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Abstract

A vital problem tackled in network analysis is community structure identification. How-
ever, the current use of network analysis techniques concentrates on analyzing static
community structures, which generates a research gap not considering the dynamic as-
pects of these structures. Some solutions for the community detection problem adapted
to the dynamicity of the networks present limitations on the resulting performance, and
others do not fit such contexts. This situation aggravates when considering the demand to
analyze constantly growing social networks. This research aims to fill this gap by focusing
on the topology change over time. We propose an adaptive model with an actor-critic
reinforcement learning-based architecture to maximize the local modularity density of a
community structure using a graph neural network to cope with changing aspects of large
social networks. Extensive experiments conducted using the Actor–Critic for Community
Detection (AC2CD) with real-world dynamic social network datasets show better accuracy
when compared to the state-of-the-art solutions. Further investigation concluded that the
architecture copes well with real-world social networks, even considering networks with
unbalancing community sizes.

Keywords: Network Analysis, Community Detection, Reinforcement Learning
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Resumo Extendido

Um problema crucial abordado na análise de redes é a identificação da estrutura da
comunidade. Essa estrutura representa a associação dos vértices de uma rede a conjuntos
ou comunidades. No entanto, as técnicas atuais de análise de redes se concentram na
análise de estruturas estáticas de comunidades, o que cria uma lacuna de pesquisa que
não leva em consideração os aspectos dinâmicos dessas estruturas. Algumas soluções para
o problema de detecção de comunidades adaptadas à dinamicidade das redes apresentam
limitações de desempenho, enquanto outras não se enquadram nesses contextos. Essa
situação se agrava à medida que a demanda de análise de redes sociais continua crescendo
constantemente.

No que diz respeito às classes de solução para o problema de Community Detection
(CD), podemos separá-las em duas abordagens: as clássicas, que incluem otimização da
modularidade, Random Walk, propagação, entre outros, e as não clássicas, como aquelas
baseadas graph embedding, modelagem estatística e aprendizado de máquina.

A metodologia utilizada nesta pesquisa inclui uma revisão da literatura, definição do
problema de pesquisa, delimitação do escopo do trabalho, desenvolvimento arquitetural
do modelo de solução, implementação do modelo, validação por meio de experimentos uti-
lizando redes sociais online (Online Social Network (OSN)) e redação de artigos científicos
em conferências e periódicos da área de Ciência da Computação. A revisão da literatura
seguiu o protocolo definido por Kitchenham (2004), compreendendo três fases: planeja-
mento (planning), condução (conducting) e relato da revisão (reporting the review). A
ferramenta Parsifal (Freitas, 2014) foi utilizada para realização da revisão de literatura.

Os repositórios da ACM Digital Library, IEEE Xplore e Springer lInk foram uti-
lizados, considerando o período de 2015 a 2020 e atualização até 2023. As publicações
selecionadas incluíram trabalhos em conferências e periódicos da área de Ciência da Com-
putação. Foram identificados inicialmente 49 trabalhos, dos quais 29 foram excluídos
por não atenderem aos critérios de inclusão, 3 estavam duplicados e 17 foram aceitos
com base nas características definidas pela PICO (Population, Intervention, Comparison,
Outcome). Durante a atualização, dois trabalhos de 2023 foram incluídos, totalizando 19
trabalhos como resultado da revisão de literatura.
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É importante salientar que alguns trabalhos não utilizam técnicas de Inteligência Arti-
ficial, mas houve um aumento significativo de interesse a partir de 2019, principalmente no
uso de aprendizado de máquina e aprendizado de máquina profundo. No entanto, mesmo
nos trabalhos a partir de 2019, não foram encontradas abordagens de CD para lidar com
OSN ou redes dinâmicas. Com base nos resultados da revisão da literatura, identificou-se
uma lacuna na área de encontrar comunidades em redes dinâmicas desbalanceadas.

Esta pesquisa visa preencher essa lacuna, com foco na mudança de topologia ao longo
do tempo, aplicando aprendizado por reforço profundo ao problema de detecção de co-
munidades em redes sociais dinâmicas. Propomos um modelo adaptativo com uma ar-
quitetura de ator-crítico (actor-critic) baseada em aprendizado por reforço. A proposta
visa maximizar a densidade de modularidade local de uma estrutura de comunidade, uti-
lizando uma rede neural de grafos para lidar com aspectos mutáveis de grandes redes
sociais. Extensos experimentos conduzidos com a arquitetura denominada Actor-Critic
to Community Detection (AC2CD), utilizando conjuntos de dados dinâmicos de redes
sociais do mundo real, mostraram maior precisão em comparação com as soluções apre-
sentadas na literatura. Uma investigação mais aprofundada concluiu que a arquitetura
lida bem com as redes sociais do mundo real, mesmo considerando redes com tamanhos
de comunidade desbalanceados.

Nossa proposta consiste na combinação de aprendizado por reforço profundo (Deep
Reinforcement Learning (DRL)) com rede de atenção em grafo (Graph Attention Network
(GAT)) para realizar a descoberta de comunidades em redes dinâmicas. Foi implemen-
tada uma arquitetura baseada em actor-critic, que foi validada por meio de experimentos
usando conjunto de dados (datasets) que representam redes reais. A arquitetura imple-
mentada é composta por dois componentes: o ator actor e o crítico critic. Em cada
componente foram utilizadas duas camadas de atenção em grafos como camadas ocultas,
uma camada de dropout na entrada e uma camada de softmax na saída.

Os experimentos realizados para validar o modelo utilizaram cinco datasets repre-
sentando redes reais: High School, BlogCatalog3, Email-EU-Core, Flicker e Youtube2.
A avaliação dos resultados foi feita com base em medidas de F-measure, como macro-
F1, micro-F1, além da informação mútua normalizada (Normalized Mutual Information
(NMI)). Os resultados obtidos confirmaram a hipótese, demonstrando que o modelo su-
perou as soluções da literatura, como GraphGAN, ComE, SDNE, CLARE e CNN, espe-
cialmente em termos de estabilidade diante da complexidade de conjuntos de dados como
Flickr ou Youtube.

Também foi conduzido um experimento para avaliar o desempenho ao utilizar duas
implementações de redes neurais em grafo (Graph Neural Network (GNN)), GAT e rede
convolucional em grafo (Graph Convolution Network (GCN)). Foi observado que ambas
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implementações são equivalentes para o problema de CD, com uma variação de no máximo
0.08 na métrica de NMI no conjunto de dados High School. Além disso, o desempenho
alcançado é em grande parte atribuído ao uso de modelo de aprendizado por reforço com
arquitetura actor-critic.

Palavras-chave: Análise de rede, detecção de comunidade, aprendizado por reforço
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Chapter 1

Introduction

One can view a network as a group of tied entities [1]. In this way, many interactions of
the natural world can be modeled as a network, such as relations between people [2–4],
proteins interactions [5], fraud detection [6] and supply chains [7]. People can classify these
networks by many criteria, dynamic or static, regular, complex, or random, among other
measures. Network Analysis (NA) is a discipline that aims to evaluate the target network
in different aspects like node classification, link prediction, or Community Detection (CD).
Each of these aspects might be analyzed alone or in an integrated way.

The real-world networks exhibit significant irregularities in terms of the degree of
nodes and the distribution of edges, bringing out a high level of organization of the
network. The distribution inhomogeneity of the edges connecting nodes results from a
high edge density within special groups of nodes and low tightness between the nodes
across different special groups. These special groups or subgraphs are called communities
or clusters within the network. The nodes of the same community expect to have common
interests or similarities. Disclosing these communities reveals the intercourse between the
network’s structure and functionality [8].

1.1 Problem

The CD problem has become one of the main pillars of network science research and has
no canonical solution. In the big-data era, complex networks are an essential field of study
[9]. Newman and Girvan [1] formulate the CD problem as finding groups of nodes densely
connected inside these groups and sparsely connected among groups. According to [10], a
valuable area in the study of complex networks is CD. CD views networks as graphs and
tries to find nodes more firmly attached than the others.

Schaeffer [11] defines graph clustering as finding sets of related vertices in graphs and
notes that in some of the clustering literature, a cluster in a graph is called a community
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[12, 13]. Formally, given a graph, clustering aims to divide it into sets such that the
elements assigned to a particular group are similar or connected in some predefined sense.

A clique is a completely connected subgraph. Considering the connectivity aspect, the
loosest possible definition of a graph cluster is a connected component (i.e., a subgraph
with a path between any of its nodes). The strictest definition is that each cluster should
be a maximal clique (i.e., a subgraph into which one could add no vertex without losing
the clique property). In most occasions, the semantically sound clusters lie between these
two extremes. We can compute connected components in O(n+m)-time with a breadth-
first search, whereas clique detection is NP-complete [14]. The formalization of CD leads
to NP-complete problems, which constrains us to heuristic solutions. When the input
graph is large, relying on algorithms with exponential running time is highly infeasible,
as even linear time computation gets tedious.

In a nutshell, the CD process of a given network typically begins with a scoring function
(e.g., modularity density) that quantifies the intuition that communities correspond to
densely linked sets of nodes. Then one applies a procedure to find groups of nodes with a
high value of the scoring function. Identifying such communities in networks has proven
to be a challenging task when considering the following aspects:

• The conceptual differences between distinct perspectives on CD emerge enormous
technical details of different algorithmic implementations, approaches, methods, and
solutions.

• There exist multiple structural definitions of network communities (e.g., modularity-
based or similarity-based communities) [15].

• The growing size of the networks we want to unveil their communities. This as-
pect worsens when considering dynamic networks where one must store contextual
information for temporal analysis.

• The lack of reliable ground truth evaluates a CD solution extremely difficult [16].

A probabilistic way to model the CD problem is through a Markov Decision Process
(MDP). We can define an MDP by states and actions for transitioning between states.
Given a network, one optimal community structure as a state of an MDP, and a quality
function (e.g., modularity density) to evaluate each state, one can assign a node in this
network to a community as an action and calculate the quality of this new state, repeating
this process for all nodes. By Bellman’s, the quality function value is optimized as each
node assignment to improve the community structure. In this way, a terminal state can
be a set of terms between nodes and communities that maximize the modularity density
and may coincide with the optimal community structure initially proposed.
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A large interdisciplinary community of scientists has been working on the CD prob-
lem proposing many methods for distinct complex networks, including complex dynamic
networks. However, the proposed solutions present some constraints as the type of edges
(directed or not) and heterogeneity of groups in the network. In the case of dynamic
networks, the more common approach is to take snapshots of the network and apply tech-
niques for static networks. There have been surveys of CD in graphs and networks from
2005 until recently [17–20].

The authors in [21] provide a focused review of the motivations that underpin CD.
In this research, we will focus on the dynamic aspects of networks when trying to detect
communities. The following section describes the reasons for conducting this research and
provides a brief view of the literature’s open questions.

1.2 Motivation

Although the research of CD solutions may seem mature, in recent years, we perceive a
growing volume of publications seeking to improve research on CD solutions performance
towards the usage of high volume datasets [3] or Machine Learning (ML) techniques to
enhance the quality of scoring response [22–24]. However, as [25] indicates, the aggregating
topological and content information can enable a more informative CD, in which cues from
different sources integrate into more powerful models to generate more insights about the
network behavior.

Recent advances in network science have brought out the importance of complex net-
works in many different domains, such as sociology (acquaintance networks, collaboration
networks), biology (metabolic networks, gene networks), fraud detection (networks of
communications toward crime eradication), supply chain management, and computer sci-
ence (internet topology, Web graph, P2P networks). In general, the associated networks
are globally sparse but locally dense, i.e., there are groups of nodes called communities,
highly connected but with few links to other nodes. This kind of structure brings out
much information about the network. For example, in a metabolic network, the communi-
ties correspond to the biological functions of the cell. In the Web graph, the communities
correspond to topics of interest [26].

The problem of CD has a long history since researchers tried to understand people
relations using mathematical approaches [27]. But sociology has paid much attention to
Online Social Network (OSN) use. One instance of CD applied to sociology is the problem
of identifying a relevant population of actors in a study of how information or new ideas
diffuse through a community [2].
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Biology is another research field that uses CD when dealing with protein interactions.
The authors in [28] assert that densely connected proteins form the mass of biological
processes. The protein-protein interaction network contains the communications among
the protein groups that communicate closely, being used to predict the complexity or
function of regular proteins. The structures of protein-protein interaction networks can
reflect some principles of cellular organization. Computational identification of particular
protein molecules is vital in understanding protein function. The community structure
can reflect the community’s topological relations directly. The real-world communities,
such as protein-protein interaction networks in biology and World Wide Web networks in
sociology, tend to follow the heavy-tailed power law that only a tiny amount of the nodes’
degrees is higher than the rest. Therefore, we can apply CD to various research fields,
including biology.

Another CD application emerges from the fraud detection domain. For instance, [29]
describe NA applied to networks of organizational communications (e.g., Enron company
dataset). Analysis of the frequency and direction of formal/informal email communication
can reveal communication patterns among employees and managers. These patterns can
help identify people engaged in fraudulent activities, promoting the adoption of more
efficient forms of action toward crime eradication.

Resources management, mainly supply chain management, is another field in that CD
can lead to a positive outcome. The authors in [7] advocate that a community within
a supply chain is a set of firms clustered around similar interests or functions. That
is, communities are bound together in clusters predominantly connected by horizontal
relationships amongst firms with similar interests and processes. However, that is not to
say that all firms within a community are entirely cooperative. The presence of horizontal
connections provides the essence of a community. More efficient supply chains will possess
communities that allow for improved horizontal information flow and innovation diffusion.
Thus, vertical relationships between communities must form and maintain for supply
chain systems to function efficiently from initial suppliers to final consumers. However,
the transaction costs of inter-community connections vertically arranged are likely to
be considerably higher than those observed with intra-community (i.e., predominantly
horizontal relationships) because of each community’s differing interests and functions. In
this way, CD can model firms’ interactions giving a better insight into inter-community
communication.

Understanding the structure of Al-Qaeda is critical in fighting the war on terror and
could help prevent future events such as another September 11 attack. Possessing an
ecological map of a food chain will help keep environments stable. Because of limited
resources, understanding the shipping merchant marine vessels traverse as they conduct
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international trade is vital to protecting ports of call. Understanding how a network of
satellites connects to various world locations is critical for a global company’s bottom line.
A financial network such as the Enron fraud to destroy the entire company and make a
lifetime’s retirement fund disappear in a day is vital [30].

The different research scenarios described demonstrate the power of the CD appli-
cation to solve real-life problems. Moreover, when considering social network data, as
this research, one can take an aggregated insight into different areas, for example, fraud
detection in the supply chain.

In this context, this research proposes an adaptive model for the problem of identifying
these groups of highly connected nodes. The proposed model uses an architecture based on
Reinforcement Learning (RL) and Graph Neural Network (GNN). Moreover, we consider
the CD problem in the context of dynamic networks, a complex network with topology
changing over time. Thus, we believe a solution to the CD problem that contemplates an
adaptive model to consider this integrated scenario is relevant. Besides, if this adaptive
model grasps the network dynamics, it can track the evolving relationships. Thus, the
result will resemble the reality resulting in a more accurate community identification.

1.3 Hypothesis

The hypothesis held in this work is the application of the DRL approach to continually
improve the modularity density of a community structure dealing with dynamic social
networks. Compared to the state-of-the-art CD solutions, RL seems adequate to cope
with high-dimensional networks through its iterative improvement of the accumulated
reward.

The presented hypothesis leads to the research question: Can Deep Reinforcement
Learning (DRL) improve the accuracy of CD in dynamic social networks considering the
state of the art of classical and ML-based solutions?

1.4 Objectives

The main objective of this research is to explore the power of GNN-based networks (Graph
Attention Network (GAT) and Graph Convolution Network (GCN)) and propose a model
for CD using an Actor-Critic RL-based architecture to maximize the local modularity
density of a community structure in the context of dynamic online networks.

As secondary objectives of this research, we can point out the following:

• The implementation of an Actor-Critic RL-based architecture using GNN as its
function approximator and its availability in a public repository.
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• The validation of the implemented architecture using real-world static and dynamic
social network datasets.

• The application of modularity density metric as a component of the loss function
to quantify community structure.

• The use of macro-F1, micro-F1, and Normalized Mutual Information (NMI) scores
to evaluate results compared to the state-of-the-art classical and ML-based CD
solutions available in the literature.

1.5 Contributions

The main contribution of this research is an adaptive model with an Actor-Critic RL-based
method to maximize the local modularity density of a community structure using a GNN
to cope with changing aspects of large social networks represented as static or dynamic
datasets. The adaptive feature of the model focuses on the continual improvement of the
modularity density and its flexibility to use fixed or dynamic networks as input.

The model takes the adjacency matrix of a graph as input and translates it to a low-
dimension space as an input to the RL model. This translation to a low-dimension vector
space is known as graph embedding. A challenge with this approach is to find a graph
embedding model that preserves the community structure of the original network. We
currently use the Node2Vec algorithm to perform this task [31], though we can use any
other network embedding method that preserves the community structure.

The graph embedding and the community structure are the RL’s environment compo-
nents. The agent component has two blocks, the actor and the critic, each implementing
a GNN. In this way, we prospected the RL power of continuously improving the objective
function to cope with the dynamic aspect of OSN, especially in the case of unbalanced
networks, which results in the problem of the resolution limit of modularity optimization
methods as described by [32].

The Actor-Critic RL-based method forms the basis for the proposed architecture called
Actor–Critic for Community Detection (AC2CD). The AC2CD was presented in [33] and
validated with real-world dynamic network datasets (Email-Eu-core, BlogCatalog3, Flickr,
Youtube2). The AC2CD was compared to state-of-art solutions presenting better results:
GraphGAN [34], ComE [35], SDNE [36], and CNN [37]. The results prove the hypothesis
that the DRL application improves the modularity density for CD in OSN. The GAT
has experimented as an adequate core component in the action space of an RL approach.
The AC2CD results highlight the flexibility of RL as building blocks for solutions to
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constrained problems to more general scenarios. Section 5.2 presents experiments with a
discussion related to this article.

• Aurélio Ribeiro Costa, Célia Ghedini Ralha, AC2CD: An actor-critic architecture
for community detection in dynamic social networks, Knowledge-Based Systems,
Volume 261, 2023, 110202, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.
2022.110202.

Apart from the state-of-the-art solutions presented in the previous article, we com-
pare AC2CD implemented architecture to Community Locator And community REwriter
(CLARE) [38]). The experiments using real-world OSN datasets (Email-Eu-core, Blog-
Catalog3, Flickr) with micro-F1 and macro-F1, and NMI scores (Email-Eu-core, Blog-
Catalog3) demonstrate that GNNs and DRL approaches are better suited for the CD
task than others solutions based on probabilistic or shallow networks. The comparative
study indicates that AC2CD presents superior accuracy than other GNN-based methods
(GraphGAN, ComE, and CLARE). Section 5.3 presents experiments with a discussion of
these results.

We executed the experiments in a computer named Thorin composed of a CPU Intel®

Xeon Gold 5220R with 48 cores, 187GB of RAM, and two GPU NVIDIA® V100S. The
operating system used was Ubuntu, with all external libraries provided by the Conda
project.1 Thorin was purchased within the Project Knedle of the University of Brasília
(UnB), funded by FAP-DF and Finatec and made available to run all the experiments of
this research.2 However, a desktop without GPU but with 32 GB of RAM and a 6-core
CPU can reproduce the experiments using a small dataset like Email-Eu-core (taking
approximately 80 hours to execute). Thus, we could conduct additional experiments with
larger datasets with the NMI score, but we faced infrastructure limitations. For example,
running the Flickr dataset occurs CUDA out-of-memory error in the Thorin when running
experiments for the BRACIS article.

1.6 Limitations

There are approaches to CD using dynamic attributed networks based on social concepts,
but this work does not consider this kind of network. The accuracy could be improved
using such networks. However, our literature research did not focus on these networks.
As a result, the proposal and validation did not focus on such networks.

It would be interesting to conduct more experiments with the AC2CD implementation
using dynamic datasets as available in https://icon.colorado.edu/. However, we were

1Conda Project available at https://docs.conda.io/en/latest/
2https://unb-knedle.github.io/
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able to execute the High School dataset that is social and dynamic but the smallest
one. Thus, an experimental limitation of the implemented AC2CD architecture is the
computational demand of the DRL method to validate the results using large networks
considering unbalanced communities. However, we believe the proposed model copes well
with finding communities in large networks using available computational resources as
presented in the experiments of Chapter 5.

A limitation of the proposed model is the number of communities i directly related to
the output of the Actor component of AC2CD. The AC2CD experimented with datasets
where i � |V |. Thus, a significant i increase the memory necessary to run the model.
Given a network G =< V,E >, where V is a set of nodes and E a set of edges, and a
community structure C = {ci}, we might explore other relations among the community
structure and Actor component output to overcome this constraint.

1.7 Document Outline

The remaining sections of this document include in Chapter 2 some foundation theory
about CD and RL. Chapter 3 presents the literature review. Chapter 4 details AC2CD.
Chapter 5 describes experiments to validate the proposed architecture. Moreover, Chap-
ter 6 presents conclusions with future research directions.
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Chapter 2

Theoretical Aspects

This Section presents the theoretical aspects related to the CD problem. The definition
of NA is in Section 2.1. Section 2.2 includes CD classical and non-classical approaches.
Finally, Section 2.3 presents the relevant aspects of RL, focusing on the Actor-Critic
method.

2.1 Network Analysis

NA is a set of techniques derived from network theory, which has evolved from computer
science to demonstrate the power of social network influences. Using NA in domain
analysis can add another layer of methodological triangulation by providing a different
way to read and interpret the same data. The use of NA in knowledge organization domain
analysis is recent and evolving. The visualization technique involves mapping relationships
among entities based on the symmetry or asymmetry of their relative proximity [39].

NA is conducted by collecting relational data organized in matrix form. Suppose actors
are nodes, and their relations are lines between pairs of nodes. In this way, the concept of
social networks changes from being a metaphor to an operative analytical tool that utilizes
the mathematical language of graph theory and matrix and relational algebra. Although
deterministic approaches usually emphasize that NA enables studying how the social
structure of relationships around a person, group, or organization affects behaviors and
attitudes, structurally bounded purposive actions may affect the social structure and vice
versa. NA is a set of techniques with a shared methodological perspective rather than a
new paradigm in the social sciences. NA techniques allow researchers to specify empirical
indicators and to control field hypotheses through the definition and measurement of
traditional catch-all concepts like social structure and cohesion [40].
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2.2 Community Detection

We need to characterize graphs and networks to define CD. According to [41], a graph
consists of a set of vertices or nodes and established edges that connect them. A graph can
become a network when we assign numbers c1, ..., cm to the edges, and the number ci can
be the length or weight of edge i. In [42], the author defines a network generically as an
abstraction that allows us to encode some relationship among pair of objects. This way, we
can consider networks built of any elements, such as a set of persons, web pages, neurons,
or computers. We can use sets of objects to encode some relationship that depends on the
set’s features. For instance, considering a group of persons, we can encode the friendship
relationship between two persons. So, if two persons are friends, there is a relationship
of friendship between them. On the contrary, there is no such relationship. Therefore
between two objects, there is or is not a considered relationship.

Formally, the components of a network are the set of nodes denoted by V and the set of
edges denoted by E = {e = (i, j)|i, j ∈ V }. Each edge represents a relationship between
i and j. We can associate a weight to an edge e defining a function ω(e). In an oriented,
i.e., directed, network, (i, j) 6= (j, i). A convenient way to represent the network is using
its adjacency matrix Ai,j. The adjacency matrix of a network contains the encoding of
its edges, and in case an undirected network A is a symmetrical matrix. Equation 2.1
defines the matrix A for an unweighted network. In this type of network, all edges e have
the same value for the weight function ω(e).

Ai,j =

1, if(i, j) ∈ E

0, otherwise
(2.1)

Another matrix that characterizes networks is the degree matrix, D. The matrix D is
a diagonal matrix whose elements are obtained by the Equation 2.2, where function N (〉)
returns the neighbors of the node i. Using the number of nodes and edges, we can define
the density of a network, ρ as ρ = m

n(n−1)/2 , where n is the number of nodes and m the
number of edges of the network.

Di,i = deg(i) =
∑
j∈N (i)

ω((i, j)) (2.2)

According to [43], there are two configurations to represent a dynamic network. One
is the Continuous-Time Dynamic Graph (CTDG), where the temporal aspect forms an
edge attribute. The other is the Discrete-Time Dynamic Graph (DTDG), defined by a
network G = {G0,G1,G2, ...,Gt} as a sequence of configurations changing along the time.
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In the second method, the CD is processed at each snapshot Gi considering the network
discretization at DTDG.

Typically, one can define a community as a bunch of densely connected vertices that
connect sparsely with the other vertices, a static or dynamic graph. Finding communities
in a graph helps unveil its internal organization. Also, we can use it to characterize the
entities that compose it (e.g., groups of people with shared interests, products with similar
properties) [44]. Figure 2.1 shows a network highlighting three disjoint communities (i.e.,
non-overlapping communities).

Figure 2.1: A network with three disjoint communities (yellow, blue, and red).

The problem of finding community in a network is not novel. However, even the
precise definition of community in a network has yet to be discovered. The authors in [21]
argue that we should not consider CD a well-defined problem but an umbrella term with
many facets. These facets emerge from different goals and motivations of the network that
we want to understand. They can also lead to different perspectives on formulating the
CD problem. When selecting and comparing CD methods, it is crucial to consider these
underlying motivations. The classes of CD methods may vary from classical approaches
like statistical methods [10, 45] and optimization [46], to ML-based methods like [47–50].

One can confuse the CD problem with clustering at the first sign. On the one hand,
considering the clustering problem, we have instances represented in a vector space as
nodes and usually a distance function computed based on the node attributes. The
distance function tells us how far the nodes are so we can group the nearest nodes in
the same group. The CD is a learning task, similar classes of vertices from the network’s
topology using attributes of nodes and edges. In this way, CD is sometimes referenced as
spectral clustering or a kind of CD solution.
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2.2.1 Classical Approaches

Classical approaches represent a category of CD solutions that employ some analytical
method. Figure 2.2 presents a taxonomy of CD approaches and algorithms inspired
by the terminology used by the survey of [51]. We can group the main approaches to
solving the CD problem by modularity optimization, random walk, propagation, and
other approaches. In the sequence, we describe the approaches with respective algorithms
for CD.

Figure 2.2: Taxonomy of CD approaches and algorithms. Source: [51].

Modularity Optimization

According to [52], the most popular method to detect communities in graphs consists
of quality function optimization, the modularity introduced by [1] and [53]. Modularity
quantifies the deviation of the internal link density of the clusters from the density one
expects to find within the same groups of vertices in random graphs and the same pre-
dicted degree sequence of the network at study. The idea is that vertices linked randomly
to each other should not form communities since no high values of link density exist.
Consequently, modularity high values are supposed to indicate “suspiciously” high values
of internal link densities for the subgraphs. Those are distinct from groups of randomly
linked vertices regarded as natural communities.
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The Newman-Girvan modularity is arguably one of the most common clustering mea-
sures used in the literature. This method was initially proposed from the clustering
perspective [1, 53]. It is a global quality function and aims to find the network commu-
nity structure as a whole. Given a partition C = {V1, ..., Vk} of a network into k groups,
the modularity of C can be written as:

Q =
1

2m

∑
uv

[
Auv −

dudv
2m

]
δ(cu, cv), (2.3)

where du =
∑

v Auv is the degree of node u, 2m =
∑

u du is the total weight of all edges
in the network, and δ(cu, cv) is the Kronecker delta whose value is one whether cu = cv

(i.e., both nodes are in the same community) and zero otherwise. By optimizing the
modularity measure over the space of all partitions, one aims to identify groups of nodes
that are more densely connected than one would expect from a statistical null model of
the network. This statistical null model is commonly chosen to be the configuration model
with preserved degree sequence [21].

The modularity optimization approach is a broader class of CD proposals. This ap-
proach tries to identify a community structure that maximizes internal and minimizes
external modularities of a community. An example of a modularity optimization algo-
rithm is the Fast Greedy. It merges individual nodes into communities in a way that
greedily maximizes the modularity score of the network. If no merge can increase the
current modularity score, the algorithm can stop since there is no further increase. This
algorithm is said to run almost in linear time on sparse graphs.

Another example of a modularity optimization algorithm is the Edge Betweenness.
The main idea is that the betweenness score of the edges connecting two communities is
typically high, as many of the shortest paths between nodes in separate communities go
through them. So, it gradually removes the edges with the highest betweenness score and
recalculates the score after every removal. This way, later or soon, the network falls into
separate components.

The Multilevel algorithm is bottom-up. In its operation, every vertex initially belongs
to a separate community, and vertices are moved among communities iteratively. This
movement tries to maximize the vertices’ local contribution to the overall modularity
score. When the algorithm reaches a consensus (i.e., no single move would increase the
modularity score), every community in the original graph is shrunk to a single vertex
(while keeping the total weight of the adjacent edges). The process restarts on the next
level. The algorithm stops when it is impossible to increase the modularity anymore after
shrinking the communities to vertices.

The Leiden algorithm is considered an improvement to the Louvain algorithm [54],
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consisting of three phases: local moving of nodes, refinement of the partition, and ag-
gregation of the network based on the refined partition by using the non-refined one to
create an initial partition for the aggregate network.

The modularity optimization approach is a simple and direct method to compute the
quality of a community structure in a network. However, it is not unanimous in the
literature. One negative issue related to modularity is its resolution limit when dealing
with large networks, as presented by [32]. In general, the resolution limit problem says that
we must make a definite statement about modules found through modularity optimization
with a method that verifies whether the modules are indeed single communities or a
combination of communities. It is then necessary to inspect the structure of each of the
modules found.

However, the resolution parameter inclusion can overcome this limitation [55]. More-
over, another approach to overcome the resolution limit problem is to use a new metric
derived from modularity called modularity density Qds, defined by [56]. This metric uses
the number of nodes of each community to normalize the objective value instead of the
total edge number. The function maximizes the difference between the number of internal
and external edges of each community, according to the definition:

Qds =
∑
c∈C

[
mc

m
pc −

(
2mc + ce

2m
pc

)2

−
∑
c′ 6=c

mcc′

2m
pcc′

]
, (2.4)

where mcc′ is the number of edges between communities c and c′, pc = 2mc
nc(nc−1)] is the

density of links inside c, pcc′ =
mcc′
ncnc′

is the density of edges between c and c′, nc is the
number of nodes in c, and the other quantities are the same as in Equation 2.3. Again,
the partition that maximizes Qds corresponds to the community structure.

Random Walk

The random walk approach implements algorithm Walktrap [26]. The basic idea of the
Walktrap is that short random walks tend to stay in the same community.

Let us consider a discrete random walk process (or diffusion process) on graph G. At
each step, a walker is on a vertex i and moves to a vertex j chosen randomly and uniformly
among neighbors. The sequence of visited vertices represents a Markov chain, the states
of which are the graph vertices. At each step, the transition probability from vertex i to
vertex j is Pij = Aij/d(i). The transition probability defines the transition matrix P of
random walk processes. One can also write P = D−1A where D is the diagonal matrix of
the degrees ∀i,Dii = d(i) and Dij = 0 for i 6= j. The process is driven by the powers of
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the matrix P . The probability of going from i to j through a random walk of length t -
(P t)ij.

Propagation

The propagation approach deploys on the spread of something over the network, repre-
sented by the Label Propagation algorithm, where each vertex is assigned a different label.
In each iteration, a vertex chooses the dominant label in its neighborhood. The vertices
are updated in a randomized order before every iteration. The algorithm ends when
vertices reach a consensus. Since ties are broken randomly, there is no guarantee that
the algorithm returns the same community structure after each run, and they frequently
differ. Another approach based on propagation is Fluid [44], based on the idea of fluids
interacting in an environment, expanding and contracting as an interaction result.

Other approaches

There are other approaches based on many different ways to model the network, as Spin
glass [57], the Semantic network [58] that creates a semantic network of internet con-
tent and tries to reveal relationships between users. The Matrix Eigenvector approach
introduced by [1] implements the Leading Eigenvector algorithm. This algorithm splits
the network into two components according to the leading eigenvector of the modularity
matrix derived from the adjacency matrix. Then, recursively takes the given number of
steps by splitting the communities as individual networks.

2.2.2 Non-classical Approaches

Non-classical approaches refer to methods that mainly rely on probabilistic or ML tech-
niques to tackle the CD problem or that compose some more elaborated approach. The
job is to learn an adequate representation of the network structure of a given network.
A common strategy in these methods splits the work into two stages: representation and
refinement. The approach finds candidate subgraphs to communities in the representa-
tion stage. In the refinement stage, the approach decides when the previously identified
subgraphs are natural communities.

In the following sections, we present techniques that describe the two stages of learning-
based approaches to CD, such as Graph Embedding, Node2Vec, Stochastic Block Model
(SBM), and GNN. In the following sections, we present CD metrics and RL.
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Graph Embedding

In a general form, Graph Embedding, or network embedding, represents an approach to
translate an entire network into a low-dimensional space to be handled by ML algorithms.
Mathematically, the graph embedding problem is a function that maps a graph (or an
adjacency matrix) into a set of dense continuous vectors, as presented in the schema of
Figure 2.3.

Figure 2.3: A graph embedding schema.

Structural information extraction from graphs using traditional machine approaches
often relies on summary graph statistics (e.g., degrees or clustering coefficients), kernel
functions, or carefully hand-engineered features to measure local neighborhood structures.
However, these approaches are limited because these hand-engineered features are inflex-
ible — i.e., they cannot adapt during the learning process — and designing these features
can be time-consuming and expensive.

According to [59], a taxonomy of graph embedding methods presented in the literature
points to three major method categories: matrix factorization-based, random walk-based,
and Neural Network (NN)-based. Matrix factorization-based methods construct a high-
order proximity matrix based on transition probabilities and factorize it to obtain the node
embeddings [47–50]. In addition to the static graph embedding methods, in this work, we
also discuss the emerging deep learning-based dynamic graph embedding methods [60, 61].

More recently, there has been a surge of approaches seeking to learn representations
that encode structural information about the graph. These approaches learn a mapping
that embeds nodes, or entire (sub)graphs, as points in a low-dimensional vector space
Rd. The goal is to optimize this mapping so that geometric relationships in the embed-
ding space reflect the graph’s original structure. After optimizing the embedding space,
the learned embeddings are feature inputs for downstream ML tasks. The main distinc-
tion between representation learning approaches and previous work is how they treat
the problem of representing a graph structure. Previous work treated this problem as a
pre-processing step, using hand-engineered statistics to extract structural information. In
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contrast, representation learning approaches treat this problem as an ML task, using a
data-driven approach to learn embeddings that encode graph structure [62].

Node2Vec

Node2Vec is a class of network embedding solutions introduced by [31] that defines a flex-
ible notion of a node’s network neighborhood. By choosing an appropriate neighborhood
notion, Node2Vec can learn representations that organize nodes based on their network
roles and the communities they belong. It achieves this by developing a family of bi-
ased random walks, which efficiently explore diverse neighborhoods of a given node. The
resulting algorithm is flexible, giving us control over the search space through tunable
parameters, in contrast to rigid search procedures in prior works.

Consequently, Node2Vec generalizes modeling the full spectrum of equivalences ob-
served in networks. The parameters governing the search strategy have an intuitive in-
terpretation and bias the walk towards different network exploration strategies. A semi-
supervised approach learns these parameters directly using a tiny fraction of labeled data.
Algorithm 1 describes Node2Vec according to [31]. The algorithm’s input is the graph G,
the dimension of the output d, i.e., the length of the vector representing each node, and
some other hyperparameters. Node2Vec operates in three phases, preprocessing to com-
pute transition probabilities for each pair of nodes (Line 1) and generate the probability
matrix π, random walk simulations of length l (Line 6), and optimization using Stochas-
tic Gradient Descent (SGD) (Line 9). The method node2vecWalk, defined at Line 13 and
called at Line 6, creates a sequence of nodes, called a walk, to visit the neighborhood of
a node u (Line 5) and contribute to the embedding of u (Lines 5-8).

Stochastic Block Model

SBM is an effective generative model of network block structures adopting statistical
modeling for CD for the first time [45]. The method probabilistically assigns nodes in a
network to different communities (block structures) using a node membership likelihood
function. Then, progressively infers the probabilities of node memberships by inferencing
on the likelihood function to derive hidden communities in the network. Note that several
SBM variants exist for CD, but their core generation process is the same. There are
two steps in the generation process: (1) iteratively assign a community to each node in
the network, and (2) compute or update the probability of two nodes connected by an
edge [18].

Taking a social network as an example, SBM can be used to capture a probabilistic
generation process with community distribution as a hidden variable. The communities
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Algorithm 1: The Node2Vec algorithm.
Input: Graph G=(V,E,W), Dimensions d, Walks per node r, Walk length l,

Context size k, Return p, In-out q
1 π = PreprocessModifiedWeights(G,p,q);
2 G’ = (V,E,π) ;
3 Initialize walks to Empty;
4 for iter = 1 to r do
5 forall node u ∈ V do
6 walk = node2vecWalk(G’, u, l);
7 Append walk to walks;
8 end
9 f = StochacticGradientDescent(k, d, walks);

10 end
11 return f
12

13 node2vecWalk(Graph G’ = (V,E,π), Start node u, Length l)
14 Initialize walk to [u];
15 for walk_iter = 1 to l do
16 curr = walk[−1];
17 Vcurr = GetNeighbors(curr, G)́;
18 s = AliasSample(Vcurr, π);
19 Append s to walk;
20 end
21 return walk ;

are reconstructed by maximizing the likelihood function of the node community member-
ship. In the social network, the nodes are partitioned into k disjoint communities with
probability ω = {ω1, ..., ωk}. Assuming there are two nodes vi and vj belonging to two
communities Cr and Cs, represented by cir and cjs. The probability that nodes vi and
vj connected by an edge, i.e., aij (0 or 1), obeys a Bernoulli distribution with parameter
πrs [63].

Convolutional Neural Networks

CNN constitutes a class of NN commonly applied to image processing using the con-
volution operation instead of matrix multiplication. The author in [64] states that the
primary design goal of CNNs was to create a network where the neurons in the early
layer of the network would extract local visual features, and neurons in later layers would
combine these features to form high-order features. A local visual feature is a feature
whose extent is limited to a small patch, a set of neighboring pixels in an image. Another
important concept of CNNs is pooling, a form of non-linear down-sampling. There are
several non-linear functions to implement pooling, where max pooling is the most com-
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mon. It partitions the input image into rectangles and outputs the maximum for each
sub-region.

In the field of CD, the use of CNNs follows the use of matrix factorization techniques as
user interactions within different OSNs represented as sparse, high dimensional adjacency
matrices. In this way, [37] present a semi-supervised community detection approach,
combining deep learning techniques (i.e., CNN layers) with topological properties of a
social network.

Graph Neural Networks

GNN is a neural network architecture based on an information diffusion mechanism de-
fined by [65]. Figure 2.4 depicts the branches of AI approaches and locates GNN as a spe-
cialization of the supervised learning method. GNN can directly process most graph types,
e.g., acyclic, cyclic, directed, and undirected. GNN implements a function τ(G, n) ∈ Rm

that maps a graph G and one of its n nodes into an m-dimensional Euclidean space. A
set of units process a graph in GNN, each corresponding to a graph node linked according
to their connectivity. The units update their states and exchange information until they
reach a stable equilibrium. The output of a GNN is then computed locally at each node
on the united state base. The diffusion mechanism is constrained to ensure that a unique
stable equilibrium always exists. Some specializations of GNNs are GCN and GAT.

GCN is a GNN architecture inspired by the Convolutional Neural Network (CNN),
presented by [66]. GCN was initially used in the nodes classification problem (e.g., doc-
uments) in a graph (e.g., citation network) using semi-supervised learning, where labels
are only available for a small subset of nodes. Additionally, this approach joining GCN
and Markov Random Fields (MRF) is applied successfully to the CD as described by [67].

GCN defines a spectral graph convolution by multiplying a signal x ∈ RN with a
spectral filter in the Fourier domain gθ = diag(θ), i.e.

gθ ? x = UgθU
>x (2.5)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN −
D−1/2AD−1/2 = UΛU>, with a diagonal matrix of its eigenvalues Λ and U>x being the
graph Fourier transform of x. It uses two graph convolution layers to derive a network em-
bedding and then applies the softmax function to classify nodes into different categories.
In training, the prior information on community memberships of a few nodes, network
topology, and node attributes are input to learn the neural network weight parameters.
Similar to CNN, GCN has an excellent global search capability, i.e., it can extract complex
features or patterns from a myriad of local features by a stack of convolution operations.
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Figure 2.4: Taxonomy of AI approaches applied to the CD problem.

According to [67], GCN has at least two drawbacks. First, GCN aims primarily at deriv-
ing a network embedding of the input data in the hidden layers of CNN. However, such an
embedding is not community oriented and does not consider community properties. Sec-
ond, GCN can only obtain a relatively coarse community result since it lacks smoothness
constraints to reinforce similar or nearby nodes to have compatible community labels.

GAT is another GNN architecture, proposed by [68], that represents an attention-based
neural network architecture designed to perform node classification of graph-structured
data. This architecture aims to compute the hidden representations of each node in the
graph by attending to its neighbors, a self-attention strategy. The attention architecture
has several interesting properties: (1) the operation is efficient since it is parallelizable
across node neighbor pairs; (2) it applies to graph nodes having different degrees by
specifying arbitrary weights to the neighbors; and (3) the model is directly applicable to
inductive learning problems, including tasks where the model has to generalize to com-
pletely unseen graphs. Figure 2.5 presents the node representation update implemented
by the GAT architecture, where the representation of Node 1 (

−→
h′1) is the result of an

aggregation (concat/avg) representing its neighborhood with prior representation (
−→
h1).

Mathematically, we can describe the update strategy by Equation 2.6, where W is the
weight matrix, K is the number of head attentions, and α is the normalized attention
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coefficient.
−→
h′1 = σ

(
1

K

K∑
k=1

∑
j∈Ni

αkijW
k−→hj

)
(2.6)

Figure 2.5: GAT node representation update. Source: [68].

The attention mechanism has become a fundamental standard in many sequence-based
tasks. One of the benefits of attention mechanisms is that they allow for dealing with
variable-sized inputs, focusing on the most relevant input parts to make decisions. A
self-attention or intra-attention is commonly referred to when an attention mechanism
computes a representation of a single sequence. Together with Recurrent Neural Network
(RNN) or convolutions, self-attention has proven to be useful for tasks such as machine
reading [69] and learning sentence representations [70]. Additionally, [71] showed that
self-attention can improve a method based on RNNs or convolutions and is sufficient
for constructing a powerful model obtaining state-of-the-art performance on the machine
translation task.

2.2.3 CD Metrics

CD metrics are scores used to evaluate the outcome of a solution method, as modularity
presented in Section 2.2.1. The information retrieval field inherits many CD metrics. We
can classify these metrics as internal when considering only the internal nodes of each
community and external when comparing two communities.

F1-score is the harmonic measure of precision P and recall R, according to [72]. Micro-
averaged F1-score (Micro-F1) and macro-averaged F1-score (Macro-F1) are ways to aggre-
gate the F1-score measuring the performance of a classifier in a multi-label categorization.
The authors in [73] defined these two measures as:
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• Micro-F1: the harmonic mean of the micro-precision and micro-recall computed
based on the sum of true positives, false positives, and false negatives values.

F1 = H(P̄ , R̄) =
2P̄ R̄

P̄ + R̄
= 2

( 1
n

∑
x Px)(

1
n

∑
xRx)

1
n

∑
x Px + 1

n

∑
xRx

• Macro-F1: the arithmetic means of F1-scores of all categories.

F1 =
1

n

∑
x

F1x =
1

n

∑
x

2PxRx

Px +Rx

The Normalized Mutual Information (NMI) is one external metric [74, 75]. Given a
reference community structure A and a detected community structure B, NMI computes
the overlapping nodes in A and B. To define NMI, we need to approximate the marginal
probability of a randomly selected node being in the community a, with a ∈ A, and b,
with b ∈ B, by PA(a) = na

n
and PB(b) = nb

n
, where na and nb denote community size of

a and b. Moreover, PAB(a, b) = nab
n
, where nab is the number of nodes that are both in

the community of partition A and group b of partition B. Equation 2.9 mathematically
presents the NMI, where I represents the mutual information (Equation 2.7), and H is
the entropy (Equation 2.8). Since H(PAB) ≤ H(PA) +H(PB), NMI(PA, PB) is bounded
below by 0. Also note that H(PAB) = H(PA) = H(PB) when A and B are identical,
which means, in this case, NMI(PA, PB) = 1 [75].

I(PA, PB) =
∑
k

∑
j

PAB(a, b)log
PAB(a, b)

PA(a)PB(b)
(2.7)

H(PA) = −
∑
a

PA(a)logPA(a) (2.8)

NMI(PA, PB) =
I(PA, PB)

[H(PA) +H(PB)]/2
(2.9)

2.3 Reinforcement Learning

RL is a subfield of Artificial Intelligence (AI) that explicitly considers the whole problem of
a goal-directed agent interacting with an uncertain environment [76]. Figure 2.6 shows the
general architecture of an RL model with the two main elements: agent and environment.

The environment is the locus where the agent operates. The environment represents
the problem an agent tries to solve, commonly implemented as a sequence of states. At
each received action At, the environment issues a new State St+1 and the corresponding
Reward Rt+1. Thus, a common approach to solving the problem is through an MDP.
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The agent is the RL element responsible for sensing the environment and taking actions
that change the environment. The set of all possible actions in an environment is the
action space. For each state St, an action At is issued with its associated probability the
way an agent distinguishes the different types of RL.

Figure 2.6: RL general architecture. Source: [76].

In [77], the author correlates some knowledge areas to RL as depicted in Figure 2.7,
where six domains heavily overlap each other on the methods and specific topics related
to decision-making. At the intersection of all those related scientific areas is RL, which
can take the available information from these domains as follows:

• Computer Science: More specifically, ML, where RL’s goal is to learn how an agent
should behave when it faces imprecise observational data.

• Engineering: This helps to take a sequence of optimal actions to get the best result
(Optimal Control).

• Neuroscience: The human brain acts similarly to the RL model, with its dopamine
system acting in the Reward System.

• Psychology: Behavior studies in various conditions, such as how people react and
adapt, are close to the RL model (Classical/Operant Conditioning).

• Economics: One important topic is to maximize reward in terms of imprecise knowl-
edge and the changing conditions of the real world (Bounded Rationality).

• Mathematics: This works with idealized systems and devotes significant attention
to finding and reaching the optimal conditions in the Operations Research field.

The literature classifies RL algorithms, at a high level, as MDP or Bandits-based. The
Bandits problem can be formalized as a one-state MDP because it does not depend on the
previous state (i.e., arm pulled). Following the taxonomy of RL methods developed by
[78]. Figure 2.8 shows this classification. This research concentrates on the branch MDP
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Figure 2.7: RL related areas. Source: [77].

→ Model-Free → Policy-Based → Gradient-Based → Trust Region Policy Optimization
(TRPO)/Proximal Policy Optimization (PPO) (the blue path).

Although the taxonomy presented by [78] in Figure 2.8 classifies MDP as Model-
based and Model-free, the authors in [76] differentiate these two methods as Model-based
methods rely on planning as their primary component. In contrast, Model-free methods
primarily rely on learning. Moreover, all these methods look ahead to future events, com-
puting a backed-up value and then using it as an update target for an approximate value
function, such as Monte Carlo (MC) and Temporal Difference (TD). In both methods,
the training update is implemented either after the control episode finishes (MC) or after
one or more steps execute in an episode (TD).

In Figure 2.8, following the Value-Based branch, we find the Q-Learning Off-Policy
method and its specialization DQN using a deep neural network. The authors in [76]
consider Q-learning one of the most important breakthroughs in RL. Q-learning was
presented by [79] as an off-policy TD control algorithm. The simplest form, one-step
Q-learning, is defined by Equation 2.10.

Q(St, At)← Q(St, At) + α[Rt+1γmax
a
Q(St+1, a−Q(St, At)] (2.10)
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Figure 2.8: RL taxonomy. Source: [78].

In this case, the learned action-value function, Q, directly approximates to q∗, i.e., the
optimal action-value function, independent of the policy being followed. This strategy
dramatically simplifies the algorithm analysis enabling early convergence proofs. The
policy still has an effect as it determines which state-action pairs are visited and updated.
However, it is required for correct convergence as all pairs continue to be updated.

In the Policy-based branch, the Policy Gradient is a class of gradient-based methods
employing an estimator to maximize the long-term reward. Policy Gradient methods
present some advantages to other methods as the guaranteed convergency to local opti-
mum and its fitness to discrete and continuous action and state scenarios. However, there
are some negative aspects to using the Policy Gradient methods, as they are not guaran-
teed to converge to a global maximum, and they are sample inefficient because they need
to discard some episode data to avoid bias to the gradient estimator. Policy Gradient
methods implemented by Equation 2.11, where we initialize the parameter ω0 with ran-
dom values and iteratively improve by the loss function L gradient. The hyperparameter
η is the learning rate and controls the improvement achievement.

ωn+1 = ωn − η∇L|ω(ωn) (2.11)

The PPO is a kind of Policy Gradient method defined in [80]. The PPO algorithm
has some of the benefits of TRPO, is much simpler to implement, more general, and has
better sample complexity (empirically), according to the authors of both algorithms. In
this research, we concentrate on the clipped version of PPO with the objective function
as presented in Equation 2.12.

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (2.12)
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In Equation 2.12, ε is a hyperparameter. The expectation Êt[...] indicates the empirical
average over a finite batch of samples. The first term inside the min function is rt(θ) =
πθ(at|st)
πθold (at|st)

, which is the probability of taking action at at state st in the current policy

divided by the previous one. The second term, clip(rt(θ), 1 − ε, 1 + ε)Ât, modifies the
surrogate objective by clipping the probability ratio, which removes the incentive for
moving rt outside of the interval [1−ε, 1+ε]. In this equation, Ât represents the estimated
advantage at time t. Thus, the minimum of the clipped and unclipped objectives are taken,
and the final objective is lower (i.e., pessimistic bound) than the unclipped objective. With
this scheme, it is possible to ignore only the change in probability ratio when it would
improve the objective and then include when it turns worse the objective. The action
selection is a core component of any RL system. One approach for this task is to use a
neural network to choose the best action given a state.

2.3.1 Actor-Critic Method

The actor-critic follows the RL approach, where two components compound the learning
agent. According to [76], if we learn an approximation for a value function in addition
to the policy approximation, we have an actor-critic method, where the actor refers to
the learned policy π and the critic to the learned value-function V . Figure 2.9 presents
the RL loop in an actor-critic architecture highlighting the two main components and the
messages exchanged in the form of the action and the TD error.

Figure 2.9: The actor-critic architecture. Source: [76].
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TD error is the difference between the estimated value and the current value of a state
st, given by the Equation 2.13, where V is the current value function implemented by the
critic, r is the current reward and γ is the discount factor, which quantifies the importance
of future rewards. If the TD error is positive, it suggests that the tendency to select an
action at should be strengthened for the future. Whereas the TD error is negative, the
tendency should be weakened.

δt = rt+1 + γV (st+1)− V (st) (2.13)

In DRL, the policy implemented by the actor and the value function implemented
by the critic can use deep neural networks. The most common situation em DRL is the
combination of the Actor-Critic method with some implementation of policy gradient,
such as PPO.

Chapter 3 presents the literature review protocol and its execution, including the
studies that inspired this research and the contributions compared to the related work.
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Chapter 3

Literature Review

This Section presents the literature review method used in this research. The review
protocol follows the definition of [81], which includes three main phases: planning, con-
ducting, and reporting the review. Section 3.1 describes the planning phase of the system-
atic review protocol with the main characteristics of the mnemonic PICO (Population,
Intervention, Comparison, and Outcome) used as a literature search strategy to ensure
comprehensive and bias-free searches. Section 3.2 describes the review conduction high-
lighting the used search bases and the selected studies. It is worth noting that we made
some manual interventions to add relevant studies with a refinement review process. Sec-
tion 3.3 presents related work indicating contributions compared to this work.

3.1 Planning

According to the protocol proposed in [81], the planning stage includes identifying the need
for a review and developing a protocol. The need for a literature review arose to identify
the featured research in a vibrating area such as CD with ML techniques, where some
research paths become obsolete too fast. More specifically, we would like to investigate
the state-of-the-art approaches to CD in complex dynamic networks that apply some ML
approach. We undertook the literature review with works published from 2015 to 2020.
However, we continued to evaluate new publications until 2023.

The mnemonic PICO (Population, Intervention, Comparison, and Outcome) is instan-
tiated during the protocol planning phase as follows:

• Population: works on CD of social networks.

• Intervention: works using RL.

• Comparison: we intend to compare our work with classical and ML approaches to
CD.
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• Outcome: create a model to detect communities in OSNs.

The research questions that guided the literature review were:

1. What are the state-of-the-art approaches to CD in complex dynamic networks?

2. What is the performance of the approaches to dynamic CD with RL?

Table 3.1 summarizes the main features of our literature review protocol.

Table 3.1: Literature review protocol features.
Feature Description
Period from 2015 to 2020 (refined to 2023)
Tool Parsifal
Publication type conference and journal articles
Repository ACM Digital Library, IEEE Xplore, and

Springer Link

3.2 Conducting

The literature review uses the Parsifal tool [82]1 to search the CD state-of-the-art ap-
proaches to social networks, employing mainly RL. We search publications on the Springer
Link,2 IEEE Xplore,3 and ACM Digital Library.4 The search string used in all search en-
gines was “reinforcement learning” AND “community detection” AND “social network”.
Table 3.2 presents the inclusion and exclusion criteria for filtering the studies. Figure 3.1
presents the percentage referring to the number of publications imported per source. Note
that 81.6% of publications were from the Springer Link, 10.2% from the IEEE Xplore,
and 8.2% from the ACM Digital Library.

Table 3.2: Inclusion and exclusion criteria.
Inclusion criteria Exclusion criteria
big data context not applied on social network
other ML approach text not available in English
statistical approach publication year minor than 2015
survey or literature review

We selected publications with full text available in English covering at least one topic of
interest. One relevant issue detected was that even those papers that use RL for CD have

1Parsifal is an online tool designed to support researchers performing a systematic literature review.
Available at https://parsif.al/. Accessed on 17 April 2020.

2https://link.springer.com/
3https://ieeexplore.ieee.org/Xplore/home.jsp
4https://dl.acm.org/
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some restrictions. For example, the work of [83] uses RL for CD considering temporal
aspects. However, the author focuses on undirected edges and disjoint communities,
making the study so restrictive for our purpose. Another issue is that some studies were
not in the repositories’ search engines like [84] and [85].

Figure 3.1: Percentage of publications imported per source.

A Quality Assessment Checklist (QAC) was defined to rank the select studies with a
cutoff score to filter the studies considering this research scope. The QAC was composed
of the following questions:

1. Does the study exploit more than one approach?

2. Does the study treat large-scale networks?

3. Does the study use a comparative approach?

4. Is it possible to replicate the study (data source available)?

The conduction of the literature review started with importing the publications, 40
from Springer Link, five from IEEE Xplore, and four from ACM Digital Library. From 49
imported studies, we found three duplicates, 29 were rejected for not being compliant with
the inclusion criteria or having matched some exclusion criteria, and 17 were accepted.
However, six studies did not reach the minimum score in QAC. Figure 3.2 presents the
histogram of selected and accepted papers by source. It is possible to see that the number
of selected studies from Springer Link is the biggest one. However, ACM Digital Library
presents the highest acceptance rate with 3 of 4 accepted studies (75%), against 0 of 5
from IEEE Xplore and 14 out of 40 from Springer Link. Figure 3.3 presents the distri-
bution of selected publications by year and highlights the growth of ascending number of
publications matched by the selection criteria in 2019 and 2020.
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Figure 3.2: Accepted publications per source.

Figure 3.3: Selected publications by year.

3.3 Reporting

The literature review results include 20 publications in Table 3.3. There are two pub-
lications added after the refining process of the review: [86], and [87]. We present the
studies in reverse-chronological order. It is worth noting that some studies do not ap-
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ply AI approaches. We may explain this aspect due to the early application of ML to
NA problems. The N.A. in the AI approach column presents the works without AI ap-
proaches. We consider these studies relevant in the NA field as they apply methods usable
with little adaptation.

The authors in [86] present the Dual Structural Consistency Preserving CD (DSCPCD)
method to uncover the hidden overlapping community structure on social networks. The
authors claim that DSCPCD investigates the implicit friendship relationship from a global
perspective. Specifically, to unleash the power of the game theory of complex relation-
ship characterization. The DSCPCD introduced an evolutionary game to remedy the
"complete rationality" defect in past game theoretic methods, making DSCPCD closer
to real scenarios. The authors also defined a dynamic payoff matrix to characterize the
community-aware interaction state. Besides the good results achieved in the experiments
and the lightweight architecture that enables DSCPCD to cope with large networks, the
authors tested only on static networks limiting the scope of use.

In [87], the authors propose a novel overlapping community-detection algorithm based
on adaptive Density Peak Clustering (DPC) using an iterative partition strategy (ODPI).
In particular, the authors emphasized that different cut-off distances dc may lead to highly
varying algorithm performance for diverse social networks. To this end, the proposed
ODPI can calculate dC adaptively based on different network scales and features, which
indicates that dc can adapt to diverse network topologies. Besides, there were tests of the
performance of the ODPI algorithm on complex networks by setting different values of
dc, and the final results demonstrate the effectiveness in adaptive dc. The tests did not
include a dynamic network or a larger one. ODPI lies on a distance matrix, which limits
the networks to be processed.

In [84], the NA focuses on a relationship network of citations and keywords using this
analysis to detect indirect links between keywords with higher semantic relationships.
Authors identify vital knowledge units and discover the topics with greater significance.
This study can give us insight into using other ways to model a network from a set of
documents. Other studies that do not employ AI approaches are [88] and [85], which make
a systematic literature review on network representation learning. [88] focus their study
on generating an efficient network representation to deal with complex high dimensional
data, and [89] focus on applying node attributes to improve CD.

The work of [90] proposes a unique social graph hybrid model named Representation
Learning Via knowledge-graph Embeddings and ConvNet (RLVECN). RLVECN is de-
fined to study and extract meaningful representations from social graphs to aid in node
classification, CD, and link prediction problems. RLVECN utilizes an edge sampling ap-
proach for exploiting features of the social graph via learning the context of each actor

32



concerning its neighboring actors. RLVECN also applies a convolutional neural network
to extract facts from a social network and proceed with node classification and CD. How-
ever, when conducting the CD, RLVECN treats network clustering in a simplified way
using node similarity, not considering node relationships.

The authors in [22] propose a semi-supervised solution named Seed Expansion with
generative Adversarial Learning (SEAL). SEAL is based on a GAN, acting as the dis-
criminator module. Their solution finds communities considering network topology and
node attributes. The authors in [91] use GNN too, however, focusing on the overlapping
aspect of communities in the CD problem. Both studies focus on static networks. On
the other hand, [92] introduce a GNN model named Dynamic Graph Neural Network
(DGNN) to deal with NA on dynamic networks. However, some aspects in their study,
such as the model performance evaluation for CD and deleting edges or nodes as valid
changes network changes.

In [93], the authors implement an architecture based on a network diffusion module to
capture malicious behavior in a network. The model underlying this module represents
a message passing through the network. In [37], a semi-supervised CD solution is imple-
mented using GNN. The study undertaken by [38] also implemented a semi-supervised
CD solution based on GCN and RL.

The studies described in this paragraph use RL to deal with the CD problem. The
authors in [24] use the modularity maximization classical approach computed through a
multi-agent system. In [94], the authors use particle competition, a different approach to
CD. The authors in [23] use a classical approach to CD named random walks to aggregate
an intelligent model of random walks as a problem-solving method.

The study conducted by [8] is a survey on the CD problem solved by game theory
techniques. A highlighted game theory technique applied to CD is the Evolutionary
Game with an evolutionarily stable strategy. The policy implemented on the RL agent
can employ this approach to select the best action. The study of [83] also uses a game
theory-based strategy.

The study of [95] focuses on benchmarking CD algorithms with a graph named Lancichinetti-
Fortunato-Radicchi to choose the best CD algorithm for a given network. This study in-
spired the selection of the graph embedding technique in the proposed solution to evaluate
the CD process.

This chapter presented the literature review results, including the protocol used with
the planning, conducting, and reporting phases. Considering the studies written, the focus
of AI approaches applied to the CD problem is increasing, as presented in Figure 3.3, with
a visible growth beginning in 2019. Chapter 4 presents the CD proposed method.
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Table 3.3: Related work overview.

Reference Problem AI approach Contribution Advantage Disadvantage
[86] Overlapping CD in

social networks
N.A. introduced an evolutionary game

to remedy the defect of "complete
rationality" that existed in past
game theoretic methods

lightweight imple-
mentation able to
process large net-
works

Tested only in
static networks

[87] Overlapping CD in
social networks

N.A. A new method to use the DPC Fits well on hetero-
geneous community
sizes

Tested only in
static networks, it
is not adequate to
large networks

[38] Improve the ac-
curacy in finding
communities

RL, GNN-
autoencoder

A different strategy to find com-
munities, a novel framework for
CD using DRL, experiments with
CD and semi-supervised CD

Improve the ac-
curacy with good
performance

Needs test with
other approaches
of RL

[37] CD in OSN GCN Implemented an operator to com-
pute convolutions on sparse ma-
trices

Can operate with big
networks

Tested only with
macro-F1 and
micro-F1 scores

[84] Discover related
topics and clas-
sify the more
influential ones

N.A. Provides a novel perspective for
discipline knowledge structure
analysis, which transcends con-
ventional methods to map the
knowledge domain based on the
cooccurrence of keywords

Compares two ways
to create a relation-
ship network: co-
word and Keyword-
Citation-Keyword
(KCK) using differ-
ent techniques of NA,
page rank analysis,
and research topic
analysis

Use only one data
source - ACM
combined with its
area classification
system. Restricts
the analysis to
compare co-word
and KCK networks
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Reference Problem AI approach Contribution Advantage Disadvantage
[85] How to present

networked data
to classic ML
algorithms

N.A. Survey different methods to
transform graph data into vector
space

Shows different ways
to make embeddings,
from network embed-
dings to node and
edge embeddings

Do not apply any
ML algorithm

[90] Extract meaning-
ful facts from so-
cial network struc-
tures to aid in
node classification
as well as CD tasks

CNN Proposition of a DL-based and
hybrid model, RLVECN, which
aims at solving node classifica-
tion problems in SNA, Detailed
benchmark reports concerning
classic objective functions used
for classification tasks, Compar-
ative analysis between RLVECN
and state-of-the-art methodolo-
gies.

Define formally every
aspect

Treat network
clustering in a sim-
plified way using
node similarity

[22] Using semi-
supervised CD,
try to find mode
communities given
several commu-
nities as training
data

GAN, RL,
Semi-
supervised
learning

search communities using a
heuristic method, Uses dual learn
to CD

Consider the topol-
ogy of network and
node attributes, Con-
siders overlapping
communities

complexity, re-
quires training
data

[93] Tackle the mali-
cious behavior in
social media using
ontological reason-
ing

Rule-based
learning

powerful knowledge representa-
tion formalism with the capabil-
ity to generate hypotheses via the
application of existential rules

Shows a complete
framework to deal
with rule-based
reasoning

The focus is on
malicious behavior
domain. There
is no implementa-
tion with compara-
tive results.
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Reference Problem AI approach Contribution Advantage Disadvantage
[24] Modularity opti-

mization through
a decentralized
approach

Multi-agent
RL

Uses modularity maximization
approach to identify communities
in a decentralized way

Used real-world
datasets. Can be
adapted to deal
with dynamic net-
works. The use of
multi-agent allows
distributed compu-
tation to deal with
large networks

Tested only for dis-
joint communities

[94] The focus is on the
problem of concept
drift in large data
sets represented by
temporal networks
or data that can be
transformed

RL The study case is guided toward
concept drift and concept rela-
tionships. Uses particle competi-
tion to detect communities

Defines a flexible
framework that is
compatible with
other similarity
functions or CD
methods

Uses non-
determinism to
enhance the learn-
ing process. Does
not compare with
another solution.

[92] Analysis of dy-
namic social
networks

DGNN using
Recurrent
Neural Net-
work (RNN)
implemented
by Long
Short-Term
Memory
(LSTM)

A GNN model for dynamic NA
and a comparative experiment for
link prediction and node classifi-
cation

Captures the dy-
namic aspects of
social networks and
outperform the state-
of-the-art solutions
in terms of Recall in
link prediction and
node classification

CD were not an-
alyzed, only link
prediction and
node classifica-
tion, the datasets
used where small,
the bigger one
has 6,224 nodes
and 19,496 edges.
They only consider
edge and node cre-
ations as network
changes.
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Reference Problem AI approach Contribution Advantage Disadvantage
[83] CD considering

temporal dynamic
aspects (dynamics
consensus CD
problem)

RL Model CD as a Combinatorial
Multi-armed Bandit problem

It is not restricted
to graph model or
specific community-
change events

Uses only undi-
rected edges,
Considers only dis-
joint communities,
Does not have a
study case

[91] Detection of over-
lapping communi-
ties

GNN Introduce a GNN model for over-
lapping CD, makes available four
datasets for overlapping CD and
performs experiments with state-
of-the-art solutions

Show superior per-
formance when
compared to different
paradigms as prob-
abilistic inference,
non-negative- matrix
factorization and
deep learning

Restrict its anal-
ysis to static
graphs, splits the
model that uses
the adjacency
matrix (NOCD-
G) from the
model that uses
node attributes
(NOCD-X)

[23] The weakness of
non-intelligent
models of the
random walk as
a problem-solving
method

RL (learning
automata)

Presents the Self-Avoiding Ran-
dom Walks

Focus on using an in-
telligent approach us-
ing RL in random
walks

The full-text is not
available for free,
and the author
only sent the first
chapter

[88] Represent net-
worked data as
low-dimensional
space

N.A. It’s a survey that compares
methods for embedding homoge-
neous, heterogeneous, dynamic,
attributed, and signed networks

Considers attributed
networks when doing
network embedding,
analyzes many solu-
tions

Doesn’t give a
clear conclusion.
The focus is on
methods for net-
work embedding
for link prediction
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Reference Problem AI approach Contribution Advantage Disadvantage
[89] Detect overlapping

communities in so-
cial networks using
information about
nodes to boost the
qualify of commu-
nities detected

N.A. Identify topics shared among
nodes based on their content in-
formation

Consider overlapping
community

Do not have a
ground truth for
topics discov-
ered, Uses only
algorithms for
static detection
(Louvain)

[8] Distinguish groups
of more densely
connected nodes in
a social network

N.A. A survey on game theoretic ap-
proaches to CD in social networks

Covers many sub-
fields of game theory
applied to dynamic
and static networks

There is no use of
ML approaches

[95] Benchmark CD
algorithms using
an approach differ-
ent than Girvan &
Newman

N.A. Use another method to bench-
mark CD algorithms, i.e., LFR
(Lancichinetti, Fortunato &
Radichi) benchmark

The LRF bench-
mark generates
networks with as-
pects that better
represent real-world
networks (largely
heterogeneous degree
distribution)

Only uses syn-
thetic dataset
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Chapter 4

Proposal

This research proposes a model for the CD problem in dynamic social networks. The
Actor-Critic RL model is the basis for optimizing a community structure’s modularity
density. The gradient descent strategy called PPO helps to achieve optimization. The
model core is the GNN architecture that moves the agent and the critic components using
GAT layers. The AC2CD architecture is configurable to use GAT or GCN as neural
network implementations. Chapter 5 presents the AC2CD implementation evaluation
using two case studies. Though the main objective of our proposal is to tackle CD in
dynamic social networks, our tests show application flexibility in dynamic and static
contexts. Using a RL approach allows us to tackle CD in dynamic networks grouping the
changes in snapshots and interactively dealing with them.

This chapter presents in Section 4.1 the formalization aspects of CD in dynamic so-
cial networks as an MDP. Section 4.2 details the AC2CD architecture describing each
component. Section 4.3 shows the technologies used to implement the architecture and
helped the case studies executions. Section 4.4 presents the AC2CD execution process
describing the necessary tasks to start with a dataset and achieve detected communities
in the dataset.

4.1 Model Formalization

CD through modularity optimization, as presented in Section 2.2.1, can be seen as a
sequence of steps to improve the modularity score continually. Moreover, this stepwise
improvement keeps the Markov property because the next improvement step depends only
on the current one.

Given a social network modeled as a graph G =< V , E >, where V is a set of nodes v
and E a set of edges e, and a community structure C. In this research, the CD problem
in OSNs is formalized as an MDP < S,A,R, p >, where:
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• S – The set of states st, in the time step t. Each state represents a community
structure, i.e., given a node v ∈ V and a community c ∈ C, a community structure
is a set of pairs < v, c >.

• A – The set of actions at, in the time step t. The action space, i.e., the set of
actions allowed in our model, adds a node to a community or removes a node from a
community. Thus, given a node v as input, the output of the Agent’s neural network
is the probability distribution of v being in the communities ci, with i ∈ [1..|C|].

• R – The reward function, with ri be the reward received by the agent in the step i,
such that:

R(.) =

1, if the action received increased modularity density

−1, otherwise

• p – the transition function implemented by the environment to change between two
consecutive states st and st+1 when receiving an action at. In probability terms
P (st+1|st, at).

4.2 Architecture

The AC2CD architecture consists of a DRL approach based on GAT to find the optimal
community structure in a dynamic social network. We use the message-passing feature
of GAT as an element to propagate the label for each community, thus improving the
modularity density of the community structure. The RL method chosen is Actor-Critic,
implemented with PPO in the clipped version and Generalized Advantage Estimation
(GAE) to compute the surrogate function of the policy gradient. According to [96], PPO
performs the best in terms of profit and loss, training time, and data needed compared
to Q-learning and deep Q-learning. It is worth noting that the proposed architecture can
accommodate other implementations of GNN. In the current implementation, one can
use GAT or GCN. The source code is in Python language and available to the research
community.1

Figure 4.1 shows the AC2CD architecture overview highlighting the Actor-Critic com-
ponents in gray. We find the layers of our Graph Neural Network (GNN) inside these
components. The first layer is a Dropout regularization layer, followed by the first atten-
tion layer, named GATConv1. The ReLU activation and Dropout layers, and the second
attention layer, GATConv2, the output of this GNN is a Softmax activation layer. The

1https://gitlab.com/InfoKnow/SocialNetwork/ac2cd
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input data corresponds to network snapshots taken at each network change and embedded
by the encoder in the data manipulation defining a DTDG (Section 2.2). The Edge list.txt
is a file in the Coordinate Format (COO), or ijv format, where each line corresponds to
an edge, i.e., a pair of node ids and possibly edges attributes, e.g., timestamp, weight,
and other domain-specific features.

Figure 4.1: The AC2CD architecture.

Figure 4.2 highlights the content of the input files in the Data manipulation module
of AC2CD, using Edge list.txt and Ground truth.txt files to generate embeddings. The
Ground truth.txt file stores the node assignment to each community, i.e., for each node
line in the file, there is a pair of node identification and community identification. Fur-
thermore, Figure 4.1 presents the interaction between the agent (light gray), environment
(blue), and internal aspects of these entities.
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Figure 4.2: The AC2CD data manipulation

Each node is represented as embedded in a vector with 256 positions using the Node2Vector
method defined by [31]. This results in a matrix M256xn, where n is the number of ver-
texes. The Edge list.txt might include different network formats, where dynamic networks
are a function of time (temporal) or static networks (non-temporal). The edge list in a
temporal dataset has the following format:

582 364 0

168 472 2797

168 912 3304

2 790 4523

2 322 7926

2 790 8061

42 402 19403

870 337 19560

663 362 21077

663 410 21280

The presented temporal dataset in COO format has its third column representing
the edge’s timestamp with ten lines (first ten edges) from the Email-Eu-core detailed in
Section 5.1. The BlogCatalog non-temporal dataset takes the following format:

1,176

1,233

1,283

1,371

1,394

1,446

1,585

1,645

1,667

1,696
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The Ground truth.txt file includes the valid assignment of each node to its correspond-
ing community. It is a comma-separated file with two fields. The first corresponds to the
node identification and the second to the community identification. The following list
represents the ten first lines of the Ground truth.txt file of the BlogCatalog dataset.

28,1

32,1

36,1

37,1

84,1

129,1

138,1

169,1

172,1

218,1

The Data manipulation module’s role is to make uniform these differences in the orig-
inal representation of the datasets (temporal and non-temporal). Based on the hyperpa-
rameter snapshots, the Data manipulation module splits the input data after splitting the
training, test, and validation data. Then, the split data is embedded in a low-dimensional
space using the Node2Vec. This way, we assume that every network node is present in all
snapshots until the learning process ends.

Figure 4.1 also shows the Environment component presenting its data structures,
as illustrated in Figure 4.3, including the edge index of the network, and a COO list
representing the connectivity of the network. The role of the environment component is
to simulate the network dynamics at each timestep. The environment manages the action
and observation spaces, which are initialized at the beginning of the execution, i.e., at the
time step t0. At each time step t, the environment receives an action at generated by the
agent and computes the effects produced at, developing a new state st+1, a reward rt+1,
and indicating if the state is terminal (line 9 of the Algorithm 2).

Feature
matrix

Detected
community
structure

Edge index

 Environment

Figure 4.3: The AC2CD environment.
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AC2CD Algorithm

The learning process begins with the agent receiving the current state from the environ-
ment. The current state is a representation of the community structure of the network.
After the recent state observation, the Actor agent passes through the node list issuing
the probability distribution of each node in each community. The Critic agent, in its turn,
computes the modularity density for the community structure. The difference between
the current value of the modularity density from ground truth and the previous prediction
issued by the Critic corresponds to the TD error.

The RL action space represents the possible combination of assignments between node
and community. The reward function is implemented as the difference between the current
value for modularity density for the community structure, as described in Equation 2.4 for
each network snapshot and the previous one. A positive reward indicates an improvement
in the modularity density. Otherwise, a negative reward is issued.

The Algorithm 2 presents the main loop of AC2CD. The input of the algorithm (rep-
resented by Input:) is the Dataset consisting of the two input files (Edge list.txt and
Ground truth.txt) and the hyperparameters (Hp) file described in Appendix A.1. In Line
1, the Data manipulation module (DataManip(Dataset)) first creates the node embed-
dings of the input network. It splits the dataset, i.e., the result of the DataManip method
is the list of node embeddings (node_emb) and the list of edges grouped by snapshots
(edge_index ), according to the hyperparameter snapshots and the split ratio for train and
test.

In Line 2, the environment is created (env) by the method (GATEnv), which receives
the node_emb and edge_index to create the features matrix to represent nodes, create
its copy of edge_index and initialize the detected communities.

In Line 3, the Agent (agent) is created by the method Agent(Hp) according to Hp. The
creation of the Agent implicitly creates the Actor, the Critic networks, and the experience
memory to store the last episodes of the execution.

In Line 4, we note that a list of modularities (score_history) stores the scores produced
for each episode.

In the first interaction of the algorithm, the community structure initializes with each
node receiving a random attribution to a community. Line 5, the environment is "reset"
at Line 6, and the main loop begins. At each iteration, while not in a terminal state,
the Agent chooses an action based on the observation provided by the environment (Line
8) and passes that action to the environment (Line 9), which executes a step returning
a new observation, the reward, and a flag indicating whether the new state is terminal.
For our implementations, the environment returns a terminal state when all nodes update
their community assignment, even if the new community is the same as the older one. In

44



Line 10, the current observation, the last action, reward, Actor output (prob), and Critic
output (val) are stored in the Agent’s experience memory. At mod(Hp.traininterval)

interactions (Line 11), the Agent goes for a train session, Line 12, to update its policy
πθ and value function q̂ω(s, a). The training process follows the regular training for any
GNN-based RL model using the policy gradient PPO, which consists of a loop where the
parameter θ of the objective function is updated. After this process, we have the model
file ready to be used to infer the community assignment for nodes in a network and the
evolution of the score stored in the score_history variable.

Algorithm 2: Community Detection in AC2CD
Input: Dataset
Input: Hp

1 node_emb, edge_index← DataManip(Dataset);
2 env ← GATEnv(node_emb, edge_index);
3 agent← Agent(Hp);
4 score_history ← [];
5 while n < Hp.max_iter do
6 obs← env.reset();
7 while not done do
8 action, prob, val ← agent.choose_action(obs);
9 new_obs,reward,done ← env.step(action);

10 agent.remember(obs, action, reward,prob,val);
11 if n % Hp.train_interval == 0 then
12 agent.learn();

4.3 Technologies

This section describes the technologies used to implement each component of the AC2CD
architecture and the hardware used to run the study cases. This description aims to aid
the proposed model’s reproducibility and extensibility by showcasing the implementations’
library dependencies.

We used some libraries in the experiments to avoid re-implement established solutions,
such as the basic library blocks of GNN and the library for the environment block of RL.
The PyTorch Geometric library [97]2 was used to implement the GNN-related stuff like
GAT layers (GATConv1 and GATConv2 ) and the datasets of the experiments. The en-
vironment component of RL was implemented as a custom environment using the Gym
library [98] as the basis. The matrix manipulation and computation out of tensor arith-

2Available at: https://pytorch-geometric.readthedocs.io/
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metic were done with the Numpy library [99].3 The metrics used in the experiments and
presented in Section 2.2.3 are available on the Scikit learn library.4

4.4 Executing AC2CD

The AC2CD execution process includes three main sets of activities, pre-processing, train-
ing and testing, and execution. Figure 4.4 presents the process from defining the Hp for
the network embedding and model training until the Show results task with the commu-
nities assigned to each node.

Figure 4.4: The AC2CD execution process.

The Pre-processing is the starting point of the AC2CD execution. The first task in this
process is the definition of the Hp. These hyperparameters are responsible for configuring
the framework, as presented in Section A.1. The second task is the generation of the

3Available at: https://numpy.org/
4Available at: https://scikit-learn.org/stable/
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snapshots in case the dataset is not temporal (i.e., the edges without timestamps). The
third task is the generation of the network embedding using the Node2Vec. However, any
other embedding technique that preserves the community structure can be applied.

The Training and Test process takes the vectors embedding the input graph and the
corresponding edge index, splitting the nodes to train and test the model. The training
process runs until the maximum iteration or the "patient threshold" are reached. The
patient threshold is an empirically defined value corresponding to the number of training
iterations without modification in the loss. The model configuration is saved once the
training is over (i.e., the matrices with weights for the Actor and Critic networks). During
the training session, we can use the model to make predictions, but the accuracy of the
model is not guaranteed.

The execution process is responsible for loading the network to be analyzed, loading
the previously trained model, and making the predictions of the community, showing the
community structure in a set of text files, each corresponding to the network structure
detected for the respective network snapshot.

To execute the AC2CD architecture, one must install the dependencies in the re-
quirements.txt file, described in Section A.2, which contains a list of libraries required to
execute the entire workflow. Once installing the required libraries, you can configure the
framework with an environment file, choose the dataset, and finally run the main file, i.e.,
main_ppo.py. During the execution, a new embedding file is created in the current direc-
tory if there is no embedding file for the desired dataset. Once completing the network
embedding, the training and test process begins following the respective set of Hp. When
this process finishes, we have the trained model persisted as two files, one for the Actor
network and another for the Critic network.

Chapter 5 presents the experiments executed to validate the proposed model. We con-
duct a comparison with classical and the state of the art solutions for CD using real-world
datasets and discuss the results. The conducted experiments to evaluate the accuracy of
AC2CD-implemented architecture consisted of feeding the environment with an embedded
network version by the Data manipulation module. At each iteration, the cycle triggers
the training and testing phases. The agent computes a node assignment (action) and sub-
mits this action to the environment, returning the reward and the corresponding network
structure as the next state. The objective is continual to improve the modularity density
at the end of each episode or until reaching a stalled state for the modularity density.
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Chapter 5

Experiments and Discussion

This section describes the experiments conducted to verify the efficacy of the AC2CD
architecture proposed. Section 5.1 describes the datasets used to validate the proposed
model highlighting the different aspects of static and dynamic networks. Section 5.2
presents a comparative study with four implementations representing different theoretical
approaches. Section 5.3 offers a second round of experiments focusing on the heterogeneity
of the datasets and the impact of this aspect on the performance of the proposed model.

5.1 Datasets

The dataset contains the friendship network crawled and group memberships. The ex-
periment used five real-world datasets: Email-Eu-core, BlogCatalog3, Flickr , Youtube2,
and High School, categorized in static or dynamic depending on the presence of anno-
tated timestamps in the edge list. We choose some datasets to allow a direct comparison
with state-of-the-art studies as [37] and [38]. We found the datasets with the help of
the Colorado Index of Complex Network Project (ICON),1 downloaded from the Social
Computing Data Repository of Arizona State University [101],2 and the Stanford Net-
work Analysis Project.3 Table 5.1 describes basic statistics of the used datasets, including
the number of nodes, edges, communities, and the indication of whether the dataset is
dynamic.

The Email-Eu-core dataset was generated using email data from a large European
research institution. The emails represent communication between institution members
(the core). The dataset does not contain incoming messages from or outgoing messages
to the rest of the world. In the list of edges file, a line represents a directed edge (u, v, t),

1Available at https://icon.colorado.edu/. Accessed on 2022-01-10.
2Available at http://datasets.syr.edu/pages/datasets.html. Accessed on 2022-01-16.
3Available at https://snap.stanford.edu/data/index.html. Accessed on 2022-01-16.
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which means that person u sent an email to person v at time t. We created a distinct
edge for each email recipient. The communities of this dataset represent departments,
i.e., community members are persons who work together in the same department.

Table 5.1: Dataset characterization with the number of nodes, edges, communities, and
dynamicity.

Dataset name # Nodes # Edges # Communities Dynamic
High School 329 45047 9 Yes
Email-Eu-core 1,005 25,571 42 Yes
BlogCatalog3 10,312 333,983 39 No
Flickr 80,513 5,899,882 195 No
Youtube2 1,138,499 2,990,443 47 No

Intuition tells us that people inside a community are more connected than outside.
Thus, people working in the same department have more probability of sending emails in
the same department. Figure 5.1 presents the community distribution in this dataset. The
Email-Eu-core dataset shows a heavy tail in the distribution of members for communities
and the concentration of almost 10% (109 members) of members in a single community
and two districts with one member. However, a community with only one member seems
like a paradox, but we extracted this information directly from the ground truth.

Figure 5.1: The Email-Eu-core communities histogram.
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The BlogCatalog3 is a non-temporal dataset created from the network of a social blog
directory that manages the bloggers and their blogs. We crawled this dataset from the
BlogCatalog website.4 The contact network and selected group membership information
are in two files: the edge index and the community attribution. This dataset implements
an undirected network with an edge 1,2 means blogger with id "1" is a friend with blogger
id "2". Thus, when handling it, the data manipulation creates the snapshots as configured
by the Hp. Figure 5.2 presents the distribution of participants in each community of this
dataset. Here, we see a heavy tail profile but with a concentration of 16% of members in
the most extensive community. The second biggest community with almost half members
of the first one (1623/986).

Figure 5.2: The BlogCatalog3 communities histogram.

The Flickr dataset represents the network crawled from the Flickr website.5 Flickr is
an image and video hosting website, web services suite, and online community. Both the
contact network and selected group membership information are in this dataset. Each
edge implements a friendship relationship. Nevertheless, this dataset represents a social
network, and the timestamps of the edges are not present. Thus, this dataset is consid-
ered non-temporal. Figure 5.3 presents the community distribution in this dataset. This
dataset has the most extensive number of communities (195). However, this represents

4http://www.blogcatalog.com
5https://www.flickr.com/

50

http://www.blogcatalog.com
https://www.flickr.com/


the more significant relationship between members of the community. The more extensive
community concentrates 17% members, and the second one only 8%. The concentration
of members in only two communities is 25%, i.e., 1% of communities focus 25% of mem-
bers. This dataset is among the most challenging for its number of nodes, number of
communities, and heterogenous distribution of members for each community.

Figure 5.3: The Flickr communities histogram.

The Youtube2 dataset crawled from the YouTube website,6, and each edge represents
a friendship relationship in the network. Youtube is a video-sharing website where users
can upload, share, and view videos. Figure 5.4 presents the community distribution in this
dataset. Once more, this network offers a heavy tail. However, showing a homogeneous
distribution of community members, the more extensive community has only ten times
more members than the smaller one, and the 13 smaller communities have less than 120
members.

The High School dataset is a collection of networks containing the temporal network
of contacts between students in a high school in Marseilles, France. The first network
presents the students’ connections of three classes over four days in December 2011. The
second network corresponds to the students’ contacts of five courses during seven days
in November 2012 (from Monday to Tuesday of the following week). Figure 5.5 presents
the community distribution in this dataset representing a class the student is enrolled.

6http://www.youtube.com
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Figure 5.4: The Youttube2 communities histogram.

Thus, each color is a class with nine communities (i.e., PC, 2BIO3, PC*, MP*2, 2BIO1,
2BIO2, PSI*, MP, MP*1). The High School is the most homogeneous dataset used in
the experiments, with the smaller community representing 66% the number of members
of the bigger one.

In the training context, our proposal adopts inductive learning using a different data
set to train and test. The labeled nodes of these datasets are used according to a baseline
of comparison in [37]. We split the BlogCatalog3 dataset in the proportion of 10%,
30%, 60%, 90% of labeled nodes, and the other datasets are 1%, 3%, 6%, and 9%. This
progression makes the prediction task more manageable, as used in the baseline. Figure 5.6
presents the distribution of members in communities for each dataset. As previously
described, the Flickr dataset carries the most heterogeneous members distribution, with
many communities represented as outliers. Almost the same is valid for the Youtube2
dataset, where three communities are considered outliers. As the statistics tell, an outlier
is a value far away from the focal group of values.

As shown in Table 5.1 and Figure 5.6, the Flickr network has the most extensive
number of communities, and Youtube2 has the most considerable number of nodes and
edges. Both datasets present a heterogeneous distribution of nodes by communities. Those
aspects make these two datasets the most challenging to find communities, mainly for the
number of communities and the possible diversity in these communities. High School
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and Email-EU-Core present a more homogeneous distribution of nodes by communities.
However, they are temporal, making them interesting for our analysis.

Figure 5.5: The High School communities histogram.

5.2 Case Study 1

This experiment analyzed the performance of the AC2CD compared to different methods
and implementations. We choose structural embedding, community embedding, GAN,
and GCN methods for their highlighted relevance in CD. The comparison study was
executed in four different datasets as presented in Section 5.1.

The experiment used real-world datasets comparing the results with state-of-art ap-
proaches presented by [37], named CNN, and [38], named CLARE. It is worth observing
that the experimental results presented in [37], especially concerning the CNN algorithm,
which is not available, were directly imported into our results containing the use of the
same evaluation metrics. We used the confidence interval metrics for micro-averaged
Micro-F1 and Macro-F1 rendered by [72] and presented in Section 2.2.3. Furthermore, to
evaluate the accuracy of CD methods, we used the NMI score defined by [75], comparing
our results to the algorithms described in Section 5.2 using Email-EU-core dataset (i.e.,
SDNE, ComE, GraphGAN, and CLARE).
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Figure 5.6: The community members distribution.

5.2.1 State-of-the-art Comparisons

The methods present in this comparative study represent different ways to use ML for
CD. They are representatives of solution categories and have implementations available
in public repositories. We used the methods in [37] and [38], allowing us to compare the
approaches directly.

SDNE

The Structural deep network embedding (SDNE) is a semi-supervised deep network
model that exploits first-order and second-order proximity to preserve the network struc-
ture [36].7 We used the second-order proximity by the unsupervised component to capture
the global network structure. At the same time, the first-order proximity is used as the
supervised information in the supervised part to preserve the local network structure. By
jointly optimizing them in the semi-supervised deep model, this method can maintain
both the local and global network structure and is robust to sparse networks. The SDNE
architecture overview is present in Figure 5.7, which comprises multiple nonlinear mapping
functions to map the input data to a highly nonlinear latent space to capture the network
structure. In this model, each vertex is embedded using an unsupervised approach and
then pair-wised using a supervised component based on Laplacian Eigenmaps.

7Available at https://github.com/suanrong/SDNE
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Figure 5.7: The SDNE architecture. Source: [36].

ComE

The ComE defines a method that relies on the node and community embedding for learn-
ing graph embeddings in a closed loop among community embedding, CD, and node
embedding [35].8 On the one hand, node embedding can help improve CD, which outputs
good communities for fitting better community embedding. On the other hand, we can use
community embedding to optimize the node embedding by introducing community-aware
high-order proximity. ComE closed loop for learning community embedding is present in
Figure 5.8, where each edge denotes the transition between each task. The first one is
the Node embedding. This task is inspired by the Deep Walk [102], followed by the CD
using spectral clustering and the community embedding using Gaussian Mixture Model
(GMM).

Community Detection Community Embedding

Node Embedding

2

1 3

Figure 5.8: The ComE architecture. Source: [35].

8Available at https://github.com/andompesta/ComE
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GraphGAN

The GraphGAN is a graph representation framework proposed by [34]9 that implements
the GAN approach unifying generative and discriminative thinking for graph representa-
tion learning.

The GAN formulation in GraphGAN follows the terms. Let G = (V , E) be a given
graph, where V = {v1, ..., vV } represents the set of vertices and E = {eij}Vi,j=1 represents
the set of edges. For a given vertex vc, N (vc) is defined as the set of vertices directly
connected to vc, the size of which is typically much smaller than the total number of
vertices V . The conditional probability ptrue(v|vc) denotes the underlying true connectiv-
ity distribution for vertex vc, which reflects vc’s connectivity preference distribution over
all other vertices in V . From this point of view, N (vc) can be seen as a set of observed
samples drawn from ptrue(v|vc).

Specifically, GraphGAN aims to train two models during the learning process: (1) Gen-
erator G(v|vc), which tries to fit the underlying true connectivity distribution ptrue(v|vc)
as much as possible, and generates the most likely vertices to be connected with vc, and
(2) Discriminator D(v, vc), which tries to distinguish well-connected vertex pairs from
ill-connected ones, and calculates the probability of whether an edge exists between v and
vc. In the proposed GraphGAN, the generator G and the discriminator D act as two play-
ers in a minimax game: the generator tries to produce the most indistinguishable “fake”
vertices under guidance provided by the discriminator, while the discriminator tries to
draw a clear line between the ground truth and “counterfeits” to avoid being fooled by the
generator. Competition in this game drives both to improve their capability until the gen-
erator is indistinguishable from the accurate connectivity distribution. Figure 5.9 presents
the architecture overview of GraphGAN and the evolution of an execution highlighting
the role of the Generator G and Discriminator D.

CLARE

The study undertaken by [38] presented CLARE10 framework consisting of two key compo-
nents: Community Locator and Community Rewriter. The community locator can quickly
locate potential communities by seeking subgraphs similar to training ones. Specifically,
CLARE encodes communities into vectors, measures the similarities between commu-
nities in the latent space, and then discovers candidates based on the similarities with
the nearest neighbors matching strategy. The community rewriter further adjusts those
candidate communities by introducing global structural patterns. CLARE frames such
refinement process as a DRL task and optimizes this process via policy gradient. For

9Available at https://github.com/hwwang55/GraphGAN
10Available at https://github.com/FDUDSDE/KDD2022CLARE
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Figure 5.9: The GraphGAN architecture. Source: [34].

located communities, the rewriter provides two actions: adding outer nodes or dropping
existing nodes, thus refining their structures flexibly and intelligently.

The core of CLARE is a GCN that learns to encode nodes and community representa-
tions. Figure 5.10 presents the CLARE architecture overview with emphasis on the two
main components, at left the Community Locator and right the Community Rewriter.
Note that DRL is used only in the Community Rewriter.

The Community Rewriter component implements DRL with the following specifica-
tion. The state is a predicted community united with its outer boundary. The action is
a combination of (aexcludet , aexpandt ), i.e., at each time t, one node is excluded, and another
one is included in a community Ct. The reward signal is taken directly from the F1 score
of the community structure.

Figure 5.10: The CLARE architecture. Source: [38].
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Results

The analysis of the Email-Eu-Core network presented by [103] illustrates the community
network topology as in Figure 5.11. As noted by [101], the largest community has 98%
of node concentration. Table 5.2 summarizes the results highlighting the excellent perfor-
mance of AC2CD. The results of the Macro-F1 score in Figure 5.12 resemble the excellent
performance of CLARE architecture using the GCN algorithm to learn such concentrated
edges in one node. The results of the Micro-F1 score in Figure 5.13 are not so good to
capture such regularity in the density distribution of communities.

Figure 5.11: The Email-EU-Core community network topology. Source: [103].

Table 5.2: Experimental results comparison with Email-Eu-core dataset.
Lableled Nodes

1% 3% 6% 9%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro F1 Macro-F1

GraphGAN 25.66 14.88 36.01 20.54 39.71 26.87 44.36 31.55
ComE 24.65 13.21 35.64 18.78 39.21 25.98 39.71 29.26
SDNE 28.02 16.88 33.70 21.94 38.48 25.11 39.08 29.32
CLARE 38.32 31.72 38.67 31.98 38.78 32.92 38.92 34.10
AC2CD 30.22 17.26 40.47 23.14 46.21 31.36 46.60 35.69
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Figure 5.12: Macro-F1 assessment for Email-EU-Core dataset.

Figure 5.13: Micro-F1 assessment for Email-EU-Core dataset.
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The authors in [104] propose a novel method for multi-task learning-based network
embedding as presented in Figure 5.14. Note that there is a regular distribution of nodes in
each community. Table 5.3 summarize the results highlighting the excellent performance
of AC2CD. The results of Macro-F1 in Figure 5.15 present good performance with the
CLARE using the GCN algorithm to learn the community structure as the network is
composed of a homogeneous community distribution. However, the Micro-F1 in Figure
5.16 presents not-so-good results of the GCN since this metric computes the sensitivity of
the difference among density distribution of communities, where more elaborate learning
algorithms are needed to capture such complex features.

Figure 5.14: The BlogCatalog community network topology. Source: [104].

Table 5.3: Experimental results comparison with BlogCatalog3 dataset.
Lableled Nodes

10% 30% 60% 90%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GraphGAN 28.78 17.88 39.01 23.54 42.71 29.87 44.76 33.01
ComE 27.18 16.21 38.64 22.78 41.68 28.98 44.12 32.46
SDNE 31.11 19.88 36.70 24.94 41.88 28.11 44.88 31.22
CLARE 30.51 36.72 31.67 36.98 31.70 37.02 31.92 38.12
AC2CD 33.18 20.41 43.62 27.34 49.36 35.56 51.85 40.35
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Figure 5.15: Macro-F1 assessment for BlogCatalog dataset.

Figure 5.16: Micro-F1 assessment for BlogCatalog dataset.
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The authors in [105] use the Flickr network dataset as presented in Figure 5.17 to
validate their peer prediction based trustworthy service rating system for social networks.
Note the complexity of the community network topology. Table 5.4 summarizes the results
highlighting the excellent performance of AC2CD. The results of Macro and Micro-F1
scores in Figures 5.18 and 5.19 resemble the GCN difficulty to detect the community
structure, where the actor-critic approach presents the best results being able to capture
such complex features in the community structure. We highlight that such a dynamic
community network topology associated with the Micro-F1 metric sensitivity resembles
the importance of more robust approaches to CD.

Figure 5.17: The Flickr community network topology. Source: [105].

Table 5.4: Experimental results comparison with Flickr dataset.
Lableled Nodes

1% 3% 6% 9%
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GraphGAN 23.01 13.92 33.10 19.91 37.77 25.63 42.32 27.39
ComE 22.66 12.78 32.68 19.12 36.59 25.11 41.67 26.88
SDNE 23.74 11.69 34.76 19.87 37.83 23.29 41.14 26.13
CLARE 35.94 14.15 36.88 17.91 46.43 24.46 46.51 24.74
AC2CD 28.07 14.67 37.81 22.10 43.08 29.50 48.77 33.26
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Figure 5.18: Macro-F1 assessment for Flickr dataset.

Figure 5.19: Micro-F1 assessment for Flickr dataset.
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The results of the NMI score generate a box plot graph as in Figures 5.20 and 5.21. The
box plot describes the mean, median, and standard deviation for the executions of each
ML approach. Note that the GNN-based strategies (i.e., GraphGAN, AC2CD, CLARE)
presented on average superior performance than others. The GraphGAN presents a sym-
metric profile related to the medium. The SDNE shows a high median where most results
are near the maximum NMI. The ComE with a single deep learning approach presents
a low median where most results are near the minimum NMI value. On average, the
AC2CD offers the best NMI result. CLARE’s standard deviation is minimal compared to
the other approaches with a stable profile.

Figure 5.20: Comparative box plot of NMI values for the Email-EU-Core dataset.

Figure 5.21: Comparative box plot of NMI values for the BlogCatalog2.
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The results achieved by CLARE motivated us to undertake a new case study to in-
vestigate the GNN implementations varying the dataset, focusing on the implementation
performance and the corresponding community profile in each network.

5.3 Case Study 2

The research methodology adopted in this study case mixes exploratory, experimental,
and quantitative analysis. Case Study 2 focuses on the heterogeneity of the community
size of three datasets and its impact on the performance of the CD methods. The datasets
used in this experiment are BlogCatalog3, Email-EU-Core, and High School, as described
in Section 5.1. The motivation to conduct Case Study 2 is the work of [38], where the
CD framework implementation takes two different GNN including GAT, and GCN. For
comparison, we used the GCN implementation in both the Actor and Critic components.

The experiment objective is to compare two implementations of GNN available in the
AC2CD with GAT and GCN to evaluate their accuracy considering the heterogeneity of
the datasets. The NMI score evaluates the performance of the implementations. The
selection of which implementation to run is in the hyperparameter nn_type. Section 5.3.1
presents the results achieved with a discussion.

5.3.1 Results and Discussion

The intuition tells us that the GAT implementation can be more flexible to cope with
more complex network structures for using the attention mechanism as a substitute for
the statically normalized convolution operation of the GCN.

Table 5.5 presents the results of the experiment using the NMI score. For each dataset,
AC2CD was configured to use GAT and GCN. Note the GAT implementation presents a
slightly better performance with the three datasets. We consider this aspect a consequence
of using the learnable attention mechanism. We also highlight the better performance us-
ing both implementations in datasets with fewer classes (i.e., High School). Figure 5.22
presents the NMI comparison of the three datasets highlighting the slightly superior per-
formance of GAT implementation.

Table 5.5: The AC2CD results using NMI score.
Dataset GAT GCN
BlogCatalog3 0.75 0.70
Email-EU-Core 0.72 0.68
High School 0.80 0.72
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Figure 5.22: The AC2CD results with GAT and GCN using NMI score.

Table 5.6, reproduced from [38], presents the comparison of CLARE using three dif-
ferent datasets (i.e., Amazon, DBLP, Livejournal). The objective is to investigate the
accuracy of different GNN architectures in the same task of CD. Note a slight difference
among the implementations using GCN, Graph Isomorphism Network (GIN), and GAT.
These results confirm our finding that using GAT or GCN presents almost no difference
in accuracy.

Table 5.6: Comparison with different graph neural network encoders. Locator results are
reported by [38].

Amazon DBLP Livejournal
F1 Jaccard ONMI F1 Jaccard ONMI F1 Jaccard ONMI

GCN 0.7438 0.473 0.686 0.3819 0.3116 0.2585 0.4899 0.393 0.3592
GIN 0.7169 0.6196 0.6313 0.3841 0.3100 0.2561 0.4943 0.4004 0.3660
GAT 0.7231 0.6235 0.6318 0.3751 0.3021 0.2446 0.4745 0.3806 0.3405

Moreover, a fake news detection study of [106] using three types of GNN architec-
tures (GAT, GCN, and GraphSAGE) concludes the performance of GNN (i.e., GCN or
GAT) produced an entirely insignificant difference. In their implementation, they chose
GraphSAGE to be less time-consuming in the text classification task of real or fake.

Thus, GNN exhibits robust results independent of the specific architecture chosen.
However, the AC2CD actor-critic approach provides better outputs associated with GNN
models, as presented in the conducted experiments with three different datasets. In
Chapter 6, we delineate the conclusions of this work and give some hints for future work.
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Chapter 6

Conclusion

This research presents the design and implementation of an adaptive model to CD in dy-
namic social networks based in RL. We proceed with two rounds of study cases comparing
our model with classical and state-of-the-art solutions to CD. In both studies, our model
achieved relevant results.

Although the research of CD solutions may seem mature, in recent years, we per-
ceive a growing volume of publications seeking to improve the research on CD solutions
performance towards the usage of high volume datasets [3] or using ML to enhance the
quality of scoring response [22–24]. However, as the authors in [25] indicate, the aggre-
gating topological and content information can enable a more informative CD, in which
cues from different sources integrate into more powerful models. This research brought a
candle to help clarify CD in the context of Dynamic Social Networks. Furthermore, we
demonstrated the effectiveness of using GNN and RL as an alternative to solve the CD
problem in OSN.

The two rounds of experiments presented the relevant results of ML-based solutions
to CD, mainly the stability of the results when facing the complexity of datasets like
Flickr or Youtube. In Case Study 1, we demonstrated the efficacy of our proposed model
compared to classical and state-of-the-art solutions. In Case Study 2, we focused on the
robustness and flexibility of our model applied to datasets with different features and
using two types of GNN, concluding that there is an irrelevant difference in accuracy
in the considered GNN architectures (GAT and GCN) and promoting the Actor-Critic
architecture with PPO as highlighted aspects. These studies validated our hypothesis
that the application of the DRL approach to continually improve the modularity density
of a community structure dealing with dynamic social networks considering the state of
the art of classical and ML-based solutions. In addition, DRL improve the accuracy of
CD in dynamic social networks considering the state of the art of classical and ML-based
solutions.
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Some questions arise during the conduction of this research in a divergent way. These
questions are left as future work since they have the potential to originate another thesis:

• The use of explainable AI to better understand each component’s influence on the
results. We aim to investigate which part contributes more and how much to the
model’s results. We may improve the model’s accuracy by experimenting with
different components. In addition, the resolution limit presented by [32] might
be explored more profoundly in the semi-supervised case focusing on unbalanced
community sizes to test the DRL method.

• Improve the visualization of the detected communities and verify the accuracy inside
each community. This research path sheds more light on the results achieved by
the model, giving insights into the model’s performance by comparing the results
achieved with ground truth.

• Explore using distributed training to reduce the time necessary to train the model.
In this same direction, another approach may be to explore recurrent CNN layers.
In the data manipulation module, we might try another embedding algorithm.

• Testing the architecture with other temporal datasets and running datasets with
more snapshots to verify whether there is an improvement in the accuracy score.
Such future work is vital to expose the proposed model to diverse network topologies.

• Compare with probabilistic-based methods such as MRF. The authors in [107]
present a technique that formalizes modularity as an energy function based on the
structures of MRF associated with the belief propagation method to find communi-
ties in a network.

• The context of this research was in OSN. However, we could apply the AC2CD to
other contexts like image segmentation, where objects in an image are communities.

68



References

[1] Mark E. J. Newman and Michelle Girvan. Finding and evaluating community struc-
ture in networks. Physical Review E, 69(2):026113, 2004. 1, 12, 13, 15

[2] Stanley Wasserman and Kathrine Faust. Social Network Analysis: Methods and
Applications. Cambridge University Press, 1994. 1, 3

[3] Rahil Sharma and Suely Oliveira. Community detection algorithm for big social
networks using hybrid architecture. Big data research, 10:44–52, 2017. 1, 3, 67

[4] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:
extraction and mining of academic social networks. In Proc. of the 14th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 990–998.
ACM, 2008. 1

[5] Gil Amitai, Arye Shemesh, Einat Sitbon, Maxim Shklar, Dvir Netanely, Ilya Venger,
and Shmuel Pietrokovski. Network analysis of protein structures identifies functional
residues. Journal of molecular biology, 344(4):1135–1146, 2004. 1

[6] Lovro Šubelj, Štefan Furlan, and Marko Bajec. An expert system for detecting
automobile insurance fraud using social network analysis. Expert Systems with
Applications, 38(1):1039–1052, 2011. 1

[7] Edward J. S. Hearnshaw and Mark M. J. Wilson. A complex network approach
to supply chain network theory. International Journal of Operations & Production
Management, 2013. 1, 4

[8] Annapurna Jonnalagadda and Lakshmanan Kuppusamy. A survey on game theo-
retic models for community detection in social networks. Social Network Analysis
and Mining, 6(1):83, 2016. 1, 33, 38

[9] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex
networks: Structure and dynamics. Physics Reports, 424(4):175–308, 2006. 1

[10] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174,
2010. 1, 11

[11] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64, 2007.
1

69



[12] Mark EJ Newman and Michelle Girvan. Mixing patterns and community structure
in networks. In Statistical mechanics of complex networks, pages 66–87. Springer,
2003. 2

[13] Michelle Girvan and Mark EJ Newman. Community structure in social and biolog-
ical networks. Proceedings of the national academy of sciences, 99(12):7821–7826,
2002. 2

[14] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010. 2

[15] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi. Defining and identifying communities in networks. Proceedings of
the national academy of sciences, 101(9):2658–2663, 2004. 2

[16] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.
2

[17] Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu,
Cecile Paris, Surya Nepal, Di Jin, et al. A comprehensive survey on community
detection with deep learning. IEEE Transactions on Neural Networks and Learning
Systems, 2022. 3

[18] Di Jin, Zhizhi Yu, Pengfei Jiao, Shirui Pan, Dongxiao He, Jia Wu, Philip Yu, and
Weixiong Zhang. A survey of community detection approaches: From statistical
modeling to deep learning. IEEE transactions on knowledge and data engineering,
pages 1–22, 2021. 3, 17

[19] Jianyong Sun, Wei Zheng, Qingfu Zhang, and Zongben Xu. Graph neural net-
work encoding for community detection in attribute networks. arXiv preprint
arXiv:2006.03996, 2020. 3

[20] Hocine Cherifi, Gergely Palla, Boleslaw K Szymanski, and Xiaoyan Lu. On commu-
nity structure in complex networks: challenges and opportunities. Applied Network
Science, 4(1):1–35, 2019. 3

[21] Martin Rosvall, Jean-Charles Delvenne, Michael T Schaub, and Renaud Lambiotte.
Different approaches to community detection. Advances in network clustering and
blockmodeling, pages 105–119, 2019. 3, 11, 13

[22] Yao Zhang, Yun Xiong, Yun Ye, Tengfei Liu, Weiqiang Wang, Yangyong Zhu, and
Philip S Yu. Seal: Learning heuristics for community detection with generative
adversarial networks. In Proc. of the 26th ACM SIGKDD Int. Conf. on Knowledge
Discovery & Data Mining, pages 1103–1113, 2020. 3, 33, 35, 67

[23] Ali Mohammad Saghiri, M. Daliri Khomami, and Mohammad Reza Meybodi. Ran-
dom Walk Algorithms: Definitions, Weaknesses, and Learning Automata-Based Ap-
proach, pages 1–7. Springer International Publishing, Cham, 2019. 3, 33, 37, 67

70



[24] Eduardo C. Paim, Ana L. C. Bazzan, and Camelia Chira. Detecting communities in
networks: a decentralized approach based on multiagent reinforcement learning. In
IEEE Symposium Series on Computational Intelligence (SSCI), pages 2225–2232,
2020. 3, 33, 36, 67

[25] Ana P. Appel, Renato L. F. Cunha, Charu Aggarwal, and Marcela Megumi Ter-
akado. Temporally evolving community detection and prediction in content-centric
networks. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, Dublin, Ireland, September 2018. Springer. 3, 67

[26] Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. In Int. symposium on computer and information sciences, pages
284–293. Springer, 2005. 3, 14

[27] John Scott. Social network analysis. Sociology, 22(1):109–127, 1988. 3

[28] Fang Zhang, Anjun Ma, Zhao Wang, Qin Ma, Bingqiang Liu, Lan Huang, and Yan
Wang. A central edge selection based overlapping community detection algorithm
for the detection of overlapping structures in protein–protein interaction networks.
Molecules, 23(10):2633, 2018. 4

[29] Márcia Oliveira and Joao Gama. An overview of social network analysis. Wiley In-
terdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(2):99–115, 2012.
4

[30] Gerardus Blokdyk. Dynamic Network Analysis A Complete Guide. 5STARCooks,
2020. 5

[31] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 855–864, 2016. 6, 17, 42

[32] Santo Fortunato and Marc Barthelemy. Resolution limit in community detection.
Proceedings of the national academy of sciences, 104(1):36–41, 2007. 6, 14, 68

[33] Aurélio Ribeiro Costa and Célia Ghedini Ralha. AC2CD: An actor-critic architec-
ture for community detection in dynamic social networks. Knowledge-Based Sys-
tems, 261:110202, February 2023. 6

[34] Hongwei Wang, Jia Wang, Jialin Wang, Miao Zhao, Weinan Zhang, Fuzheng Zhang,
Xing Xie, and Minyi Guo. Graphgan: Graph representation learning with gener-
ative adversarial nets. In Sheila A. McIlraith and Kilian Q. Weinberger, editors,
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI-18), the
30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI
Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Or-
leans, Louisiana, USA, February 2-7, 2018, pages 2508–2515. AAAI Press, 2018. 6,
56, 57

71



[35] Sandro Cavallari, Vincent W. Zheng, Hongyun Cai, Kevin Chen-Chuan Chang,
and Erik Cambria. Learning community embedding with community detection and
node embedding on graphs. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM ’17, page 377–386, New York,
NY, USA, 2017. Association for Computing Machinery. 6, 55

[36] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’16, page 1225–1234, New York, NY, USA, 2016.
Association for Computing Machinery. 6, 54, 55

[37] Aniello De Santo, Antonio Galli, Vincenzo Moscato, and Giancarlo Sperlì. A deep
learning approach for semi-supervised community detection in online social net-
works. Knowledge-Based Systems, 229:107345, 2021. 6, 19, 33, 34, 48, 52, 53, 54

[38] Xixi Wu, Yun Xiong, Yao Zhang, Yizhu Jiao, Caihua Shan, Yiheng Sun, Yangyong
Zhu, and Philip S Yu. Clare: A semi-supervised community detection algorithm.
In Proceedings of the 28th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD’22, pages 2059–2069. ACM, 2022. 7, 33, 34, 48,
53, 54, 56, 57, 65, 66

[39] Richard P. Smiraglia. 4 - empirical techniques for visualizing domains. In Richard P.
Smiraglia, editor, Domain Analysis for Knowledge Organization, pages 51–89. Chan-
dos Publishing, 2015. 9

[40] A.M. Chiesi. Network analysis. In Neil J. Smelser and Paul B. Baltes, editors,
International Encyclopedia of the Social & Behavioral Sciences, pages 10499–10502.
Pergamon, Oxford, 2001. 9

[41] Gilbert Strang. Linear algebra and its applications. Belmont, CA: Thomson, Brook-
s/Cole, 2006. 10

[42] Daniel R. Figueiredo. Introdução a redes complexas. Atualizações em Informática,
pages 303–358, 2011. 10

[43] Menglin Yang, Min Zhou, Marcus Kalander, Zengfeng Huang, and Irwin King.
Discrete-time temporal network embedding via implicit hierarchical learning in hy-
perbolic space. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pages 1975–1985, 2021. 10

[44] Ferran Parés, Dario Garcia Gasulla, Armand Vilalta, Jonatan Moreno, Eduard
Ayguadé, Jesús Labarta, Ulises Cortés, and Toyotaro Suzumura. Fluid communities:
A competitive, scalable and diverse community detection algorithm. In Int. Conf.
on Complex Networks and their Applications, pages 229–240. Springer, 2017. 11, 15

[45] Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic
blockmodels: First steps. Social networks, 5(2):109–137, 1983. 11, 17

[46] Mark E. J. Newman. Finding community structure in networks using the eigenvec-
tors of matrices. Physical Review E, 74(3):036104, 2006. 11

72



[47] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations
with global structural information. In Proceedings of the 24th ACM international
on conference on information and knowledge management, pages 891–900, 2015. 11,
16

[48] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques
for embedding and clustering. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic (NIPS), page
585–591, Cambridge, MA, USA, 2001. MIT Press. 11, 16

[49] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In Proc. of the 22nd ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 1105–1114, 2016. 11, 16

[50] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. science, 290(5500):2323–2326, 2000. 11, 16

[51] Mason A Porter, Jukka-Pekka Onnela, and Peter J Mucha. Communities in net-
works. Notices of the AMS, 56(9):1082–1097, 2009. 12

[52] Andrea Lancichinetti and Santo Fortunato. Limits of modularity maximization in
community detection. Physical Review E, 84(6):066122, 2011. 12

[53] Mark E. J. Newman. Modularity and community structure in networks. Proc Natl
Acad Sci USA, 103(23):8577–8582, 2006. 12, 13

[54] Vincent A Traag, Ludo Waltman, and Nees Jan Van Eck. From louvain to leiden:
guaranteeing well-connected communities. Scientific reports, 9(1):1–12, 2019. 13

[55] Alex Arenas, Alberto Fernandez, and Sergio Gomez. Analysis of the struc-
ture of complex networks at different resolution levels. New journal of physics,
10(5):053039, 2008. 14

[56] Zhenping Li, Shihua Zhang, Rui-Sheng Wang, Xiang-Sun Zhang, and Luonan Chen.
Quantitative function for community detection. Physical Review E, 77(3):036109,
2008. 14

[57] Jörg Reichardt and Stefan Bornholdt. Statistical mechanics of community detection.
Physical Review E, 74(1):016110, 2006. 15

[58] ZhengYou Xia and Zhan Bu. Community detection based on a semantic network.
Knowledge-Based Systems, 26:30–39, 2012. 15

[59] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. A survey on network embedding.
IEEE Transactions on Knowledge and Data Engineering, 31(5):833–852, 2018. 16

[60] Yu Chen, Lingfei Wu, and Mohammed J Zaki. Reinforcement learning based graph-
to-sequence model for natural question generation. In International Conference on
Learning Representations, 2019. 16

73



[61] Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and
performance: A survey. Knowledge-Based Systems, 151:78–94, 2018. 16

[62] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on
graphs: Methods and applications. arXiv preprint arXiv:1709.05584, 2017. 17

[63] Clement Lee and Darren J Wilkinson. A review of stochastic block models and
extensions for graph clustering. Applied Network Science, 4(1):1–50, 2019. 18

[64] John D Kelleher. Deep learning. MIT press, 2019. 18

[65] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE transactions on neural net-
works, 20(1):61–80, 2008. 19

[66] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. arXiv preprint arXiv:1609.02907, 2016. 19

[67] Di Jin, Ziyang Liu, Weihao Li, Dongxiao He, and Weixiong Zhang. Graph convolu-
tional networks meet markov random fields: Semi-supervised community detection
in attribute networks. In Proceedings of the Thirty-Third AAAI Conference on Arti-
ficial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence
Conference and Ninth AAAI Symposium on Educational Advances in Artificial In-
telligence (AAAI/IAAI/EAAI). AAAI Press, 2019. 19, 20

[68] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017. 20, 21

[69] Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term memory-networks
for machine reading. arXiv preprint arXiv:1601.06733, 2016. 21

[70] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv
preprint arXiv:1703.03130, 2017. 21

[71] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proc. of the 31st Int. Conf. on Neural Information Processing Systems, NIPS’17,
page 6000–6010, Red Hook, NY, USA, 2017. Curran Associates Inc. 21

[72] Kanae Takahashi, Kouji Yamamoto, Aya Kuchiba, and Tatsuki Koyama. Confidence
interval for micro-averaged F1 and macro-averaged F1 scores. Applied intelligence
(Dordrecht, Netherlands), 52(5):4961–4972, 2021. 21, 53

[73] Juri Opitz and Sebastian Burst. Macro f1 and macro f1. arXiv preprint
arXiv:1911.03347, 2019. 21

[74] L.N.F. Ana and A.K. Jain. Robust data clustering. In 2003 IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, 2003. Proceedings.,
volume 2, pages II–II, 2003. 22

74



[75] Pan Zhang. Evaluating accuracy of community detection using the relative normal-
ized mutual information. Journal of Statistical Mechanics: Theory and Experiment,
2015(11):P11006, 2015. 22, 53

[76] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018. 22, 23, 24, 26

[77] Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL meth-
ods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero
and more. Packt Publishing Ltd, 2018. 23, 24

[78] Hongming Zhang and Tianyang Yu. Taxonomy of Reinforcement Learning Algo-
rithms, pages 125–133. Springer Singapore, Singapore, 2020. 23, 24, 25

[79] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–
292, 1992. 24

[80] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
25

[81] Barbara Kitchenham. Procedures for performing systematic reviews. Keele, UK,
Keele University, 33(2004):1–26, 2004. 28

[82] Vitor Freitas. Parsifal. Available at https://parsif.al/. Accessed on: 2023-02-24,
2014. Parsifal is an online tool designed to support researchers to perform systematic
literature reviews within the context of Software Engineering. 29

[83] Domenico Mandaglio and Andrea Tagarelli. Dynamic consensus community de-
tection and combinatorial multi-armed bandit. In 2019 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining (ASONAM), pages
184–187. IEEE, 2019. 30, 33, 37

[84] Qikai Cheng, Jiamin Wang, Wei Lu, Yong Huang, and Yi Bu. Keyword-citation-
keyword network: a new perspective of discipline knowledge structure analysis.
Scientometrics, 124(3):1923–1943, 2020. 30, 32, 34

[85] Bentian Li and Dechang Pi. Network representation learning: a systematic literature
review. Neural Computing and Applications, pages 1–33, 2020. 30, 32, 35

[86] Yuyao Wang, Jie Cao, Zhan Bu, Jia Wu, and Youquan Wang. Dual structural
consistency preserving community detection on social networks. IEEE Transactions
on Knowledge and Data Engineering, 2023. 31, 32, 34

[87] Yunyun Niu, Detian Kong, Ligang Liu, Rong Wen, and Jianhua Xiao. Overlapping
community detection with adaptive density peaks clustering and iterative partition
strategy. Expert Systems with Applications, 213:119213, 2023. 31, 32, 34

[88] Anuraj Mohan and KV Pramod. Network representation learning: Models, methods
and applications. SN Applied Sciences, 1(9):1014, 2019. 32, 37

75

https://parsif.al/


[89] Elyazid Akachar, Brahim Ouhbi, and Bouchra Frikh. Community detection in so-
cial networks using structural and content information. In Proceedings of the 20th
International Conference on Information Integration and Web-based Applications &
Services, pages 282–288, 2018. 32, 38

[90] Bonaventure C Molokwu, Shaon Bhatta Shuvo, Narayan C Kar, and Ziad Kobti.
Node classification in complex social graphs via knowledge-graph embeddings and
convolutional neural network. In Proc. of the Int. Conf. on Computational Science,
pages 183–198. Springer, 2020. 32, 35

[91] Oleksandr Shchur and Stephan Günnemann. Overlapping community detection
with graph neural networks. arXiv:1909.12201, 2019. 33, 37

[92] Yao Ma, Ziyi Guo, Zhaocun Ren, Jiliang Tang, and Dawei Yin. Streaming graph
neural networks. In Proceedings of the 43rd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 719–728, 2020. 33,
36

[93] Jose N Paredes, Gerardo I Simari, Maria Vanina Martinez, and Marcelo A Falappa.
Netder: An architecture for reasoning about malicious behavior. Information Sys-
tems Frontiers, pages 1–17, 2020. 33, 35

[94] Xubo Gao, Qiusheng Zheng, Didier A Vega-Oliveros, Leandro Anghinoni, and Liang
Zhao. temporal network pattern identification by community modelling. Scientific
Reports, 10(1):1–12, 2020. 33, 36

[95] Zhao Yang, René Algesheimer, and Claudio J Tessone. A comparative analysis of
community detection algorithms on artificial networks. Scientific reports, 6:30750,
2016. 33, 38

[96] Jiayi Du, Muyang Jin, Petter N Kolm, Gordon Ritter, Yixuan Wang, and Bofei
Zhang. Deep reinforcement learning for option replication and hedging. The Journal
of Financial Data Science, 2(4):44–57, 2020. 40

[97] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch
geometric. arXiv preprint arXiv:1903.02428, 2019. 45

[98] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.
45

[99] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in science & engineering,
13(2):22–30, 2011. 46

[100] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

[101] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014. 48, 58

76

http://snap.stanford.edu/data


[102] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of
social representations. In Proceedings of the 20th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 701–710, 2014. 55

[103] A. Bharali. An analysis of email-eu-core network. International Journal of Scientific
Research in Mathematical and Statistical Sciences, 5:100–104, 8 2018. 58

[104] Shanfeng Wang, Qixiang Wang, and Maoguo Gong. Multi-task learning based net-
work embedding. Frontiers in Neuroscience, 13:1387, 2020. 60

[105] Jun Du, Erol Gelenbe, Chunxiao Jiang, Haijun Zhang, Yong Ren, and H Vincent
Poor. Peer prediction-based trustworthiness evaluation and trustworthy service
rating in social networks. IEEE Transactions on Information Forensics and Security,
14(6):1582–1594, 2018. 62

[106] Andrea Stevens Karnyoto, Chengjie Sun, Bingquan Liu, and Xiaolong Wang. Aug-
mentation and heterogeneous graph neural network for aaai2021-covid-19 fake news
detection. International journal of machine learning and cybernetics, 13(7):2033–
2043, 2022. 66

[107] Di Jin, Binbin Zhang, Yue Song, Dongxiao He, Zhiyong Feng, Shizhan Chen, Weihao
Li, and Katarzyna Musial. Modmrf: A modularity-based markov random field
method for community detection. Neurocomputing, 405:218–228, 2020. 68

77



Appendix A

AC2CD configurations

This appendix shows the necessary configurations to run the AC2CD. Section A.1 presents
the list of Hp adopted to run the study cases. Section A.2 presents the required libraries
and how to install them to be able to run the AC2CD.

A.1 Hyperparameters

The list of Hp used in the case studies.

emb_dim=256

emb_walk_len=20

emb_walks_per_node=10

alpha=3e-04

batch_size=10

checkpoint_interval=5000

device="cuda"

learn_rate=40

max_epochs=20000

nn_type="gat"

n_epochs=20

n_games=100

patience_threshold=100

snapshots=1

timespan=100

validation_interval=50

78



A.2 Dependencies

The required libraries to execute AC2CD. It can be saved as requirements.txt, and before
running pip install -r requirements.txt to install all libraries.

networkx==2.8.3

matplotlib==3.5.2

gym==0.21.0

--extra-index-url https://download.pytorch.org/whl/cu113

torch==1.11.0

torchvision==0.12.0+cu113

torchaudio==0.11.0+cu113

-f https://data.pyg.org/whl/torch-1.11.0+cu113.html

torch-scatter==2.0.9

torch-sparse==0.6.14

torch-cluster==1.6.0

torch-spline-conv ==1.2.1

torch-geometric==2.0.4

numpy==1.23.1

seaborn==0.11

pydantic[dotenv]==1.10

cdlib[extras]
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