(s(0), sk(0))), one has that:

a(0, a(s(0), sk(0))) 1−→in a(0, a(0, a(s(0), sk−1(0))))

The innermost reduction also allows one to obtain results regarding the termination
of TRSs with specific properties, such as Orthogonal TRSs (which are the TRSs that
model functional programs, [BN98]), where innermost termination and termination are
equivalent [Gra96].

Another relation useful to this work is regarding the descendants of a term through a
given relation. This relation is relevant, for instance, when analyzing a given derivation
and it is required to know exactly which term gave rise to this specific derivation.

Definition 2.2.10 (Rewriting Restricted to Descendants). The reduction relation re-
stricted to (descendants of) a term t is induced by pairs of terms u, v derived from t such
that there are derivations t −→ ∗ u −→ v. The notation used is u −→

t
v. Similarly to the

previous rewriting relations, it can be explicit the exact position π ∈ Pos(u) where the
reduction took place, and then the notation π−→

t
is used. Analogous notation applies to

innermost and non-root reductions.

Example 2.2.7 (Rewriting Restricted to Descendants for Ackermann). Considering the
TRS for Ackermann in Example 2.2.2 and terms

t = a(0, a(s(0), sk(0)),
u = a(0, a(0, a(s(0), sk−1(0))))
v = s(a(0, a(s(0), sk−1(0))))

One has that u −→
t
v, since

a(0, a(s(0), sk(0)) −→ a(0, a(0, a(s(0), sk−1(0)))) −→ s(a(0, a(s(0), sk−1(0))))

17

This work focuses on verifying techniques for termination analysis to provide means to
automate termination analysis correctly for functional programs. Since TRSs are suitable
to reason over such programs, the notion of termination for such systems is a key property.

Definition 2.2.11 ((Innermost) Terminating TRSs and terms). A TRS E is said to be
(innermost) terminating if it has no infinite (innermost) derivations.

A term s is (innermost) terminating if no infinite (innermost) derivation starts with
it. Otherwise, the term s is (innermost) non-terminating denoted as ↑ (s) (or ↑in (s)).
Whenever a term s is non-terminating, but all its proper subterms are terminating, one
says the term is minimal non-terminating (mnt for short, denoted by � (s)), and for
innermost termination one says minimal innermost non-terminating (mint for short, de-
noted by �in (s)).

Example 2.2.8 ((Innermost)Terminating TRS and terms). Consider the TRS below:

f(a)→ f(a)
f(b)→ b

a→ b

This TRS is innermost terminating, but not terminating. For instance, the term
f(f(a)) is innermost terminating:

f(f(a)) −→in f(f(b)) −→in f(b) −→in b

But, in general, this term is non-terminating:

f(f(a)) −→ f(f(a)) −→ f(f(a)) −→ f(f(a)) −→ · · ·

And the subterm f(a) is mnt, since every proper subterm of it, i.e., a is terminating:

a −→ b

18

Chapter 3

Termination Criteria

Termination is a relevant computational property for all computational models, such as
Turing Machines, λ-calculus, term rewriting systems, programming language models, etc.
This chapter briefly discusses the termination property and termination analysis criteria
focusing on the formalizations discussed in this work.

There are several approaches to deal with termination analysis. In the literature, these
approaches usually are separated into two ways to deal with the analysis: local analy-
sis, commonly referred to as logical relation or syntactic approaches, and the semantic
analysis, that deal with checking the possible execution flow of a program.

Some approaches using local analysis are well-known for checking termination of Term
Rewriting Systems, for instance, where simplification orderings are used to check that
the rules of such systems have some decrease from the left to the right-hand side of each
rule in the system. Such techniques include analysis via multisets, path ordering, etc
[Der79, DM79a, Der82, Der87, YKS15, TSSY20] and can be used to check termination of
λ-calculus, such as shown in [Ned94] and formalized in [DX07].

As previously mentioned, termination, in general, is an undecidable property, but it
can be decidable in specific settings, such as when dealing with the Simply-Typed λ-
calculus, where typability is decidable and typability implies strong normalization. As
for the general case, where intersection types are used to state strong normalization in
general, the undecidability remains [Hin92].

Computational models that provide more expressiveness than functional models also
require to analyze termination to ensure some properties. For instance, the Process Cal-
culus (π-calculus) is used to model concurrent computation, where it is desired to ensure
that the processes eventually provide some output. This is ensured, for instance, by a
combination of conditions based on types and the syntax of the system or linear logic, or by
defining well-founded order that decreases along with reductions [San06, YBH04, DS04].

19

3.1 Ranking Functions

The termination of a program might be guaranteed by ensuring that there is a decrease
over the data being exchanged during its execution. For different paradigms, the points
to measure such data exchange can be specified differently; for instance, for imperative
programs they might be given by program instructions, by redexes for term rewriting sys-
tems, etc. In particular, for functional specifications the points to measure data exchange
are function calls, so that the verification of decrease is simplified to verification of the de-
crease of the arguments used as inputs for the execution of a function regarding the actual
parameters used in other function calls generated during the execution. This criterion,
also known as ranking functions, is frequently used and can be traced to [Tur49]. The
approach proposed by Turing aims to verify large routines by enriching the instructions
of interest with assertions over the variables that can be checked individually, reducing
the effort of verifying a program. Additionally, some measurement of the variables must
be provided that should be shown continually decreasing through execution.

A related practical approach was further proposed [Flo67]. The inputs and outputs
of program commands are enriched with assertions (Floyd-Hoare first-order well-known
pre and postconditions) so that if the precondition holds and the command is executed,
the postcondition must hold. To verify termination, these assertions must be enriched
with decrease assertions that are built using a well-founded ordering according to some
measurement function on the inputs and outputs of the program commands.

Recursive programs can also follow this approach [BM79]. The measurement required
to guarantee decrease must then be provided over the actual parameters (arguments) of
every possible function call regarding the formal parameters of a recursive function. The
conditions to effectively execute the function call are given by the guards of branching
instructions that lead to the function call. This criterion is used in several proof assis-
tants to check the totality of recursive functions. In the case of PVS, the user should
provide a measure function for each recursive function, and the necessary decrease condi-
tions are built during type checking as so-called “termination-subtype” Type Correctness
Conditions (this is the nomenclature used in [OSRSC99], here the abbreviation termi-
nation TCCs will be used). Then, for the recursive functions, it is expected as a type
requirement that formal and actual parameters of each recursive call fulfill this decrease
criterion, whenever guards of branching instruction leading to the recursive call hold.

In the remainder of this section, a general overview of the ranking function criterion for
recursive functions is given. The first necessary notion identifies the contexts associated
with function calls.

20

Definition 3.1.1 (Calling Context (CC)). Let f(x0, ..., xnf)
π−→ g(e1, . . . , eng) be a func-

tion call in a program P . The triple 〈f(x0, ..., xnf), CConds(π, ef), g(e1, . . . , eng)〉 is called
a Calling Context (for short, CC) of P . The set of all CCs of P is denoted as CCs(P).

Notice that a CC of the form 〈f(x0, ..., xnf), CConds(π, ef), g(e1, . . . , eng)〉 might be
obtained just from the pair 〈f, π〉, since the position π suffices to identify the function
call of g in the body of the function f ; to make it explicit, the called function is used
to ease readability. When referring to a CC, originated by a function call of a function
g at position π of ef , such that ef |π is rooted by the function symbol g and conds =
CConds(π, ef), the notation will be simplified as 〈f, conds, g〉.

Example 3.1.1 (CCs for Ackermann). There are three CCs for Ackermann in Example
2.1.1:

〈ack(m,n), ¬(= (m, 0))∧ = (n, 0), ack(−(m, 1), 1)〉
〈ack(m,n), ¬(= (m, 0)) ∧ ¬(= (n, 0)), ack(−(m, 1), ack(m,−(n, 1)))〉
〈ack(m,n), ¬(= (m, 0)) ∧ ¬(= (n, 0)), ack(m,−(n, 1))〉

Notice that for a CC 〈f(x0, ..., xnf), CConds(π, ef), g(e1, . . . , eng)〉, given an assign-
ment β on the parameters of f , the function call g(e1, . . . , eng)β will be performed only if
the conditions in CConds(π, ef) instantiated with β hold.

Definition 3.1.2 (Measuring Function). A measuring function µf is defined from tuples
of values assigned to the parameters of a function f to a well-founded set M. For a
given function f defined in a program P and an assignment β on its parameters, µf (β)
will denote the measure of the tuple given by the parameters of f instantiated by β:
µf (x1β, . . . , xnfβ). Measures are extended to expressions with free variables in the pa-
rameters of β, whenever they can be evaluated under the assignment β and this is denoted
as µf (e1β, . . . , enfβ).

Indeed, each measure function corresponds to a collection of measures for each function
symbol in the program. But here, for simplicity, it will be assumed that each measure
adapts to the parameters of each function in P .

Example 3.1.2. A possible measuring function (on the well-founded set N) for the Acker-
mann function is the lexicographical ordering lex(m,n) built over the ordering of naturals.

Providing the proper comparison between the measures of all assignments of the formal
parameters and the corresponding measures of instantiated tuples of actual parameters
of recursive calls, one obtains the notion of TCC termination.

21

Definition 3.1.3 (TCC Termination). A given program P is said to be TCC terminating
if there exists a well-founded order � and measure functions µf , for all functions f defined
in P , over a well-founded setM such that

∀(〈f, conds, g〉 ∈ CCs(P)) : conds ⇒ µf (x1, . . . , xnf) � µg(e1, . . . , eng)

Such assertions are called termination TCCs and the notation Tς(P) is used when P is
TCC terminating.

Notice that since all ef sub expressions depend only on the formal parameters of f ,
the termination TCC generated by a CC related to a pair 〈π〉, where ef |π = g(e1, . . . , eng),
can be written as:

∀(x1, . . . , xnf) : CConds(π, ef)⇒ µf (x1, . . . , xnf) � µg(e1, . . . , eng)

or also, if β ranges over assignments on the parameters of f , as:

∀(β) : CConds(π, efβ)⇒ µf (x1β, . . . , xnfβ) � µg(e1β, . . . , engβ)

Notice also that programming languages where mutual recursion is not allowed, as
PVS, usually perform termination analysis on each function definition separately, assum-
ing that all other called functions in the definition of a function are previously shown to
be terminating. Thus, it is enough to analyze just the CCs related to recursive calls, so
that for verifying termination of a function, a sole measure function on the parameters of
the function is necessary.

Example 3.1.3 (TCCs Termination for Ackermann). Using the well-founded ordering
> on naturals and the lexicographic measure on pairs of naturals, it can be proved that
Tς(ack); indeed, the three termination TCCs (related to the three CCs(ack)) below are
easily provable.

∀(m,n) : ¬(= (m, 0))∧ = (n, 0)⇒ lex(m,n) > lex(m− 1, 1)
∀(m,n) : ¬(= (m, 0)) ∧ ¬(= (n, 0))⇒ lex(m,n) > lex(m− 1, ack(m,n− 1))
∀(m,n) : ¬(= (m, 0)) ∧ ¬(= (n, 0))⇒ lex(m,n) > lex(m,n− 1)

Lemma 3.1.1 (TCC Termination Equivalence). For a given program P , Tς(P) iff Tν(P).

Proof. (⇒) Assuming not Tν(P), there exists an infinite sequence of nested calls of the
form

(f0, β0) π1,n−→ (f1, β1) π2,n−→ (f2, β2) π3,n−→ ...

22

Then, for each nested call in this sequence, (fi, βi)
πi+1−→ (fi+1, βi+1), there is a cor-

responding calling context 〈fi, CConds(πi+1, efi), fi+1〉 such that the conditions evaluate
to TRUE: for all c in CConds(πi+1, efi), χ(efi , c, βi, n) = TRUE, and also each formal
parameter of fi+1 and each actual parameter, say yj and ej for i = 1, .., nfi+1 , respec-
tively, are such that χ(efi , ej, βi, n) = yjβi+1. Assuming, Tς(P), there exist measuring
functions µfi for each fi in P and a well-founded order � over a well-founded set (Defini-
tion 3.1.3) such that for each associated termination TCC, instantiated with βi and βi+1,
one has CConds(πi+1, efi)βi ⇒ µfi(βi) � µfi+1(βi+1), which gives µfi(βi) � µfi+1(βi+1),
since the condition holds. From this, it is obtained an infinite decreasing sequence for �
contradicting its well-foundedness.

(⇐) Assuming Tν(P), it holds that every possible sequence of nested calls for P is
finite such as below:

(f0, β0) π1,k1−→ (f1, β1) π2,k2−→ · · · πn,kn−→ (fn, βn)

Let us consider the sequences originated by evaluation of a function f defined in P

under assignment β and consider as measure, say µf , for this assignment the maxi-
mum length of a possible sequence of nested calls generated by it. Then for every CC
〈f, CConds(π, ef), g〉 and any β such that the conditions hold, the associated nested call
(f, β) π,k−→ (g, β′) imply that µf (β) � µg(β′). Therefore, f is TCC terminating.

3.1.1 Termination in the Prototype Verification System

PVS is an interactive theorem prover based on classical higher-order logic. The PVS
specification language is strongly-typed and supports several typing features including
predicate sub-typing, dependent types, inductive data types, and parametric theories.
The expressiveness of the PVS type system prevents its type-checking procedure from
being decidable. Hence, the type-checker generates TCCs as proof “obligations”, that
have to be separately proved in order for the type checking process to be considered
complete. In practice, the system includes several predefined proof strategies able to
automatically discharge most of the TCCs. One goal of formalizing termination criteria
is indeed to provide means to enrich such strategies and allow automation of proofs for
TCCs regarding termination.

In PVS, a recursive function f of type [A→B] is shown to be tota by providing a
measure function µ of type [A→T], where T is an arbitrary type, the measuring type,
where a well-founded relation < exists (over elements in T). The termination TCCs
produced by PVS for a recursive function f guarantee that the measuring function strictly
decreases with respect to the well-founded relation at every recursive call of f . These

23

TCCs correspond to the Ranking Functions Criterion that is widely used in verification
systems to check termination of recursive program.

Example 3.1.4. In PVS, the Ackermann function on two arguments can be defined as
follows.

Specification 3.1: PVS Specification for Ackermann
ackermann(m,n : nat) : RECURSIVE nat =

IF m = 0 THEN n+ 1
ELSIF n = 0 THEN ackermann(m− 1, 1)
ELSE ackermann(m− 1, ackermann(m,n− 1))
MEASURE lex2(m,n)BY <

In this case, the type of the function is [[nat × nat] → nat], the measuring type is
chosen as the type ordinal, and the measuring function is the lex2 function that maps
a pair of naturals (m,n) into the ordinal number mω + n, and the well-founded relation
“<” on ordinals. PVS generates the following TCCs:

Specification 3.2: TCCs for Ackermann in PVS
ackermann_TCC1 : OBLIGATION
∀(m,n : nat) : n = 0 ∧m 6= 0⇒ m− 1 ≥ 0

ackermann_TCC2 : OBLIGATION
∀(m,n : nat) :
n = 0 ∧m 6= 0⇒ lex2(m− 1, 1) < lex2(m,n)

ackermann_TCC3 : OBLIGATION
∀(m,n : nat) :
n 6= 0 ∧m 6= 0⇒ m− 1 > 0

ackermann_TCC4 : OBLIGATION
∀(m,n : nat) :
n 6= 0 ∧m 6= 0⇒ n− 1 > 0

ackermann_TCC5 : OBLIGATION
∀(m,n : nat) :
n 6= 0 ∧m 6= 0⇒ lex2(m,n− 1) < lex2(m,n)

ackermann_TCC6 : OBLIGATION
∀(m,n : nat, f : [{z : [nat× nat]|lex2(z 1̀, z 2̀) < lex2(m,n)} → nat]) :
n 6= 0 ∧m 6= 0⇒ lex2(m− 1, f(m,n− 1)) < lex2(m,n)

24

Proof obligations ackermann_TCC1, ackermann_TCC3, and ackermann_TCC4 are gen-
erated by PVS only to guarantee that the type of the arguments is indeed nat. The other
proof obligations, namely ackermann_TCC2, ackermann_TCC5 and ackermann_TCC6 are
the ones of interest, i.e., the termination conditions generated by PVS from the three re-
cursive calls used in the definition. Providing the measure lex2 in the specification all
termination TCCs are automatically discharged by PVS. Hence, the PVS semantics guar-
antees that, since all TCCs are properly discharged, the function ackermann is well-defined
in all inputs.

3.2 The Size-Change Principle and Calling Context
Graphs

The Size-Change Principle (SCP) introduced in [LJBA01] aims to state program termi-
nation by verifying that “every possibly infinite sequence of data exchanging causes an
infinite descent over some data values regarding a well-founded relation”. Thus, since
such an infinite decrease is impossible, it is enough to state that there are no infinite
sequences of data exchanging as in Definition 2.1.8. The SCP analysis is implemented by
the Calling Context Graph (CCGs) technique introduced by [MV06]. The analyzed data
values are usually the actual parameters of function calls, but the vertices of a CCG are
not labeled just with the parameters, they are labeled with the CCs of the program given
in Definition 3.1.1. The edges of the CCG connect pairs of vertices that for some input
might give rise to a state transition (for which the conditions for the calls hold). Thus,
the edges are given whenever the two adjacent vertices form a nested call.

Definition 3.2.1 (Graph of Calling Contexts). The Graph of Calling Contexts for a
program P is the (over-approximated) digraph G = (CCs(P), E), whose edges are pairs
of vertices in CCs(P) related by nested calls; that is, there is an edge (〈f, conds, g〉,
〈g, conds′, h〉) in E iff there is a nested call (f, β) π,n−→ (g, β′), where π is the position of
the function call related to the CC 〈f, conds, g〉 (i.e., conds = CConds(π, ef) and ef |π is
the call of the function g) and for all condition ec ∈ conds′, χ(eg, ec, β′, n) = TRUE.

Example 3.2.1 (Graph of Calling Contexts for Ackermann). Let cc1, cc2 and cc3 be,
respectively, the first, second and third CCs for eack in Example 3.1.1. Then, the Graph

25

of Calling Contexts for Ackermann is depicted below.

cc1

�� ��
cc2

CC

33
-- cc3

[[

mm
kk

Notice that for any nested call (ack, β) 21,k−→ (ack, β′), since the condition = (n, 0) ∈
CConds(21, eack) holds for β, one has that β′ maps n 7→ 1, which implies that for all
k > 0, χ(eack,= (n, 0), β′, k) = FALSE. Therefore, there is no edge from cc1 to itself.

Notice that termination by finite nested calls (Definition 2.1.8) can be stated as the
non-existence of infinite sequences of CCs associated with feasible sequences of nested
calls. In a graph of calling contexts, however, the existence of a nested call is checked
only locally. Thus, every feasible sequence of nested calls is a path in the graph. But
not every path in the graph corresponds to a feasible sequence of nested calls, since every
element of the sequence must satisfy the definition of nested call.

To state that an infinite sequence of (“feasible”) CCs produces an infinite decrease
over a well-founded order, the relation between CCs along the paths of the Graph of
Calling Contexts should be analyzed. Paths of interest for this analysis are circuits which
are paths that end with a CC adjacent to the starting calling context; thus corresponding
to possible execution loops. For establishing a decrease along paths, the structure of a
Graph of Calling Contexts is enriched with a family of measure functions whose outputs
will label every vertex of the graph.

Definition 3.2.2 (Family of Measures). A family of measures for a program P is a finite
set of measure functions M = {µ1, . . . , µk} over a well-founded setM, on the parameters
of functions in a program P .

Example 3.2.2. A family of measures for Ackermann in Example 2.1.1 might contain
measures such as µ1(m,n) := m, µ2(m,n) := n, µ3(m,n) := lex(m,n), etc. Since
the program specifies a sole binary function, these measures work without any necessary
adaptation to the parameters of all CCs.

Definition 3.2.3 (Calling Context Graph - CCG). Let (CCs(P), E) andM be a Graph of
Calling Contexts and a family of measures for a given program P . Then, (CCs(P), E,M)
is a Calling Context Graph (CCG) for P .

It can occur that one of the measures in the given family of measures does not provide a
decrease over some parameters after each function call. Thus, allowing different measures

26

brings an advantage, since it is possible to obtain the required decrease along paths in the
graph by consistently comparing these measures along the edges of paths in the CCG.

Definition 3.2.4 (Measure Comparison Function). Let (CCs(P), E,M) be a CCG for
a program P , where M consists of measure functions over a well-founded set M with a
well-founded order �. Over an edge e = (〈f, conds, g〉, 〈g, conds′, h〉) ∈ E and pairs of
measures µi, µj ∈M , a measure comparison function, given as φ(µi, µj, e), is defined as:

φ(µi, µj, e) :=


>, if ∀(β) : condsβ ⇒ µi(x1β, . . . , xnfβ) � µj(y1β

′, . . . , yngβ
′);

≥, if ∀(β) : condsβ ⇒ µi(x1β
′, . . . , xnfβ) % µj(y1β

′, . . . , yngβ
′);

×, otherwise.

Notice that for an edge (cc1, cc2), the vertex cc1 brings already the function definition
over which the second measure function is defined; i.e., φ(µi, µj, e) depends only on cc1.
Thus, for short, the simplified notation φi,j(cc1) will be used.

The decrease along paths in the CCG of a program can then be verified through the
application of the measure comparison function. Such function will allow combinations
of different measures along with the graph.

Example 3.2.3 (Continuing Example 3.2.2). Notice that along all paths in the graph of
Calling Contexts for Ackermann (Example 3.2.1), µ3 decreases in each edge, while µ1 and
µ2 only decrease in some edges of the graph; for instance µ2 decreases along (cc3, cc3),
but not along (cc3, cc2). Nevertheless, just using measures µ1 and µ2 decreasement along
circuits cc1, cc3, cc2 and cc3 of the CCG for Ackermann can be guaranteed since for the
former φ1,2(cc1) = “≥”; φ2,2(cc3) = “>”; φ1,1(cc2) = “>” and for the latter φ2,2(cc3) =
“>”; thus, the first and second parameters of Ackermann strictly decrease along the former
and the latter circuit, respectively.

Definition 3.2.5 (Measure Combination). Let (CCs(P), E,M) be a CCG for a program
P as in Definition 3.2.4 and cc1, cc2, . . . be a path in G, a measure combination for p is a
sequence µ1, µ2, . . . of measure functions in M with the same length of the path, where for
every i such that 1 ≤ i and i + 1 bounded by the length of the sequence φ(µi, µi+1, cci) 6=
“×”; it is said to be a decreasing measure combination, if in addition, there exists some
j with 1 < j and j + 1 bounded by the length of the sequence, such that φ(µj, µj+1, ccj) =
“>”.

Since the paths of the graph represent possible executions of the program, possible
execution loops are given by the circuits of the graph. Thus, it is possible to state
termination by analyzing these circuits and provide measure combinations for them.

27

Definition 3.2.6 (CCG Termination). Let P be a program. Then P is said to be CCG
terminating, denoted by T%(P), if there exists a finite family of measures M such that for
every circuit of the graph (CCs(P), E,M), there exists a decreasing measure combination
starting and ending with the same measure.

Example 3.2.4 (Continuing Example 3.2.3). The measure combinations µ1, µ2, µ1 and
µ2 are decreasing, respectively, for the circuits cc1, cc3, cc2 and cc3 of the CCG for the
Ackermann function.

Equivalence between the notion of termination by finite sequences of nested calls and
the CCG Termination criterion is then established.

Lemma 3.2.1 (CCG Termination Equivalence). For a given program P , T%(P) iff Tν(P).

Proof. (⇒) Assume T%(P). Every circuit of a CCG G for P represents a sequence of CCs
cc1, cc2, . . . , ccn where n is the length of the circuit, thus, a sequence of nested calls. The
decreasing measure combination for each circuit has the same measure function for the first
and last vertice; thus, the result of the measure combination dictates the behavior of some
specific parameters through the execution of P . Furthermore, this measure combination
is decreasing; thus, if the sequence of nested calls represented by (possible repetitions of)
this circuit were infinite, there would be infinitely occurrences of a strict decrease for a
given parameter regarding a well-founded order, reaching a contradiction.

(⇐) Assuming Tν(P), by Lemma 3.1.1 TCC termination holds. Then, there exist
measure functions µf for each function f in P that decrease regarding a well-founded
order � for every calling context. Let the CCG (CCs(P), E,M), where the family of
measure functions M is a singleton consisting of µ built from these measures µf adapted
accordingly to the parameters of each function f in P . Then, the decreasing measure
combination for each circuit of the graph is a sequence of µ’s of the length of the circuit,
which would be decreasing (along each step of the circuit). Thus, f (and also P) is CCG
terminating.

3.3 Dependency Pairs

The termination analysis for rewriting systems aims to verify the non-existence of infinite
reduction steps (derivations) for every term over which the reduction relation is applied.
To do this, the Dependency Pairs Termination Criterion, proposed in [AG97], analyzes
the possible reductions in a term resulting from a previous reduction, i.e., those that can
arise from defined symbols on the rhs’s of rules. Thus, it analyzes the defined symbols of
a TRS E, i.e., the set given by DE = {g | ∃(l −→ r ∈ E) : root(l) = g}.

28

Definition 3.3.1 (Dependency Pairs (DPs)). Let E be a TRS. The set of Dependency
Pairs for E is given as

DP (E) = {〈l, t〉 | l −→ r ∈ E ∧ r D t ∧ root(t) ∈ DE}

Example 3.3.1 (Dependency Pairs). The DPs for the TRS in Example 2.2.2 are:

〈a(s(x), 0), a(x, s(0))〉, from the second rule;

〈a(s(x), s(y)), a(x, a(s(x), y))〉, from the third rule at the root position of the rhs;

〈a(s(x), s(y)), a(s(x), y)〉, from the third rule at position 1 of the rhs.

Standard definitions of DPs substitute defined symbols by new tuple symbols (or
marked symbols), i.e., symbols that are not interpreted as function symbols, to avoid
(innermost) reductions at the root positions, which is required for the analysis of termi-
nation. Using such tuple symbols (or marked defined symbols) is convenient when using
polynomial interpretations, since it allows given different interpretations to the defined
symbols and their associated tuple symbols (e.g., [AG00], [TG03]). For the main purpose
of this work, and for relating the DP Criterion with other termination criteria (available
in the PVS theory PVS0), the flexibility allowed by tuple symbols would not be required.
In the current formalization, instead of extending the language with such tuple symbols,
DPs are built with unmarked symbols of the original signature. Reductions at the root
position are avoided through the restriction to non-root (innermost) derivations. This
choice will be made clearer in Chapter 4, but it avoids the need to extend the signature
of the TRSs.

Each DP represents the possibility of a future reduction after one (innermost) reduc-
tion step. However, distinct rewriting redexes can appear in terms after (possibly) several
(innermost) reduction steps, which can also give rise to another possible reduction, pro-
ducing a Dependency Chain.

Definition 3.3.2 (Dependency Chain). A dependency chain for a TRS E, E-chain, is a
finite or infinite sequence of DPs 〈s1, t1〉, 〈s2, t2〉 . . . for which there exists a substitution σ
such that tiσ >λ−→∗ si+1σ, for every i below the length of the sequence, after renaming the
variables of pairs with disjoint new variables.

Example 3.3.2 (Dependency Chain). A dependency chain built using the second DP in
the Example 3.3.1 is given by:

〈a(s(x), s(y)), a(x, a(s(x), y))〉, 〈a(s(x), s(y)), a(x, a(s(x), y))〉

since a(s(0), a(s2(0), 0)) >λ−→∗ a(s(0), s(a(s(0), 0))).

29

Similarly, the notion of Innermost Dependency Chain is given:

Definition 3.3.3 (Innermost Dependency Chain). An innermost dependency chain to
a TRS E, E-in-chain, is a finite or infinite sequence of DPs 〈s1, t1〉〈s2, t2〉 . . . for which
there exists a substitution σ such that, for every i below the length of the sequence, tiσ >λ−→
∗
in si+1σ and nf(>λ−→)(si), after renaming the variables of pairs with disjoint new variables.

Definition 3.3.4 ((Innermost) Dependency Pairs Termination Criterion). Termination
of a TRS E by the DP Termination Criterion, (denoted as TDP (E)) and shortened as DP
Criterion) is then defined as the absence of infinite dependency chains (cf., Theorems 3.2
and 4 of [AG97]) regarding E. Similar definition is used for innermost rewriting which is
denoted by TDPin(E)).

Indeed, to show the absence of such infinite chains is a more flexible criterion than
showing decreasing after each reduction step. It is possible to provide a simpler measure
that eventually decreases after some steps of reduction, but that never increases.

Example 3.3.3 (DP Termination for GCD). Consider the following TRS for obtain-
ing the greater common divisor (GCD) between naturals (not simultaneously null). For
simplicity, the addition symbol is considered built-in.

gcd(0, s(y))→ s(y)
gcd(s(x), 0)→ s(x)
gcd(s(x+ y), s(x))→ gcd(y, s(x))
gcd(s(x), s(x+ s(y)))→ gcd(s(x+ s(y)), s(x))

To show Noetherianity of this TRS it suffices to use a lexicographic ordering for the
arguments of gcd in the lhs’s and rhs’s of the rules. However the simple addition of the
arguments of gcdcan also be used. The TRS has the following DPs:

〈gcd(s(x+ y), s(x)), gcd(y, s(x))〉 from the third rule
〈gcd(s(x), s(x+ s(y))), gcd(s(x+ s(y)), s(x))〉 from the fourth rule

This measure decreases for the lhs and rhs of the first DP but remains the same for
this comparison with the second DP.

Notice that consecutive DPs in a dependency chain may be only of the forms below.

• 〈gcd(s(x+y), s(x)), gcd(y, s(x))〉〈gcd(s(x+y1), s(x)), gcd(y1, s(x))〉, for y = s(x+y1);

• 〈gcd(s(x+ y), s(x)), gcd(y, s(x))〉
〈gcd(s(x1), s(x1 +s(y1))), gcd(s(x1 +s(y1)), s(x1))〉, for y = s(x1) and x = x1 +s(y1);

• 〈gcd(s(x), s(x+ s(y))), gcd(s(x+ s(y)), s(x))〉
〈gcd(s(x+ y1), s(x)), gcd(y1, s(x))〉, for y1 = s(y)

30

Additionally, notice that the second DP can not be followed by itself in a depen-
dency chain because this would require consecutive DPs of the form 〈gcd(s(x), s(x +
s(y))), gcd(s(x + s(y)), s(x))〉〈gcd(s(x1), s(x1 + s(y1))), gcd(s(x1 + s(y1)), s(x1))〉, for x =
x1 + s(y1) and x1 = x+ s(y), which is not possible.

Noetherianity is then concluded noticing that for any possible consecutive DPs in a
chain, this measure decreases for the lhs of the first and the rhs of the second DP.

• for the first case, y1 + s(x) < s(x+ s(x+ y1)) + s(x);

• for the second case, s(x) + y < s(x+ y) + s(x);

• for the third case: s(y) + s(x) < s(x) + s(x+ s(y)).

Thus, no infinite dependency chain can be obtained.

A generalization of rewriting, allowing to restrict the redexes to terms in normal form
for a specific set of rewriting rules can be used to subsume the cases of ordinary and
innermost reductions. This generalization, introduced in [ST10], is given by the relation
Q-restricted in Definition 3.3.5.

Definition 3.3.5 (Q-restricted relation). For TRSs E and Q, the Q-restricted relation,
denoted as Q−→ E , is defined as s Q−→ E t iff s −→ E t at some position π such that proper
subterms of s|π are normal regarding Q; In this work, this relation also has its variants
for the reduction in a specific position (Q;π−−→E) and the non-root case (Q;π 6=∅−−−→E).

Note that the relations ∅−→ E and E−→ E correspond respectively to the ordinary and
the innermost reduction relations [GTSK05b]. This allows to use one single formalization
which can be used both the ordinary and innermost reduction relations.

In addition to the ordinary (∅−→E) and innermost cases (E−→E), the Q-restricted relation
also allows us to deal with interesting examples in which rewriting is applied in a modular
manner, such as using rules which evaluation lead a boolean value (and the rules used by
them) used in guards of branching expressions. Then the rules regarding the guards can
be analyzed separately.

Example 3.3.4 (A TRS for Arithmetic). This TRS considers some rules to deal with
the logic operators that are omitted for simplicity. For instance, transformations from
conditions such as ¬(= (x, y)) into inequalities ≤ or > (e.g., x < y ∨ y > x).

31

R1 ≤ (0, x)→ >
R2 > (s(x), s(y))→> (x, y)
R3 ≤ (s(x), s(y))→≤ (x, y)
R4 > (s(x), 0)→ >
R5

?= (x, x)→ >
R6 > ∧> → >
R7 +(0, x)→ x

R8 +(s(x), y)→ s(+(x, y))
R9 > (s(x), x)→ >
R10 ≤ (x,+(x, y))→ >
R11 > (s(+(x, y), y))→ >
R12 −(x, x)→ 0
R13 −(x, 0)→ x

R14 −(s(x), s(y))→ −(x, y)

This TRS can be separated into two subset of rules, a subset Q regarding only arith-
metic relations, successor operator "s" and the logical connective ∧, and a subset E con-
taining the rules involving other arithmetic operators, such as + and −. These two subsets
conform two separated TRSs which can have their desired properties analyzed separately.

Q E

R1 ≤ (0, x)→ > R7 + (0, x)→ x

R2 > (s(x), s(y))→> (x, y) R8 + (s(x), y)→ s(+(x, y))
R3 ≤ (s(x), s(y))→≤ (x, y) R10 ≤ (x,+(x, y))→ >
R4 > (s(x), 0)→ > R11 > (s(+(x, y), y))→ >
R5

?= (x, x)→ > R12 − (x, x)→ 0
R6> ∧> → > R13 − (x, 0)→ x

R9 > (s(x), x)→ > R14 − (s(x), s(y))→ −(x, y)

In order to ensure that there are no infinite dependency chains for a TRS, it is enough
to provide a well-founded weakly monotonic ordering closed under substitution over the
rules and DPs of the TRS. With such ordering there must be a strict decrease over the
lhs and rhs of each DP as long as there is no increase from the lhs to the rhs of every
rule of the TRS (cf., Theorem 4.1 of [AG97]). This analysis allows the development of
automated analysis to state termination of TRSs.

Other than being a very flexible and powerful criterion, several refinements have been
developed to automate analysis of termination by DPs, such as (innermost) Dependency
Graphs and means to approximate them, Argument Filtering, Narrowing of DPs and
Usable Rules, and the Subterm Criterion [AG00, HM03, HM04].

32

Chapter 4

Specification of DPs for TRSs and
Termination Criteria for PVS0

This Chapter presents details on the specifications of the PVS libraries TRS and PVS0.
Initially, the extension with DPs of the TRS library is discussed and then, the specification
of termination criteria for the functional language PVS0. When no confusion arises, some
typing notation will be omitted.

4.1 Extension of TRS with DPs

This section presents the extension of the PVS term rewriting library TRS with termina-
tion criteria based on the notion of DPs that were published in [AAAR20]. This library
is a development that already contains the basic elements of abstract reduction systems
and TRS, such as reducibility, confluence and Noetherianity regarding a given relation,
notions of subterms and replacement, etc. Furthermore, this theory embraces several elab-
orate formalizations regarding such systems, such as the confluence of abstract reduction
systems (see [GAR08]), the Critical Pair Theorem (see [GAR10]) and orthogonal TRSs
and their confluence (see [ROGAR17]).

Terms in the library TRS are specified in theory term.pvs as a datatype with three
parameters: nonempty types for variables and function symbols, and the arity function of
these symbols. Terms are either variables or applications built as function symbols with
a sequence of terms of length equal to its arity. The predicate app? holds for application
terms and, as previously mentioned, the operator root extracts the root function symbol
of an application.

The theory rewrite_rules.pvs specifies rewrite rules as pairs of terms following the
Definition 2.2.1 and the notion of a set of defined symbols for a set of rewrite rules E (i.e.,
DE used in Section 3.3) given as predicate defined? in Specification 4.1.

33

Specification 4.1: Predicate for defined symbols.
defined?(E)(d) = ∃(e ∈ E) : root(lhs(e)) = d

Basic elements and results were imported in this formalization, such as aforementioned
terms, rules and predicates to represent pertinence of positions of a term (positonsOF
found in theory positions.pvs), functions to obtain the subterm of a specific position
(subtermOF in theory subterm.pvs), the replacement operation (replaceTerm in theory
replacement.pvs) and so on. However, specification of some general definitions regarding
TRS’s required to specify DPs and formalization of several properties were missing and
filled in as part of this work. Some of these new basic notions and results were included
either in existing theories, such as the notion of non-root reduction (>λ−→) specified in
theory reduction.pvs, or in new complementary basic theories to deal with specialized
reductions, such as innermost_reduction.pvs and restricted_reduction.pvs, where
the relations −→in and −→

t
(Definitions 2.2.9 and 2.2.10) are found.

Furthermore, the new basic definitions, such as non_root_reduction? (>λ−→ of Def-
inition 2.2.8) are, mostly, specializations of previously existing ones, such as the notions
presented by predicates reduction_fix? and reduction? (see Specification 4.2), which
respectively specify the predicates for relations π−→ and −→ given by Definition 2.2.6 (in
theory reduction.pvs).

Specification 4.2: Predicates for the π−→ , −→ and >λ−→ relations.
reduction_fix?(E)(s, t, (π ∈ Pos(s))) =
∃(e ∈ E, σ) : s|π = lhs(e)σ ∧ t = s[π ←rhs(e)σ]

reduction?(E)(s, t) =
∃(π ∈ Pos(s)) : reduction_fix?(E)(s, t, π)

non_root_reduction?(E)(s, t) =
∃(π ∈ Pos(s)| π 6= λ) : reduction_fix?(E)(s, t, π)

Notice that such relations are specified as predicates over pairs of terms in a Cur-
ried way, a discipline followed through the whole TRS library that allows one to rely on,
for instance, parameterizable definitions and properties provided for arbitrary abstract
reductions systems, such as closures of relations (in theory relations_closure.pvs), re-
ducibility and normalization (in theory ars_terminology.pvs), Noetherianity (in theory
Noetherian.pvs), etc.

The new required relations given in Definition 2.2.9 are available in theory innermost_
reduction.pvs and are specified as the predicates innermost_reduction_fix? (π−→ in),
innermost_reduction? (−→in) and non_root_innermost_reduction? (>λ−→in) in Speci-
fication 4.3.

34

Specification 4.3: Predicates for the π−→in , −→in and >λ−→in relations.

innermost_reduction_fix?(E)(s, t, (π ∈ Pos(s))) =
is_normal_form?(non_root_reduction?(E))(s| π) ∧
reduction_fix?(E)(s, t, π)

innermost_reduction?(E)(s, t) =
∃(π ∈ Pos(s)) : innermost_reduction_fix?(E)(s, t, π)

non_root_innermost_reduction?(E)(s, t) =
∃(π ∈ Pos(s)| π 6= λ) :

is_normal_form?(non_root_reduction?(E))(s| π) ∧
reduction_fix?(E)(s, t, π)

The notion of −→
s

in Definition 2.2.10 is given in Specification 4.4 as rest? for any
binary relation R in theory restricted_reduction.pvs. A specialization of restricted
relations for term rewriting is given by arg_rest? also in Specification 4.4, allowing to
fix the argument where innermost reductions can take place between given descendants
of a term s (i.e., relation π−→

s in), which is specified in theory innermost_reduction.pvs.
The function first(π) returns the first element of the sequence of naturals given by the
position π.

Specification 4.4: Predicates for the −→
s

and π−→
s in relations.

rest?(R, s)(u, v) =
(sR∗ u) ∧ (uR v)

arg_rest?(E)(s)(k)(u, v) =
rest?(>λ−−→in , s)(u, v) ∧
∃(π ∈ Pos(s)| π 6= λ) : first(π) = k∧

innermost_reduction_fix?(E)(u, v, π)

Notice that this restriction on non-root innermost rewriting follows the previously
mentioned discipline of Currying and modularity of TRS, allowing generic application of
rewriting predicates and their properties over general rewriting relations. In this speci-
fication, i.e., arg_rest?, the predicate rest? receives as parameter the relation >λ−→ in ,
i.e., the terms related by this relation are only those that, besides having an innermost
reduction, are also derivations from a given term s.

In theory dependency_pairs.pvs are specified the notion of DP given in Defini-
tion 3.3.1 (as predicate dep_pair? in Specification 4.5) and its termination criterion given
in Definition 3.3.4. As previously mentioned, instead of extending the language with tuple
symbols, DPs are specified with the same language of the given signature, and thus DPs
chained through non-root (innermost) derivations.

35

Specification 4.5: Predicate for DPs as pairs of terms.
dep_pair?(E)(s, t) =

app?(t) ∧
defined?(E)(f(t)) ∧
∃(e ∈ E) :lhs(e) = s ∧
∃(π ∈ Pos(rhs(e))) : rhs(e)|π = t

This specification of DPs follows the standard theoretical approach straightforwardly.
However, it is stated over two existential quantifiers that, throughout the proofs, would
bring several difficulties about which rule and position had created the DP being analyzed.
This is because, due to the PVS proof calculus, whenever these existential quantifiers ap-
pear in the antecedent of a sequent in a proof, their Skolemization leads to some arbitrary
rule and position being chosen, making it difficult to construct derivations of terms asso-
ciated with chained DPs. It is easy to see that different rhs positions, and even different
rules can produce identical DPs; take, for instance, the TRS below, where 〈h(x, y), g(x, y)〉
can be built in three different manners.

{h(x, y) −→ h(g(x, y), g(g(x, y), y), h(x, y) −→ g(x, y), g(x, y) −→ y}

To discriminate how DPs are extracted from the rewrite rules and to circumvent the
difficulties of existential quantifiers, an alternative notion of DP is provided in Specifica-
tion 4.6 as predicate dep_pair_alt?.

Specification 4.6: Predicate for DPs as a pair of rule and position at its rhs.
dep_pair_alt?(E)(e, π) =
e ∈ E ∧
π ∈ Pos(rhs(e)) ∧
app?(rhs(e)|π) ∧
defined?(E)(f(rhs(e)|π)

Having the rule and position that generate the DPs allows, for instance, specification
of recursive functions to easily adjust and accumulate the contexts of any infinite chain
of DPs in order to build the associated infinite derivations (more details are given in
Section 5.1). Here, it is important to stress that for termination analysis and automation,
whenever dep_pair_alt?(E)(e, π) and dep_pair_alt?(E)(e′, π′) are such that lhs(e) =
lhs(e′) and rhs(e)|π = rhs(e′)|π′ , it is sufficient to consider only one of these DPs.

In the remainder of the discussion, these two definitions will be distinguished if neces-
sary, and for the sake of simplicity, the first and second elements of a DP will be identified
with the lhs of the rule and the subterm at position π of the rhs of the rule.

36

Notice that both specifications for DPs are Curried, allowing the definition of the types
dep_pair(E) and dep_pair_alt(E).

To check that an infinite sequence of DPs forms an infinite (innermost) dependency
chain, it is required, as given in Definitions 3.3.2 and 3.3.3, that every pair of consecutive
DPs in this sequence be related through (innermost) non-root reductions, after renaming
their variables, regarding some substitution. This gives rise to an imprecision since the
type of substitutions does not allow infinite domains, as discussed in [Ste10]. This issue
is circumvented by specifying sequences of DPs in association with sequences of substi-
tutions. Thus, by allowing a different substitution for each DP in the sequence, it is
possible to specify the notion of (innermost) chained DPs (predicates inn_chained_dp?
and chained_dp? in Specification 4.7).

Specification 4.7: Predicates for (innermost) chained DPs.
chained_dp?(E)(dp1, dp2 : dep_pair(E))(σ1, σ2) =

dp′12σ1
>λ−−→∗ dp′21σ2

inn_chained_dp?(E)(dp1, dp2 : dep_pair(E))(σ1, σ2) =

is_nr_normal_form?(E)(dp′11σ1) ∧

is_nr_normal_form?(E)(dp′21σ2) ∧

dp′12σ1
>λ−−→∗in dp′21σ2

In Specification 4.7, the elements of a DP, say dp, are projected by the operator
′, as dp′1 and dp′2, used to project elements of tuples in PVS. Using these speci-
fications of (innermost) chained DPs, whenever predicates infinite_dep_chain? and
inn_infinite_dep_chain? in Specification 4.8 hold for a pair of a sequence of DPs and
substitutions, such pair is said to be an infinite (innermost) dependency chain.

Specification 4.8: Predicates for infinite (innermost) Dependency Chains.
infinite_dep_chain?(E)(dps : sequence[dep_pair(E)], σ : sequence[Sub]) =

∀(i : nat) :

chained_dp?(E)(dps(i), dps(i+ 1))(σ(i), σ(i+ 1))

inn_infinite_dep_chain?(E)(dps : sequence[dep_pair(E)], σ : sequence[Sub]) : bool =

∀(i : nat) :

inn_chained_dp?(E)(dps(i), dps(i+ 1))(σ(i), σ(i+ 1))

Finally, the (innermost) DP Criterion is specified as the absence of such infinite chains
in Specification 4.9, where the two first predicates specify the criterion for the standard

37

notion of DPs (Specification 4.5), and the third and fourth ones for the alternative one
(Specification 4.6). Notice that alternative DPs are translated into standard DPs in the
third and fourth predicates.

Specification 4.9: Predicates for (innermost) termination for the two specifications of DPs.
dp_termination?(E) =

∀(dps : sequence[dep_pair(E)], σ : sequence[Sub]) :

¬infinite_dep_chain?(E)(dps, σ)

inn_dp_termination?(E) =

∀(dps : sequence[dep_pair(E)], σ : sequence[Sub]) :

¬inn_infinite_dep_chain?(E)(dps, σ)

dp_termination_alt?(E) =

∀(dps_alt : sequence[dep_pair_alt(E)], σ : sequence[Sub]) :

LET dps = LAMBDA(i : nat) : (lhs(dps_alt(i)′1), rhs(dps_alt(i)′1)|dps_alt(i)′2)IN

¬infinite_dep_chain?(E)(dps, σ)

inn_dp_termination_alt?(E) =

∀(dps_alt : sequence[dep_pair_alt(E)], σ : sequence[Sub]) :

LET dps = LAMBDA(i : nat) : (lhs(dps_alt(i)′1), rhs(dps_alt(i)′1)|dps_alt(i)′2)IN

¬inn_infinite_dep_chain?(E)(dps, σ)

4.2 PVS0

PVS0 is a simple first-order functional language. It is specified in such a way that it is ex-
pressive enough to specify recursive functions while reduces the cases to be analyzed when
performing formal proofs. It just allows constants, a single variable symbol, unary and
binary built-in operators, recursive calls and a branching instruction (if-then-else). Its
syntax is specified as the datatype PVS0Expr over a non-empty type T, given as parameter,
and its grammar is:

expr := cnst(v) | vr | op1i(expr) | op2i(expr, expr) | rec(expr) | ite(expr, expr, expr)

The constants are fixed elements over type T, i.e.: v : T. The indices i on unary and
binary operators are provided to choose one of the available built-in unary and binary

38

operators (given as lists O1 and O2 of well-defined functions with types T -> T and
[T,T] -> T), respectively. For each PVS0 program, it is necessary to define a constant ⊥
of type T that represents the false value used in the branching instruction. These three
elements (lists for unary and binary operators and false value) compose the evaluation
environment for a program.

Example 4.2.1 (PVS0 code for the Ackermann function). The definition of the Acker-

mann function is specified below using the datatype PVS0Expr over the type [nat,nat],

where the value chosen as false is 〈0, 0〉 and unary and binary operators are specified for

parameters v, v′ : [nat,nat] as the lists below (given in PVS):

ack_op1 = (op10(v) = [nat,nat] = IF v̀ 1 = 0 THEN 〈1, 1〉ELSE 〈0, 0〉,

op11(v) = [nat,nat] = 〈v̀ 2 + 1, 〉,

op12(v) = [nat,nat] = IF v̀ 2 = 0 THEN 〈1, 1〉ELSE 〈0, 0〉,

op13(v) = [nat,nat] = IF v̀ 1 6= 0 THEN 〈v̀ 1− 1, 1〉ELSE v,

op14(v) = [nat,nat] = IF v̀ 2 6= 0 THEN 〈v̀ 1, v̀ 2− 1〉ELSE v)

ack_op2 = (op20(v, v)̀ = [nat,nat] = IF v̀ 1 6= 0 THEN 〈v̀ 1− 1, (v̀)̀ 1〉ELSE v)

ack_pvs0 = ite(op10(vr),

op12(vr),

ite(op11(vr),

rec(op13(vr)),

rec(op20(vr, rec(op14(vr))))))

The definition, def, of a program consists of the evaluation environment and the
expression ef specifying the function: def = (⊥, O1, O2, ef) . The type of PVS0
definitions is PVS0 and the type of PVS0 expressions is PVS0Expr. In the formalization,
the variable pvs0 is used both as a PVS0 definition and as a PVS0 expression. For the case
of the Ackermann function, the definition is given as

ack_def = (〈0, 0〉, ack_op1, ack_op2, ack_pvs0)

Since PVS0 expressions can have at most three arguments when they are rooted by a

39

branching instruction (ite), naturals in paths are bounded by 2. The recursive predicate
valid_path, given as P in Specification 4.10 specifies Definition 2.1.1 by checking if a
given path is valid for a given PVS0 expression expr. Notice that paths are built as list in
reverse order1, then to follow a path in a PVS0 expression, instead of using the usual list
function car to select the first element of a list, the function rac is used to select the last
element of the path. The function rdc is analogously defined, regarding the standard cdr
function on lists. Functions get_arg, and get_arg1 and get_arg2, and get_cond, get_if
and get_else are used, respectively, as operators to access the argument of unary and
recursive expressions, the first and second arguments of binary operator expressions, and
the guard, the if and the else branch expressions branching instructions. Additionally,
the operator get_op is used to access the index for unary and binary operator expressions,
and get_val to access values of variable and constant expressions. These functions are
given as part of the specification of the abstract datatype PVS0Expr.

The function subterm_at in Specification 4.11 extracts the subexpression at a valid
path, path, of a PVS0 expression, expr.

Specification 4.10: Paths of PVS0 expressions
P(expr)(path) = CASES expr OF

vr : null?(path),

cnst : null?(path),

op1 : null?(path) ∨ (rac(path) = 0 ∧ P(get_arg(expr))(rdc(path))),

op2 : null?(path) ∨ (rac(path) = 0 ∧ P(get_arg1(expr))(rdc(path))),

∨ (rac(path) = 1 ∧ P(get_arg2(expr))(rdc(path))),

ite : null?(path) ∨ (rac(path) = 0 ∧ P(get_cond)(rdc(path))),

∨ (rac(path) = 1 ∧ P(get_if)(rdc(path))),

∨ (rac(path) = 2 ∧ P(get_else)(rdc(path))),

rec : null?(path) ∨ (rac(path) = 0 ∧ P(get_arg(expr)(rdc(path)))

1to ease formalizations and readability, since in this way the leaf subterms are at the end of the list,
allowing a more intuitive construction of path_conditions (Specification 4.13), for instance.

40

Specification 4.11: Subterms at paths of PVS0 expressions
subterm_at(expr, path) = IF null?(path) THEN expr

ELSE CASES exprOF

vr : expr

cnst : expr

op1 : subterm_at(get_arg(expr), rdc(path)),

op2 : IF rac(path) = 0

THEN subterm_at(get_arg1(expr), rdc(path))

ELSE subterm_at(get_arg2(expr), rdc(path))

ite : subterm_at(IF rac(path) = 0THEN get_cond

ELSE IF rac(path) = 1THEN get_if

ELSE get_else, rdc(path))

rec : subterm_at(get_arg(expr), rdc(path))

To illustrate the previous operators, consider the expression ack_expr for the Acker-
mann function in Example 4.2.1. Both P(ack_expr)((0, 2, 2)) and P(ack_expr)((1, 2))
hold, and both equations subterm_at(ack_expr)((0, 2, 2)) = op20(vr, rec(op14(vr)) and
subterm_at(ack_expr)((1, 2)) = rec(op13(vr)), also hold, but P(ack_expr)((1, 1, 0))
does not hold.

Recursive calls in a given program pvs0, are specified through the execution paths
that lead to their evaluation in the tree representation of the program. For each recursive
call in the program, the specification uses the path leading to the call both to reach the
argument of the recursive call and to build the list of the conditions leading to the recursive
call. These conditions have a type defined as a list of Boolean expressions PVS0Bool[T],
that can be interpreted as true or false (pvs0bool or pvs0not, respectively). As usual,
paths in programs are paths in expressions defined as lists of naturals.

Recursive calls in a PVS0 program are specified as calling contexts whose type are
triples consisting of PVS0 recursive expressions, for the recursive call itself; lists of Boolean
expressions of type PVS0Bool[T], for its conditions; and the path leading to the recursive
call. The type of calling contexts is then given as:

Specification 4.12: Type for PVS0 expressions

PVS0Expr_CC W : TY PE = [# rec_expr : (rec?), cnds : Conditions, path : Path #]

41

Example 4.2.2 (Calling Contexts for Ackermann in PVS0). Considering the PVS0 code

for Ackermann in Example 4.2.1, the CCs for it are:

(rec(op13(vr)), (pvs0bool(op11(vr)), pvs0not(op10(vr))), (1, 2))

(rec(op20(vr, rec(op14(vr)))), (pvs0not(op11(vr)), pvs0not(op10(vr))), (2, 2))

(rec(op14(vr)), (pvs0not(op11(vr)), pvs0not(op10(vr))), (1, 0, 2, 2))

The conditions of a valid path of a given PVS0 expression (given by Definition 2.1.4), say
P(expr)(path), are specified by the recursive function path_conditions in Specification
4.13. Notice that because of the way the list of path conditions is built, to have the
conditions in the order they appear in the program, the path must be traveled in a
reverse order (hence, using car and cdr to deal with the path instead of rac and rdc

previously used in the other predicates/functions).

Specification 4.13: Path Conditions of PVS0 expressions
path_conditions(expr, path) =

IF null?(path)THEN null

ELSE IF ¬ite?(subterm_at(expr, cdr(path))) ∨ car(path) = 0

path_conditions(expr, cdr(path))

ELSE IF car(path) = 1

THEN cons(pvs0bool(get_cond(subterm_at(expr, cdr(path)))),

path_conditions(expr, cdr(path)))

ELSE cons(pvs0not(get_cond(subterm_at(expr, cdr(path)))),

path_conditions(expr, cdr(path)))

For the PVS0 program for Ackermann function in Example 4.2.1 and path (0, 2, 2) the
path conditions are the same as for the third calling context.

4.2.1 Semantic termination of PVS0

Semantic evaluation is given by the curried inductive predicate semantic_rel_expr. The
first part of this currying is semantic_rel_expr(pvs0), abbreviated as ε, in the represen-
tation below. The predicate ε has as parameters a triple (expr, vin, vout), consisting of a
PVS0 expression to be evaluated regarding the body of the PVS0 program definition on the
first part of the currying and input and output values. ε holds whenever the expression
expr evaluates to vout with input vin using the given PVS0 definition.

42

Specification 4.14: Semantic Evaluation of PVS0 expressions
ε(expr, vin, vout) = cnst?(expr) ∧ vout = get_val(expr)∨

vr?(expr) ∧ vout = vin∨

op1?(expr) ∧ ∃(v1) : ε(get_arg(expr), vin, v1)∧

vout = O1(get_op(expr))(v1)

op2?(expr) ∧ ∃(v1, v2) : ε(get_arg1(expr), vin, v1)∧

ε(get_arg2(expr), vin, v2)∧

vout = O2(get_op(expr))(v1, v2)

ite?(expr) ∧ ∃(v1) : ε(get_cond(expr), vin, v1)∧

(v1 6= ⊥ ∧ ε(get_if(expr), vin, vout)∨

v1 = ⊥ ∧ ε(get_else(expr), vin, vout))∨

rec?(expr) ∧ ∃(v1) : ε(get_arg(expr), vin, v1)∧

ε(pvs0̀ 4, v1, vout)

When for a given PVS0 definition def and a given input value vin, it is possible to obtain
an output value regarding this semantic evaluation, the definition and value are said to
be determined? accordingly to the predicate specified as below, where ε abbreviates
semantic_rel_expr(def̀ 2,def̀ 3,def̀ 1,def̀ 4).

Specification 4.15: Determinated definition in PVS0

determined?(def, vin) = ∃(vout) : ε(def̀ 4, vin, vout)

Over the predicate ε the first notion of semantic termination is specified as the pred-
icate terminates_expr, also curried and that holds whenever it is possible to evaluate
every input value. The first part of the currying is also the PVS0 definition and it is
abbreviated as Tε; the second part consists of only the PVS0 expression to be evaluated.
This termination notion is then given as:

Specification 4.16: Termination by Semantic Evaluation of PVS0 expressions

Tε(expr) = ∀(vin) : ∃(vout) : ε(expr, vin, vout)

Another way of evaluating an expression is by bounding the number of nested recursive
calls, as in Definition 2.1.5. For this, the recursive function eval_expr was specified.
This function has type T ∪{NONE} and is also curried using as first part the PVS0 definition.
If the evaluation process gives no answer for a specific bound in the number of nested
recursive calls, say n, the given output would be NONE (for short, ♦); for discriminating
the type predicate some? is used. some?(v) holds whenever v is different from ♦. The
first part of the currying, eval_expr(pvs0), is abbreviated as χ, and χ(expr, vin, n) is

43

specified as:

Specification 4.17: Evaluation of PVS0 expressions by nested calls
IF n = 0 THEN ♦

ELSE CASES exprOF

cnst : get_val(expr)

vr : vin

op1 : IF χ(get_arg(expr), vin, n) 6= ♦THEN

O1(get_op(expr))χ(get_arg(expr), vin, n)

ELSE ♦

op2 : IF χ(get_arg1(expr), vin, n) 6= ♦ ∧ χ(get_arg2(expr), vin, n) 6= ♦THEN

O2(get_op(expr))(χ(get_arg1(expr), vin, n),

χ(get_arg2(expr), vin, n))

ELSE ♦

ite : IF χ(get_cond(expr), vin, n) 6= ♦THEN

IF χ(get_cond(expr), vin, n)THEN

χ(get_if(expr), vin, n)

ELSE χ(get_else(expr), vin, n)

ELSE ♦

rec : IF χ(get_arg(expr), vin, n) 6= ♦THEN

χ(ef , χ(get_arg(expr), vin, n), n-1)

ELSE ♦

The predicate eval_expr_termination specifies a second notion of semantic termi-
nation, over the function χ, as in Definition 2.1.6, that holds for inputs, a PVS0 expression
and a PVS0 program, whenever for all possible input values there is a bound of nested
recursive calls that allows the evaluation giving as output a value different from ♦. The
currying done in the same way as it was done for the precedent predicates and functions
and it is abbreviated as Tχ, and specified as below.

Specification 4.18: Termination by Evaluation of PVS0 expressions

Tχ(expr) = ∀(vin) : ∃(n) : χ(expr, vin, n) 6= ♦

Several properties of these two evaluation mechanisms are stated and formalized in
the PVS development, the most important being the equivalence of these two notions of
semantic termination as will be seen in Subsection 6.1.

44

4.2.2 Specification of Ranking Functions for PVS0

To deal with the execution flow of a given PVS0 program, it is necessary to check if the
conditions of a CC hold so that the code of the associated recursive call would be indeed
executed. This can be verified through the recursive predicate eval_conds, that is curried
as for predicates and functions presented so far and it is abbreviated as C, and the second
part of the currying is the conditions of a recursive call and the input value that will make
these conditions hold or not.

Specification 4.19: Evaluation of conditions of PVS0 expressions
C(cnds, vin) =

IF null?(cnds) THEN true

ELSE CASES car(cnds) OF

expr bool(expr) : ∃(vout) : ε(expr, vin, vout) ∧ ⊥ 6= vout,

expr not(expr) : ∃(vout) : ε(expr, vin, vout) ∧ ⊥ = vout,

∧ C(cdr(cnds), vin)

With these predicates and the functions and predicates over a path, subexpressions
and conditions in a path given at the beginning of Section 4.2, the notion of a valid calling
context for a PVS0 expression is specified as the predicate pvs0_tcc_valid_cc, where cc
is a variable whose type is PVS0Expr_CC, that specifies Definition 3.1.1. This predicate
holds for a given cc if its path is a valid path of the given PVS0 expression expr, and the
recursive call and the conditions are indeed achieved through this path.

Specification 4.20: Valid Calling Contexts of PVS0 expressions
pvs0_tcc_valid_cc(expr)(cc) = P(expr)(cc̀ path)∧

cc̀ rec_expr = subterm_at(expr, cc̀ path)∧

cc̀ cnds = path_conditions(expr, cc̀ path)

To specify Ranking Functions for PVS0 programs, it is necessary to provide for each
program, as given by Definition 3.1.2, a measure wfm with a well-founded order lt (read
as less than) over a well-founded set MT, a set of ordered elements, such that this measure
can be proved decreasing after each recursive call of a program. The measure wfm is a
mapping function of type T -> MT (type WFM) and it is used to compare the parameters
and arguments of each recursive call with lt. The specification is parameterized with
the well-founded set and its well-founded order, such that is possible to choose the best
suitable one for each program analysis.

The natural numbers is a well-founded set for Ackermann, where lexicographic ordering
over its arguments is the measure function and < is an adequate well-founded order.

45

The predicate pvs0_ tcc_termination_pred to analyze decrease over CCs parameters
and arguments, abbreviated as ς, is specified in Specification 4.21 and holds for a well-
founded measure over a well-founded set whenever the values of the PVS0 program are
measured and such that input values of the program are greater than the corresponding
arguments for every valid CC cc of the program. The first curried part of ε is properly
instantiated with a PVS0 program definition def.

Specification 4.21: Well-founded measure for PVS0 expressions
ς(def, wfm) =

∀(vin, vout, cc) :

ε(get_arg(cc̀ rec_expr), vin, vout) ∧ C(def, cc̀ cnds, vin)⇒

lt(wfm(vout), wfm(vin))

Thus, the notion of TCC termination for PVS0 programs definitions, given by Definition
3.1.3, is specified by the predicate pvs0_tcc_termination (given below as Tς) that holds
if there exists a well-founded measure that satisfies ς.

Specification 4.22: TCC termination of PVS0 expressions

Tς(def) = ∃(wfm) : ς(def, wfm)

4.2.3 Specification of Size-Change based technologies

The Size-Change Principle is specified over a generic representation of data exchanging
points of a program. Each control point must have some identification, the actual modified
part of the program, and the conditions that led to it. In the specification, generic data
exchanging points are similar to calling contexts and have a type CallingContext given
in Specification 4.23.

Specification 4.23: Calling Context for generic data

CallingContext : TYPE = [# nid : NodeId, actuals : Expr, cnds : Condition #]

Regarding the type PVS0Expr_CC of CCs of PVS0 programs, described at the beginning
of Section note that the generic data exchanging points or generic CCs have an identifier
instead of a path (which identifies CCs in PVS0 programs); also they have actuals instead
of PVS0 recursive expressions. Generic CCs and CC only coincide in which they have
conditions that led to data exchanging points.

Termination accordingly to SCP would be given as the non-existence of an infinite
sequence of values directly related to an infinite sequence of generic CCs through generic
mechanisms for the semantic evaluation of actuals and conditions, respectively given as

46

sem_eval and cond_eval. The feasibility of the sequence of CCs depends on instantia-
tion with values in an associated infinite sequence. The desired relation between calling
contexts and values in both sequences is given by two requirements. The first is that that
the evaluation of the condition of the ith CC with the ith value holds. The second is that
the evaluation for the actuals of the ith calling context with the ith value gives as a result
the (i+ 1)th value. Such infinite sequences are specified in Specification 4.24 over a given
sequence of CCs ccs and a sequence of values vals as the predicate infinite_seq_ccs.

Specification 4.24: Infinite sequence of Calling Contexts
infinite_seq_ccs(sem_eval, cond_eval)(def, ccs, vals) =

∀(i) : cond_eval(ccs(i)̀ cnds, vals(i))∧

sem_eval(ccs(i)̀ actuals, vals(i), vals(i+ 1))

Then, two notions of termination are specified accordingly to SCP. The first one is
given in Speficification 4.25 and states the classic definition of the SCP, through the
predicate SCP. The existential quantifier on the relation r used in the specification of
this predicate is useful in some equivalence proofs (as will be shown in Section 6.3).
However, the consequent of the implication would be always false considering a well-
founded relation.

The second notion of termination by SCP is a simplified version of the previous one
specified as the predicate scp_termination? that states that no infinite sequences of CCs
and values that satisfy the predicate infinite_seq_ccs are possible.

Specification 4.25: The Size-Change Principle
SCP(sem_eval, cond_eval) =

∀(ccs, vals) : infinite_seq_ccs(sem_eval, cond_eval)(ccs, vals)⇒

∃(r) : ∀(i) : r(vals(i+ 1), vals(i))

Specification 4.26: Termination by Size-Change Principle
scp_termination?(sem_eval, cond_eval) =

∀(ccs, vals) : ¬infinite_seq_ccs(sem_eval, cond_eval)(ccs, vals)

The well-foundedness of r is given according to the predicate well_founded? in Spec-
ification 4.27 (present in the standard prelude library of PVS), where p is some unary
predicate over some given type. When this predicate holds, it is ensured the finiteness of
chains of elements that can be compared with it.

47

Specification 4.27: Definition of well-foundedness

well_founded?(r) = ∀(p) : (∃(y) : p(y))⇒ (∃(y : (p)) : ∀(x : (p)) : ¬r(x, y))

Notice that both definitions are equivalent by the selection of a well-founded relation
r. Also, both capture termination accordingly to SCP establishing the non-existence of
feasible infinite sequences of consecutive executable (instantiated) calling contexts.

The parametrization of the SCP notion is straightforward for PVS0 programs. The
semantic evaluation sem_eval and the operational mechanism for evaluating conditions
leading to recursive calls eval_conds are specified for a given PVS0 definition def, respec-
tively, as below, where the curried portion of ε and C are properly instantiated with the
four elements that compose def. Then, the predicate scp_termination_pvs0 specifies
SCP termination for PVS0 programs in Specification 4.28.

CCGs were specified as digraphs with vertices labeled by calling contexts. The struc-
ture has a type called CCG, which includes a digraph (dg) and a finite family of measure
functions with type [T → MT], as the type of the measure function wfm used for TCC
termination. The family of measure functions is called here measures and they are given
by an indexed structure M, with the type specified as (FunMeasures). Enriched digraphs
are built as make_ccg(dg,M).

Specification 4.28: Instantiation of Size-Change Principle for PVS0
sem_eval(def)(expr, vin, vout) =

ε(expr, vin, vout)

cond_eval(def)(cnds, vin) =

C(cnds, vin)

scp_termination_pvs0(def) =

scp_termination?(sem_eval(def), cond_eval(def))

The measures of CCGs are used to measure possible decrease over each edge of the di-
graph and combined to provide the desired decrease over walks and circuits of the digraph.
Walks are specified as sequences of adjacent vertices of a graph and circuits as walks with
equal initial and final vertex. Combinations of measures over the edges of walks are given
as sequences of naturals (indices of M) of the same length than the walk. These combina-
tions represent choices of measures among program paths for measuring the values in CCs
incident to edges in a walk. These combinations are specified as measures_combination,
for short written as mc.

48

Given a walk that is a circuit, c, that a combination of measures mc provides the
decreasing among this walk is specified as the predicate gt_mc?. This predicate uses
the relation ge (read as greater than or equal) specified from the well-founder order lt.
The predicate gt_mc? in Specification 4.29 holds whenever for all steps in the circuit, if
one has an input value vin for which the condition in the CC holds and whose actuals
are evaluated as vout, the chosen measures for the steps of the circuit are such that the
measure for vin is greater than or equal to the measure for vout, and there exists (at least
one) step in the circuit for which the selection of measures gives a decrease.

Specification 4.29: Decreasing measure in circuit
gt_mc?(M, c)(mc) =

∀(i, vin, vout) : (cond_eval(cì cnds, vin) ∧ sem_eval(cì actuals, vin, vout))⇒

ge(M(mc(i))(vin), M(mc(i+ 1)))(vout) ∧

∃(j) : ∀(vin, vout) : (cond_eval(cj̀ cnds, vin) ∧ sem_eval(cj̀ actuals, vin, vout))⇒

ge(M(mc(j))(vin), M(mc(j + 1)))(vout) ∧ M(mc(j))(vin) 6= M(mc(j + 1))(vout)

CCG termination is specified over a CCG, G, as the predicate ccg_termination?, where
ms(G) gives the family of measures of G, c is a circuit of the graph and mc is the combination
of measures. Since the analysis is done over circuits, for which the initial and final vertices
coincide, the corresponding initial and final measures in the combination of measures mc
must be the same.

Specification 4.30: CCG Termination

ccg_termination?(G) = ∀(c) : ∃(mc) : gt_mc?(ms(G), c)(mc)

To express the flow execution of a PVS0 program definition def by a CCG, the vertices
must be labeled with the calling contexts of the PVS0 program. There will be an edge from
cc1 to cc2 whenever there exist input and output values such that three conditions hold:
the conditions of cc1 instantiated with the input value hold; the evaluation of the actuals
of cc1 instantiated with the input value results in the output value; and, the condition
of cc2 instantiated with the output value hold. The predicate sound_ccg_digraph holds
when a given digraph satisfies these conditions.

Specification 4.31: Sound CCG for PVS0
sound_ccg_digraph(def)(dg) = ∀(cc1, cc2)(vin, vout) :

C(def, cc1̀ cnds, vin) ∧ ε(cc1̀ actuals, vin, vout)∧

C(def, cc2̀ cnds, vout)⇒ edges(dg)(cc1, cc2)

Thus, CCG termination for PVS0 program definitions is defined accordingly to a sound
digraph, regarding the previous description, where the evaluation mechanisms used for

49

predicate gt_mc? are ε and C. This is specified as the predicate ccg_termination_pvs0
below, where function make_ccg uses the sound digraph and a family of measures to build
a CCG.

Specification 4.32: CCG Termination for PVS0
ccg_termination_pvs0(def) =

∃(M, dg | sound_ccg_digraph(def)(dg)) :

ccg_termination?[ε, C](make_ccg(dg, M))

Notice that, although there exists no decidable mechanism to eliminate unsound edges
of a digraph, the predicate ccg_termination is specified over sound graphs, which implies
that only useful edges would be considered in the analysis.

50

Chapter 5

Formalization of termination by

Dependency Pairs

The notions of DPs, as specified in Section 4.1, are used to formalize the termination
criteria by DPs for the innermost, the ordinary rewriting, and more general Q-restricted
relations. The innermost relation case was formalized initially and then adapted to the
ordinary rewriting case and to the Q-restricted rewriting relation. Considering in detail
the specificities of the case of innermost termination, as done in this Chapter, is relevant
since it captures the eager evaluation mechanism applied in the operational semantics of
functional models of computations as done in PVS0 (Section 4.2).

The full formalization of equivalence between the DP Criteria and Noetherianity is
discussed for the case of the innermost reduction relation, as a result of this work, also
presented in [AAAR20]. Indeed, the proof of necessity, i. e., that Noetherianity implies
termination by DPs, is essentially the same for the Q-restricted, the ordinary and the
innermost relations. Sufficiency, i.e., is that termination by DPs implies Noetherianity
requires slightly different treatments for these three relations.

The Sufficiency demanded the higher efforts. A constructive approach builds infinite
chains of DPs from infinite derivations through contraposition. This approach implies the
introduction of new elements to the proof, such as the existence of the so-called minimal
innermost non-terminating subterms for innermost non-terminating terms and the exis-
tence of strictly innermost normal forms for such subterms from which the existence of
rules that apply at root positions of such normal forms are an obligation. The existence
of such rules allows the construction of new DPs to build the infinite chain. The axiom of
choice available in the prelude of PVS was used to treat the existentials. These formal-
izations were adjusted to obtain the more general result for termination by DPs of the

51

Q-restricted rewriting relation.

5.1 Necessity for the Innermost Dependency Pairs

Termination Criterion

Lemma inn_Noetherian_implies_inn_dp_termination formalizes the necessity of the
DP Criterion, which is specified in Specification 5.1 along with the specification of the
Noetherian? predicate over a given relation, which specified as holding whenever the
converse of this relation is well-founded (both well_founded? predicate and function
converse follow the standard definition and are specified in the prelude file of PVS).

Specification 5.1: The Noetherian? predicate and the necessity lemma.
Noetherian?(R) =

well_founded?(converse(R))

inn_Noetherian_implies_inn_dp_termination : LEMMA

∀(E) :

Noetherian?(innermost_reduction?(E))⇒ inn_dp_termination?(E)

The formalization follows by contraposition, by building an infinite sequence of terms
associated with an infinite innermost derivation from an infinite chain of DPs. These terms
are built by accumulating the contexts where the reductions would take place regarding
the rhs of the rule that generates each DP in the chain. The intuition of this formalization
follows directly from the theory and is summarized in the sketch given in Figure 5.1.

52

l1σ1

λ−→in

r1σ1

r1σ1|π1

>λ−→∗in

l2σ2

λ−→in

r2σ2

r2σ2|π2

>λ−→∗in

l3σ3

λ−→in

r3σ3

r3σ3|π3

>λ−→∗in · · ·

⇓
r1σ1

−→+
in

r1σ1[π1 ← r2σ2]

−→+
in

r1σ1[π1 ← r2σ2[π2 ← r3σ3]]

−→+
in · · ·

Figure 5.1: Proof sketch: building infinite innermost derivations from infinite innermost
DP-chains (c.f. [AAAR20]).

Since there is a root reduction associated with each DP in the sequence, from its lhs
to the rhs of the related rule, and a non-root innermost derivation to reach the lhs of the
next DP from the rhs of the current DP, it is relatively simple to manipulate the rules
and positions using the alternative dependency chain specification to build recursively a
sequence of terms related by −→+

in through the replacement operation.
To perform this construction, the recursive function term_pos_dps_alt is used, taking

sequences of DPs and substitutions and producing indexed pairs of term and position
accumulating contexts in such a way that the terms are related by −→ +

in whenever the
given sequence is chained (Specification 5.2). As illustrated in Figure 5.1, if the sequence
is chained, the first pair of term and position is computed as (r1σ1, π1); the second as
(r1[π1 ← r2σ2], π1 ◦ π2); and so on. The function term_pos_dps_alt uses the previously
obtained accumulated context (C) and replaces the rhs of the current DP by the rhs
of the next DP in the sequence. Positions to perform the replacement are given by the
accumulation of the positions in the alternative definition of DPs (π).

53

Specification 5.2: Function to accumulate contexts to build an infinite sequence of terms.
term_pos_dps_alt(E)(dps : sequence[dep_pair_alt(E)], σ : sequence[Sub], i : nat) :

RECURSIVE (C, π) | π ∈ Pos(C) =

IF i = 0 THEN

(rhs(dps(0)̀ 1)σ(i), dps(0)̀ 2)

ELSE LET (C, π) = term_pos_dps_alt(E)(dps, σ, i− 1)IN

(C[π ←rhs(dps(i)̀ 1)σ(i)], π ◦ dps(i)̀ 2)

MEASURE i

Then, an infinite sequence of terms can be built from an infinite chain given by se-
quences of DPs and substitutions dps and σ as:

Specification 5.3: Function to build the terms in an infinite derivation.

LAMBDA(i : nat) : term_pos_dps_alt(E)(dps, σ, i)̀ 1

Notice that the function term_pos_dps_alt would provide an infinite sequence of
terms for any pair of infinite sequences of DPs and substitutions, disregarding if they
form an infinite innermost chain or not. To prove that the generated infinite sequence
indeed describes an infinite derivation for the relation −→in , this function should be applied
to a pair dps and σ that constitutes an infinite chain.

This is proved by showing the non-Noetherianity of −→+
in that relates consecutive terms

generated by the function term_pos_dps_alt. The proof follows by induction, whereas
for the induction basis it must be proved that the first term generated is related to the
second by −→ +

in . term_pos_dps_alt builds these terms just using the first and second
DPs and substitutions, say 〈(l1, r1), π1〉, 〈(l2, r2), π2〉, σ1 and σ2 as in Figure 5.1, in the
chained input. The first term is r1σ1 and the second r1σ1[π1 ← r2σ2], which is equal to
r1σ1[π1 ← l2σ2[λ← r2σ2]]. Since contiguous pairs in the sequence are innermost chained
and >λ−→∗in is compatible with contexts (by monotony of closures, since −→in is compatible
with contexts and >λ−→ in ⊆ −→ in), one has that r1σ1

>λ−→∗in r1σ1[π1 ← l2σ2]. And, also by
the innermost chained property, l2σ2 is a normal instance of the lhs of a rule, i.e., a single
innermost reduction step can be applied only at the root position giving r2σ2. Since a
single innermost reduction step corresponds directly to a replacement operation, and in
this case at the root position, one would have one innermost reduction step r1σ1[π1 ←
l2σ2] π1−→ in r1σ1[π1 ← r2σ2]. Thus, one would have r1σ1 −→ +

in r1σ1[π1 ← r2σ2]. The
inductive step considers analogously contiguous DPs and substitutions in the chained
input, the only extra details are regarding the current term and position computed in
the previous recursive step by term_pos_dps_alt. Notice that in the ith iteration, the

54

current term can be seen as a context C with a hole at the accumulated position, say π,
filled with term ri|πiσi. Indeed, in the induction basis the context is given by r1σ1 with a
hole at position π1. The term and accumulated position generated by term_pos_dps_alt
are given as C[π ← ri+1σi+1] and π ◦ πi+1. Notice that this term can be seen as a context
with a hole at the accumulated position filled with the term ri+1|πi+1 . Finally, observe
that C[ri|πiσi] −→+

inC[ri+1σi+1].
Notice that this formalization is very similar to its pen-and-paper version, disregarding

the specification. However, the construction of an actual function to generate each pair of
accumulated context and position simplifies the inductive and constructive proof of the
existence of the infinite derivation. Furthermore, proof elements that can seem too trivial
must be precisely used, such as the mentioned closure of context, monotony of closures,
subset properties, and properties regarding the composition of positions in replacements.
For example, the last property is used in proving correctness of the predicate subtyping
condition {(C, π) | π ∈ Pos(C)} of the pairs built by the function term_pos_dps_alt
(these aspects are discussed in detail in Section 5.2.4). These properties are formalized in
the PVS theory TRS in a general manner allowing its application for arbitrary rewriting
relations.

5.2 Sufficiency for the Innermost Dependency Pairs

Termination Criterion

The formalization of sufficiency of the DP Criterion requires more effort and is also proven
by contraposition. The core of the proof follows the idea in [AG00] to construct infinite
chains from infinite innermost derivations. In an implementational level, to go from
infinite derivations to infinite sequences of DPs that would create an infinite chain is
challenging. Indeed, constructing the DPs requires, initially, choosing mint subterms
from those terms leading to infinite innermost derivations; afterward, choosing non-root
innermost normalized terms; and, finally, choosing instances of rules that apply at the
root positions of these terms from which DPs can be constructed. All these choices are
based on existential proof techniques.

55

↑in (s)

�in (s0)
>λ−−→∗in

s′0 = l0σ0

(�in, nf(>λ−−→))
λ−→in

↑in (r0σ0)

r0σ0|π0

(�in)

DP: 〈l0 → r0, π0〉

Substitution: σ0

>λ−−→∗in

(r0σ0|π0)′ = l1σ1

(�in, nf(>λ−−→))
λ−→in

↑in (r1σ1)

r1σ1|π1

(�in)

DP: 〈l1 → r1, π1〉

Substitution: σ1

>λ−−→∗in

NOTE: The reduced terms are those
completely inside squared frames.

Figure 5.2: Proof sketch: building infinite innermost DP-chains from infinite innermost
derivations. The two DPs created, along with their respective substitutions, form chained
DPs (c.f. [AAAR20]).

Figure 5.2 illustrates the main steps of the kernel of the construction of chained DPs:

• The existence of mint subterms of innermost non-terminating terms is represented
as the small triangles inside big ones. This part of the development is explained in
Subsection 5.2.1.

• Existence of non-root innermost normalized terms obtained by derivations (through
relation >λ−→in) from these mint subterms, represented as vertically striped triangles,
is detailed in Subsection 5.2.2.

• Existence of DPs from rules and substitutions that reduce non innermost terminat-
ing terms which are non-root innermost normalized (small vertically striped trian-
gles) at the root position into innermost non-terminating terms (diagonally striped
triangles) through λ−→ in . The DPs are pairs of small vertically striped and small
plain triangles, that represents a minimal innermost non-terminating term. This
result is explained in Subsection 5.2.3.

The last step of the construction illustrated in Figure 5.2 permits, as the first one,
application of a lemma of the existence of mint subterms (for innermost non-terminating
terms). In the last step, this result will allow constructing the required DPs.

Subsection 5.2.4 then discusses how to get adequate pairs of consecutive chained DPs
and associated normal substitutions, and Subsection 5.2.5, finally, details the construction
of the required chain of DPs.

56

5.2.1 Existence of mint Subterms

The mint property (�in) over terms is provided in the Specification 5.4 by predicate
minimal_innermost_non_terminating?. Also in this box one has the specification of
lemma inn_non_terminating_has_mint, whose formalization ensures the existence of
mint subterms regarding innermost non-terminating terms. Although this is a simple
result, the proof formalization is not as direct as it may seem to be and follows by induction
on the structure of the term. The induction basis is trivial since variable terms are not
reducible, so variables cannot give rise to infinite derivations. For the inductive step,
whenever the term t has an empty list of arguments (that is, t is a constant), the only
position it has is its root, thus, the mint subterm is the term itself; otherwise, either all
its proper subterms are innermost terminating and then the term itself is mint or, by
the induction hypothesis, some of its arguments is innermost non-terminating, say its ith
argument, and then it has a mint subterm at some position π, thus, the mint subterm of
t is chosen as t|iπ.

Specification 5.4: Predicate for specifying mint terms and lemma over existence of mint
subterms in innermost non-terminating terms.
minimal_innermost_non_terminating?(E)(t) =
↑in (t)∧
∀(π ∈ Pos(t)|π 6= λ) :
SN in(t|π))

inn_non_terminating_has_mint : LEMMA
∀(E)(t| ↑in (t)) :
∃(π ∈ Pos(t))) :

�in (t|π))

5.2.2 Non-root Innermost Normalization of mint Terms

The second step in the formalization proves that every mint term can be non-root inner-
most normalized (into an innermost non-terminating term). This result appears to be,
as given in analytic proofs, a simple observation. By definition, every proper subterm of
a mint term is innermost terminating, and consequently, no argument of this term may
give rise to an infinite innermost derivation. However, formalizing such a result by contra-
diction requires several auxiliary functions and lemmas related to structural properties of
such derivations that also consider positions and arguments in which each reduction step
happens. These technicalities of the formalization are necessary to obtain a key result
that assuming the existence of an infinite non-root innermost derivation from a mint term
guarantees that some of its arguments begin an infinite innermost derivation, which gives
the contradiction.

57

mint Terms are Non-root Innermost Terminating

For the remainder of this subsection, consider elements on Specification 5.5, where s, seqt
and seqp are fixed term, sequences of terms and positions, respectively, associated with
an infinite non-root innermost derivation on non-root innermost descendants of s, such
that the nth term in the sequence seqt reduces into the (n+ 1)th term at position seqp(n).
Also, l will denote a valid argument of s (and as it will be seen, also a valid argument of
any of its descendants).

Specification 5.5: Term, position, and sequences of terms and positions.
s : term|app?(s)

l : posnat|l ≤ length(args(s))

seqt : sequence[term]|∀(n : nat) : s >λ−−→in seqt(n)

seqp : sequence[position]|∀(n : nat) :
seqp(n) ∈ Pos(seqt(n)) ∧
seqp(n) 6= λ ∧
seqt(n) seqp(n)−−−−−→in seqt(n+ 1)

The predicate inf_red_arg_in_inf_nr_im_red in Specification 5.6 holds whenever
for a sequence of positions there is an infinite number of positions in the sequence starting
with the same natural. For seqp and l as in Specification 5.5, this predicate will be applied
to state the existence of an infinite set of indices in the sequence of terms seqt in which
the reduction happens at the lth argument. The function args_of_pos_seq is just used
to give the argument of each position in a sequence of positions.

Specification 5.6: Function to extract the argument position from a given position in a
sequence of positions where reductions take place and predicate for checking if there exist
infinite reductions at a given argument position.
args_of_pos_seq(seq : sequence[position]|∀(i : nat) : seqp(i) 6= λ) (n : nat) : posnat =

first(seqp(n))

inf_red_arg_in_inf_nr_im_red(seq : sequence[position]|∀(i : nat) : seqp(i) 6= λ)
(i : posnat) =

is_infinite(inverse_image(args_of_pos_seq(seq), i))

Then, for any l-th argument of the given term s such that the predicate inf_red_arg_
in_inf_nr_im_red(seqt)(l) holds, the function nth_index (Specification 5.7) provides the
index of the sequence in which the (n+ 1)th reduction at argument l happens.

Specification 5.7: Function nth_index.
nth_index(E)(s)(seqt)(seqp)(l)(n : nat) : nat =

choose({m : nat|args_of_pos_seq(seqp)(m) = l ∧
card({k : nat|args_of_pos_seq(seqp)(k) = l ∧
k < m}) = n})

58

Note that the well-definedness of these functions is a consequence of the type of l that is
a dependent type satisfying the predicate inf_red_arg_in_inf_nr_im_red, which means
that reductions at the lth argument happen infinitely many times. The main technical
difficulty of formalizing well-definedness is related to guaranteeing non-emptiness of the
argument of the built-in function choose. This constraint is fulfilled by the auxiliary
lemma exists_nth_in_inf_nr_im_red in Specification 5.8.

Specification 5.8: Non-emptiness lemma for the argument positions where infinite reduc-
tions may take place.
exists_nth_in_inf_nr_im_red : LEMMA
∀(n : nat) : ∃(m : nat) :

args_of_pos_seq(seqp)(m) = l ∧
card({k : nat|args_of_pos_seq(seqp)(k) = l ∧ k < m}) = n

The formalization of this lemma follows by induction on n and, although simple,
requires several auxiliary lemmas over sets. In the induction basis, since one has infinite
reductions at argument l, the set of indices where such reductions take place is infinite,
and thus, nonempty (by application of the PVS prelude lemma infinite_nonempty).
Thus, it is possible to use PVS function min (over nonempty sets) to choose the smallest
index of this set. By the definition of this min function, it is ensured that the set of indices
smaller than this minimum in this set is empty, and thus has cardinality zero (by applying
PVS prelude lemma card_empty?). For the inductive step, one must provide the index
where one has a reduction at argument l such that it has exactly n + 1 indices smaller
than it where reductions at argument l occur. By the induction hypothesis, there exists
an index m for which reduction takes place at argument l, and for which the cardinality
of indices smaller than m with reductions at argument l is n. Thus, the required index is
built as the minimum index bigger than m for which the reduction happens at argument
l. The correctness of such indices follows similarly to the induction basis. First, since
the predicate inf_red_arg_in_inf_nr_im_red holds, it is possible to ensure that the set
of indices greater than index m for which reductions happen at argument lth is infinite,
which allows the application of the function min. Then one builds an equivalent set to
the one of all indices smaller than this minimum as the addition of index m to the set
of indices smaller than m (where one has reductions at argument lth). This construction
allows one to use another prelude lemma regarding cardinality of the addition of elements
into finite sets (card_add) to state that the cardinality of this new set is n+ 1.

The soundness of nth_index follows from auxiliary properties such as its monotony
and completeness, the latter meaning that this function covers exactly (all) the indices
in which reductions happen at the lth argument. The formalization of these properties
follows directly from the conditions fulfilled by the natural numbers chosen as the in-
dices in nth_index and prelude lemmas over cardinality of subsets (card_subset), since

59

each index provided gives rise to a subset of the next one. These properties allow an
easy formalization of a useful auxiliary result stating that for every index of seqt below
nth_index(0) and between nth_index(i)+1 and nth_index(i+ 1) there are no reduc-
tions in the lth argument (lemma argument_protected_in_non_nth_index). And then
it is possible to ensure that there are only finitely many non-root innermost reductions
regarding a term with mint property, which is stated in Specification 5.9 as the lemma
mint_is_nr_inn_terminating.

Specification 5.9: Lemma for non-root innermost termination of mint terms.
mint_is_nr_inn_terminating : LEMMA

�in (s)⇒ Noetherian?(>λ−−→
s in))

This proof follows by contraposition, by assuming the non-Noetherianity of the >λ−→
s in

relation and building then an infinite derivation for some argument of s, as illustrated
in Figure 5.3. Thus, initially one would have an infinite sequence seqt of descendants
of term s where each one is related to the next one by one step of non-root reduction.
From this sequence, since there is a finite number of possible arguments where the reduc-
tions can take place and infinitely many reductions taking place in non-root positions,
i.e., argument positions, one uses the pigeonhole principle to ensure that there exists
some argument position l that satisfies the predicate inf_red_arg_in_inf_nr_im_red.
This allows the use of function nth_index to extract exactly the index of the sequence
where such reduction occurs. Then the required infinite derivation is built in two steps.
First, since one has, by definition, that s >λ−→ seqt(0), this leads to a finite sequence
of reduced terms that will be used. Given that every argument of a term innermost
reduces at the root position to the argument of a reduced term by non-root reduc-
tions (lemma non_root_rtc_reduction_of_argument), the subterms of each element
of this derivation at the chosen argument position are used to the first portion of the
infinite sequence. Finally, the function nth_index is used to extract from sequence seqt
those indices where reductions occur in the selected argument, keeping this argument
intact whenever the reduction does not occur in such indices (result given in lemma
argument_protected_in_non_nth_index). Then, for each term obtained by a reduction
on the l-th argument on this (now infinite) derivation, its subterm at argument l is used
to build the second and final portion of the infinite sequence.

60

seqt(0)

>λ−−→in

seqt(1) =
seqt(nth_index(l)(0))

>λ−−→in

seqt(2) =
seqt(nth_index(l)(1))

>λ−−→in

seqt(3)

>λ−−→in · · ·
>λ−−→in

seqt(m− 1) =
seqt(nth_index(l)(2))

>λ−−→in

seq(m)

>λ−−→in · · ·

seqt(nth_index(l)(0) + 1)|l =
seqt(nth_index(l)(1))|l = seqt(2)

−→+
in

seqt(nth_index(l)(1) + 1)|l =
seqt(3)

−→+
in

seqt(nth_index(l)(2) + 1)|l =
seqt(m)

−→+
in · · ·

An infinite innermost reduction sequence from seqt(0)|l.

s

>λ−→∗in

seqt(0) s|l

−→∗in

seqt(0)|l

−→ in

seqt(2)|l

−→ in

seqt(3)|l

−→ in

seqt(m)|l

−→ in · · ·

The infinite innermost reduction sequence from subterm s|l.

Figure 5.3: Proof intuition: building an infinite innermost derivation of an argument l
as concatenation of a finite and an infinite non-root innermost derivation of terms (c.f.
[AAAR20]).

Construction of Non-root Innermost Normal Forms for mint terms

Since a mint term s is Noetherian regarding >λ−→
s in , as previously shown, in an infinite

derivation starting from s there exists an index where the first innermost reduction in the
root position occurs. This result is formalized in lemma inf_inn_deriv_of_mint_has
_min_root_reduction_index.

Specification 5.10: Obligation of a first root reduction on infinite innermost derivations.
inf_inn_deriv_of_mint_has_min_root_reduction_index : LEMMA
∀(seq : sequence[term]) :

(�in (seq(0)) ∧ ∀(i : nat) : innermost_reduction?(E)(seq(i), seq(i+ 1)))⇒
∃(j : nat) : seq(j) λ−→

s in seq(j + 1) ∧ ∀(k : nat) : seq(k) λ−→
s in seq(k + 1)⇒ k ≥ j

This lemma is formalized by providing as the first index required the minimum in-
dex of the infinite derivation where the reduction takes place at the root position. The
function minimum (min) of PVS, just as function choose, also requires proof of non-
emptiness of the set used as the parameter. With the Noetherianity provided by lemma
mint_is_nr_inn_terminating, this non-emptiness constraint is obtained through an
auxiliary result over Noetherian relations restricted to an initial element that are subsets of
some non-Noetherian relation, which is given by lemma non_Noetherian_and_Noetherian
_rest_subset in the restricted_reduction.pvs theory. This lemma provides an index
of this infinite derivation where the given relation, i.e., >λ−→

s in does not hold.
Notice that, until this point, some infinite reduction sequence is being considered in

the proof. However, the DPs are not extracted from the whole terms in this derivation.

61

Instead, a mint term is innermostly reduced until reaching an innermost normal form,
and then the rule applied to the root builds the DP. Thus, at this point, the extraction
of the DP would be possible. But since the instance of this DPs is crucial for building an
infinite chain, it is important to know that not only the term that initiated the infinite
derivation will be at some point reduced at the root position, but which exact term was
reached before such reduction.

To be able to extract the DP and substitution required to proceed with the proof, one
obtains finally that every mint term non-root innermost derives into a term that has its
arguments in normal form as lemma mint_reduces_to_int_nrnf_term.

Specification 5.11: Lemma for obtaining a non-root normal form term from a mint term.
mint_reduces_to_int_nrnf_term : LEMMA
∀(s| �in (s)) :
∃(t| ↑in (t)) :
s
>λ−−→∗in t ∧ nf(>λ−−→)(t)

The proof follows as an application of the previous lemma, choosing the term at the
index where the first reduction at the root position takes place since this term is in
innermost normal form. Indeed, this term will be a normal instance of the lhs of some
rule.

5.2.3 Existence of DPs

The term obtained in the previous subsection is an innermost non-terminating term such
that it is also non-root innermost normalized. Such non-root normalized terms should
innermost reduce at the root position (see λ−→in -reductions in Figure 5.2). These reductions
from vertically to diagonally striped triangles give rise to the desired DPs. An important
observation is that such terms reduce at the root position with a rule and a normal
substitution. The substitution should be normal since the terms are non-root innermost
normal forms.

The following key auxiliary lemma normal_inst_of_rule_with_mint_on_rhs_gives_
dp_alt provides the important result that such normal instances of rhs’s of rules applied
as before and that have minimal innermost non-terminating subterms give rise to DPs.
The innermost non-terminality of the terms will guarantee the existence of such subterms.

Specification 5.12: Obtaining the desired DP from a mint term with normal substitution.
normal_inst_of_rule_with_mint_on_rhs_gives_dp_alt : LEMMA
∀(e ∈ E, σ : (normal_sub?(E)), π ∈ Pos(rhs(e)σ)) :

�in (rhs(e)σ|π)⇒ dep_pair_alt?(E)(e, π)

The proof only requires showing that rhs(e)|π is defined. For this, initially it must be
ensured that π is indeed a non-variable position of rhs(e). But σ is normal, thus, since
the premise �in (rhs(e)σ|π) implies innermost reducibility of rhs(e)σ|π, if π were a variable

62

position or a position introduced by this substitution, there would be a contradiction to its
normality. This is proved separately in lemma reducible_position_of_normal_inst_
is_app_pos_of_term that states that reducible subterms of normal instances of terms
appear only at non-variable positions of the original term. Then, by the main result
of the last subsection, that is lemma mint_reduces_to_int_nrnf_term, one has that
rhs(e)σ|π >λ−→ ∗

in t for some term t such that �in (t) and nf(>λ−→)(t). Then, the term t

has a defined symbol on its root. Thus, it only remains to prove that the root symbol of
rhs(e)σ|π and t is the same, which is an auxiliary result formalized by induction on the
length of the non-root (innermost) derivation in corollary non_root_ir_preserves_root_
symbol for non-root innermost derivations.

5.2.4 Construction of Chained DPs

So far the existence of the elements needed for the proof was formalized. Now, one
builds in fact the elements, as in Figure 5.2. Initially, a mint term is non-root innermost
normalized through the function mint_to_nit_nrnf in Specification 5.13. The existential
result given by the lemma in Specification 5.11 on subsection 5.2.2 allows the use of the
PVS choose operator.

Specification 5.13: Innermost non-terminating non-root normal forms from mint terms.
mint_to_nit_nrnf(E)(s| �in (s)) : term =

choose({t|s >λ−−→∗in t) ∧ nf(>λ−−→)(t) ∧ ↑in (t)})

Since this new non-root innermost normalized term is also innermost non-terminating,
there exists some rule and normal substitution for allowing innermost reduction of this
term at its root. Furthermore, the term obtained from this reduction will be also innermost
non-terminating, i.e., it will have a mint subterm at some position of the rhs of the used
rule. This property is formalized in lemma reduced_nit_nrnf_has_mint specified as in
Specification 5.14.

Specification 5.14: Ensuring existence of mint terms on reductions of innermost non-
terminating non-root normal form.
reduced_nit_nrnf_has_mint : LEMMA
∀(s| �in (E)(s)) :
∃(σ : Sub, e : rewrite_rule | e ∈ E, π ∈ Pos(rhs(e))) :
lhs(e)σ = mint_to_nit_nrnf(E)(s) ∧ �in (rhs(e))σ|π)

This lemma is formalized applying the existential results of Subsection 5.2.3 for ob-
taining the normal substitution σ and the rule e and, the results of the Subsection 5.2.1
to obtain a position π such that �in (rhs(e))σ|π).

Lemma reduced_nit_nrnf_has_mint allows one to use choose to pick the rule and
position leading to the DP and the substitution that will allow chaining the DP with the
next DP originated from the mint term rhs(e)σ|π as specified in the function dp_and_sub_

63

from_int_nrnf given in Specification 5.15. Here it is possible to see why this construction
is facilitated by the use of the alternative definition of DPs that includes both the rule
and the position. Since it is known exactly the rule and position used, it is possible to
use such elements in a direct way.

Specification 5.15: Function to obtain the desired DP and substitution.
dp_and_sub_from_int_nrnf(E)(s| �in (s)) : [dep_pair_alt(E), Sub] =

LET sub_e_p = choose({(σ : Sub, e ∈ E, π ∈ Pos(rhs(e))) |lhs(e)σ = mint_to_nit_nrnf(E)(s)∧

�in (rhs(e))σ|π)}) IN
((sub_e_p̀ 2, sub_e_p̀ 3), sub_e_p̀ 1)

Whenever this function has as input a term that is an instance of the rhs of a DP that
is in non-root innermost normal form, the resulting DP and substitution will be chained
with the DP and substitution used to build the input term. This result is specified in
lemma next_inst_dp_is_inn_chained_and_mnt given in Specification5.16, where the
desired alternative DPs are transformed into standard DPs in order to allow the analysis
through the predicate inn_chained_dp?:

Specification 5.16: Lemma ensuring that the obtained DPs and substitutions are chained.
next_inst_dp_is_inn_chained_and_mnt : LEMMA

∀(E)(dp : dep_pair_alt(E), σ : Sub | �in (rhs(dp̀ 1)σ|dp̀ 2)) ∧ nf(>λ−−→)(lhs(dp̀ 1)σ)) :
LET std_dp = (lhs(dp̀ 1),rhs(dp̀ 1)|dp̀ 2),

next_dp_sub = dp_and_sub_from_int_nrnf(E)(rhs(dp̀ 1)σ|dp̀ 2),
next_std_dp = (lhs(next_dp_sub̀ 1̀ 1),rhs(next_dp_sub̀ 1̀ 1)|next_dp_sub̀ 1̀ 2),
σ` = next_dp_sub̀ 2 IN

inn_chained_dp?(E)(std_dp, next_std_dp)(σ, σ)̀ ∧ �in ((next_std_dp̀ 2)σ)̀

The formalization of this lemma is quite simple in its core. However, since transfor-
mations between the standard and alternative notions of DPs are used, the proof of some
typing conditions are required to ensure type correctness. Once circumvented the typing
issues, one must only guarantee the innermost chained property for the input DP and sub-
stitution and the resulting DP and substitution created and that the instantiated subterm
of the rhs of the new DP is a mint term. Notice that the latter property is a direct result
of the type of the PVS choose operator used in function dp_and_sub_from_int_nrnf;
indeed, this property was included (and formalized) as part of this lemma just to avoid
needing to repeatedly ensure non-emptiness of the used set, since this result is used
several times throughout the rest of the formalization. To guarantee that the DPs
are chained is also straightforward, since dp_and_sub_from_int_nrnf is defined over
mint_to_nit_nrnf, which gives a term with type as a non-root innermost normal form
of the mint input, i.e., exactly the definition given by predicate inn_chained_dp?; using
notation of the lemma: rhs(dp̀ 1)|dp̀ 2σ

>λ−→∗in lhs(next_dp_sub̀ 1̀ 1)σ .̀
This result allows the specification of a function using predicate subtyping, a very

interesting feature available in PVS. Using this feature, elaborate predicate types can

64

be assigned to the outputs of functions, and type checking will automatically generate
the TCCs to ensure well-definedness of the function. Although used in other functions
through the formalization, the most interesting application of this feature happens in the
next function that outputs a pair for an input pair of DP and substitution, and where the
type of the output uses the predicates inn_chained_dp? and �in. The generated TCCs
are not proved automatically; however, to ensure that the type predicates hold, typing
provided in the lemma next_inst_dp_is_inn_chained_and_mnt given in Specification
5.16 are applied.

Specification 5.17: Function to obtain adequate next DP and substitution.
next_dp_and_sub(E)(dp : dep_pair_alt(E), σ : Sub | �in (rhs(dp̀ 1)σ|dp̀ 2) ∧

nf(>λ−−→)(lhs(dp̀ 1)σ)) :
{ (next_dp : dep_pair_alt(E), next_σ : Sub)|inn_chained_dp?(E)(dp, next_dp)(σ, next_σ)

∧ �in (rhs(next_dp̀ 1)next_σ|next_dp̀ 2)) } =
dp_and_sub_from_int_nrnf(E)(rhs(dp̀ 1)σ)|dp̀ 2)

Applying dp_and_sub_from_int_nrnf (Specification 5.15) to a mint term built from
a pair of DP and substitution (in the way done in the body of the function next_dp_and_
sub), one provides as output a pair of DP and substitution with the specified subtyping
predicates, guaranteeing that the input and output are chained.

5.2.5 Construction of the Infinite Innermost Dependency Chain

With the possibility of creating new DPs and substitutions from mint terms, it is possible
to build, inductively, an infinite DP chain from any innermost non-terminating term.
However, PVS syntax makes this construction a bit tricky, since its functional language
only allows direct construction of lambda-style or recursive functions. A lambda-style
function to create such an infinite chain is not possible, since the construction of every pair
of DP and substitution depends on the previous one in the chain. But a direct construction
of a recursive function is also problematic since the use of the choose operator in several
steps of this construction makes it difficult to guarantee its determinism and then its
functionality.

A simple solution for this problem is to use the recursion theorem to provide the
existence of a function from naturals to pairs of a DP and a substitution such that each
pair generates the next pair in the chain according to the function next_dp_and_sub,
implying that contiguous images are chained.

The recursion theorem is given in Specification 5.18. It states that for all predicates
X over a set T , initial element a in X and function f over elements of X, there exists
a function u from naturals to X such that the images of u are given by the sequence
a, f(a), . . . , fn(a),

65

Specification 5.18: The recursion Theorem.
recursion_theorem : THEOREM
∀(X : set[T], a ∈ X, f : [(X)→ (X)]) :
∃(u : [nat→ (X)]]) :
u(0) = a ∧ ∀(n : nat) : u(n+ 1) = f(u(n))

To use this theorem, the predicate is instantiated with pairs of DP and substitution of
the type of the parameters of the function next_dp_and_sub, i.e., (dp : dep_pair_alt(E), σ :

Sub | �in (rhs(dp̀ 1)σ|dp̀ 2) ∧ nf(>λ−−→)(lhs(dp̀ 1)σ)).
The first element of the sequence a is instantiated as the pair of DP and substitution,

obtained from the initial term starting any infinite innermost derivation, according to the
techniques given in subsections 5.2.1, 5.2.2 and 5.2.3. As expected, the function from
pairs to pairs is chosen as next_dp_and_sub. The recursion theorem guarantees just the
existence of a total function from naturals to the sequence inductively built using function
next_dp_and_sub starting from the initial pair. But the choice of this function assures
by its predicate subtyping that each pair of consecutive pairs are indeed chained.

As a consequence of all that, the sufficiency lemma given in Specification 5.19 is
obtained.

Specification 5.19: The sufficiency lemma for DP termination.
inn_dp_termination_implies_Noetherian : LEMMA
∀(E) :

inn_dp_termination?(E)⇒ Noetherian?(−→in)

5.3 Formalization of DP termination for other rewrit-
ing relations

The formalizations of the equivalence between the DP Criterion and Noetherianity for
the ordinary rewriting relation, given in Definition 3.3.4 and the Q-restricted rewriting
relation, given in Definition 3.3.5 are also part of the theories added to the TRS library.
These results are formalized, respectively, as

dp_termination(E)⇔ Noetherian?(−→) and

dp_termination_criterion?(E,Q)⇔ noetherian?(Q−→E).

In PVS, the ordinary and Q-restricted relations were specified in a similar way to the
one for innermost reduction (given in Specification 4.3). The differences in the specifica-
tion mainly concern the conditions required on the chains for either reduction relation.

66

The formalizations of the DP criteria for the ordinary and Q-restricted relations are
very similar to the one done for the innermost relation and follow the same steps de-
scribed in Sections 5.1 and 5.2. The biggest difference is regarding the second step for the
sufficiency proof (Section 5.2.2). In the innermost case, the proof innermost normalizes
a mint term at non-root positions. This non-root innermost normalized term is then
reduced at the root position with a rule that is used to build the desired DP. For the
ordinary and Q-restricted cases, it is only required to show that derivations starting from
a mnt or a minimal Q-restricted non terminating term are eventually reduced at root
position. The desired DP is extracted from the rewriting rule applied for the reduction
at the root position.

5.4 Library - TRS Theory Summary

The TRS Nasalib Library is very extensive. For better understanding on the extension
of this library, this Section provides a visual guide on its organization. For this, the
library will be visually split into three sublibraries: ARS, REDUCTION, TRS Properties and
DEPENDENCY PAIRS, where this last one concentrates the majority of the efforts presented
in this work as specifications in Section 4.1 and formalized in Chapter 5. Also, a color
scheme is used for distinguish the elements in the library, where predicates are colored
red, functions are blue, lemmas are green and types are pink. The same color notation is
used in Sections 6.4 and 6.5.

A broad vision of parts of the library that were not discussed in this work is given
providing only the name of the theories, such as in the Figure 5.4 for the ARS and Figure
5.6 for TRS Properties sublibraries. The former provides the basic elements of abstract
reduction systems, such as reducibility, confluence and Noetherianity regarding a given
relation. The latter embraces several elaborate formalizations regarding such systems,
such as confluence of abstract reduction systems (see [GAR08]), the Critical Pair Theorem
(see [GAR10]) and orthogonal TRSs and their confluence (see [ROGAR17]).

67

ARS

ars

results_commutation

modulo_equivalence

restricted_reduction

confluence_comute

results_normal_form

noetherian results_confluence

ars_terminology newman_yokounchi

relations_closure

Figure 5.4: The ARS sublibrary

Subtheory TRS encapsulates the majority of the basic formalizations regarding TRSs.
The theory term gives the datatype for terms and theory variables_term provides a
set of variable terms. Theory positions has the function positionsOF, that specifies
the positions of terms according Definition 2.2.2 and several properties over it, such as
the notion of parallel positions used in formalizations of Orthogonality. Theory subterm
gives the function subtermOF that specifies Definition 2.2.3 and means to manipulate
such subterms, such as properties over the positions of subterms. The replacement of
terms is given by function replaceTerm in theory replacement, that also contains results
such as associativity and distributivity of replacement and properties over replacement of
subterms.

The compatibility with contexts and closures over relations provided by the ARS sub-
library are given in theory compatibility. The substitutions needed in the reduction
operation are given as type Sub in theory substitution along with the function ext
that applies such substitution to a term and also several properties such as preserva-
tion of positions after application of substitutions and distributivity of substitutions over
replacement.

68

The rewrite rules in Definition 2.2.4 are specified as the type rewrite_rule in theory
rewrite_rules, where the notion of defined symbols in Specification 4.1 given as predicate
defined? is also present.

The reduction and non-root reduction relations given in Definitions 2.2.6 and 2.2.8
and in Specification 4.2 are given in theory reduction as predicates reduction_fix?,
reduction? and non_root_reduction_fix?. In this theory it is also present the rewriting
reduction restricted to descendants relation given in Definition 2.2.10 (and Specification
4.4) as predicate arg_rest_std?. Furthermore, the theory also brings necessary results
to several formalizations, including the one for DPs for ordinary reduction. Such results
include:

• the non-root reduction being a subset of the ordinary reduction in lemma non_root_
subset_reduction,

• the compatibility with contexts and substitutions of the reduction relation and its
closures (as lemmas reduction_is_subs_op and closure_close_subs)

• the property of termination for the subterms of a terminating term in lemma
terminating_all_subterms,

• the notion of a terminating substitution as predicate terminating_sub?

• the preservation of root symbols and arguments positions of terms when non-root
derivating terms (lemmas non_root_rtc_preserves_root_symbo and non_root_
rtc_preserves_pos_args)

• the preservation of other arguments when a specific argument is derivated in lemma
arg_preservation_in_finite_rtc and

• the propagation of the derivations to arguments when the whore term is derivated
in lemma non_root_rtc_rtc_of_argument.

69

REDUCTION

ARS

PRELUDE

reduction

reduction_fix? terminating_sub?
reduction? non_root_subset_reduction
non_root_reduction_fix? non_root_rtc_preserves_root_symbo
non_root_subset_reduction non_root_rtc_preserves_pos_args
closure_close_subs arg_preservation_in_finite_rtc
reduction_is_subs_op non_root_rtc_rtc_of_argument
terminating_all_subterms arg_rest_std?

rewrite_rule

rewrite_rule
defined?

substitution

Sub
ext

compatibility identityextending_rename

replacement

replaceTerm

subterm

subtermOF

finite_set

ars

positions

positionsOF

variables_term IUnion_extra

term

Figure 5.5: The REDUCTION sublibrary

70

UNIFICATION/ORTHOGONALITY

REDUCTION

robinsonunificationEF orthogonality orthogonality_sets

robinsonunification orthogonality_basis

critical_pairs predicate_fseq2set

critical_pairs_aux unification

reduction substitution

Figure 5.6: The TRS Properties sublibrary

The sublibrary DEPENDENCY PAIRS brings theory innermost_reduction which have
the specification of relations innermost_reduction_fix?, innermost_reduction? and
non_root_innermost_reduction? given in Definition 2.2.9 and in Specification 4.3.
predicate arg_rest? and several results, such as:

• the one regarding the normal form for reduction of terms that are normal form for
the non-root reduction relation (used to specify the innermost reduction relation
itself) in lemma nr_normal_form_subterms,

• the relation between normal form and innermost normal form of terms, given in
lemma innf_iff_nf,

• the reducibility of subterms in terms that are not in normal form in lemma non_nf
_has_reducible_subterm,

• the fact that the innermost and non-root innermost relations are subsets of the
ordinary reduction relation (lemmas innermost_subset_reduction and non_root_
inn_subset_inn_reduction),

• the relation between terminating and innermost terminating terms, given in lemma
terminating_is_inn_terminating,

71

• the preservation of the root symbol and the argument positions when non-root in-
nermost reductions are performed (lemmas non_root_ir_preserves_root_symbol
and non_root_ir_preserves_pos_args),

• the compatibility with contexts (lemma inn_reduction_is_comp_op),

• the innermost termination of subterms of innermost terminating terms (lemma
innermost_terminating_all_subterms),

• the preservation of arguments when a derivation takes place in a specific argument
(lemma arg_preservation_in_finite_reduction),

• the fact that terms in non-root normal form provide normal substitutions (lemma
normal_subst),

• the propagation of the derivations to arguments when the whore term is derivated
in lemma non_root_rtc_reduction_of_argument and

• the non-innermost reducibility of subterms of terms that are in innermost normal
form given in lemma inn_nf_subterms.

The theories dependency_pairs and inn_dp_termination are also in the sublibrary
DEPENDENCY PAIRS. The former includes the basic specifications of dependency pais and
functions to extract the rule and rhs position that originated a given DP (dep_pair?,
dep_pair_alt? and term_pos_dps_alt in Specifications 4.5, 4.6 and 5.2). The latter
contains the majority of the elements discussed in Sections 5.1 and 5.2. Among them, the
predicates that specify innermost chained dependency pais (inn_chained_dp?, from Def-
inition 3.3.3 and Specification 4.8), innermost dependency chains and innermost termina-
tion (inn_infinite_dep_chain?, inn_dp_termination? and inn_dp_termination_alt?
given in Definitions 3.3.3 and 3.3.4 and Specifications 4.9 and 4.8) and the main neces-
sity lemma (inn_Noetherian_implies_inn_dp_termination in Specification 5.1). This
theory also includes the functions to extract the elements required to construct the DPs
for the sufficiency proof, such as mint_to_nit_nrnf, dp_and_sub_from_int_nrnf and
next_dp_and_sub (Specifications 5.13, 5.15 and 5.17), the lemmas that allow the cor-
rection of such functions and the final sufficiency result inn_dp_termination_implies_
noetherian (including the lemmas inn_non_terminating_has_mint in Specification 5.4,
mint_is_nr_inn_terminating in Specification 5.9, mint_reduces_to_int_nrnf_term
in Specification 5.11, normal_inst_of_rule_with_mint_on_rhs_gives_dp_alt in Spec-
ification 5.12, reduced_nit_nrnf_has_mnt in Specification 5.14 and next_inst_dp_is_
inn_chained_and_mnt in Specification 5.16; and also the auxiliary lemmas that allow
such proofs). This sublibrary also include the theory dp_termination, that formalizes
the DP Criterion for ordinary reductions.

72

REDUCTION

inn_dp_termination

inn_chained_dp?
inn_infinite_dep_chain?
inn_dp_termination?
inn_dp_termination_alt?
inn_dp_termination_and_alt_eq
inn_noetherian_implies_inn_dp_termination
minimal_innermost_non_terminating?
mint_is_app
args_innermost_minimal
inn_non_terminating_has_mint
positions_of_inf_nr_reduction
exists_inf_red_arg_in_inf_nr_im_red
exists_nth_in_inf_nr_im_red
nth_index
nth_index_increasing
nth_index_continuous
argument_protected_in_non_nth_index
mint_is_nr_inn_terminating
reductions_below_min_root_are_non_root
inf_inn_deriv_of_mint_has_min_root_reduction_index
mint_reduces_to_int_nrnf_term
reducible_position_of_normal_inst_is_app_pos_of_term
normal_inst_of_rule_with_mint_on_rhs_gives_dp_alt
mint_to_nit_nrnf
reduced_nit_nrnf_has_mnt
dp_and_sub_from_int_nrnf
next_inst_dp_is_inn_chained_and_mnt
next_dp_and_sub
inn_dp_termination_implies_noetherian

dependency_pairs
dep_pair?
dep_pair_alt?
rule_and_pos_from_dp
term_pos_dps_alt
args_of_pos_seq
inf_red_arg_in_inf_nr_im_red

innermost_reduction

nr_normal_form_subterms innf_iff_nf
innermost_reduction_fix? non_nf_has_reducible_subterm
innermost_reduction? non_root_innermost_reduction?
innermost_subset_reduction non_root_inn_subset_inn_reduction
terminating_is_inn_terminating non_root_ir_preserves_root_symbol
inn_reduction_is_comp_op non_root_ir_preserves_pos_args
innermost_terminating_all_subt arg_preservation_in_finite_reduction
normal_subst non_root_rtc_reduction_of_argument
inn_nf_subterms arg_rest?

reduction

dp_termination_criterion dp_termination

seq_recursion_theorem

n_functions
recursion_theorem

73

5.5 Related work: other formalizations of DPs

Formalizations of the theorem of soundness and completeness of DPs (DP theorem, for
short) are available in several proof assistants. In [BK11], Blanqui and Koprowski de-
scribed a formalization of the DP theorem for the ordinary reduction relation that is
part of the CoLoR library developed in Coq for certifying proofs of termination. The
formalized result is the DP theorem for the ordinary reduction relation, and not for the
innermost termination. The proof in [BK11], as the current formalization, uses the non-
root reduction relation (internal reduction) and the reduction at root position relation
(head reduction). Instead of building infinite chains from infinite derivations, it assumes
a well-founded relation over the set of chained DPs to conclude Noetherianity of the
ordinary reduction relation.

The library library Coccinelle [CCF+07] contains a Coq formalization for the DP
Criterion. This formalization includes a relation between instances of lhs of DPs and
proves the equivalence between well-foundedness of this relation and well-foundedness
of the reduction relation of a given TRS. Their work also avoids using tuple symbols to
avoid root reduction between chained DPs, instead, uses instances of the lists of arguments
for the lhs’s and rhs’s of DPs related by the reflexive-transitive closure of the rewriting
relation. The formalization also considers a refinement of the notion of DPs, which avoids
DPs generated by a rules where the rhs of the DP appears also as a subterm of the lhs of
the rule.

The TTT2 tool implements techniques such as KBO and polynomial interpretations in
a modular way following the Dependency Pair Framework [KSZM09] and allows the user
to control the termination methods applied by configurable strategies.

The DP Criterion is automated in the tool AProVe [GSKT06], and also adapted to
deal with termination of term rewriting systems modulo AC operators [YSTK16]. AProVe
is a powerfull system for automated termination and complexity proofs. It also provides
simpler termination analysis techniques, such as reduction orderings based on multiset
orderings and integer transition systems among others ([DM79b], [TAN12], [SGB+17]).
AProVe also can deal with termination and complexity analysis over Java, C, Haskell and
Prolog programs [GBE+14, GAB+17].

A formalization of the DP theorem for the ordinary reduction relation is also present
in the proof assistant Isabelle, as part of the library for rewriting IsaFoR briefly described
in [ST10]. In this formalization the original signature of the TRS is extended with new
tuple symbols for substituting the defined symbols (see comments after Definition 3.3.1 of
DPs), which implies the analysis of additional properties of the new term rewriting system
induced over the extended signature and also properties relating this new rewriting system
with the original one. The proof, as in the current formalization, builds an infinite chain

74

from an infinite derivation and vice-versa. This work brings interesting features, such
as the use of the same refinement of DPs as the formalization in Coccinelle and also
formalization for the Q-restricted rewriting relation, providing a general result that has
as corollaries the results explicitly proved before for both the DP theorem for the ordinary
and the innermost reduction relations.

The formalization for the termination of Q-restricted relation is used to provide a
sound environment to certify concrete termination proofs in an automatic way by the
tool CeTA [TS09]. Formalization of the DP Criterion for the ordinary rewriting relation
is also included in the PVS theory TRS (as mentioned in Section 5.3), but as mentioned
in the introduction, the emphasis in this work is on the innermost case since it is the
one related to the operational semantics of first-order functional the PVS0 language (eager
evaluation) which models first-order PVS specifications.

75

Chapter 6

Formalization of Termination
Criteria in PVS0

The theory PVS0 is also very extensive and have been gathering efforts from several re-
searches in order to provide an adequate language to reason over the PVS specification
language in a simplified way 1 [MARM+21]. A lot of the efforts are in providing means
to automate termination proofs, and the equivalence between the termination criteria
specified in Section 4.2 is a fundamental part of this development. The formalizations on
such equivalences are summarized in this Chapter, following from the semantic notions of
termination to more constructive means to analyze such property.

6.1 Equivalence between semantic criteria

Several auxiliary properties have been formalized to prove the equivalence between the
termination criteria Tε and Tχ given is Section 4.2.1. For instance, the type of the function
eval_expr abbreviated as χ, is shown to satisfy the two recursive judgments below. The
first one, eval_expr_ge_n_j, means that whenever the type of χ is some value different
from ♦, obtained allowing a number n > 0 of nested recursive calls, this value remains the
same when one allows a number greater than or equal to the number of nested recursive
calls provided. The second one, eval_expr_semantic_rel_j, means that when the type
of χ is some value different from ♦, this value is exactly the one that satisfies the predicate
ε. The proofs are by induction on PVS0 expressions expanding the definitions of χ and ε.

Specification 6.1: Typing results over evaluation of PVS0 expressions
eval_expr_ge_n_j =
χ(expr, vin, n)HAS_TYPE

{myv : T ∪ {♦} | some?(myv)⇒
n > 0 ∧ ∀(m ≥ n) : myv = χ(expr, vin, m)}

eval_expr_semantic_rel_j =
χ(expr, vin, n)HAS_TYPE
{myv : T ∪ {♦}; | some?(myv)⇒
ε(expr, vin, get_val(myv))}

1Indeed, this is a joint work with the Formal Methods group at NASA Langley and the Formal
Methods group at Universidade de Brasília

76

From these judgments, it is possible to prove the relation between the two notions of
evaluation in the two lemmas specified below. The first portion of the currying of ε and
χ are properly instantiated with the elements of program def.

Specification 6.2: Relations between Semantic Evaluation and Evaluation by number of
nested calls of PVS0 expressions
semantic_rel_eval_expr : LEMMA
∀(def, expr, vin, vout) :
ε(expr, vin, vout)⇒
∃(n) : some?(χ(expr, vin, n))∧
vout = get_val(χ(expr, vin, n))

eval_expr _semantic_rel : LEMMA
∀(def)(vin, expr, vout)(n) :

some?(χ(expr, vin, n))∧
vout = get_val(χ(expr, vin, n))⇒
ε(expr, vin, vout)

The lemma eval_expr_semantic_rel has a trivial proof, being enough just to use the
type judgement eval_expr_semantic_rel_j, while lemma semantic_rel_eval_expr is
proved inductively on the structure of the inductive predicate ε. Thus, the induction
requires a predicate that states invariance properties over the arguments that undergo
alterations in the definition (i.e., expr, vin and vout). The required predicate is given as
the predicate in Specification 6.3.

Specification 6.3: Invariance predicate for evaluating PVS0 expressions
P (expr, vin, vout) =
∃(n) : some?(χ(expr, vin, n)) ∧ vout = get_val(χ(expr, vin, n))

Thus, the inductive scheme generated by PVS is given below.

Specification 6.4: Inductive Scheme over Semantic Evaluation of PVS0 expressions
(((cnst?(expr) ∧ vout = get_val(expr)) ∨

(vr?(expr) ∧ vout = vin) ∨
(op1?(expr) ∧ ∃(v1) : ε(get_arg(expr), vin, v1)∧

P (get_arg(expr), vin, v1)∧
vout = O1(get_op(expr))(v1))

(op2?(expr) ∧ ∃(v1, v2) : ε(get_arg1(expr), vin, v1)∧
P (get_arg1(expr), vin, v1)∧
ε(get_arg2(expr), vin, v2)∧
P (get_arg2(expr), vin, v2)∧

vout = O2(get_op(expr))(v1, v2))
(ite?(expr) ∧ ∃(v1) : ε(get_cond(expr), vin, v1)∧

P (get_cond(expr), vin, v1)∧
((v1 6= ♦ ∧ ε(get_if(expr), vin, vout)∧
P (get_if(expr), vin, vout))∨

(v1 = ♦ ∧ ε(get_else(expr), vin, vout)∧
P (get_else(expr), vin, vout))))∨

(rec?(expr) ∧ ∃(v1) : ε(get_arg(expr), vin, v1)∧
P (get_arg(expr), vin, v1)∧
ε(ef , v1, vout)∧
P (ef , v1, out)))⇒ P (expr, vin, vout)) ⇒

(∀(expr, vin, vout) : ε(expr, vin, vout)⇒ P (expr, vin, vout))

The predicate P makes straightforward the inductive step, since one has ε already and
wants to prove χ, that is exactly the succedent of the induction hypothesis. The other
part of the proof proceeds by case analysis accordingly to the ε definition, where one

77

must provide the adequate n for the size of nested recursions to be allowed in each case.
For variables and constants, n = 1; for unary and binary operators and for branching
instructions, n is the maximum number of nested recursions necessary to evaluate its
arguments; finally, for recursive expressions, the required number of nested recursions
is one more than necessary to evaluate its argument. Since the maximum number of
recursions to evaluate arguments is used when the expression has more than one argument,
the type judgement eval_expr_ge_n_j is needed to ensure that the result will be the
same.

The formalization of equivalence between the two semantic notions of termination,
specified as below, is then established by the application of the two lemmas above.

Specification 6.5: Semantic Evaluation Equivalence of PVS0 expressions
eval_expr_terminates : LEMMA
∀(expr) : Tχ(expr)⇔ Tε(expr)

6.2 Equivalence between TCC termination and se-
mantic termination

First, to prove that semantic termination (i.e., either Tχ or Tε) implies TCC termination
(Tς), a function is specified that provides the minimum number of nested recursive calls
needed to evaluate an output value for a determined pair of PVS0 definition and input
value. This is done through evaluation with the function χ accordingly to the function
mu specified as below.

Specification 6.6: Minimum number of recursive calls for evaluation of PVS0 definitions
mu(def)(vin | determined?(def, vin)) = min({n | χ(def̀ 4, vin, n) 6= ♦})

When a minimum number n can be used to evaluate a given PVS0 program definition,
then the minimum number of nested recursive calls necessary to evaluate the argument
of some recursive subexpression of this definition is proved to be smaller than n in lemma
rec_mu_decreasing specified below.

Specification 6.7: Decreasingness of mu
rec_mu_decreasing : LEMMA
∀(vin)(n)(def|Tε(def̀ 4))(path : (P (def̀ 4))) :

(mu(def)(vin) = n ∧
C(path_conditions(def̀ 4, path), vin)∧
rec?(subterm_at(def̀ 4, path)))⇒
∀(vout) : ε(get_arg(subterm_at(def̀ 4, path)), def̀ 4, vin, vout)⇒

mu(def)(vout) < n

The lemma above is formalized through an auxiliary lemma, that is proved by induc-
tion in the structure of PVS0 expressions occurring in a PVS0 program. The auxiliary

78

lemma states that whenever the expression, say expr, in the program pvs0, can be eval-
uated allowing n nested recursive calls, and there is a subexpression of expr, say sexpr,
which is a recursive call, whose conditions hold (i.e., evaluate to true), then the arguments
of this recursive call can be evaluated allowing minimum n-1 nested recursive calls.

Then, for semantic terminating PVS0 program definitions, this minimum number of
nested recursive calls is proved to decrease over parameters and arguments of each CC
cc of the PVS0 program for which the conditions hold. This decreasing condition of
semantic termination definitions is formalized as the lemma mu_soundness below. This
is a straightforward consequence of the previous lemma.

Specification 6.8: Soundness of mu
mu_soundness : LEMMA

Tε(def̀ 4)⇒
∀(cc, vin, vout) :

ε(get_arg(cc̀ rec_expr), vin, vout) ∧ C(def, cc̀ cnds, vin)
⇒ mu(pvs0)(vout) < mu(def)(vin)

With this result, mu can be used as the wfm (using the order > over N) required to
guarantee termination according Tς . This concludes the first side of the equivalence proof,
formalized as lemma terminates_implies_pvs0_tcc = Tε(def̀ 4)⇒ Tς(def).

Second, to formalize the converse, that is Tς ⇒ Tε, the goal is to relate the values
used as arguments of nested recursive calls when a PVS0 program is evaluated. The
predicate lt_val below relates arguments of direct recursive calls with the input argument
between a recursive definition, according to a given wfm and associated ordering lt (used
to guarantee TCC termination).

Specification 6.9: lt_val
lt_val(def)(wfm)(vout, vin) =
∃(cc|(pvs0_tcc_valid_cc(def̀ 4)(cc)) :
ε(get_arg(cc̀ rec_expr), vin, vout) ∧ C(def, cc̀ cnds, vin) ∧ lt(wfm(vout), wfm(vin))

Notice that lt_val only relates input arguments and arguments of recursive calls re-
garding the static analysis used by TCC termination. To extend this relation to arguments
that appear in recursive calls when a PVS0 definition is evaluated, that is to arguments in
nested recursive calls, the transitive n-closure of the inverse of this relation is built using
the predicate gt_n:

Specification 6.10: gt_n
gt_n(lt_val)(n)(a, b) = (n = 1 ∧ lt_val(b, a))∨

(n > 1 ∧ ∃(c) : lt_val(c, a) ∧ gt_n(lt_val)(n− 1)(c, b))

Indeed, the transitive closure is the relation ∃(n) : gt_n(lt_val)(n). Then, the func-
tion Omega is used to specify the height of the tree of evaluation of a recursive definition for
a given input value as below. Notice that this corresponds also to the maximum number

79

of nested recursive calls generated in the semantic evaluation of the recursive definition
with the given input.

Specification 6.11: Omega
Omega(vin) = min(n : above(0) | ∀(var) : ¬gt_n(lt_val)(n)(vin, var))

The lemma omega_is_eval_ub shows that the Omega function provides an upper
bound for the length of nested recursive calls for TCC terminating PVS0 definitions, which
also guarantees the semantic evaluation of some value different from ♦.

Specification 6.12: omega_is_eval_ub
omega_is_eval_ub : LEMMA
ς(def, wfm)⇒ ∀(expr, vin, path) : expr = subterm_at(def̀ 4, path)∧

C(def, path_conditions(def̀ 4, path), vin)⇒
∃(n ≤ Omega(vin)) : some?(χ(expr, vin, n))∧

ε(expr, vin, val(χ(expr, vin, n)))

The proof is by induction on a lexicographic order over the size of the PVS0 expressions
to be evaluated and the measure of the input value. For expressions that are not recursive,
the proof is trivial, since the number of nested recursive calls will be the same as for its
arguments, what is given by induction hypothesis. As for recursive expressions, since
predicate ς holds, the semantic evaluation of this function is use in order to provide the
measure necessary for the Omega function. Then the result provided for Omega applied
to the input value used for the expression evaluation is used as the number of nested
recursive calls. The induction hypothesis instantiated with the output value evaluated
for the first input value provided provides a number of nested recursive calls for the
recursive expression argument, that is indeed smaller than the initial result of Omega,
thus concluding the proof.

The theorem pvs0_tcc_implies_terminates, specified below, is a direct result from
the equivalence between Tε and Tχ and lemma omega_is_eval_ub.

Specification 6.13: TCC vs Semantic Termination for PVS0
pvs0_tcc_implies_terminates : LEMMA
Tς(def)⇒ Tε(def̀ 4)

6.3 Equivalence between TCC and SCP technologies

It will be described how the equivalences between TCC and SCP termination and between
SCP and CCG termination were formalized.

TCC versus SCP

The relation between TCC termination Tς and SCP termination for PVS0 program defi-
nitions is specified in lemmas below.

80

Specification 6.14: Equivalence between TCC and SCP for PVS0
pvs0_tcc_implies_scp : LEMMA
Tς(def)⇒ scp_termination_pvs0(def)

scp_implies_pvs0_tcc : LEMMA
scp_termination_pvs0(def)⇒ Tς(def)

For the proof of the first lemma, from TCC termination it is provided a well-founded
measure, say wfm, that decreases over the parameters and arguments of every recursive
call. This measure is used to build the required relation over the values regarding the
evaluation mechanisms using the predicate lt_val described in Section 6.2. Then, to
conclude the proof, the relation lt_val built using wfm is used to instantiate the existential
quantifier required for the predicate SCP presented in Section 4.2.3.

As for the second, the proof requires providing a well-founded measure to be used
in TCC termination. Since one has SCP termination, the possible sequences of CCs are
finite. Therefore, for each context of the PVS0 program definition it is possible to relate
its parameters and arguments accordingly to the input and output values through the
evaluation mechanisms. This relation is given by predicate R below.

Specification 6.15: Relating parameters and arguments
R(def)(vout, vin) =
∃(cc | pvs0_tcc_valid_cc(def)(cc)) : C(def, cc̀ cnds, vin) ∧ ε(cc̀ actuals, vin, vout)

Then, similarly to the proof for Tς ⇒ Tε on Section 6.2, this predicate only relates
parameters and arguments of CCs in a static analysis. Notice that, once again, the
predicate can be extended to relate arguments of nested recursive calls. This is done by
using the n-closure gt_n as specified in Section 6.2, but now with R as its argument.

Finally, it is possible to use the height of the tree of evaluation of recursive calls as an
adequate measure (over naturals) required for TCC. This height is given by function the
Omega defined over the n-closure of predicate R, that captures the notion of SCP, and is
given as below:

Specification 6.16: Hight of evaluation tree
Omega(vin) = min(n : above(0) | ∀(var) : ¬gt_n(R)(n)(vin, var))

Notice that the premises of the definition of TCC termination (see Section 4.2.2)
coincide with the predicate R. Then, it only remains to prove that Omega is a well-founded
measure. Since Omega is defined only over well-founded relations, it is enough to prove
that the relation given by predicate R is indeed well-founded. This proof is given by the
SCP termination hypothesis, through the non-existence of infinite decreasing sequences
related by R.

This concludes the proof of equivalence between TCC and SCP termination.

81

SCP versus CCG

Consider two generic evaluation mechanisms cond_eval and sem_eval.
First, consider that the SCP termination predicate scp_termination? (see Section

4.2.3) holds for these evaluation mechanisms. Then, it is proved that using these evalua-
tion mechanisms the predicate ccg_termination also holds. This can be achieved since
every graph whose vertices are CCs will have measures allowing this termination criterion,
as specified in lemma scp_implies_ccg_termination below.

Specification 6.17: SCP implies CCG
scp_implies_ccg_termination : LEMMA
∀(dg) : ∃(measures) : ccg_termination?(make_ccg(dg, measures))

For the proof, it must be provided the decreasing combination of measures that guar-
antees CCG termination. In order to do this, it is necessary first to build the family of
measures that can be chosen to make this combination. In this formalization, the family
of measures is composed by a single measure given by the function Omega over a generic
version of a predicate R, similarly to the one previously used in this section, given as
below, where cc is a vertex of the graph:

Specification 6.18: R
R(vout, vin) = ∃(cc) : cond_eval(cc̀ cnds, vin) ∧ sem_eval(cc̀ actuals, vin, vout)

Since the family of measures is a singleton, the combination to be associated with
every (walk and) circuit is a sequence whose length is the same as the length of the circuit
and whose components are always the unique available index: zero. Since SCP holds for
the evaluation mechanisms, the proof is completed by the well-foundedness of Omega (that
as in the previous equivalence formalization is a consequence of the well-foundedness of
R).

Secondly, the converse is specified in lemma ccg_termination_implies_scp below.

Specification 6.19: CCG implies SCP
ccg_termination_implies_scp : LEMMA
∀(dg) : (∃(measures) :

ccg_termination?(make_ccg(dg, measures)))⇒ scp_termination?(sem_eval, cond_eval)

82

Specification 6.20: Extracting infinite descent
extract_infinite_descent =

∀(J : IncSub, F : [nat→ MT],K : nat) :
¬((∀(i) : ∃(j) : J(i) + j < J(i+ 1) ∧ gt(F (J(i) + j), F (J(i) + j + 1)))∧

(∀(i) : i ≥ K ⇒ ge(F (i), F (i+ 1))))

build_infinite_descent =
¬(∃(J : IncSub, F : [nat→ [nat→ [Val→ MT]]], vals : [nat→ Val]) :

∀(j) : (∀(i) : i < J(j + 1)− J(j)⇒
ge(F (j)(i)(vals(J(j) + i)), F (j)(i+ 1)(vals(J(j) + i+ 1))))∧

(∃(i) : i < J(j + 1)− J(j)∧
gt(F (j)(i)(vals(J(j) + i)), F (j)(i+ 1)(vals(J(j) + i+ 1))))∧

F (j)(J(j + 1)− J(j)) = F (j + 1)(0))

ccg_pigeonhole =
∀(dg, (ccs : Seq_cc(dg))) : ∃(J : [nat→ nat]) :

(∀(i, j : nat) : i < j ⇒ J(i) < J(j) ∧ ccs(J(i)) = ccs(J(j)))

The proof is by contraposition and consists of building a circuit that decreases infinitely
from the infinite sequence of calling contexts provided by SCP (that requires the lemmas
in Specification 6.20). Since the number of possible calling contexts is finite, whenever
there is an infinite sequence of CCs some of those appear infinitely many times in the
sequence. Thus, the same vertex of the graph must be assigned to every occurrence of a
given context in the infinite sequence.

Note that even though the equivalence of SCP and CCG termination is given generi-
cally, using this result for PVS0 programs is straightforward; in fact, this is achieved by a
simple parameterization and adaptation of lemmas scp_implies_ccg_termination and
ccg_termination_implies_scp. The necessary adjustments are related to how the CCG
from a PVS0 program definition is built and how generic contexts and specific calling con-
texts are related. This can be seen in the formalization of lemmas ccg_implies_scp_pvs0
and scp_implies_ccg_pvs0.

Thus, it is possible to state the relation between CCG and TCC termination for PVS0
programs, such as in lemmas ccg_implies_pvs0_tcc and pvs0_tcc_implies_ccg . The
former is stated below, and its proof is obtained through the application of two intermedi-
ate results, given by lemmas scp_implies_pvs0_tcc and ccg_implies_scp_pvs0. The
proof of the later follows the same principle.

Specification 6.21: CCG implies TCC for PVS0 Programs
ccg_implies_pvs0_tcc = ccg_termination_pvs0(def)⇒ Tς(def)

6.4 NASA PVS Library - PVS0 Theory Summary

The syntax of PVS0 expressions, gived in Section 4.2, is specified in the file PVS0Expr (see
Scheme in Figure 6.1). Definitions of the PVS0 language such as the two different notions

83

of semantic termination (terminates_expr and eval_expr_termination), described in
Section 4.2.1, and their equivalence formalized by the lemma eval_expr_terminates
along with the auxiliary results presented in Section 6.1 (eval_expr_ge_n_n, eval_expr_
semantic_rel_j, semantic_rel_eval_expr and eval_expr_semantic_rel), are speci-
fied in theory pvs0_expr. The former definition of semantic termination is given over
the predicate semantic_rel_expr, and the latter over the recursive function eval_expr.

Theory pvs0_lang provides the type PVS0 used for PVS0 program definitions. The
semantic elements over a given PVS0 program definition, say def, are also given in this
theory. This is done by instantiating the curried version provided in theory pvs0_expr
with the desired evaluation environment and PVS0 expression as the def tuple. This
theory also provides the predicate determined? described in Section 4.2.1 and the key
function mu specified in Section 6.2.

The elements path, conditions and subterm as described in the beginning of Section
(e.g., valid_path, subterm_at and spath_condition) are specified in theory pvs0_cc.
The elements related to the specification of calling contexts of PVS0 expressions, such as
evaluation of conditions (eval_conds), the type of calling contexts for PVS0 (PVS0Expr_CC)
and validity for a given PVS0 expression (pvs0_tcc_valid_cc), described in Section 4.2.2,
are also specified in this theory.

Several properties related to auxiliary mechanisms used to characterize well-defined,
semantically terminating PVS0 programs are provided in theory pvs0_props. In partic-
ular, the property of decreasement of function mu regarding the arguments that appear
in the evaluation of a chain of recursive calls as specified by lemma rec_mu_decreasing,
explained in Section 6.2, belongs to this theory.

Theory pvs0_to_dg brings several functions for manipulation of program paths and
conditions that are used to build the CCs in paths of a given PVS0 program. Then, this
theory specifies sound CCGs (sound_ccg_digraphs) over these conjunctions or chains
of CCs that are used for a correct specification of the CCG termination criterion, as
described in Section 4.2.3.

Theory measure_termination specifies the notion of TCC termination, Tτ , de-
scribed in Section 4.2.2. This theory imports the sub theories measure_termination_defs
omitted from the scheme). The criterion itself, given by predicate pvs0_tcc_termination,
uses a well-founded measure of type WFM. This theory also contains formalizations related
to the fact that semantic termination implies TCC termination, given in Section 6.2, such
as lemmas terminates_implies_pvs0_tcc and mu_soundness used in this proof.

The converse proof to complete the formalization of equivalence between semantic and
TCC termination, given by lemma pvs0_tcc_implies_terminates, explained in Section
6.2, requires the transitive n-closure gt_n and function Omega given in theory omega (part

84

of the orders NASA PVS Libraries, omitted in the scheme). As described in Section 6.2,
this proof also requires the relation to be used over the calling contexts (lt_val) and
the upper bound result for Omega (omega_is_eval_ub); both them specified in theory
pvs0_termination along with the main lemma pvs0_tcc_implies_terminates itself.

The notion of SCP termination for PVS0 programs, given by scp_termination_pvs0
in Section 4.2.3, is specified in theory scp_iff_pvs0. This theory also provides the
equivalence lemmas between SCP and TCC termination criteria described in Section 6.3;
namely, lemmas pvs0_tcc_implies_scp and scp_implies_pvs0_tcc).

The equivalence between CCG and SCP/TCC termination for PVS0 programs is given
in two different theories through instantiation of the results relating CCG and SCP. The-
ory ccg_to_pvs0 specifies the notion of CCG, described in Section 4.2.3, with the
mechanisms of semantic evaluation and evaluation of conditions for PVS0 programs as
the predicate ccg_termination_pvs0 and formalizes lemmas (mentioned in Section 6.3)
such as ccg_implies_scp_pvs0 and ccg_implies_pvs0_tcc. Sufficiency of the related
equivalences, that is lemmas scp_implies_ccg_pvs0 and pvs0_tcc_implies_ccg, are
formalized in theory pvs0_to_ccg.

pvs0_to_dg
sound_ccg_digraph
pvs0_to_fully_connected_dg

measure_termination

WFM
pvs0_tcc_termination
mu_soundness
terminates_implies_pvs0_tcc

pvs0_termination

lt_val
omega_is_eval_ub
pvs0_tcc_implies_terminates

scp_iff_pvs0

scp_termination_pvs0
pvs0_tcc_implies_scp
scp_implies_pvs0_tcc

ccg_to_pvs0

ccg_termination_pvs0
ccg_implies_scp_pvs0
ccg_implies_pvs0_tcc

pvs0_to_ccg

scp_implies_ccg_pvs0
pvs0_tcc_implies_ccg

Figure 6.1: Hierarchy scheme for the PVS0 theory files

Table 6.1 summarizes the localization of the main lemmas in the PVS0 library.

85

Proof Lemma name Subtheory Theory
SemF ⇒ TCC terminates_implies_pvs0_tcc measure_termination PVS0
TCC ⇒ SemF pvs0_tcc_implies_terminates pvs0_termination PVS0
SemF ⇔ SemV eval_expr_terminates pvs0_expr PVS0
SCP ⇒ TCC scp_implies_pvs0_tcc scp_iff_pvs0 PVS0
TCC ⇒ SCP pvs0_tcc_implies_tcc scp_iff_pvs0 PVS0
SCP ⇒ CCG scp_implies_ccg_pvs0 pvs0_to_ccg PVS0
TCC ⇒ CCG pvs0_tcc_implies_ccg pvs0_to_ccg PVS0
SCP ⇒ CCG scp_implies_ccg_termination scp_to_ccg CCG
CCG⇒ SCP ccg_termination_implies_scp ccg CCG

Table 6.1: Termination equivalences on PVS0 and where to find them

6.5 NASA PVS Library - CCG Theory Summary

The generic CC type CallingContext, described in Section 4.2.3, is specified in theory
cc_def (See scheme in Figure 6.2). The theory scp specifies infinite_seq_ccs, a
predicate that checks if a sequence of CCs is infinite and is used to specify SCP termination
through the predicates SCP and scp_termination?, as described in Section 4.2.3.

Theory ccg_defs specifies the type FunMeasures for the family ofmeasures associated
to a digraph. The type CCG for these enriched graphs and also the function make_ccg that
given a digraph and some measures provides such graph (explained in Section 4.2.3), are
also specified in this theory.

The type of the measure combination (measures_combination) associated to the
walks of a graph of type CCG and the predicate that checks its decreasement over a walk of
this graph (gt_mc?), described in Section 4.2.3, are specified in theory ccg. In this theory
there are also included the notion of CCG termination given by ccg_termination? and
lemma ccg_termination_implies_scp, described in Section 6.3, along with the auxiliary
lemmas (extract_infinite_descent, build_infinite_descent and ccg_pigeonhole).
The type IncSub used for the functions required in these lemmas is omitted from the
scheme, but can be found in file ramsey_graph from theory ints, also part of the NASA
PVS Library. The other direction of the proof, lemma scp_implies_ccg_termination,
is specified in theory scp_to_ccg. Also in this theory is specified the generic predicate
R, that checks the existence of a CC such that its conditions and the evaluation of a given
input value are possible in this context. This predicate is used to build the single measure,
used as the family of measures, through the function Omega (from theory omega), as
described in Section 6.3.

The CCG theory summarized in Figure 6.2 also includes the theoriesmatrix_wdg and
ccg_to_mwg with their main elements regarding the MWGs of [Ave14].Although these
theories ate not described in this paper, they are an important part of the automation pro-
cess for termination of PVS0 programs, and its equivalence is also formalized in this library.

86

These theories, respectively, specify the notion of MWG termination (mwg_termination?)
and formalize the theorem of equivalence between MWG and CCG termination criteria.

ccg_to_mwg

mwg_termination_iff_ccg_termination

matrix_wdg

wdg
mwg_termination?

ccg

measure_combination
gt_mc?
ccg_termination?
ccg_termination_implies_scp
extract_infinite_descent
build_infinite_descent
ccg_pigeonhole

ccg_def

CCG
FunMeasures
make_ccg

cc_def

CallingContext

scp_to_ccg

R
scp_implies_ccg_termination

scp

infinite_seq_ccs
SCP
scp_termination?

Figure 6.2: Hierarchy scheme for the CCG theory files

87

Chapter 7

Connecting FP and TRS
Termination Criteria

Formalizing termination via DPs for TRSs allows investigating how to apply this ter-
mination criterion to provide automation of termination analysis of FPs. This Chapter
provides some observations and speculates how it would be possible to build an adequate
correspondence that produces DPs in the TRS similar to the CCs in the CCG from the
original program and the derivations and derivations considered in DP and CCG criteria.

Challenges to obtaining such correspondence in a way that the TRS obtained from a
givem FP is not an over-approximation (which can also be applied), include ensuring that
this TRS is confluent since the FPs are deterministic. Also, since we are dealing with
non-conditional TRSs and we want to avoid the increase of the signature, the guards of
branching instructions of FPs cannot be expressed as rule conditions. The proposal is
to translate guards into matching problems for the lhs of the rules to decide (one-step)
reduction. Such matching decision problems may be reached by narrowing but without
guaranteeing confluence. This chapter also briefly presents the translation proposed by
Krauss et al [Kra09] that generates orthogonal TRSs, thus ensuring confluence.

7.1 CC versus DP

In FPs, the functions have formal parameters that are instantiated to produce a state
when this function is called during an evaluation. TRS rules are applied to terms that
match some instantiation of the lhs of these rules during a derivation. Therefore, since the
specifications are written as FP, the conditions leading to some function call are related
to the matching conditions to apply some rule in corresponding FPs and TRS.

When dealing with functional programs whose arithmetic guards are conditions over
decidable theories, the matching conditions for the lhs of the rule associated with the
branches of these conditions can be provided by narrowing with the TRS for such theories.

88

The solutions obtained by narrowing are applied to the expressions of the CC from which
the solution was obtained. The term built by the application of the solution in the first
expression of the CC is the lhs of the corresponding rewrite rule. Since the solution was
obtained by narrowing only the conditions that must hold for the first expression in the
CC, the rhs of the rule requires to innermost normalize the term obtained with the TRS
used for the narrowing after applying the solution to the second expression in the CC.
Then, the DPs can be extracted form the resulting TRS.

In particular, the Presburger Arithmetic (PA) expanded with usual algebraic relations
(a known decidable theory [Coo72a, Coo72b]), and with the operations of multiplication
by constants and subtraction defined over sum and successor allows to express the guards
given over arithmetic conditions for many FPs specified in PVS. Since there is no canonical
context-free TRS to axiomatize PA [Vor88], Example 3.3.4 provides a PA axiomatization
to be used for the narrowing process in the remainder of the document.

To provide correspondence from FPs with guards defined over the PA to TRSs, a
signature for this translation includes constructors {0, s} and a mapping n 7→ sn(0) for
natural numbers. The Fibonacci and Ackermann functions, which have comparisons with
ground expressions in their guards, give straightforward examples on how to use narrowing
to obtain the matching conditions, and thus the rules of a TRS from a FP (Examples
7.1.1 and 7.1.2.

Example 7.1.1 (Fibonacci). Consider the TRS given in Example 3.3.4 and the following
functional specification for the Fibonacci function:

fib(n) := ite(≤ (n, 1), 1,+(fib(−(n, 1)), fib(−(n, 2))))

Two conditions of this FP must be considered to reach a correspondent TRS. And to
provide the matching condition for the rewriting rules, such conditions must evaluate to
a TRUE value:

?= (≤ (n, 1),>)
?= (> (n, 1),>)

By narrowing, the first condition is solved as the two possibilities below:

• ?= (≤ (n, s(0)),>) [R1,{n/0}]
?= (>,>) [R5] > that corresponds to the solution

{n/0}.

• ?= (≤ (n, s(0)),>) [R3,{n/s(x)}]
?= (≤ (x, 0),>) [R1,{x/0}]

?= (>,>) [R5] >, that
corresponds to the solution {n/s(0)}.

And the second is solved as:

• ?= (> (n, s(0)),>) [R2,{n/s(x)}]
?= (> (x, 0),>) [R4,{x/s(x′)}]

?= (>,>) [R5] > that
corresponds to the solution {n/s(s(x′))}.

89

Then, even with only two paths for the execution in the FP, the TRS must have three
rules obtained through the application of the solutions above in the expressions of the CCs.

fib(0)→ s(0)
fib(s(0))→ s(0)
fib(s(s(y)))→ +(fib(−(s(s(y)), s(0))), fib(−(s(s(y)), s(s(0)))))

Finally, the rhs of the rules are normalized to effectively obtain the rules:

fib(0)→ s(0)
fib(s(0))→ s(0)
fib(s(s(y)))→ +(fib(s(y)), fib(y))

From where the following DPs are obtained:

〈fib(s(s(y))), fib(s(y))〉
〈fib(s(s(y))), fib(y)〉

Example 7.1.2 (Building matching conditions for Ackermann). Consider the Ackermann
function on Example 2.1.1. The TRS and related DPs will be built from the CCs on
Example 3.1.1:

〈ack(m,n), ¬(= (m, 0))∧ = (n, 0), ack(−(m, 1), 1)〉
〈ack(m,n), ¬(= (m, 0)) ∧ ¬(= (n, 0)), ack(−(m, 1), ack(m,−(n, 1)))〉
〈ack(m,n), ¬(= (m, 0)) ∧ ¬(= (n, 0)), ack(m,−(n, 1))

Then, the conditions to be considered are:

?= (> (m, 0) ∧ = (n, 0))
?= (> (m, 0) ∧ > (n, 0))

By narrowing, the first and second conditions are solved, respectively, as {m/s(x), n/0}
and {m/s(x), n/s(y)}:

• ?= (> (m, 0)∧ = (n, 0),>) [R4,{m/s(x)}]
?= (>∧ = (n, 0),>) [R5,{n/0}]

?= (> ∧
>,>) 2

[R6],[R5] >.

• ?= (> (m, 0)∧ > (n, 0),>) [R4,{m/s(x)}]
?= (>∧ > (n, 0),>) [R4,{n/s(y)}]

?= (> ∧
>,>) [R6],[R5] >.

Thus, one would have as lhs of the first, and second and third DPs, respectively, ack(s(x), 0)
and ack(s(x), s(y)).

The rhs of the second DP is obtained by rewriting as below.

ack(−(s(x), s(0)), ack(s(x),−(s(y), s(0)))) −→2
R14 ack(−(x, 0), ack(s(x),−(y, 0))) −→2

R13

ack(x, ack(s(x), y))

Proceeding similarly for the first and third CCs, one obtains three associated DP’s:

〈ack(s(x), 0), ack(x, s(0))〉
〈ack(s(x), s(y)), ack(x, ack(s(x), y))〉
〈ack(s(x), s(y)), ack(s(x), y)〉

90

These are the DPs of Example 2.2.2 in Example 3.3.1.

For (Presburger) arithmetic conditions, when there are no ground expressions in the
guards, the construction of DPs can also be achieved. Take for instance the FP for GCD:

Example 7.1.3 (Building conditions for gcd). Consider the case of the following func-
tional specification of gcd over non-simultaneously null naturals (related to Example 3.3.3):

gcd(m,n : nat |m > 0 ∨ n > 0) := ite(= (m, 0),
(n,_),
ite(= (n, 0),

(m,_),
ite(≤ (n,m),
gcd(−(m,n), n),
gcd(n,m))))

The two CCs are given by:

〈gcd(m,n), > (m, 0)∧ > (n, 0)∧ ≤ (n,m), gcd(m− n, n)〉
〈gcd(m,n), > (m, 0)∧ > (n, 0)∧ > (n,m), gcd(n,m)〉

The conditions from the functional specification to be considered to the translation are
given as:

?= (> (m, 0)∧ > (n, 0)∧ ≤ (n,m),>)
?= (> (m, 0)∧ > (n, 0)∧ > (n,m),>)

Considering the rewriting system for PA given in Example 3.3.4, if one desires to ob-
tain the rules for all the branches of the FP, it is possible to obtain the following matching
conditions and rewrite rules for the paths with no recursive calls (see Example 3.3.3):

gcd(0, s(y))→ s(y)
gcd(s(x), 0)→ s(x)

The condition on the first CC leads to the third matching condition, that gives the
following narrowing solution:

{m/s(u), n/s(v)}∧ ?= (s(v) ≤ s(u),>)

Where the last equation is solved as:

• ?= (s(v) ≤ s(u),>) [R3]
?= (≤ (v, u),>) [R10,{v/x,u/x+y}]

?= (>,>) >, which
gives the final solution {m/s(x+ y), n/s(x)}.

Using this matching condition with proper substitution on the adequate branch expres-
sion, the third rule obtained would be:

gcd(s(x+ y), s(x))→ gcd(s(x+ y)− s(x), s(x))

And after normalizing the rhs of the rule one has:

gcd(s(x+ y), s(y))→ gcd(x, s(y))

91

From which one can extract the DP 〈gcd(s(x+ y), s(y)), gcd(x, s(y))〉
Finally, the fourth CC condition has as initial solution

{m/s(u), n/s(v)}∧ ?= (> (s(v), s(u),>)

From this point:

• ?= (> (s(v), s(u)),>) [R2]
?= (> (v, u),>) R11,{v/x+s(u)}

?= (>,>) >, which
gives the final solution {m/s(u), n/s(x+ s(u))}.

From which the fourth rule below is obtained.

gcd(s(u), s(x+ s(u)))→ gcd(s(x+ s(u)), s(u))

And the second DP 〈gcd(s(u), s(x+ s(u))), gcd(s(x+ s(u)), s(u))〉 is extracted.

7.2 Evaluation versus Derivation

The operational semantics of the two computational models, TRS and FP, also must be
considered since the analysis of termination by CCG and DP criteria relies, respectively,
on the evaluation of values connecting CCs and derivation of terms connecting DPs. For
TRSs, a dependency chain consisting of just two DPs is built whenever there exists a
substitution such that it allows a reduction (in non-root position) between the rhs and
the lhs of the first and second DP, respectively (after renaming of variables). The rhs of the
first DP have subterms corresponding to the actual parameters of its corresponding CC,
whereas the lhs (of the second DP) has subterms with matching conditions obtained from
the lhs expression of its associated CC. Thus its subterms are replaced by fresh variables
representing the function generating a call and its formal parameters on a calling context.

Provided that different occurrences of contiguous DPs in a dependency chain have
disjoint variables, for a dependency chain 〈f1, g1〉〈f2, g2〉, the required substitution, such
that g1σ −→∗ f2σ, can be split as σ = σ1 ∪ σ2, such that the disjoint domains of σ1 and σ2

are subsets of the variables occurring in g1 and f2. It is necessary to work with concrete
assignments and their evaluation for analyzing the relation between DPs for functional
programs to check termination.

Notice that for CCGs the connection between CCs requires to normalize the arguments
of the second expression of the first CC. In contrast, the non-root derivation between DPs
in a chain does not require such normalization.

Whenever a substitution σ1 instantiates a DP 〈f1, g1〉, the variables in the subterms
of both terms f(s1, ..., snf) and g(t1, ..., tng) are instantiated. Since in a corresponding
CC 〈f, CConds(π, ef), g〉 the first element of the tuple gives the formal parameters, the
corresponding assignment β must be such that f(s1, ..., snf)σ1 = f(x1, ..., xnf)β and when

92

the rhs (sub)term is instantiated its substitution must correspond to the evaluation of the
parameters of f leading to the formals in g. Thus, g(t1, ..., tng)σ1 = g(e1, ..., eng)β∗, i.e.,
there exists a nested call (f, β) π,k−→ (g, β∗).

The substitution σ2 instantiating both the formal parameters of f2 and the defined
symbol for the tuple symbols g1 and f2 must be the same. Furthermore, the assignment
σ2 instantiates the actual parameters of g2, that corresponds to a call rooted with func-
tion symbol g2 and this will have an assignment built from the evaluation of its actual
parameters with the assignment for the function that generated this call, i.e., f2.

Consider, for instance, the TRS and DPs for the Ackermann function as given in
Examples 2.2.2 and 3.3.1, whenever a pair of naturals (m,n) matches (s(x), 0), exactly
the condition of the first CC holds: m > 0 ∧ n = 0. In addition, the actual parameter of
the first CC i.e., (m− 1, 1), matches (x, s(0)). Similarly, this happens for the conditions
and actual parameters of the second and third calling contexts.

The idea of relating the CCG and DP termination criteria can be intuitively seen
through the similarity between the structure of CCs and DPs and between the behaviour
of innermost derivations and eager evaluation. However, to state such relation in a con-
crete way is not that trivial. First, a formal definition of the desired correspondence must
be provided. Then, the different signatures from the FP and the TRS must be provided
in a way such that the structure of terms and expressions relate, as well as the structure
of function calls and rewrite rules. Also, derivations linking DPs through non-root in-
nermost normalization must, in a sense, “emulate” the semantics of eager evaluation of
corresponding functional expressions.

7.3 Using the Dependency Pairs Termination Crite-
rion for PVS0 Programs

This section presents a preliminary sketch on how to state correspondence for the DP
Criterion formalized in Chapter 5 and the criteria for FP in Chapter 6 considering the
discussion in Section 7.1. The main discussion concerns the requirements for a translation
from FPs to TRSs to allow the application of the DP Criterion to check the termination
of FPs. The formalization of such translation and the correspondence between the CCG
criteria for FPs and the DP criteria for TRSs are left as future work.

For this aim, a given PVS0 program def must be “conservatively” translated by some
mapping Tr into a TRS. The DPs of the TRS are then extracted and the DP Criterion is
applied to prove its termination. Of course, “conservativeness” must be formaly defined,
but intuitively one can consider as the translation providing a TRS such that all guard
evaluations (in branching instructions of the program) are represented by matching con-

93

ditions for the lhs of the rules and the rhs of rules can represent the evaluation resulting
from such condition. Also, properties such as the confluence of the generated TRS must
hold to ensure an exact modeling for the determinism of def. Then the DPs can be
extracted and the DP Criterion used to state termination of def.

Take for instance the functional program for GCD and the corresponding TRS ob-
tained in Example 7.1.3.

FP TRS
gcd(m,n : nat |m > 0 ∨ n > 0) :=
ite(= (m, 0),

(n,_),
ite(= (n, 0),

(m,_),
ite(≤ (n,m),

gcd(−(m,n), n),
gcd(n,m))))

gcd(0, s(y))→ s(y)
gcd(s(x), 0)→ s(x)
gcd(s(x+ y), s(y))→ gcd(x, s(y))
gcd(s(u), s(x+ s(u)))→ gcd(s(x+ s(u)), s(u))

Notice that the obtained TRS is not orthogonal, given that the third and fourth rules
are not left-linear. This property is the one that ensures determinism, which is required
in a TRS that indeed represents a FP. However, the TRSs generated by the translation
does not lose determinism, since the matching conditions for the rules are disjoint:

• For the first rule, the first and second arguments must be m,n such that m = 0 and
n > 0;

• For the second rule, the first and second arguments must be m,n such that m > 0
and n = 0;

• For the third rule, the first and second arguments must be m,n such that m 6= 0,
n 6= 0 and m ≥ n;

• For the fourth rule the first and second arguments must be m,n such that m = 0
and n < 0.

This disjunction of matching conditions ensures that the gcd TRS has no rules R1 =
l1 → r1 and R2 = l2 → r2 such that, given a position π of l1 and the most general unifier
σ for l1|π and l2, two different terms s = r1σ and s2l1σ[π ← r2σ are reached (i.e. R1 and
R2 are not overlapping rules and the ordered pair of terms (s1, s2) is not a critical pair or
CP for short). Also, the TRS for PA does have critical pairs, but they are either trivial
(such as the CP (0, 0), obtained from rules R12 and R13) or joinable (such as the CP

94

(≤ (0, x), T), obtained from rules R10 and R7), i.e., both systems are locally confluent.
Since PA is decidable, it is also terminating, i.e., the system is convergent.

However, the termination of gcd is exactly the goal property to be stated. Thus, for
gcd the Newman’s Lemma can not be used yet. Other than that, the union of these two
sets of rules result in a TRS that is not even locally confluent.

Example 7.3.1 (Non-Convergent Critical Pairs of GCD). Consider R as the union of
the PA TRS given in Example 3.3.4 and the gcd TRS obtained in Example 7.1.3. The
rules from PA keep their labels and the ones from gcd are labeled in R:

R15 gcd(0, s(y))→ s(y)
R16 gcd(s(x), 0)→ s(x)
R17 gcd(s(x+ y), s(y))→ gcd(x, s(y))
R18 gcd(s(y), s(x+ s(y)))→ gcd(s(x+ s(y)), s(y))

From R the following non-convergent critical pairs are obtained:

From rules Critical Pairs
R17 and R7 CP1 〈gcd(s(y), s(y)), gcd(0, s(y))〉
R17 and R8 CP2 〈gcd(s(s((x+ y))), s(y)), gcd(s(x), s(y))〉
R18 and R7 CP3 〈gcd(s(y), s(s(y))), gcd(s(0 + s(y)), s(y))〉
R18 and R8 CP4 〈gcd(s(y), s(s(x+ s(y))))), gcd(s(s(x) + s(y))), s(y))〉

One possibility to solve this problem and obtain a locally confluent system would be
to use Knuth-Bendix completion procedure on R. This however can provide an infinite
TRS, as is the case for gcd, that after solving some CP adds these three rules:

R19 gcd(s(y), s(y))→ s(y)
R20 gcd(s(s(x+ y)), s(y))→ gcd(s(x), s(y))
R21 gcd(s(y), s(s(y)))→ gcd(s(s(y)), s(y))

Notice that R21 is the commutativity property of gcd regarding arguments that are
a positive term and its successor, that adds the non-covergent critical pair regarding the
commutativity of gcd over a positive term and the second successor of this term added to
another term, i.e.

〈gcd(s(y), s(s(+(x, s(y))))), gcd(s(+(s(x), s(y))), s(y))〉

By solving it, the rule

R22 gcd(s(y), s(s(+(x, s(y)))))→ gcd(s(s(+(x, s(y)))), s(y))

is obtained. Notice however that this rule only concerns adding successor to the sum
in the terms and not to the positive term. This will, along with the rule R21, lead to

95

CPs always adding another successor to the sum and providing commutativity with this
successor. This will always lead to similar critical pairs and consequently, to an infinite
system:

gcd(s(y), s(s(s(+(x, s(y))))))→ gcd(s(s(s(+(x, s(y))))), s(y))
gcd(s(y), s(s(s(s(+(x, s(y)))))))→ gcd(s(s(s(s(+(x, s(y)))))), s(y))

gcd(s(y), s(s(s(s(s(+(x, s(y))))))))→ gcd(s(s(s(s(s(+(x, s(y))))))), s(y))
...

This happens because the rules are all oriented, so the completion is not able to deal
with some results over arithmetic symbols that are obvious, but require inductive proofs
that are not included in the process. However, if the TRS for PA is given separately as
a set E of equations, this set can be used to join the previously non-convergent critical
pairs (as given in this example) by completion modulo E (e.g., Chapter 11 in [BN98]),
since its decidabity makes it suitable its effective use in the process of rewriting modulo
theories [AR93]. Thus, consider ≈PA as the equivalence relation over a set of equations
from PA. If the equation Ei leading to the equivalence is worth mention in some step, the
notation used is ≈EiPA. Also, let ≈R∪PA denote the relation rewriting modulo PA.

Then, for the running example of gcd, every rule representing PA expressions Ri, 1 ≤
i ≤ 14 are replaced by a corresponding equational rule Ei, 1 ≤ i ≤ 14. And by rewriting
modulo PA one has:

• For CP1: gcd(s(y), s(y)) ≈R∪PA gcd(0, s(y)) is provided by

gcd(s(x), s(x)) ≈E7
PA gcd(s(0 + x), s(x))→R17

R gcd(0, s(x))

• For CP2: gcd(s(s(x+ y)), s(y)) ≈R∪PA gcd(s(x), s(y)) is provided by

gcd(s(s(x+ y)), s(y)) ≈E8
PA gcd(s(s(x) + y), s(y))→R17

R gcd(s(x), s(y))

• For CP3: gcd(s(y), s(s(y))) ≈R∪PA gcd(s(0 + s(y)), s(y)) is provided by

gcd(s(y), s(s(y))) ≈R7
PA gcd(s(y), s(0 + s(y)))→R18

R gcd(s(0 + s(y)), s(y))

• And for CP4: gcd(s(y), s(s(x+ s(y)))) ≈R∪PA gcd(s(s(x) + s(y)), s(y)) is provided
by

gcd(s(y), s(s(x+s(y)))) ≈E8
PA gcd(s(y), s(s(x)+s(y)))→R18

R gcd(s(s(x)+s(y)), s(y))

Notice that this arithmetic is the one proposed to deal with the creation of matching
conditions to obtain the rules of the TRS used to the analysis by DP in this examples.

96

Thus, the theory of PA can be provided as a separate set of equations PA, after obtaining
the rules but before checking the local confluence of the TRS. This allows the use of
rewriting modulo theory as in [Vir95], avoiding the necessity of performing completion
modulo the equational theory PA on the critical pairs obtained. Furthermore, this whole
rewriting system will have only the four rewriting rules that models the four possible
branches of the functional program such that each matching condition is representing an
equivalent result of evaluating the guard of the program.

This discussion leads to a possible way to conservatively translate the FP’s into TRS’s
without adding new symbols or rules (except the rules to deal with disjunctive guards)
to the original signature, but keeping the essential property of functional programs: their
determinism. From here, it is necessary to show that the translation used in the process
indeed produces a TRS syntacticlly and semanticlly equivalent to the original FP. This
will allow to ensure that the DP Criterion can state termination of the given FP.

Once such a Tr is obtained and proven conservative, the correspondence between DP
termination of def and CCG termination of the PVS0 program Tr(def) must be proven
to allow formalizing the correct application of the DP Criterion for PVS0 programs.

dp_termination_implies_ccg : LEMMA
∀(Tr|“conservative”) :
∀(def) :
TDP (Tr(def))⇔ T%(def)

To achieve the main goal of this proposal, i.e., to use the DP Criterion to prove
termination of FPs, the sufficiency of this lemma would be enough. By contraposition,
if def is not CCG terminating, there exists an infinite circuit of CCs in the CCG of def
representing an infinite evaluation of some input value v1. By the conservativeness of the
mapping Tr, one has the translation of v1 into a ground term t, a corresponding set of DPs
corresponding to the set of CCs and the “emulation” of the evaluation of values in def
as derivations of corresponding terms in Tr(def). From this, the pairs of connected CCs
in the circuit provide the chained DPs, by using the terms obtained from the evaluated
values to state the links. The DP chain created will be infinite, completing the proof.

The necessity however, requires some more observation. The operational semantics of
TRSs is more expressive than the one of FPs. Even allowing only innermost derivations
for the TRS, it is possible to derive terms that do not represent exactly values, as long
as it has some subterm that matches with the lhs of some rule. Notice that values can
only be translated into ground terms. Thus, the TRS analysed must be restricted to
derivations over ground terms only.

97

7.4 Related work

The subjects of speculation in Sections 7.1, 7.2 and 7.3 are explored in the works of
[KST+11] and [GSSK+06] in a different way than the one in this document. However,
their approaches are interesting and could also be explored in the context of the PVS0
language to expand the possibilities of reason over this functional language termination.

Giesl et al. [GSSK+06] propose an approach to state termination of Haskell programs
using DPs. The peculiarities of Haskell such as lazy evaluation and higher-order functions
are considered. These features are not present in the PVS0 language, but could be used to
eventually model another simplified language to reason over less restrictive PVS functions.
Their approach does not require direct translation from the FPs in Haskell to TRSs.
Instead, they initially develop an heuristic to build termination graph for terms t which
whenever instantiated with ground substitution σ, the termination of t implies termination
of tσ. The termination graph is built by expanding the term t with five expansion rules,
defined to allow the evaluation of terms. The application of such rules gives rise to
descending nodes of t, from where the process follows repeatedly until it leads leafs where
the rules can not be applied anymore. In this graph it is possible to obtain edges between
a new node and some other node already in the graph, which represents cycles which
could lead to non termination. Once such graph is provided, it is transformed into a
DP problem, from which finiteness (if reached) implies termination of all terms in the
termination graph.

The work from Krauss et al. is closer to the one pursued by the discussion in this
chapter. They provide a translation from FPs to TRSs and then prove that this trans-
lation result in a system that indeed simulate the original FP and thus, that providing
termination proofs for one computational model through such translation is enough to
state termination of the original one.

7.4.1 A translation to orthogonal TRSs

The translation presented by Krauss et al. in [KST+11] is done for Isabelle specifications.
Their work also presents results to ensure the adequacy of such translation by stating that
the TRS obtained captures the evaluation of the original FP in their Simulation Theorem.
The translation proposed enlarges the signature of the TRS with new function symbols to
deal with the conditions in the guards of the FP. The new function symbols and rules are
obtained similarly to the transformation from conditional to unconditional TRSs. This
process provides rules which are left-linear and do not overlap. This ensures the creation
of an orthogonal TRS, that has confluence as one of its properties.

98

Their work restricts the signatures of first-order rewriting systems and functional
programs to have the same constructors, with no mutual nor nested recursion. Also, the
branching instruction used in the programming language is case-of, that allows several
branches depending on the structure type used in the guards, what can avoid some of
nested conditional instructions. Similar to the translation sketched in Section 7.3, they
also restricted the guards to equational conditions. In the guards, the patterns used are
constructor terms that must be linear and non-overlapping. To illustrate this translation,
consider the program below using the syntax of [KST+11].

Example 7.4.1 (GCD in the syntax used by [KST+11]).

gcd(m,n) = (case m of
0 => n |
s(x) => (case n of

0 => s(x) |
s(y) => (case lte(s(y),s(x)) of

true => gcd(minus(s(x),s(y)),s(y)) |
false => gcd(s(y),s(x)))))

With auxiliary functions:

lte(m,n) = (case m of
0 => true |
s(x) => (case n of

0 => false |
s(y) => lte(x,y)))

and

minus(m,n) = (case m of
0 => 0 |
s(x) => (case n of

0 => s(x) |
s(y) => minus(x,y)))

In their approach, the method used to ensure that termination of a TRS implies
the termination of the FP is done trough this conservative translation of a FP to a
corresponding TRS and then proceed by ensuring that strong normalization for each
rule representing the calls of the program states its termination. This is done by their
simulation lemma to state the simulation of the computation of the program through the
corresponding TRS by induction on the expressions from the program. Thus, if the TRSs
allows an infinite derivation, the evaluation that it simulates must also be infinite.

The program calls are extracted automatically from recursive calls using an operation
CALLSf, which is very similar to the one specified for obtaining the CCs of PVS0 functions

99

in Definition 3.1.1. In their approach, the calls are given by the whole expressions of the
conditions, whereas in this work only the path for the condition is used as reference to
trace the function calls.

Then, each expression in the calls is encoded by a meta-level operation ENC, that maps
variables and functions into term variables and application, respectively. The mapping of
case expressions are replaced by a new function symbol casef1 :

ENC(x) ≡ x
ENC(fe1 . . . en) ≡ f(ENC(e1), . . . , ENC(en))

ENC(casef1 e of p1 => e1 | . . . |pk => ek) casef1(ENC(e), ENC(y1), . . . , ENC(ym))

After mapping the expressions into terms, the rules are obtained from operation RULES
for function symbols (with defining equations l1 = r1, . . . lk = rk) and case expressions as
below:

RULES (f) ≡ {ENC(l1)→ ENC(r1), . . . , ENC(lk)→ ENC(rk)}
RULES(casef) ≡ {casef1(ENC(p1), ENC(y1), . . . , ENC(ym))→ ENC(e1),

. . .

casefk(ENC(pk)), ENC(y1), . . . , ENC(ym))→ ENC(ek)}

Example 7.4.2 (Rules for the program in Example 7.4.1). For the auxiliary functions
the rules are:

lte(m,n)→ caselte
0 (m,n)

caselte
0 (0,n)→ true

caselte
0 (s(x),n)→ caselte

1 (s(x), n)
caselte

1 (s(x),0)→ false
caselte

1 (s(x),s(y))→ lte(x,y)

minus(m,n)→ caseminus
0 (m,n)

caseminus
0 (0,n)→ 0

caseminus
0 (s(x),n)→ caseminus

1 (s(x),n)
caseminus

1 (s(x),0)→ s(x)
caseminus

1 (s(x),s(y))→ minus(x,y)

And for the main gcd function:

100

gcd(m,n)→ casegcd
0 (m,n)

casegcd
0 (0,n)→ n

casegcd
0 (s(x),n)→ casegcd

1 (s(x),n)

casegcd
1 (s(x),0)→ s(x)

casegcd
1 (s(x),s(y))→ casegcd

2 (lte(s(y),s(x)),s(x),s(y))

casegcd
2 (true,s(x),s(y))→ gcd(minus(s(x),s(y)), s(y))

casegcd
2 (false,s(x),s(y))→ gcd(s(y), s(x))

From here, it is shown that the TRS termination goals from the FP are equivalent to
find a well-founded measure for the rules in the TRS. Also, it is ensured that the TRS
models the FP behaviour through the simulation lemma, allowing to provide certificates
that are verifiable by automatic checking tools, giving the final certificate to the initial
FP. This is also a path that the translation proposed in this Chapter has to follow to allow
the effective use of the DP innermost termination criterion to automate termination of
PVS first order functions modeled by the PVS0 language.

101

Chapter 8

Conclusion and Future Work

This document presented a formalization in the PVS proof assistant of the Dependency
Pairs Termination Criterion for innermost term rewriting. The primary motivation of
such formalization was to enable the formulation of an additional criterion to automate
verification of termination of PVS0 functional programs. The proofs follow a constructive
pen-and-paper design close to the proofs proposed by Arts and Giesl’s in their seminal
papers [AG97] and [AG00]. Analytical proofs avoid reducing subterms rooted by defined
function symbols by extending the language with tuple symbols. In contrast, our for-
malization specifies specialized reduction relations to avoid reduction on root positions:
non-root (innermost/Q-restricted) reductions.

The formalization of some lemmas relies on set properties between these specialized
relations and the ordinary reduction relation. For instance, the compatibility with con-
texts of >λ−→∗in is proved through monotony of −→ , since −→ is compatible with contexts
and >λ−→in ⊆ −→in ⊆ −→ , as discussed in Section 5.1.

We slightly adapted the definition of DPS to include the information of which rule
generated it and proved that the two definitions are equivalent. Such adaptation made
it easier to follow a constructive approach to build the infinite derivations from infinite
innermost DP chains explicitly in the formalization of necessity (Noetherianity implies
innermost termination by DPS). The construction of an infinite derivation from an infinite
DP chain is easily given by recursion, accumulating the contexts from the terms in the
chain, allowing a simple inductive proof. On the other hand, for sufficiency (termination
by DPs implies Noetherianity), since DPs are pairs of lhs’s of rules and subterms of their
rhs’s, the recursive construction of chains of DPs from derivations is not that easy since
it requires the removal of contexts instead.

In a pen-and-paper proof of the sufficiency of the innermost DP Criterion, some crucial
steps are given as mere simple observations but turned out not so simple to formalize. For
instance, the formalization of non-root innermost normalization of minimal non-innermost
terminating terms presented in Section 5.2.2 was quite extensive. The use of subtype pred-

102

icates helped to manage such difficulties. Such predicates were used in recursive functions
to directly state relevant properties for every output, allowing to provide inductive proofs
more efficiently, with no need to add lemmas over these properties along with the formal-
ization. For instance, such typing information ease results over the non-emptiness of sets
of terms or with specific properties used in the sufficiency proof described in Section 5.2.

The formalization of the innermost DP Criterion added to the NASA PVS Library
substantially enriched TRS, the term rewriting systems library. The formalization of the
innermost DP Criterion added its specification and around 55 lemmas directly related
to such formalization. Other than that, the formalization for the innermost case could
not be used directly to formalize termination by DP for the ordinary and Q-restricted
reduction relations. These formalizations were done separately and also added around
55 lemmas each. To allow the specification of these three criteria, specialized reduction
strategies were also specified. These strategies include innermost reduction, reduction
restricted to descendants of a term, and non-root reduction for the innermost and ordinary
relations (see Subsection 5.4). Results over these strategies added about 42 lemmas to the
theory and were formalized in a generic manner allowing further independent applications.
Other auxiliary definitions were included in the previously existing theories reduction,
rewrite_rule, ars, subterm, positions, noetherian and relations_closure. Such
definitions include, for instance, the closure monotony and the relation between relations
closures and sequences (that allows the construction of one through the other). Results
over the auxiliary definitions added eight lemmas to the theory.

The document also compiles formalizations on the equivalence of several termination
criteria for the PVS0 functional language, a language designed to reason about the ter-
mination of first-order functions in the PVS specification language. The formalization
of the equivalence includes six termination criteria, namely: the two semantic notions of
termination based on the operational semantics of evaluation of PVS0, i.e., the existence
of output for each possible input and the existence of a bound on the number of nested
recursive calls required to provide a valid result; the termination implemented in PVS, the
TCC termination, which requires a measure on the function parameters that should de-
crease after each recursive call; and finally, the formalizations of termination by the SCP
[LJBA01], by Calling Context Graphs [MV06], and by Matrix Weighted Graphs MWG
[Ave14], which are abstractions of CCGs by labelling the graph edges with square matri-
ces whose entries express relationships between different measures applied to the formal
and current parameters of a call. MWG also provides an operation over such matrices to
check decreasingness of each circuit in the graph [Ave14].

Finally, the document discusses how the Dependency Pairs Termination Criterion for
term rewriting systems might be applied to guarantee the termination for PVS0 functional

103

programs. The proposal consists of translating PVS0 programs into term rewriting sys-
tems such that the evaluation of programs “corresponds” to the derivation of rewriting
systems. However, further investigation is required to obtain such a translation. The
translation proposed is restricted to functional programs with arithmetic guards. It uses
narrowing with rules for a decidable arithmetic theory to provide matching conditions
that capture the conditions on guards of functional programs. The TRSs obtained do
not satisfy confluence necessarily, losing in this manner the determinism of the functional
programs. Ensuring orthogonality (as in Krauss et al. translation approach [KST+11])
of the translation or seeing the rewriting system modulo arithmetic are alternatives to
guarantee confluence. After establishing such a translation, and verifying termination of
the term rewriting systems, applying the Dependency Pairs Termination Criterion would
assure termination of the functional programs.

Several interesting subjects are worth exploring to extend this work and provide a
robust environment to reason over the termination of FPs through termination of TRSs,
such as higher-order rewriting (e.g. [Kra09, GTSK05a, KvR11, SWS01]) and the relation
of termination with ordinal segments (e. g. [KSW60, Sch14]) for instance. However,
to continue the primary goal of obtaining automation of termination analysis for PVS
functions, there is still a long way to roam. The discussion on Chapter 7 and the scenario
provided by relevant current work in termination lead to several exciting formalizations
to be done, among them those mentioned below.

• The correspondence between FPs and TRSs through a complete and correct transla-
tion following the steps discussed in Section 7.3 by narrowing and rewriting modulo
theory, to allow the use of TRS results to FPs.

• Alternatively, formalization of the translation from PVS0 programs to orthogonal
TRSs and of the adequacy of such translation according to Krauss et al. approach
[KST+11] and/or from CCGs obtained from PVS0 specification to DP problems
according to Giesl et al. approach[GSKT06].

• Extension of the formalization to include refinements for the DP Criterion allowing
to improve the automation process of checking termination of TRSs and thus of
PVS0 FPs.

• Extension of the formalization generalizing the DP Criterion as the DP Framework,
which allows to combine TRSs termination techniques to provide flexibility for au-
tomation when checking termination [GTSK05b].

• Additionally, it is worth investigate how the work presented in [Blanqui2021] can
be used to expand the possibilities of specifications in PVS and in PVS0, since

104

it is relevant in the researches regarding formalizations in general. They provide
an encoding for PVS, called PVS-Cert, to reason about the features of predicate
subtyping. Such encoding aims to provide an automatic translation from PVS to
DEDUKTI, a checker that also provides encoding for several proof assistant specifi-
cation languages. Although PVS-Cert was developed for a different goal than PVS0,
there is room to pursue a combination of both encodings to allow future sharing
and use of formalizations provided in one proof assistant to another oneanother one,
easing the comparison between proof strategies applied and also allow the reuse of
formalized results.

105

Bibliography

[AAAR20] Ariane Alves Almeida and Mauricio Ayala-Rincon. Formalizing the De-
pendency Pair Criterion for Innermost Termination. Science of Computer
Programming, 195(102474), 2020. 6, 13, 33, 51, 53, 56, 61

[AG97] Thomas Arts and Jürgen Giesl. Automatically proving termination where
simplification orderings fail. In Theory and Practice of Software Develop-
ment, volume 1214 of Lecture Notes in Computer Science, pages 261–272.
Springer, 1997. 1, 6, 28, 30, 32, 102

[AG98] Thomas Arts and Jürgen Giesl. Modularity of termination using dependency
pairs. In Rewriting Techniques and Applications, volume 1379 of Lecture
Notes in Computer Science, pages 226–240. Springer, 1998. 1

[AG00] Thomas Arts and Jürgen Giesl. Termination of term rewriting using De-
pendency Pairs. Theoretical Computer Science, 236:133–178, 2000. 1, 29,
32, 55, 102

[AR93] Mauricio Ayala-Rincón. Expressiveness of conditional equational systems
with built-in predicates. PhD thesis, Universität Kaiserslauten, 1993. 96

[Art96] Thomas Arts. Termination by absence of infinite chains of dependency pairs.
In Trees in Algebra and Programming CAAP, volume 1059 of Lecture Notes
in Computer Science, pages 196–210. Springer, 1996. 1

[Ave14] Andréia Borges Avelar. Formalização da Automação da Terminação Através
de Grafos com Matrizes de Medida. PhD thesis, Department of Mathemat-
ics, Universidade de Brasília, 2014. In Portuguese. 86, 103

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development – Coq’Art: The Calculus of Inductive Constructions. Springer-
Verlag Berlin Heidelberg, 2004. 2

[BK11] Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-
founded rewrite relations and its application to the automated verification
of termination certificates. Math. Struct. in Comp. Science, 21:827–859,
2011. 74

[BKB+03] Marc Bezem, Jan Willem Klop, Erik Barendsen, Roel C. de Vrijer, and
Terese. Term Rewriting Systems. Cambridge Tracts in Theoretical Com-
puter Science. Cambridge University Press, 2003. 13

106

[BM79] Robert S. Boyer and J Strother Moore. A Computational Logic. Academic
Press, 1979. 20

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998. 13, 14, 17, 96

[CCF+07] Evelyne Contejean, Pierre Courtieu, Julien Forest, Olivier Pons, and Xavier
Urbain. Certification of automated termination proofs. In International
Symposium on Frontiers of Combining Systems FroCoS, pages 148–162.
Springer, 2007. 74

[Coo72a] David C. Cooper. Programs for mechanical program verification. Machine
intelligence, 6:43–59, 1972. 89

[Coo72b] David C. Cooper. Theorem proving in arithmetic without multiplication.
Machine intelligence, 7:91–99, 1972. 89

[Der79] Nachum Dershowitz. A note on simplification orderings. Information Pro-
cessing Letters, 9(5):212–215, 1979. 1, 19

[Der82] Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical
Computer Science, 17(3):279–301, 1982. 1, 19

[Der87] Nachum Dershowitz. Termination of rewriting. Journal of Symbolic Com-
putation, pages 69 – 115, 1987. 1, 19

[DM79a] Nachum Dershowitz and Zohar Manna. Proving termination with multiset
orderings. In Hermann A. Maurer, editor, Automata, Languages and Pro-
gramming, pages 188–202, Berlin, Heidelberg, 1979. Springer Berlin Heidel-
berg. 1, 19

[DM79b] Nachum Dershowitz and Zohar Manna. Proving Termination with Multiset
Orderings. Commun. ACM, 22(8):465–476, 1979. 74

[DS04] Yuxin Deng and Davide Sangiorgi. Ensuring termination by typability. In
Jean-Jacques Levy, Ernst W. Mayr, and John C. Mitchell, editors, Exploring
New Frontiers of Theoretical Informatics, pages 619–632. Springer US, 2004.
19

[DX07] Kevin Donnelly and Hongwei Xi. A formalization of strong normalization for
simply-typed lambda-calculus and system f. Electronic Notes in Theoretical
Computer Science, 174(5):109 – 125, 2007. Proceedings of the First Interna-
tional Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP 2006). 19

[Flo67] Robert W. Floyd. Assigning meanings to programs. Proceedings of Sympo-
sium on Applied Mathematics, 19:19–32, 1967. 20

107

[GAB+17] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes,
Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker,
Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René
Thiemann. Analyzing program termination and complexity automatically
with AProVE. J. Autom. Reasoning, 58(1):3–31, 2017. 74

[GAR08] André Luiz Galdino and Mauricio Ayala-Rincón. A Formalization of New-
man’s and Yokouchi’s Lemmas in a Higher-Order Language. Journal of
Formalized Reasoning, 1(1), 2008. 33, 67

[GAR10] André Luiz Galdino and Mauricio Ayala-Rincón. A Formalization of the
Knuth–Bendix(–Huet) Critical Pair Theorem. Journal of Automated Rea-
soning, 45(3):301–325, 2010. 33, 67

[GBE+14] Jürgen Giesl, Marc Brockschmidt, Fabian Emmes, Florian Frohn, Carsten
Fuhs, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, Thomas
Ströder, Stephanie Swiderski, and René Thiemann. Proving termination
of programs automatically with AProVE. In Automated Reasoning - 7th
International Joint Conference, volume 8562 of Lecture Notes in Computer
Science, pages 184–191, 2014. 74

[Gra96] Bernhard Gramlich. On proving termination by innermost termination. In
Harald Ganzinger, editor, Rewriting Techniques and Applications: 7th In-
ternational Conference, volume 1103 of Lecture Notes in Computer Science,
pages 93–107. Springer Berlin Heidelberg, 1996. 17

[GSKT06] Jürgen Giesl, Peter Schneider-Kamp, and René Thiemann. Aprove 1.2: Au-
tomatic termination proofs in the dependency pair framework. In Interna-
tional Joint Conference on Automated Reasoning, pages 281–286. Springer,
2006. 74, 104

[GSSK+06] Jürgen Giesl, Stephan Swiderski, Peter Schneider-Kamp, , and René Thie-
mann. Automated termination analysis for haskell: From term rewriting to
programming languages. In Term Rewriting and Applications, pages 297–
312, 08 2006. 98

[GTSK05a] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. Proving and Dis-
proving Termination of Higher-order Functions. In Proc. 5th International
Conference on Frontiers of Combining Systems FROCOS, volume 3717 of
Lecture Notes in Computer Science, pages 216–231. Springer, 2005. 104

[GTSK05b] Jürgen Giesl, René Thiemann, and Peter Schneider-Kamp. The Depen-
dency Pair Framework: Combining techniques for automated termination
proofs. In 11th International Conference on Logic for Programming, Artifi-
cial Intelligence, and Reasoning LPAR 2004, volume 3452 of Lecture Notes
in Computer Science, pages 301–331. Springer, 2005. 31, 104

[Hin92] James Roger Hindley. Types with intersection: An introduction. Formal
Aspects of Computing, 4(5):470–486, 1992. 19

108

[HL78] Gérard Huet and Dallas Lankford. On the uniform halting problem for term
rewriting systems. Technical report, INRIA, 1978. 1

[HM03] Nao Hirokawa and Aart Middeldorp. Automating the Dependency Pair
Method. In Franz Baader, editor, Proceedings of 19th International Confer-
ence on Automated Deduction, volume 2741 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2003. 32

[HM04] Nao Hirokawa and Aart Middeldorp. Dependency pairs revisited. In Vincent
van Oostrom, editor, Rewriting Techniques and Applications, pages 249–268.
Springer Berlin Heidelberg, 2004. 32

[Hof79] Douglas R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid; 1st
ed. Penguin books. Basic Books, New York, NY, 1979. 3

[KK96] Claude Kirchner and Hélene Kirchner. Rewriting solving proving. Technical
report, LORIA, INRIA and CNRS, 1996. 15

[KMM00] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-
Aided Reasoning: An Approach. Kluwer Academic Publishers, 2000. 2

[Kra09] Alexander Krauss. Automating Recursive Definitions and Termination
Proofs in Higher-Order Logic. PhD thesis, Institut für Informatik der Tech-
nischen Universität München, 2009. 88, 104

[KST+11] Alexander Krauss, Christian Sternagel, René Thiemann, Carsten Fuhs, and
Jürgen Giesl. Termination of Isabelle Functions via Termination of Rewrit-
ing. In Proceedings Interactive Theorem Proving - Second International
Conference, ITP 2011, volume 6898 of LNCS, pages 152–167. Springer,
2011. 6, 98, 99, 104

[KSW60] Georg Kreisel, Joseph Shoenfield, and Hao Wang. Number theoretic con-
cepts and recursive well-orderings. Archiv für mathematische Logik und
Grundlagenforschung, 5(1):42–64, 1960. 104

[KSZM09] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middeldorp. Ty-
rolean termination tool 2. In Proceedings of the 20th International Con-
ference on Rewriting Techniques and Applications, volume 5595 of Lecture
Notes in Computer Science, pages 295–304. Springer, 2009. 74

[KvR11] Cynthia Kop and Femke van Raamsdonk. Higher order dependency pairs for
algebraic functional systems. In Proceedings of the 22nd International Con-
ference on Rewriting Techniques and Applications, RTA 2011, volume 10 of
LIPIcs, pages 203–218. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2011. 104

[LJBA01] Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The Size-change
Principle for Program Termination. In ACM SIGPLAN Notices, pages 81–
92. ACM, 2001. 2, 6, 25, 103

109

[Mal91] Colin L. Mallows. Conway’s challenge sequence. The American Mathemat-
ical Monthly, 98(1):5–20, 1991. 3

[MARM+21] Cesar Muñoz, Mauricio Ayala-Rincón, Mariano Moscato, Aaron Dutle, An-
thony Narkawicz, Ariane Alves Almeida, Andréia Borges Avelar da Silva,
and Thiago Mendonça Ferreira Ramos. Formal Verification of Termination
Criteria for First-Order Recursive Functions. In LIPIcs proceedings 12th
Int. Conference on Interactive Theorem Proving, 2021. Accepted. 5, 6, 76

[MM69] Zohar Manna and John McCarthy. Properties of programs and partial func-
tion logic. Technical report, Stanford Univ. Calif. Dept. of Computer Sci-
ence, 1969. 3

[MP70] Zohar Manna and Amir Pnueli. Formalization of properties of functional
programs. J. ACM, 17(3):555–569, 1970. 3

[MV06] Panagiotis Manolios and Daron Vroon. Termination Analysis with Calling
Context Graphs. In Proceedings of the 18th International Conference on
Computer Aided Verification CAV, volume 4144 of Lecture Notes in Com-
puter Science, pages 401–414. Springer, 2006. 2, 6, 25, 103

[Ned94] Robert Peter Nederpelt. Strong normalization in a typed lambda calculus
with lambda structured types. In Robert Pieter Nederpelt, J. Herman Geu-
vers, and Roel C. de Vrijer, editors, Selected Papers on Automath, volume
133 of Studies in Logic and the Foundations of Mathematics, pages 389 –
468. Elsevier, 1994. 19

[ORS92] Sam Owre, John Rushby, and Natarajan Shankar. PVS: A Prototype Verifi-
cation System. In Automated Deduction—CADE-11, volume 607 of Lecture
Notes in Computer Science, pages 748–752. Springer, 1992. 2

[OSRSC99] Sam Owre, Natarajan Shankar, John M. Rushby, and David WJ Stringer-
Calvert. PVS language reference. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, 1:21, 1999. 20

[ROGAR17] Ana Cristina Rocha-Oliveira, André Luiz Galdino, and Mauricio Ayala-
Rincón. Confluence of Orthogonal Term Rewriting Systems in the Prototype
Verification System. Journal of Automated Reasoning, 58(2):231–251, 2017.
33, 67

[San06] Davide Sangiorgi. Termination of processes. Mathematical Structures in
Computer Science, 16(1):1–39, 2006. 19

[Sch14] Sylvain Schmitz. Complexity bounds for ordinal-based termination. In Joël
Ouaknine, Igor Potapov, and James Worrell, editors, Reachability Problems,
pages 1–19. Springer International Publishing, 2014. 1, 104

[SGB+17] Thomas Ströder, Jürgen Giesl, Marc Brockschmidt, Florian Frohn, Carsten
Fuhs, Jera Hensel, Peter Schneider-Kamp, and Cornelius Aschermann. Au-
tomatically Proving Termination and Memory Safety for Programs with
Pointer Arithmetic. J. Autom. Reasoning, 58(1):33–65, 2017. 74

110

[ST10] Christian Sternagel and René Thiemann. Signature extensions preserve
termination - an alternative proof via dependency pairs. In 19th Computer
Science Logic CSL, volume 6247 of Lecture Notes in Computer Science,
pages 514––528. Springer, 2010. 6, 31, 74

[Ste10] Christian Sternagel. Automatic Certification of Termination Proofs. PhD
thesis, Universität Innsbruck, 2010. 37

[SWS01] Masahiko Sakai, YoshitsuguWatanabe, and Toshiki Sakabe. An extension of
the dependency pair method for proving termination of higher-order rewrite
systems. IEICE Transactions on Information and Systems, 84(8):1025–
1032, 2001. 104

[TAN12] René Thiemann, Guillaume Allais, and Julian Nagele. On the Formalization
of Termination Techniques based on Multiset Orderings. In Ashish Tiwari,
editor, 23rd International Conference on Rewriting Techniques and Applica-
tions, volume 15 of Leibniz International Proceedings in Informatics, pages
339–354. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2012. 74

[TG03] René Thiemann and Jürgen Giesl. Size-change Termination for Term
Rewriting. In Proceedings of the 14th International Conference on Rewrit-
ing Techniques and Applications, volume 2706 of Lecture Notes in Computer
Science, pages 264–278. Springer, 2003. 29

[TS09] René Thiemann and Christian Sternagel. Certification of Termination
Proofs Using CeTA. In Proc. 22nd International Conference on Theorem
Proving in Higher Order Logics TPHOL, volume 5674 of Lecture Notes in
Computer Science, pages 452–468. Springer, 2009. 75

[TSSY20] René Thiemann, Jonas Schöpf, Christian Sternagel, and Akihisa Yamada.
Certifying the Weighted Path Order (Invited Talk). In Zena Matilde Ariola,
editor, 5th International Conference on Formal Structures for Computa-
tion and Deduction (FSCD 2020), volume 167 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 4:1–4:20. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik, 2020. 1, 19

[Tur37] Alan Mathison Turing. On computable numbers with an application to
the Entscheidungsproblem. Proceeding of the London Mathematical Society,
s2-42(1):230–265, 1937. 1

[Tur49] Alan M. Turing. Checking a large routine. In Report of a Conference High
Speed Automatic Calculating-Machines, pages 67–69. University Mathemat-
ical Laboratory, 1949. 2, 6, 20

[Vaj89] Steven Vajda. Fibonacci and Lucas Numbers, and the Golden Section: The-
ory and Applications. Ellis Horwood series in mathematics and its applica-
tions. E. Horwood Limited, 1989. 3

[Vir95] Patrick Viry. Rewriting modulo a rewrite system. Technical report, Univer-
sity of Pisa, 1995. 97

111

[Vor88] Sergei G. Vorobyov. On the arithmetic inexpressiveness of term rewriting
systems. In [1988] Proceedings. Third Annual Symposium on Logic in Com-
puter Science, pages 212–217, 1988. 89

[YBH04] Nobuko Yoshida, Martin Berger, and Kohei Honda. Strong normalisation
in the π-calculus. Information and Computation, 191(2):145 – 202, 2004. 19

[YKS15] Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. A unified or-
dering for termination proving. Science of Computer Programming, 111:110
– 134, 2015. Special Issue on Principles and Practice of Declarative Pro-
gramming (PPDP 2013). 1, 19

[YSTK16] Akihisa Yamada, Christian Sternagel, René Thiemann, and Keiichirou
Kusakari. AC Dependency Pairs Revisited. In Jean-Marc Talbot and Lau-
rent Regnier, editors, 25th Annual Conference on Computer Science Logic,
volume 62 of Leibniz International Proceedings in Informatics, pages 8:1–
8:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. 74

112

	Dedication
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Work Organization

	Background
	Functional Programs
	Term Rewriting Systems

	Termination Criteria
	Ranking Functions
	Termination in the Prototype Verification System

	The Size-Change Principle and Calling Context Graphs
	Dependency Pairs

	Specification of DPs for TRSs and Termination Criteria for PVS0
	Extension of TRS with DPs
	PVS0
	Semantic termination of PVS0
	Specification of Ranking Functions for PVS0
	Specification of Size-Change based technologies

	Formalization of termination by Dependency Pairs
	Necessity for the Innermost Dependency Pairs Termination Criterion
	Sufficiency for the Innermost Dependency Pairs Termination Criterion
	Existence of mint Subterms
	Non-root Innermost Normalization of mint Terms
	Existence of DPs
	Construction of Chained DPs
	Construction of the Infinite Innermost Dependency Chain

	Formalization of DP termination for other rewriting relations
	 Library - TRS Theory Summary
	Related work: other formalizations of DPs

	Formalization of Termination Criteria in PVS0
	Equivalence between semantic criteria
	Equivalence between TCC termination and semantic termination
	Equivalence between TCC and SCP technologies
	NASA PVS Library - PVS0 Theory Summary
	NASA PVS Library - CCG Theory Summary

	Connecting FP and TRS Termination Criteria
	CC versus DP
	Evaluation versus Derivation
	Using the Dependency Pairs Termination Criterion for PVS0 Programs
	Related work
	A translation to orthogonal TRSs

	Conclusion and Future Work
	Bibliography

