
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Towards Nominal AC-Unification

(Rumo à AC-Unificação Nominal)

Gabriel Ferreira Silva

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Mauricio Ayala-Rincón

Coorientadora
Prof. Dr. Maribel Fernández

Brasília
2024

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Towards Nominal AC-Unification

(Rumo à AC-Unificação Nominal)

Gabriel Ferreira Silva

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Mauricio Ayala-Rincón (Orientador)
Universidade de Brasília, Brasil

Prof. Dr. José Meseguer Prof. Dr. Christian Urban
University of Illinois Urbana-Champaign, USA King’s College London, UK

Dr. César A. Muñoz Prof. Dr. Vander Ramos Alves
NASA, USA Universidade de Brasília, Brasil

Prof. Dr. Ricardo Jacobi
Coordenador do Programa de Pós-graduação em Informática

Brasília, 26 de Janeiro de 2024

To my family and friends, you make life worth living.

iii

Acknowledgements

I thank God for all the blessings I have received, among them health, disposition to work
and great family/friends.

I thank my mom, my dad and my sister for the amazing support and love I have
received during my whole life. You are incredible and the best family I could ask for!
Love you!

My grandfather João was always in an optimistic and happy mood, even though he
had health problems. My uncle Apu was always there for my family. My grandmother
and godmother Gesi was full of wisdom and love. João, Apu and Gesi passed away during
my masters/PhD studies, but have inspired me to finish the PhD and are always in my
prayers.

I have a lot to thank my family from Brasília and from Patos de Minas for, including
the support and the understanding when would I missed/left early a family reunion to
study. You are great.

I thank my childhood and best friends! I had amazing and fun moments with my
mates Alexander, Manno, Fugi and Felipe while playing videogames, eating fast-food and
“boys talking”. And I know we will keep having more great moments in the future!

I thank my superb advisor Ayala for all the help during my master’s and PhD studies!
You are the best advisor I could have asked for. Thanks for believing in me, accepting to
supervise me even after I failed the analysis exam, and sharing my excitement about the
research we did together. I learned a lot during these years and had fun while doing that.

I thank my coadvisor Maribel Fernández for all the help and great feedback that
started in my master’s studies and continued during my PhD! Daniele Nantes is a complete
professor who researches well, teaches with clarity and kindness and attracts new students
to graduate studies. Thanks Daniele for the help in the papers we wrote together and for
being a role model of what a professor should be like! I thank Temur Kutsia for the great
feedback in the papers we wrote together.

I thank José Meseguer, Christian Urban, César Muñoz and Vander Alves for accepting
our invitation and forming the jury of my PhD defense. I also appreciate their valuable
feedback that improved this work.

iv

I thank my friends from the group “Muçar? Café? Cota?” for the time we spent
together during my PhD. It was great spending time with people who also wanted to
finish graduate studies and were willing to work really hard for it. It was a pleasure
meeting you! I thank specially MEGS, Mateus, Tharles, Talita, PP, Caio, Gabriel, Gabi,
Ismael and Flávia.

I thank the group “Os Vingadores do Jantar”! My friendship with Sensei Santiago,
Thiago, Pavel, Geovane and Ariane started in the MsC and continued through the PhD.
Our light-hearted conversations made my graduate studies even more pleasant.

Some Saturday mornings were well-spent playing soccer with my dad and other friends.
I thank the group “Pelada Millenium” for these soccer matches.

It was great to play board games or chat about academic life (its perks and drawbacks)
with MEGS, Gabriel Bufolo and Georginho. Thank you “GGGM - Dr.”!

During the pandemic and also after it, I kept talking with some friends I made during
my master’s studies. I thank my friends from the group “Os Tops da Sala Top”: MEGS,
Mateus, Tharles, Geovane, Adler, Murilo. It was great having your support and friendship
during those tough times and after them!

By the end of my PhD I was lucky to find a job as a data scientists with excellent
colleagues at TJDFT. I thank my friends at COCID for their encouragement!

I thank Maximal (Deivid Vale) and the colleagues from the group “Ga2khanda do
Mau”: Gabi, Andrés, Santaguida, Ali and Guilherme.

I thank the researchers from NASA formal methods/SRI international for the support
whenever I had doubts about PVS. Mariano Moscato helped me a lot, for instance when
he explained how I could use a Perl script in NASALib to generate the hierarchy of the
whole nominal library. Thanks Mariano! César Muñoz helped us with PVSio and also
pointed that we could combine the use of PVSio with semantic attachments. Thanks
César!

As part of the CICM 2022 doctoral programme, David Cerna kindly accepted being
my mentor. In addition to nice tips on my current research he also gave me insights into
the academic life after the PhD and its work/life balance. Thanks David!

According to the rules of the computer science department, I had to publish a jour-
nal paper as a prerequisite for defending the PhD. The journal paper we published is
an extended version of a previous paper to a special issue of Mathematical Structures
in Computer Science (MSCS). I thank Sandra Alves and Renata Wassermann for the
invitation to submit this extended version!

I thank Leslie Lamport for inventing a better way (in my opinion) to prove things in
mathematics, with his seminal work on structured proofs.

v

I thank the math department at UnB for offering me a temporary (one semester)
scholarship. After this one semester in the math department, the computer science de-
partment at UnB offered me a permanent scholarship that allowed me to focus on my
research. I thank the computer science department and the CAPES funding agency for
this scholarship!

I thank most of the employees, students and professors of the departments of computer
science and mathematics for the cordial environment I have encountered while doing my
studies.

vi

Resumo

O paradigma nominal estende a sintaxe de primeira ordem e representa adequadamente
o conceito de variáveis ligadas. Para trabalhar com esse vantajoso paradigma faz-se ne-
cessário adaptar noções de primeira ordem a ele, como unificação e matching. Esta tese
é sobre unificação e matching no paradigma nominal na presença de uma teoria equa-
cional E e sobre nosso trabalho em progresso em AC-unificação nominal. Inicialmente,
generalizamos e formalizamos um algoritmo de C-unificação nominal para realizar mat-
ching e equality-checking, através da adição de um parâmetro X para lidar com variáveis
protegidas. A formalização foi usada para testar uma implementação manual em Python
do algoritmo. Em seguida, fornecemos a primeira formalização de um algoritmo de AC-
unificação em primeira ordem. Escolhemos formalizar o algoritmo seminal de Stickel e na
prova de terminação usamos uma intrincada (mas devidamente motivada) medida lexico-
gráfica, baseada no trabalho de Fages. Depois disso, adaptamos este algoritmo para obter
o primeiro algoritmo para AC-matching em nominal e verificamos que o algoritmo ter-
mina e é correto e completo. Assim como em C-unificação nominal, usamos um parâmetro
X para as variáveis protegidas, o que nos permitiu obter um AC-equality-checker como
corolário. As 3 formalizações descritas foram feitas no assistente de provas PVS e inte-
gram a NASALib, o principal repositório de formalizações do PVS. Para cada uma dessas
formalizações descrevemos a estrutura e tamanho dos arquivos que compõem a formaliza-
ção. Visando obter um algoritmo de AC-unificação nominal, mostramos que o problema
tem duas questões interessantes associadas a ele: gerar as soluções para π · X ≈? X e
demonstrar terminação. Para a primeira questão, propomos um procedimento não deter-
minístico de enumeração e exemplificamos como este calcula soluções não triviais. Para
a segunda questão demonstramos como o problema f(X,W) ≈? f(π · X, π · Y) gera um
loop e provamos que é suficiente “entrar no loop” uma quantidade limitada de vezes, onde
esse limite depende da ordem da permutação π. Acreditamos que a teoria desenvolvida
será útil para a formulação de um algoritmo de AC-unificação nominal.

Palavras-chave: Nominal, Métodos Formais, PVS, C-Unificação Nominal, AC-Unificação,
AC-Matching Nominal, AC-Unificação Nominal.

vii

Resumo Extendido

O paradigma nominal estende a sintaxe de primeira ordem e representa adequadamente
o conceito de variáveis ligadas. Para trabalhar com esse vantajoso paradigma faz-se ne-
cessário adaptar noções de primeira ordem a ele, como unificação e matching. Esta tese é
sobre unificação e matching no paradigma nominal na presença de uma teoria equacional
E. Além disso abordamos nosso trabalho em progresso em AC-unificação nominal.

Inicialmente, generalizamos e formalizamos um algoritmo de C-unificação nominal
para realizar matching e equality-checking, através da adição de um parâmetro X para
lidar com variáveis protegidas, i.e. variáveis que não podem ser instanciadas. Assim,
dado um problema P , pode-se realizar unificação/matching/equality-checking colocando
os respectivos valores para o parâmetro X : ∅, Vars(rhs(P)) e V ars(P). A formalização foi
usada para testar (através da ferramenta PVSio) uma implementação manual em Python
do algoritmo.

Em seguida, fornecemos a primeira formalização de um algoritmo de AC-unificação
em primeira ordem. Escolhemos formalizar o algoritmo seminal de Stickel e na prova
de terminação usamos uma intrincada (mas devidamente motivada) medida lexicográfica,
baseada no trabalho de Fages. Além de terminação, descrevemos as provas de corretude
e completude, destacando os seus pontos mais intricados.

Depois disso, adaptamos este algoritmo para obter o primeiro algoritmo para AC-
matching em nominal e verificamos que o algoritmo termina e é correto e completo. Assim
como em C-unificação nominal, usamos um parâmetro X para as variáveis protegidas, o
que nos permitiu obter também um AC-equality-checker como corolário.

As 3 formalizações descritas foram feitas no assistente de provas PVS e integram
a NASALib, o principal repositório de formalizações do PVS. Para cada uma dessas
formalizações listamos o tamanho dos arquivos que compõem a formalização em tabelas
e detalhamos a hierarquia entre os arquivos em figuras.

Visando obter um algoritmo de AC-unificação nominal, mostramos que o problema tem
duas questões interessantes associadas a ele: gerar as soluções para equações de ponto fixo
π·X ≈? X e demonstrar terminação. Para a primeira questão, propomos um procedimento
não determinístico de enumeração e exemplificamos como este calcula soluções não triviais.

viii

Para a segunda questão demonstramos como o problema f(X,W) ≈? f(π·X, π·Y) gera um
loop e provamos que é suficiente “entrar no loop” uma quantidade limitada de vezes, onde
esse limite depende da ordem da permutação π. Realizamos também uma investigação
preliminar sobre a conexão entre nominal e higher-order patterns, visto que o problema
de unificação em higher-order patterns já se encontra resolvido. Acreditamos que a teoria
desenvolvida será útil para a formulação de um algoritmo de AC-unificação nominal.

Detalhamos a seguir a organização deste trabalho. O Capítulo 1 motiva o tópico
e sumariza as contribuições. O Capítulo 2 fornece a base necessária para ler a tese,
introduzindo conceitos do paradigma nominal, de AC-unificação em primeira ordem e
do provador de teoremas PVS. Depois disso, o Capítulo 3 explica o algoritmo de C-
unificação nominal generalizado com variáveis protegidas. Os três capítulos seguintes
abordam raciocínio equacional na presença de símbolos de função AC. Primeiramente, o
Capítulo 4 reporta a formalização de AC-unificação em primeira ordem e suas aplicações.
Depois, o Capítulo 5 mostra como adaptamos a formalização de primeira ordem para
nominal e obtivemos um algoritmo verificado para AC-matching nominal. O Capítulo
6 discute o nosso trabalho em progresso rumo à AC-unificação nominal. Por fim, os
Capítulos 7 e 8 descrevem trabalhos correlatos e apontam direções para trabalho futuro.
Neste trabalho incluímos hyperlinks coloridos em azul-claro (com o logo) para os
pontos de interesse da formalização em PVS.

Palavras-chave: Nominal, Métodos Formais, PVS, C-Unificação Nominal, AC-Unificação,
AC-Matching Nominal, AC-Unificação Nominal.

ix

Abstract

The nominal syntax extends first-order syntax and allows us to represent smoothly sys-
tem with bindings. In order to profit from the nominal setting, we must adapt important
notions to it, such as unification and matching. This thesis is about nominal unification/-
matching in the presence of an equational theory E and our efforts towards obtaining a
nominal AC-unification algorithm. First, we extend and formalise a nominal C-unification
algorithm to also handle matching and equality checking by adding an extra parameter
X for protected variables, i.e., variables that cannot be instantiated. The formalised al-
gorithm is used to test a Python manual implementation of the algorithm. Then, as a
first step towards nominal AC-unification, we give the first formalisation of a first-order
AC-unification algorithm. We choose to verify Stickel’s tried-and-tested algorithm. The
proof of termination employs an intricate (but duly motivated) lexicographic measure that
is based on Fages’ proof of termination. Finally, we adapt the first-order AC-unification
algorithm to propose the first nominal AC-matching algorithm and formalise it to be
terminating, sound and complete. As was the case for nominal C-unification, we used
a parameter X for protected variables and this approach also let us obtain a verified
nominal AC-equality checker as a byproduct. The 3 formalisations previously described
were done in the PVS proof assistant and are available in NASALib, PVS’ main reposi-
tory of formalisations. In each one of the three formalisations we describe the files that
compose the formalisation, pointing out their structure, hierarchy and size. With the
aim of obtaining a nominal AC unification algorithm, we studied two interesting ques-
tions: generating solutions to π ·X ≈? X and proving termination. For the first question
we propose a non-deterministic enumeration procedure and exemplify how it can com-
pute non-obvious solution. For the second question we demonstrate that the problem
f(X,W) ≈? f(π · X, π · Y) gives rise to a loop and prove that it is enough to loop a
limited amount of times, where this limit depend on the order of the permutation π. We
hope these insights will advance the search for a nominal AC unification algorithm.

Keywords: Nominal, Formal Methods, PVS, Nominal C-Unification, AC-Unification,
Nominal AC-Matching, Nominal AC-Unification.

x

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Organisation . 4

2 Background 5
2.1 First-Order Syntax and AC-Unification . 5

2.1.1 Complexity of α-Equivalence, Matching and Unification in First-
Order Modulo Equational Theories 9

2.2 Examples of AC-Unification . 9
2.2.1 What Makes AC-Unification Hard 10
2.2.2 Unifying f(X,X, Y, a, b, c) and f(b, b, b, c, Z) 10
2.2.3 Avoiding Infinite Loops . 13

2.3 The Nominal Setting . 13
2.3.1 Atoms, Variables, Nominal Terms, Substitutions and Permutations 14
2.3.2 Freshness and α-Equality . 16
2.3.3 Solution to a Quintuple and Additional Notation 19
2.3.4 Fixpoint Equations . 20
2.3.5 Complexity of Unification and Matching Modulo Equational Theo-

ries in the Nominal Setting . 21
2.4 Structured Proofs . 21
2.5 The PVS Proof Assistant . 23

2.5.1 TCCs - Type Correctness Conditions 24
2.5.2 PVSio . 24

2.6 NASALib and the Nominal Library . 25

3 Nominal C-Unification Generalised With Protected Variables 30
3.1 Specifying Unification Via Set of Rules and Via Algorithms 31
3.2 Main Algorithm . 31

3.2.1 Auxiliary functions . 32

xi

3.3 Interesting Points on Adapting the Algorithm to Handle Protected Variables 34
3.3.1 Termination . 34
3.3.2 Valid Quintuples and Solution to an Input in Nominal C-Unification 35
3.3.3 Soundness . 36
3.3.4 Completeness . 37
3.3.5 Possible Pitfalls . 38
3.3.6 Examples of CUnif . 38
3.3.7 Preserving Information Regarding Protected Variables 41

3.4 Testing the Python algorithm . 41
3.4.1 Preliminar Experiments Comparing PVSio and Python 43

3.5 Statistics of the PVS Formalisation . 43

4 Certified First-Order AC-Unification 47
4.1 Algorithm . 47

4.1.1 Function chooseEq . 48
4.1.2 Function decompose . 49
4.1.3 The AC-part of the Algorithm . 49

4.2 Proving Termination . 55
4.2.1 The Lexicographic Measure . 55
4.2.2 Proof Sketch for Termination . 58

4.3 A Structured Proof of Termination for applyACStep 61
4.3.1 Notation for the Proof of Termination 61
4.3.2 Auxiliary Lemmas . 63
4.3.3 Termination of applyACStep . 71

4.4 Proving Soundness and Completeness . 72
4.4.1 Nice Inputs . 72
4.4.2 Soundness . 72
4.4.3 Completeness . 73

4.5 Statistics of the PVS Formalisation . 86
4.6 Additional Information on the Formalisation 89

4.6.1 Grammar of Terms and the Need for Well-Formed Terms 89
4.6.2 Equal Terms May Not Have the Same Size 91

4.7 Applications . 92
4.7.1 Formalising More Efficient AC-Unification Algorithms 92
4.7.2 Testing Implemented AC-Unification Algorithms 93

xii

5 Nominal AC-Matching 94
5.1 Algorithm . 94

5.1.1 Function chooseEq . 96
5.1.2 Function decompose . 96
5.1.3 Handling Freshness Constraints - Functions freshSubs? and fresh? 96
5.1.4 The Function applyACStep . 97
5.1.5 Modifications to Adapt the Algorithm to the Nominal Setting . . . 97
5.1.6 Common Structures of Equational Constraints Returned by solveAC 98

5.2 Formalisation . 100
5.2.1 Instantiation of the New Variables Introduced By solveAC 100
5.2.2 Nice Input . 100
5.2.3 Termination . 102
5.2.4 Soundness . 103
5.2.5 Completeness . 104

5.3 Statistics of the PVS Formalisation . 108

6 Towards Nominal AC-Unification 112
6.1 Fixpoint Equations π ·X ≈? X . 112

6.1.1 Motivation For The Rules of An Enumeration Procedure 113
6.1.2 A Non-Deterministic Enumeration Procedure to Solve Fixpoint Equa-

tions . 116
6.1.3 Examples of The Enumeration Procedure 117
6.1.4 A Comparison With Fixpoint Equations in Nominal C-Unification . 121
6.1.5 Handling More Than One Fixpoint Equation With The Same Variable121

6.2 Termination of Nominal AC-Unification . 122
6.2.1 The Loop in f(X,W) ≈? f(π ·X, π · Y) 122
6.2.2 Solving the Loop in f(X,W) ≈? f(π ·X, π · Y) 124
6.2.3 f(2X1, X2, X3) ≈? f(2π ·X2, Y1) . 130
6.2.4 Additional Considerations . 132

6.3 Nominal AC-Unification Via AC-Unification of Higher-Order Patterns? . . 133
6.3.1 From Nominal to Higher-Order Pattern 133
6.3.2 AC-Unification of Higher-Order Patterns 135
6.3.3 From Higher-Order Patterns to Nominal 137

7 Related Work 138

8 Conclusion and Future Work 141
8.1 Conclusion . 141

xiii

8.2 Future Work . 142

Bibliography 144

A Generating All Solutions To f(X,W) ≈? f(π ·X, π · Y) 150

xiv

List of Figures

2.1 An Example of a Standard Non-Structured Proof. 22
2.2 The Corresponding Structured Proof. 22
2.3 Expanding the Proof of Step 2 in a Structured Way. 23
2.4 Hierarchy of the Nominal library. 26

3.1 PVS formalisation of Nominal C-Unification With Protected Variables. . . 45

4.1 PVS formalisation of First-Order AC-Unification. 88

5.1 PVS formalisation of Nominal AC-Matching. 110

xv

List of Tables

2.1 Unification Type and Complexity for Some Equational Theories in First-
Order Syntax. 9

2.2 Solutions for 2X1 +X2 +X3 = 2Y1 + Y2. 11
2.3 Unification Type and Complexity for Some Equational Theories in the

Nominal Syntax. 21
2.4 Information for Every File in the Nominal Library. 28
2.4 Information for Every File in the Nominal Library. 29

3.1 Decrease of the Components of the Lexicographic Measure. 35
3.2 Time PVSio and Python Took to Unify . 43
3.3 Information for Every File in the Nominal C-Unification Formalisation. . . 46

4.1 Decrease of the Components of the Lexicographic Measure. 58
4.2 Information for Every File In the First-Order AC-Unification Formalisation. 90

5.1 Decrease of the Components of the Lexicographic Measure. 103
5.2 Information for Every File in the Nominal AC-Matching Formalisation. . . 111

6.1 Solutions for Equation U1 + U2 = V1 + V2 122
6.2 Solutions for 3m = 2n. 136
6.3 Solutions for Equations 6.5. 136

xvi

Chapter 1

Introduction

Unification is an important topic in computer science, with applications in logic program-
ming languages, theorem provers, type inference algorithms, narrowing and so on [15]. At
its core, unification revolves around the task of determining when and how two mathe-
matical expressions can be made equivalent by substituting appropriate values for their
variables. For instance, the terms f(X, b) and f(a, Y) can be made equal by “sending”
X to a and Y to b, since both terms then become f(a, b).

A more practical, although more intricate, example can be given by imagining that we
are trying to compute

∫
ln(x)dx using integration by parts. Recalling that the formula

of integration by parts is
∫
udv = uv −

∫
vdu, in order to use this strategy we must unify∫

ln(x)dx with
∫
udv. This is done by instantiating the variable u to ln(x) and v to x.

Then, we get: ∫
ln(x) dx = xln(x) −

∫
x d(ln(x))

which we can further simplify to obtain:

xln(x) −
∫
x d(ln(x)) = xln(x) −

∫
x ∗ 1

x
dx = x ln(x) − x+ C.

In that preceding case, only one of the terms contained the variables that were replaced
by the substitution. The particular case of unification where we only instantiate variables
from one of the terms is known as matching. It too has important applications, such as
rewriting [15].

More precisely, given terms s and t, syntactic unification is the problem of finding
a substitution σ such that σs = σt and syntactic matching is the problem of finding a
substitution σ such that σs = t. The problem of syntactic unification can be generalised
to consider an equational theory E. In this case, called E-unification, we must find a
substitution σ such that σs and σt are equal modulo E, which we denote σs ≈E σt [44].1

1When E is clear from the context, we may write simply σs ≈ σt.

1

Similarly, E-matching is the problem of finding a substitution σ such that σs ≈E t.
Since associative and commutative (AC) operators are frequently used in programming
languages and theorem provers, tools to support reasoning modulo associativity and com-
mutativity axioms are often required. As an example of E-matching being used in software
systems, Eker [37] gave an efficient implementation of AC-matching to handle AC-theories
and described experimental results using Maude.

On the other hand, a different concept that is also fundamental in computer science
and mathematics is the concept of binding. This concept appears, for instance, when we
specify parameters to define functions: in f : x 7→ x + 1, the variable x is said to be
bound. Bindings are also present when we use quantifiers. For instance, in ∀y : P (x, y),
where P is some property of interest, the variable y is bound, while the variable x is not
(x is said to be a free variable).

Since first-order syntax does not handle binding, extensions of it that consider free
and bound variables are appealing areas of work. These extensions are not trivial, as it
is possible to have expressions that are semantically equal, but syntactically distinct. For
example, the formulas ∀x : x+ 1 > 0 and ∀y : 1 + y > 0 should be considered equivalent.
We could use indices to represent bound variables, as in explicit substitutions à la de
Bruijn (see [1, 45, 59]), but from the user point of view it is simpler to use systems with
variables names than systems with indices. The nominal syntax is an extension of the
first-order syntax that smoothly represents languages with variable bindings [64]. It does
so by using atoms, atom permutations, abstractions and freshness constraints to represent
binders more naturally [41].

Although we will only fully explain the concepts of nominal in the next chapter, we
now give as an appetizer an example of the nominal approach to handle binders. The
formulas ∀x : x + 1 > 0 and ∀y : 1 + y > 0 would be represented as the nominal terms
∀[x](x + 1 > 0) and ∀[y](y + 1 > 0), where x and y are denoted atoms, 0 and 1 are
0-ary function symbols (constants), the symbol ∀ is a unary function symbol, and +, >
are binary function symbols that we write infix. These nominal terms are α-equivalent
and this is derived as2:

x ≈ x 1 ≈ 1
x+ 1 ≈ (x y) · y + 1 0 ≈ 0
x+ 1 > 0 ≈ (x y) · y + 1 > 0

x#1 x#y
x#y + 1 x#0

x#y + 1 > 0
[x](x+ 1 > 0) ≈ [y](y + 1) > 0

∀[x](x+ 1 > 0) ≈ ∀[y](y + 1 > 0)
Given the importance of unification and matching, the development of techniques for

unification and matching in the nominal paradigm has been an attractive area of research
since the invention of the nominal approach. Nominal unification is the extension of

2We have not explained the rules used in this derivation yet, but we will do so in the next chapter.

2

first-order unification to the nominal syntax, replacing the concept of syntactic equality
by α-equivalence, and was first solved by Urban et al. in [75]. From there, research
continued in the direction of making algorithm improvements to solve this problem and
on considering nominal unification modulo equational theories.

1.1 Contributions

The contributions of this work can be grouped in four parts:

• We extend a functional nominal C-unification algorithm, adding a parameter X
of protected variables, i.e., variables that cannot be instantiated. This nominal
C-unification algorithm generalised with protected variables was formalised in the
PVS proof assistant and can be used to the task of unification, matching and α-
equivalence by correctly setting the parameter X . This extension cannot be formally
checked by simple reuse of the original formalisation, requiring additional effort.
Moreover, we used the PVS formalisation to test the correctness of a Python manual
implementation of the algorithm. This Item is described in our work “Formalising
Nominal C-Unification Generalised with Protected Variables” (see [3]) and is the
focus of Chapter 3.

• We give the first formalisation of an AC-unification algorithm. We specified the
pioneering AC-unification algorithm of Stickel [72,73] and proved it to be terminat-
ing (using an elaborate lexicographic measure, based on Fages’ [39, 40] termination
proof), sound and complete. We give a detailed description of the formalisation, in-
cluding explanations of the main steps in the proofs of termination, soundness, and
completeness; the files that were created along with their hierarchy and size; and
a discussion about our design choices, including the consequences of our choice for
the grammar of terms. We also discuss applications of the certified AC-unification
algorithm, showing how the formalisation could be used as a starting point to for-
malise more efficient AC-unification algorithms or to test implementations of AC-
unification algorithms. This Item is described in our works “A Certified Algorithm
for AC-Unification” (see [9]) and “Certified First-Order AC-Unification and Appli-
cations” (see [7]) and is the focus of Chapter 4.

• We extend the certified first-order AC-unification algorithm described in the last
Item to solve nominal AC-matching problems. We present the first algorithm for
nominal AC-matching and formalise its termination, correctness and completeness.
The formalisation enriches the first-order AC-unification algorithm providing struc-
tures and mechanisms to deal with the combinatorial aspects of nominal atoms,

3

permutations and abstractions. Furthermore, by adding a parameter for “protected
variables” that cannot be instantiated during the execution, it enables nominal
matching. As was the case for nominal C-unification, such general treatment of
protected variables also gives rise to a verified nominal AC-equality checker as a
byproduct. This Item is described in our work3 “Nominal AC-Matching” (see [8])
and is the focus of Chapter 5.

• We report our work in progress on the task of nominal AC-unification. We sketch
how we can solve fixpoint equations in the presence of AC function symbols and why
we were not able to solve equations such as f(X,W) ≈? f(π ·X, π ·Y). Additionally
we speculate on whether we could use the connection between higher-order pattern
and nominal to solve the problem. This Item was shortly described in [8] and is
given more consideration in Chapter 6 of this thesis.

The first three Items mention formalisations of nominal C-unification, first-order
AC-unification and nominal AC-matching. Those formalisations were all done us-
ing the proof assistant PVS and are part of the Nominal library of the NASALib
repository.

1.2 Organisation

Chapter 2 gives the necessary background, explaining concepts from the nominal frame-
work, from first-order AC-unification and offering a summary of the PVS proof assistant.
Then, Chapter 3 explains the nominal C-unification algorithm generalised with protected
variables. The next 3 chapters are for equational reasoning in the presence of AC func-
tion symbols. First, Chapter 4 reports on the first-order AC-unification formalisation and
its applications. Then, Chapter 5 shows how we adapted the first-order AC-unification
formalisation to the nominal setting to obtain a verified nominal AC-matching algorithm.
Chapter 6 discusses our work in progress towards nominal AC-unification. Finally, Chap-
ter 7 describes related work and Chapter 8 concludes this work and outlines directions of
future work. We include cyan-coloured hyperlinks (with the icon) to specific points
of interest of the PVS formalisation.

3This paper received the Best Paper Award at the CICM 2023 conference.

4

https://github.com/nasa/pvslib/tree/master/nominal

Chapter 2

Background

2.1 First-Order Syntax and AC-Unification

In this section, we omit the subscript and write that t and s are equal modulo AC as
t ≈ s.

Definition 1 (Terms). Let Σ be a signature with function symbols and AC-function
symbols. Let X be the set of all variables. The set T (Σ,X) is generated by the grammar:

s, t ::= c | X | ⟨⟩ | ⟨s, t⟩ | f t | fAC t

where c denotes a constant 1 , X is a variable, ⟨⟩ is the unit, ⟨s, t⟩ is a pair, f t is a
function application and fACt is an associative-commutative function application.

Terms were specified as shown in Definition 1 to make it easier to eventually adapt
the formalisation to the nominal setting. That is the reason why the unit (an element in
the grammar of the nominal terms) appears in Definition 1. Pairs are used to represent
tuples with an arbitrary number of terms. For instance, the pair ⟨t1, ⟨t2, t3⟩⟩ represents
the tuple (t1, t2, t3). In Definition 1 we imposed that a function application is of the form
ft, which is not a limitation since t can be a pair. For instance, the term f(a, b, c) can be
represented as f⟨a, ⟨b, c⟩⟩ and its arguments are a, b and c.

Remark 1. When enumerating the arguments of a function with more than 2 arguments,
some care must be taking in how we use pairs to represent it. Consider for instance, the
distinct terms f⟨a, ⟨b, c⟩⟩ and f⟨⟨a, b⟩, c⟩. Which one would we use to represent f(a, b, c)?
This type of problem can be avoided by establishing as a convention that we always rep-
resent the tuple (t1, t2, . . . , tn) as ⟨t1, ⟨t2, ⟨. . . , tn⟩⟩ . . .⟩. If we follow this convention, we
would represent f(a, b, c) as f⟨a, ⟨b, c⟩⟩.

1We represent the constants using the initial letters of the alphabet: a, b, c, . . .

5

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L19-L28

Remark 2 (Variable Representation). The variables in our PVS formalisation are
represented as natural numbers. Given a variable X we denote by |X| the corresponding
natural number and given a set of variables V we define max(V) = max({|X| : X ∈ V }).
This notation will be used in Section 4.4.3.

Definition 2 (Well-formed Terms). We say that a term t is well-formed if t is not a
pair and every AC-function application that is a subterm of t has at least two arguments.

To ease our formalisation (more details in Section 4.6.1), we have restricted the terms
in the unification problem that our algorithm receives to well-formed terms. Excluding
pairs is natural since they are only used to encode (lists of) arguments of functions.

Definition 3 (AC-Unification problem). An AC-unification problem is a finite set of
equations P = {t1 ≈? s1, . . . , tn ≈? sn}. The left-hand side of the unification problem P ,
denoted as lhs(P) , is defined as {t1, . . . , tn} while the right-hand side of P , denoted as
rhs(P) , is defined as {s1, . . . , sn}.

Notation 1 (AC-Unification pairs). When t and s are both headed by the same AC-
function symbol, we refer to the equation t ≈? s as an AC-unification pair .

Notation 2. When convenient, we may mention that a function symbol f is an AC-
function symbol, omit the superscript and write simply f instead of fAC.

Notation 3 (Flattened form of AC-functions). When convenient, we may denote in this
paper an AC-function in flattened form. For instance, the term fAC⟨fAC⟨a, b⟩, fAC⟨c, d⟩⟩
may be denoted simply as fAC(a, b, c, d). In our formalisation (for instance in function
Argsf), when we manipulate an AC-function term t we are more interested in its
arguments than in how they were encoded using pairs.

Notation 4 (Vars). We denote the set of variables of a term t by Vars(t) . Similarly,
we denote the set of variables that occur in a unification problem P as Vars(P) .

A substitution σ is a function from variables to terms, such that σX ̸= X only for a
finite set of variables, called the domain of σ and denoted as dom(σ). The image of σ is
then defined as im(σ) = {σX | X ∈ dom(σ)}. We denote the identity substitution by id.

Definition 4 (Well-Formed Substitution). A substitution σ is said to be well-formed
if, for every X, σX is a well-formed term.

In the proof of completeness of the algorithm, we restrict ourselves to well-formed
substitutions (this is explained in the proof of Section 4.4.3).

Notation 5 (σ ⊆ V). Let V be a set of variables. If dom(σ) ⊆ V and Vars(im(σ)) ⊆ V

we write σ ⊆ V .

6

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L36-L36
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L632-L636
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L35-L36
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L63-L64
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L65-L65
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L166-L168
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L207-L211
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L481-L491
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L74-L76
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L139-L141
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L143-L144

Notation 6 (σ =V σ1). Let σ and σ1 be substitutions and V a set of variables. If
σX = σ1X for every X ∈ V we write σ =V σ1.

In our PVS code, substitutions are represented by a list, where each entry of the list
is called a nuclear substitution and is of the form {X 7→ t}. The action of a nuclear
substitution and the action of a substitution over terms are shown in Definitions 5 and 6
respectively.

Definition 5 (Nuclear substitution action on terms). A nuclear substitution {X 7→ s}
acts over a term by induction as shown below:

• {X 7→ s}a = a.

• {X 7→ s}⟨⟩ = ⟨⟩.

• {X 7→ s}Y =

s if X = Y

Y otherwise.

• {X 7→ s}⟨t1, t2⟩ = ⟨{X 7→ s}t1, {X 7→ s}t2⟩.

• {X 7→ s}(f t1) = f ({X 7→ s}t1).

• {X 7→ s}(fAC t1) = fAC ({X 7→ s}t1).

Definition 6 (Substitution acting on terms). Since a substitution σ is a list of nuclear
substitutions, the action of a substitution is defined as:

• nil t = t, where nil is the null list, used to represent the identity substitution.

• cons({X 7→ s}, σ) t = {X 7→ s}(σt).

The notion of substitution used here differs from the more traditional view of a substi-
tution as a simultaneous application of nuclear substitutions, although both are correct.
The way we defined substitution here is closer to triangular substitutions [50]. Notice
that in the definition of action of substitutions the nuclear substitution in the head of the
list is applied last. This allows us to, given substitutions σ and δ, obtain the substitution
σ ◦ δ in our code simply as append(σ, δ).

Remark 3 (Substitution in PVS and How We Denote Them). Although substitutions
were defined in PVS as specified in Definition 6, when giving examples we may opt for
the more familiar {variable 7→ term, . . .} notation. For instance, the substitution that
is defined in PVS as cons({X 7→ a},cons({Y 7→ b},nil)) may be denoted simply as
{X 7→ a, Y 7→ b}. A similar remark applies for substitution on nominal terms.

7

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L39-L53
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L62-L71

Notation 7 (Composition of Substitutions). When composing two substitutions σ and δ
we may omit the composition symbol and write σδ instead of σ ◦ δ.

Definition 7 (Renaming). A renaming ρ is an injective substitution that always in-
stantiates a variable to a variable.

Example 1. The substitution ρ = {Z1 7→ Z2, Z2 7→ Z3} has dom(ρ) = {Z1, Z2}, im(ρ) =
{Z2, Z3} and is a renaming.

We now define unifiers, more general substitutions and complete set of unifiers (Defi-
nitions 8, 9 and 10).

Definition 8 (Unifiers). Let P be a unification problem {t1 ≈? s1, . . . , tn ≈? sn}. A
unifier or solution of P is a substitution σ such that σti ≈ σsi for every i from 1 to n.
When σ is a unifier for P we say that σ unifies P .

Example 2. Suppose X, Y are variables, a, b are constants and f is an AC function. For
the unification problem P = {f(b,X) ≈? f(a, Y)}, a possible solution is

σ = {X 7→ a, Y 7→ b},

as
σf(b,X) = f(b, a) ≈ f(a, b) = σf(a, Y).

Definition 9 (More General Substitutions). A substitution σ is more general (modulo
AC) than a substitution σ′ in a set of variables V if there is a substitution δ such that
σ′ =V δσ, for all variables X ∈ V . In this case we write σ ≤V σ′. When V is the set of
all variables, we say that σ is more general than σ′ and write σ ≤ σ′.

Example 3. The substitution σ = {Y 7→ g(X),W 7→ b} is more general than δ = {Y 7→
g(a), X 7→ a} in the set V = {Y,X}, since with θ = {X 7→ a} we have δ =V θσ.

Definition 10 (Complete Set of Unifiers). With the notion of more general substitution,
we can define a complete set C of unifiers of P as a set that satisfies two conditions:

• each σ ∈ C is an unifier of P .

• for every δ that unifies P , there is σ ∈ C such that σ ≤Vars(P) δ.

We represent an AC-unification problem P as a list in our PVS code, where each
element of the list is a pair (ti, si) that represents an equation ti ≈? si. Finally, given a
unification problem P = {t1 ≈? s1, . . . , tn ≈? sn}, we define σP as {σt1 ≈? σs1, . . . , σtn ≈?

σsn}.

Notation 8. Since P is a list in our PVS code, we denote by car(P) the equation t ≈? s

in the head of the list P and by cdr(P) the tail of the list P .

8

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L163-L169
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L121-L127
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L100-L105

2.1.1 Complexity of α-Equivalence, Matching and Unification
in First-Order Modulo Equational Theories

Table 2.1 summarises the complexity of α-equivalence, matching and unification modulo
some equational theories in first-order syntax. In the mentioned table ω denotes a theory
of type finitary, ∞ denotes a theory of type infinitary and 0 a theory of type nullary (a
nullary unification type, also called type zero, means that there are terms for which a
minimal complete set of unifiers does not exist). As usual, C stands for commutativity
and A stands for associativity. Additionally, AU stands for Associativity with Unit,
ACU is Associativity-Commutativity with Unit and AI unification is unification with an
Associative and Idempotent function symbol.

Table 2.1: Unification Type and Complexity for Some Equational Theories in First-Order
Syntax.

Theory Unification
Type

Complexity of Related
WorkEquality-Checking Matching Unification

Syntactic 1 O(n) O(n) O(n) [56, 63,66]
C ω O(n2) NP-comp. NP-comp. [20,46]
A ∞ O(n) NP-comp. NP-hard [20,55]

AU ∞ O(n) NP-comp. decidable [46, 55]
AI 0 O(n) NP-comp. NP-comp. [14,49,67]
AC ω O(n3) NP-comp. NP-comp. [20,46,47]

ACU ω O(n3) NP-comp. NP-comp. [47]

Remark 4 (Associative Unification in Maude). Although associative unification is in
general infinitary (see Table 2.1), this does not mean that it cannot be treated by com-
putational systems. For instance, Eker [38] describes an algorithm used by Maude for
A-unification that generates all possible solutions until a certain bound, chosen by the
user.

2.2 Examples of AC-Unification

Completeness of AC-unification is more complex than it looks at first glance. Stickel [72,
73] was the first to give a complete algorithm to solve unification in the presence of
AC-function symbols. He did it by discovering and exploring the connection between
unification and solving linear equations in Z+. Termination is also harder than it appears
to be: Stickel’s original proof of termination was not valid for the general case, and it
took almost a decade for Fages [39,40] to discover the flaw and propose a (complex) proof

9

of termination. We now give three examples to illustrate the interesting aspects of the
problem.

2.2.1 What Makes AC-Unification Hard

Let f be an associative-commutative function symbol. Finding a complete set of unifiers
for {f(X1, X2) ≈? f(a, Y)} is not as easy as it appears at first sight, since it is not enough
to simply compare the arguments of the first term with the arguments of the second term.
Indeed, this strategy would give us only

σ1 = {X1 7→ a, Y 7→ X2}

σ2 = {X2 7→ a, Y 7→ X1}

as solutions, missing for example the substitution σ3 = {X1 7→ f(a,W), Y 7→ f(X2,W)}.
This solution would be missed because the arguments of σ3Y = f(X2,W) are partially
contained in σ3X1 = f(a,W) and partially contained in σ3X2 = X2.

Remark 5. In contrast to AC-unification, to guarantee the completeness of AC-matching,
it is enough to explore all possible pairings of the arguments of the first term with the
arguments of the second term. Evidence of the difficulty of AC-unification is that, although
Contejean formalised AC-matching in 2004 and left as future work a formalisation of AC-
unification (see [31]), it took 18 years to obtain the first formalisation of AC-unification
(see [9]).

2.2.2 Unifying f(X,X, Y, a, b, c) and f(b, b, b, c, Z)

We give a higher-level example (taken from the very accessible [73]) of how we would solve

{f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)}.

In a high-level view, this technique converts an AC-unification problem into a linear
Diophantine equation and uses a basis of solutions of the Diophantine equation to get a
complete set of AC-unifiers to our original problem.

The first step is to eliminate common arguments in the terms that we are trying to
unify. The problem becomes

{f(X,X, Y, a) ≈? f(b, b, Z)}.

The second step is to associate our unification problem with a linear Diophantine equation,
where each argument of our terms corresponds to one variable in the equation (this process

10

is called variable abstraction) and the coefficient of this variable in the equation is the
number of occurrences of the argument. In our case, the linear Diophantine equation
obtained is: 2X1 + X2 + X3 = 2Y1 + Y2 (variable X1 was associated with argument X,
variable X2 with the argument Y and so on; the coefficient of variable X1 is two, since
argument X occurs twice in f(X,X, Y, a) and so on).

The third step is to generate a basis of solutions to the equation and associate a
new variable (the Zis) to each solution. As we shall soon see, the unification problem
{f(X,X, Y, a) ≈? f(b, b, Z)} may branch into (possibly) many unification problems and
the new variables Zis will be the building blocks for the right-hand side of these unification
problems. The result is shown on Table 2.2.

Table 2.2: Solutions for 2X1 +X2 +X3 = 2Y1 + Y2.

X1 X2 X3 Y1 Y2 New Variables

0 0 1 0 1 Z1
0 1 0 0 1 Z2
0 0 2 1 0 Z3
0 1 1 1 0 Z4
0 2 0 1 0 Z5
1 0 0 0 2 Z6
1 0 0 1 0 Z7

Observing Table 2.2 we relate the “old variables” (Xis and Yis) with the “new vari-
ables” (Zis). For instance, the column of variable X2 has a 0 in the lines that correspond
to variables Z1, Z3, Z6, Z7; a 1 in the lines that correspond to variables Z2 and Z4; and a
2 in the line that corresponds to variable Z5. Hence, the relation between the X2 with
the new variables is: X2 = Z2 +Z4 + 2Z5. All those relations between the “old variables”
and the “new variables” are shown below:

X1 = Z6 + Z7

X2 = Z2 + Z4 + 2Z5

X3 = Z1 + 2Z3 + Z4

Y1 = Z3 + Z4 + Z5 + Z7

Y2 = Z1 + Z2 + 2Z6.

(2.1)

In order to explore all possible solutions, we must consider whether we will include
or not each solution of our basis. Since seven solutions compose our basis (one for each
variable Zi), this means that a priori there are 27 cases to consider. Considering that
including a solution of our basis means setting the corresponding variable Zi to 1 and not
including it means setting it to 0, we must respect the constraint that no original variables

11

(X1, X2, X3, Y1, Y2) receive 0. Eliminating the cases that do not respect this constraint2,
we are left with 69 cases [72].

For example, if we decide to include only the solutions represented by the variables Z1,
Z4 and Z6, the corresponding unification problem, according to Equations (2.1), becomes:

P = {X1 ≈? Z6, X2 ≈? Z4, X3 ≈? f(Z1, Z4), Y1 ≈? Z4, Y2 ≈? f(Z1, Z6, Z6)}. (2.2)

We can also drop the cases where a variable that does not represent a variable term is
paired with an AC-function application. For instance, the unification problem P should
be discarded, since the variable X3 represents the constant a, and we cannot unify a with
f(Z1, Z4). This constraint eliminates 63 of the 69 potential unifiers.

Finally we replace the variables X1, X2, X3, Y1, Y2 by the original arguments they sub-
stituted and proceed with the unification. Some unification problems that we will explore
will be unsolvable and discarded later, as:

{X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}

(we cannot unify both a with Z4 and b with Z4 simultaneously). In the end, the solutions
computed for the original problem {f(X,X, Y, a, b, c) ≈? f(b, b, b, c, Z)} are:

σ1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ2 = {Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}.
σ3 = {X 7→ b, Z 7→ f(a, Y)}.
σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}.

(2.3)

Remark 6. When using the technique described in this section to unify f(X,X, Y, a, b, c)
with f(b, b, b, c, Z), we obtained unification problems that only contain the variables X1,
X2, X3, Y1, Y2 or AC-functions whose arguments are all variables (for instance P in
Equation 2.2). However, this does not mean that our technique cannot be applied to general
AC-unification problems, since we eventually replace the variables X1, X2, X3, Y1, Y2 by
their corresponding arguments (X, Y, a, b, Z respectively) and proceed with unification.

Remark 7 (Cases on AC1-Unification). If we were considering AC1-unification, where
our signature has an identity id function symbol, we could consider only the case where
we include all the AC solutions in our basis and instantiate the variables Zis later on to
be id.

2Suppose for instance that we set variables (Z1, Z2, Z3, Z4, Z5, Z6, Z7) to (1, 1, 1, 1, 1, 0, 0). Then X1 =
Z6 + Z7 would be set to 0, so this case does not respect the constraint and is eliminated.

12

2.2.3 Avoiding Infinite Loops

It is necessary to compose the substeps of solving AC-unification equations with some
strategy, as the following example (adapted from [40]) shows.

Example 4 (Looping forever). Let f be an AC-function symbol. Suppose we want to
solve

P = {f(X, Y) ≈? f(U, V), X ≈? Y, U ≈? V }

and instead of instantiating the variables as soon as we can, we decide to try solving
the first equation. When trying to unify f(X, Y) with f(U, V) we obtain as one of the
branches the unification problem:

{X ≈? f(X1, X2), Y ≈? f(X3, X4), U ≈? f(X1, X3), V ≈? f(X2, X4)
X ≈? Y, U ≈? V }.

We can solve this branch by instantiating X, Y , U and V in the first four equations. After
these instantiations, the substitution we have computed and the two remaining equations
we have to unify are:

σ = {X 7→ f(X1, X2), Y 7→ f(X3, X4), U 7→ f(X1, X3), V 7→ f(X2, X4)}
P ′ = {f(X1, X2) ≈? f(X3, X4), f(X1, X3) ≈? f(X2, X4)}

One way of solving the first equation is to decompose it into {X1 ≈? X3, X2 ≈? X4},
which get us back to

P ′ = {f(X1, X3) ≈? f(X2, X4), X1 ≈? X3, X2 ≈? X4}

which is essentially the same as the unification problem P we started with.

Notice that this infinite loop in our example would not happen if we had instantiated
{X 7→ Y } and {U 7→ V } in the beginning. In our first-order AC-unification algorithm,
we always instantiate the variables that we can before tackling AC-unification pairs.

2.3 The Nominal Setting

This section lays the background for both the nominal C-unification formalisation and
the nominal AC-matching formalisation. The definitions and notations in this section
are based on [8] and [3]. We define nominal terms and associated concepts modulo an
equational theory E, where E = C (Chapter 3) or E = AC (Chapters 5). The links

13

in this section point to the nominal AC-matching formalisation, but the corresponding
concepts in the nominal C-unification formalisation were defined similarly.

2.3.1 Atoms, Variables, Nominal Terms, Substitutions and Per-
mutations

In the nominal setting, we consider a countable set of atoms A = {a, b, c,}. Atoms
represent object level variables, and therefore, can be abstracted but not substituted. We
also consider a countable set of variables X = {X, Y, Z, ...} and impose that A and X are
disjoint. These variables represent meta-level variables and can be substituted, but not
abstracted.

Remark 8 (Name Convention). In the nominal setting, atoms with different names are
considered different. For instance, if we consider atoms a and b, it is needless to say that
a ̸= b. This is called name convention or Gabbay’s permutative convention.

Renaming of atoms happens through permutations, where a permutation π is a bijec-
tion of the form π : A → A such that the set of atoms that are modified by π (also called
the domain of π) is finite. Permutations are usually represented as list of swappings,
where a swapping (a b) renames a to b and b to a, while leaving all the other atoms fixed.
Therefore, a permutation is represented as π = (an bn) :: ... :: (a1 b1) :: nil.

Definition 11 (Action of Permutations on Atoms). The action of a permutation over
an atom is recursively defined as:

nil · c = c

((a b) :: π) · c =

a if π · c = b

b if π · c = a

π · c otherwise

Finally, the reverse of a permutation π is denoted by π−1 and can be computed by
reversing the list of swappings.

With the concepts of atoms, variables and permutations, we are able to define nominal
terms:

Definition 12 (Nominal Terms). The set T (Σ,A,X) of nominal terms is generated
according to the grammar:

s, t ::= a | π ·X | ⟨⟩ | [a]t | ⟨s, t⟩ | f t | fE t (2.4)

14

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/atoms.pvs#L36-L46
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/AC_nominal_term.pvs#L22-L32

where ⟨⟩ is the unit, a is an atom term, π ·X is a moderated variable or suspension (the
permutation π is suspended on the variable X), [a]t is an abstraction (a term with the
atom a abstracted), ⟨s, t⟩ is a pair, f t is a function application and fE t is a E function
application.

Remark 9. We represent moderated variables of the form id ·X simply as X.

The action of permutation on nominal terms is defined recursively as shown in Defi-
nition 13.

Definition 13 (Permutation Action on Terms). The action of permutations on terms
is defined recursively:

• π · ⟨⟩ = ⟨⟩

• π · (π′ ·X) = append(π, π′) ·X

• π · [a]t = [π · a]π · t

• π · ⟨s, t⟩ = ⟨π · s, π · t⟩

• π · f t = f π · t

• π · fE t = fE π · t

Remark 10. When a permutation π is applied to a suspension π′ · X, the permutation
π stays suspended. The intuition behind this is that π and π′ are waiting for X to be
instantiated and will only act when the variable X is instantiated.

Example 5. To illustrate the action of a permutation on a term, consider π = (a b) ::
(b c) :: (d e) :: nil and t = f⟨b, ⟨d,X⟩⟩. Then, the result of the permutation action is
π · t = f⟨c, ⟨e, π ·X⟩⟩.

In Definition 5 we define action of nuclear substitutions for first-order terms. Definition
14, is the corresponding definition for nominal terms. As was done in first-order, we use
the definition of action of nuclear substitution to define the action of a substitution for
terms.

Definition 14 (Nuclear Substitution Acting on Nominal Terms). The action of a
nuclear substitution on a nominal term is defined inductively:

• {X 7→ t}π · Y =
 π · Y if X ̸= Y

π · t otherwise

• {X 7→ t}⟨⟩ = ⟨⟩

15

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/AC_nominal_term.pvs#L688-L699
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_substitution.pvs#L48-L63

• {X 7→ t}⟨s1, s2⟩ = ⟨{X 7→ t}s1, {X 7→ t}s2⟩

• {X 7→ t}([a]s) = [a]({X 7→ t}s)

• {X 7→ t}(f s) = f ({X 7→ t}s)

• {X 7→ t}(fE s) = fE ({X 7→ t}s)

Definition 15 (Substitution acting on terms). Since a substitution σ is a list of nuclear
substitutions, the action of a substitution is defined as:

• nil t = t, where nil is the null list, used to represent the identity substitution.

• cons({X 7→ s}, σ) t = {X 7→ s}(σt).

Example 6. Let σ = {Y 7→ a,X 7→ f(Y, b)} and t = [a]X. Then, σt = [a]f(a, b).

2.3.2 Freshness and α-Equality

Two important notions in the nominal setting are freshness (represented by #) and α-
equality (represented by ≈α):

• a#t intuitively means that if a occurs in the term t then it does so under an ab-
stractor [a]. For example, a#b, since a does not occur in b, and also a#[a]a, since
a occurs under an abstractor [a]. However, we do not have a#a.

• s ≈α t means that s and t are α-equivalent, that is, the terms can be made equal
by a suitable renaming of bounded atoms. For instance, [a]a ≈α [b]b but we do not
have a ≈α b.

To formally define freshness (Definition 17) we need the definition of freshness context
(Definition 16).

Definition 16 (Freshness Context). A freshness context ∇ is a set of constraints of
the form a#X.

Notation 9. We denote contexts by letters ∆,Γ,∇ and so on. Let Γ be an arbitrary
context. We denote by Vars(Γ) the set {X | a#X ∈ Γ, for some atom a}.

Notation 10 (Difference Set ds). We define the difference set between two permutations
π and π′ as ds(π, π′) = {a ∈ A | π · a ̸= π′ · a}. Thus, ds(π, π′)#X is the set containing
every constraint of the form a#X for a ∈ ds(π, π′).

Definition 17 (Freshness). An atom a is said to be fresh on t under a context ∆
(which we denote by ∆ ⊢ a#t) if it is possible to build a proof using the rules:

16

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_substitution.pvs#L72-L81
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_freshness.pvs#L28-L28
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_freshness.pvs#L145-L150
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_freshness.pvs#L37-L51

(#⟨⟩)∆ ⊢ a#⟨⟩ (#atom)∆ ⊢ a#b

(π−1 · a#X) ∈ ∆ (#X)∆ ⊢ a#π ·X
(#[a]a)∆ ⊢ a#[a]t

∆ ⊢ a#t (#[a]b)∆ ⊢ a#[b]t
∆ ⊢ a#s ∆ ⊢ a#t (#pair)∆ ⊢ a#⟨s, t⟩

∆ ⊢ a#t (#app)∆ ⊢ a#f t
∆ ⊢ a#t (#app)

∆ ⊢ a#fE t

Example 7. Let’s derive a#⟨X, [a]Y ⟩ with context ∆ = {a#X}:

a#X ∈ ∆ (#X)∆ ⊢ a#X (#[a]a)∆ ⊢ a#[a]Y (#pair)∆ ⊢ a#⟨X, [a]Y ⟩
With the notion of freshness, one can define α-equality in the nominal setting. To

define α-equality with AC operators (Definition 18) we used operators Sn and Dn, defined
as follows. Let f be an AC function symbol, Sn(f t) be an operator that selects the nth
argument of f t (considering the flattened form) and Dn(f t) be an operator that deletes
the nth argument of f t (considering the flattened form).

Example 8. Let f be an AC-function symbol and t = f⟨f⟨a, b⟩, f⟨[a]X, π · Y ⟩⟩. In the
above definition, S2(f, t) = b and D2(f, t) = f⟨fa, f⟨[a]X, π · Y ⟩⟩⟩).

Definition 18 (α-Equality with AC operators). If there exist i and j such that ∆ ⊢
Si(fACs) ≈α Sj(fACt) and ∆ ⊢ Di(fACs) ≈α Dj(fACt), then ∆ ⊢ fACs ≈α f

ACt. In
other words, the rule of α-equality for an AC-function application is:

∆ ⊢ Si(fACs) ≈α Sj(fACt) ∆ ⊢ Di(fACs) ≈α Dj(fACt) (≈α AC)
∆ ⊢ fACs ≈α f

ACt

Two terms t and s are said to be α-equivalent under the freshness context ∆ (∆ ⊢ t ≈α s)
if it is possible to build a proof using rule (≈α AC) and the rules:

(≈α ⟨⟩)∆ ⊢ ⟨⟩ ≈α ⟨⟩ (≈α atom)∆ ⊢ a ≈α a

∆ ⊢ s ≈α t (≈α app)∆ ⊢ f s ≈α f t
∆ ⊢ s ≈α t (≈α [a]a)∆ ⊢ [a]s ≈α [a]t

∆ ⊢ s ≈α (a b) · t, ∆ ⊢ a#t (≈α [a]b)∆ ⊢ [a]s ≈α [b]t
ds(π, π′)#X ⊆ ∆ (≈α var)∆ ⊢ π ·X ≈α π

′ ·X

∆ ⊢ s0 ≈α t0, ∆ ⊢ s1 ≈α t1 (≈α pair)∆ ⊢ ⟨s0, s1⟩ ≈α ⟨t0, t1⟩

17

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_equality.pvs#L17-L45

Example 9. Let f be an AC function symbol. One can derive that ∅ ⊢ f⟨f⟨a, b⟩, c⟩ ≈?

f⟨c, f⟨b, a⟩⟩ by first noticing that

S1(f⟨f⟨a, b⟩, c⟩) = a and S3(f⟨c, f⟨b, a⟩⟩) = a

D1(f⟨f⟨a, b⟩, c⟩) = f⟨fb, c⟩ and D3(f⟨c, f⟨b, a⟩⟩) = f⟨c, fb⟩

and then noticing that

S1(f⟨fb, c⟩) = b and S2(f⟨c, fb⟩) = b

D1(f⟨fb, c⟩) = fc and D2(f⟨c, fb⟩) = fc

More precisely the derivation tree that proves ∅ ⊢ f⟨f⟨a, b⟩, c⟩ ≈? f⟨c, f⟨b, a⟩⟩ is shown
below. To make the derivation more compact, we omit the name of the rules that are not
related to AC-operators.

∅ ⊢ a ≈? a

∅ ⊢ b ≈? b

∅ ⊢ c ≈? c ∅ ⊢ ⟨⟩ ≈? ⟨⟩ (≈α AC, (i, j) = (1, 1))
∅ ⊢ fc ≈? fc (≈α AC, (i, j) = (1, 2))

∅ ⊢ f⟨fb, c⟩ ≈? f⟨c, fb⟩ (≈α AC, (i, j) = (1, 3))
∅ ⊢ f⟨f⟨a, b⟩, c⟩ ≈? f⟨c, f⟨b, a⟩⟩

Example 10. The notion of “exists a number that is greater than 0” could be represented
as the nominal term ∃[a]a > 0 or as ∃[b]b > 0 and these two representations are equiva-
lent. Here is is how we would derive ∃[a]a > 0 ≈ ∃[b]b > 0:

a ≈α a 0 ≈α 0 (≈α app)
a > 0 ≈α (a b) · b > 0

a#b a#0 (#app)
a#b > 0 (≈α [a]b)[a]a > 0 ≈α [b]b > 0 (≈α app)∃[a]a > 0 ≈α ∃[b]b > 0

Definition 19 is α-equality with C operators. Notice that the rule for α-equality of two
AC function applications is very different from the rule for α-equality of two C function
applications.

Definition 19 (α-Equality with C operators). α-equality under the presence of commu-
tative function symbols is defined by using all the rules of Definition 18 with the exception
of rule (≈α AC) and adding the rule (≈α C):

∆ ⊢ s0 ≈α ti, ∆ ⊢ s1 ≈α ti+1(mod 2)
i = 0, 1 (≈α C)

∆ ⊢ fC⟨s0, s1⟩ ≈α f
C⟨t0, t1⟩

Example 11. The following derivation proves that g(fC⟨a, b⟩) ≈α g(fC⟨b, a⟩).

18

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_alpha_equivalence.pvs#L35-L57

(≈α atom)
b ≈α b

(≈α atom)a ≈α a (≈α C)
fC⟨a, b⟩ ≈α f

C⟨b, a⟩ (≈α app)
g(fC⟨a, b⟩) ≈α g(fC⟨b, a⟩)

2.3.3 Solution to a Quintuple and Additional Notation

For the proofs of soundness and completeness of nominal AC-matching and nominal C-
unification, we need the notion of a solution to a quintuple (Definition 22). This definition
depends on a parameter X , a set of “protected variables”, i.e., variables that cannot be
instantiated. Before presenting this concept, we introduce some notation and recall the
concept of a solution in nominal syntactic unification (Definition 20).

Notation 11 (Equational Constraints). In the nominal setting, t ≈? s is denoted an
equational constraint or an equation. a#?t is denoted a freshness constraint.

Notation 12. Let ∇ and ∇′ be freshness contexts and σ and σ′ substitutions. We need
the following notation to define a solution to a quintuple:

• ∇′ ⊢ σ∇ denotes that ∇′ ⊢ a#σX holds for each (a#X) ∈ ∇.

• ∇ ⊢ σ ≈V σ′ denotes that ∇ ⊢ σX ≈α σ
′X for all X in V . When V is the set of

all variables X, we write ∇ ⊢ σ ≈ σ′.

Definition 20 (Solution in Nominal Syntactic Unification). Let P be a finite set of equa-
tional and freshness constraints of the form t ≈? s and a#?t. In nominal syntactic
unification, i.e., nominal unification with no symbols from any equational theory E, the
solution to P is a pair (∆, δ) such that

1. if a#?t ∈ P then ∆ ⊢ a#δt.

2. if t ≈? s ∈ P then ∆ ⊢ δt ≈α δs.

We now define a general notion of unification problem with protected variables (Defi-
nition 21) and a solution to a quintuple (Definition 22). Then, the definition for a nominal
E-unification/matching/equality problem are obtained immediately from the correspond-
ing definitions of unification by correctly setting the parameter X .

Definition 21 (Unification Problem With Protected Variables). A unification problem
with protected variables is a triple (Γ, P,X) where Γ is a freshness context; P is a finite
set of equational and freshness constraints of the form t ≈? s and a#?t, respectively; and
X is a set of variables.

When X = ∅, Definition 21 corresponds to an E-unification problem. When X =
Vars(rhs(P)), Definition 21 corresponds to an E-matching problem and when X = Vars(P)
the mentioned definition corresponds to an E-equality checking problem.

19

Definition 22 (Solution for a Quintuple). Suppose that Γ is a context, P is a set of
freshness constraints (of the form a#?t) and equational constraints (of the form t ≈? s), σ
is a substitution, V is a set of variables and X is a set of protected variables that cannot be
instantiated. A solution for a quintuple (Γ, P, σ, V,X) is a pair (∆, δ), where the following
conditions are satisfied:

1. ∆ ⊢ δΓ.

2. if a#?t ∈ P then ∆ ⊢ a#δt.

3. if t ≈? s ∈ P then ∆ ⊢ δt ≈α δs.

4. there exists λ such that ∆ ⊢ λσ ≈V δ.

5. dom(δ) ∩ X = ∅.

When (∆, δ) is a solution of (Γ, ∅, σ,X,X) this corresponds to the notion of (∆, δ)
being an instance of (Γ, σ) that does not instantiate variables in X .

Definition 23 (Solution for an E-unification/matching/equality problem). A solution for
an E-unification problem with protected variables (Γ, P,X) is a solution for the associated
quintuple (Γ, P, id,Vars(P),X). When X = Vars(rhs(P)), we have the definition for an
AC-matching problem and when X = Vars(P) we have the definition of solution to an
AC-equality checking problem.

2.3.4 Fixpoint Equations

An equational constraint of the form π ·X ≈? π′ ·X is denoted a fixpoint equation. Since
every equational constraint π ·X ≈? π′ ·X can be rewritten as π′−1π ·X ≈? X, we usually
represent a generic fixpoint equation simply as π ·X ≈? X.

In nominal unification, we can solve a fixpoint equation π · X ≈? X by adding
{a#X | a ∈ dom(π)} to our context. As shown in Ayala-Rincón et al. [5], this same
approach is not complete in nominal C-unification. Consider for instance the equa-
tional constraint (a b) · X ≈? X and let + be a commutative function symbol. The
pair (∆, δ) = ({a#X | a ∈ dom(π)}, id) is a solution to the equation, but it is not the
only one; other examples are (∅, {X 7→ a + b}), (∅, {X 7→ (a + b) + (a + b)}) and so on.
Indeed, as shown in [5] the problem of nominal C-unification is infinitary if we express
the solutions as pairs (context, substitution) and in order for us to obtain an algorithm
for nominal C-unification it is necessary to add a parameter for the fixpoint equations in
the solution, i.e., the output is a triple (context, substitution, fixpoint equations). The
problem of fixpoint equations in nominal AC-unification is not yet published, but appears
to be similar to nominal C-unification (see our work in progress in Chapter 6).

20

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_unification.pvs#L153-L157

2.3.5 Complexity of Unification and Matching Modulo Equa-
tional Theories in the Nominal Setting

As was done for the first-order syntax (Table 2.1), Table 2.3 shows the unification type
and complexity of unification, matching and α-equivalence for some equational theories
in the nominal setting. A question mark was put for questions that are open.

Table 2.3: Unification Type and Complexity for Some Equational Theories in the Nominal
Syntax.

Theory Unification
Type

Complexity of Related
WorkEquality-Check Matching Unification

Syntactic 1 O(n log n) O(n log n) O(n2) [6, 27, 53,75]
C ∞ O(n2 log n) NP-comp. NP-comp. [4, 6]
A ? O(n log n) ? ? [6]

AC ? O(n2 log n) NP-comp. ? [6, 8]

2.4 Structured Proofs

In this section we present the concept of structured proofs and argue about the advantages
of using them. The discussion in this section is also given in [71] and more information
on the topic can be found in [13,51,52].

When mathematicians or computer scientists write a standard proof of some theorem,
they have to decide on which level of detail they will present their proof. If they provide
few details, readers may spend a lot of time filling the holes left or, even worse, may not
understand why a specific step of the proof is correct. However, more argumentation is
not necessarily always better, since this may obscure the “big picture” and some readers
may be more interested in seeing the “big picture” than in checking every tiny detail of
the proof. Hence, the ideal level of detail in a mathematical proof varies from reader to
reader, as it depends on the reader’s background and the reader’s intention (checking that
every step of the proof is correct vs seeing the “big picture” and getting an intuition on
why it works).

How to appease every type of reader? By using proof sketches, lemmas, and structured
proofs it is possible to get close to this goal.

We illustrate the advantages of structured proofs via an example, comparing them
to normal proofs. This example comes from [52] and it’s about a corollary to the Mean
Value Theorem, which is a theorem from calculus. Here is the corollary and the proof as
presented in Spivak’s Calculus textbook:

21

Figure 2.1: An Example of a Standard Non-Structured Proof.

A correspondent structured proof presented by Leslie Lamport in [52] is shown below:

Figure 2.2: The Corresponding Structured Proof.

Notice that in the structured proof it is easier for a reader to see what were the
necessary steps and the justification for each one. As an example, suppose that reader “A”
is studying calculus for the first time and wants to make sure he understands everything.
Then, reader “A” can read steps 1–5 to get the “big picture” and then understand each
step by reading the proof for that step. What about a reader “B”, who (let’s say) already
knows a lot of calculus? “B” can just read steps 1–5 and be convinced that the proof
works. Now imagine that a struggling reader “C” did not understand the justification of

22

step 2. What can we do? We simply expand the justification of step 2 in a structured
manner, as shown below (this also comes from Lamport [52]):

Figure 2.3: Expanding the Proof of Step 2 in a Structured Way.

If we used the conventional, non-structured way of writing proofs, we would not be
able to please everyone, since everyone would be reading the proof in the same way and
the level of detail would not satisfy readers “A” “B” and “C” simultaneously.

Due to the advantages discussed above, in this thesis we present the proofs in a
structured manner.

2.5 The PVS Proof Assistant

An interactive theorem prover, also called proof assistant, is a software used to help
humans with the development of formal proofs. A verified proof has all of its steps
accepted as correct by the proof assistant, which diminishes the probability of wrong
proofs. However, it is important to point out that wrong proofs can still occur, for instance
if a given mathematical theory is wrongly defined in the proof assistant. Examples of
interactive proof assistants are Coq [17], Isabelle/Hol [60], PVS [62] and Lean [34].

PVS3 is an interactive proof assistant based on higher-order logic developed at SRI
International since 1990 [62,70]. It extends Church’s simply typed higher-order logic with
practical features such as algebraic data types, dependent predicate subtypes, parametric
theories and theory interpretations. Additionally, it has effective proof automation (for
instance by using SMT or other decision procedures).

The formalisations described in this work were done using the proof assistant PVS.
Specifications of mathematical definitions and statement of lemmas/theorems/corollaries
are kept in .pvs files, while the corresponding formalisations are found in .prf files.

3PVS officially stands for “Prototype Verification System” but it is sometimes extraoficially called
“People’s Verification System”, an acronym that was created by John Rushby [70].

23

Although there were many different proof assistants we could have chosen to do the
formalisation, we opted for PVS for three different reasons. The first was to reuse a great
portion of definitions and lemmas from [12] (a formalisation of nominal C-unification that
is not generalised with protected variables), instead of proving them from scratch. The
second is the support offered by PVS to specify functional algorithms. Finally, we had
previous experience using PVS.

2.5.1 TCCs - Type Correctness Conditions

When specifying functions and theorems, PVS may generate proof obligations that must
be satisfied. These proof obligations are called Type Correctness Conditions (TCCs) and
the PVS system includes several pre-defined proof strategies that automatically discharge
simple TCCs. The more elaborate TCCs that PVS cannot automatically prove must be
proved manually by the user.

2.5.2 PVSio

PVS does not support code extraction to a functional programming language like Haskell
or OCaml. Nevertheless, it has the PVSio package which extends the capabilities of the
ground evaluator with a predefined library of imperative programming language features,
among them input and output operators [58].

This implies that in some cases we can run the formalised algorithm inside the PVS
environment passing the input we want and seeing the output returned. However, some
code fragments cannot be handled by PVSio. For instance, the function divides is used
in our formalisation when solving the Diophantine equations and is defined as follows:

divides (n, m): bool = EXISTS x : m = n * x

PVSio cannot be used when the algorithm relies on code fragments such as divides that
use the PVS reserved word EXISTS. Hence, fragments of the algorithm that rely on this
should be replaced by equivalent fragments specified in a “procedural manner”. Specifying
the equivalent fragments should be straightforward, but proving that the two fragments
are indeed the same for every case requires some effort. For the case of divides, one
could specify and use instead divides_alt:

divides_alt (n, m): RECURSIVE bool =
IF m = 0 OR m - n = 0 THEN TRUE
ELSIF m - n < 0 THEN FALSE
ELSE divides_alt (n, m-n)
ENDIF

24

MEASURE m

Specifying the equivalent fragments is usually straightforward, but proving that the two
fragments give the same result under any circumstance requires more effort.

PVSio can be combined with semantic attachments in cases where the code is not
fully executable (see [32, 36]). This allows us to animate a specification, i.e. make a
specification actually perform a calculation. For instance, in the case of divides one
could use the following semantic attachment:

(defattach |divides.divides| (m n)
"Returns TRUE if n divides m"
(multiple-value-bind (mod rem) (floor m n) (= rem 0)))

Then, going back to PVSio one would obtain:

<PVSio > divides (10 ,2);
==>
TRUE

<PVSio > divides (10 ,3);
==>
FALSE

2.6 NASALib and the Nominal Library

NASALib is the main repository for PVS formalisations. It consists of over 60 top-level
libraries, with over 38K proven formulas. The formalisations described in this thesis are
part of the nominal library of NASALib, which consists of four main results:

• A sound and complete Nominal Syntactic Unification Algorithm. This formalisation
is described in [11] and is not part of this work.

• A sound and complete Nominal C-Unification Algorithm generalised with protected
variables. This formalisation is described in [3] and in Chapter 3.

• A sound and complete First-order AC-Unification Algorithm. This formalisation is
described in [9] and in Chapter 4.

• A sound and complete Nominal AC-Matching Algorithm. This formalisation is
described in [8] and in Chapter 5.

25

Figure 2.4: Hierarchy of the Nominal library.

26

The hierarchy of the files in the nominal library is shown in Figure 2.4.
In Chapters 3, 4 and 5 we detail files that are specific to Items (2), (3) and (4), but

we comment here some files that are common to all the theories:

• atoms - Definition and properties about permutations and their actions on atoms.

• Diophantine - Code to solve Diophantine equations (used by the formalisation of
first-order AC-unification and nominal AC-matching).

• list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_more and list_aux_equational_reasoning_nat
- Set of parametric theories that define specific functions for the task of equational
reasoning (most of them operating on lists).

• structures - This is a different library that is being used by the nominal library,
with results about data structures.

Remark 11. The files top_nominal_AC_match.pvs, top_first_order_AC_unification.pvs,
top_C_nominal_unif_match.pvs and top_syntactic_nominal_unification.pvs only
contain high-level descriptions of the formalisations of nominal AC-matching, first-order
AC-unification, nominal C-unification generalised with protected variables and nominal
syntactic unification. These files do not contain theorem specifications and therefore,
there is no .prf files associated with them, as there is no proof of any theorem.

Finally, in Table 2.4 we give the main information for every file in the NASALib
library. Since there are many files, we separated the rows in the table in 5 parts (this
separation between parts is done by a solid lines). The first part consists of the first 6
rows and corresponds to files that were used by more than one of the 4 formalisations.
The second part consists of the files of the nominal syntactic unification formalisation,
the third part consists of the files of the nominal C-unification formalisation, the fourth
part consists of the files of the first-order AC-unification formalisation and the fifth part
consists of the files of the nominal AC-matching formalisation. We omit from Table
2.4 the four files top_<name_of_the_formalisation>.pvs since those files only contain
high-level descriptions (see Remark 11).

27

Table 2.4: Information for Every File in the Nominal Library.

Theory Theorems TCCs
Size

.pvs .prf %

list_aux_equational_
reasoning_nat

3 5 3 kB 0.01 MB < 0.1 %

list_aux_equational_
reasoning

210 84 45 kB 1 MB 1.3%

list_aux_equational_
reasoning_more

34 13 8 kB 1.1 MB 1.5%

list_aux_equational_
reasoning2parameters

17 6 5 kB 0.04 MB 0.1%

atoms 14 3 5 kB 0.03 MB < 0.1%
Diophantine 73 44 24 kB 1.1 MB 1.5%

nominalunif 2 17 4 kB 0.6 MB 0.8 %
syntactic_substitution 38 7 13 kB 0.4 MB 0.5 %

syntactic_alpha_
equivalence

15 7 6 kB 0.3 MB 0.4 %

syntactic_freshness 9 6 5 kB 0.08 MB 0.1%
nominal_term 7 4 5 kB 0.04 MB 0.1%

C_nominalunif 29 24 21 kB 6.3 MB 8.5%
C_substitution 73 14 22 kB 0.6 MB 0.8%

C_alpha_
equivalence

14 8 5 kB 0.3 MB 0.4%

C_freshness 9 7 5 kB 0.04 MB 0.1%
C_nominal_term 9 7 6 kB 0.04 MB 0.1%

first_order_AC_
unification_alg

10 19 6 kB 2.3 MB 3.1%

first_order_AC_
renamed_inputs

21 23 10 kB 2.7 MB 3.6%

first_order_AC_
termination_alg

80 35 23 kB 11 MB 14.8%

first_order_AC_
apply_ac_step

29 12 15 kB 9.7 MB 13.1%

aux_first_order_AC_
unification

204 58 59 kB 8.2 MB 11.0%

28

Table 2.4: Information for Every File in the Nominal Library.

Theory Theorems TCCs
Size

.pvs .prf %

first_order_AC_
unification

86 14 20 kB 1.0 MB 1.3%

first_order_AC_
substitution

144 22 27 kB 2.4 MB 3.2%

first_order_AC_
AC_equality

67 18 12 kB 1.1 MB 1.5%

first_order_AC_
terms

131 48 28 kB 1.1 MB 1.5%

nominal_AC_
ac_match_alg

22 35 12 kB 2.6 MB 3.5%

nominal_AC_
variant_inputs

22 5 8 kB 1.4 MB 1.9%

nominal_AC_
ac_step

48 11 13 kB 1.6 MB 2.2%

nominal_AC_
inst_step

75 17 21 kB 2.1 MB 2.8%

aux_nominal_AC_
unification

152 52 49 kB 7.1 MB 9.6%

nominal_AC_
unification

120 13 28 kB 1.8 MB 2.4%

nominal_AC_
fresh_subs

38 5 12 kB 0.6 MB 0.8%

nominal_AC_
substitution

175 36 30 kB 2.6 MB 3.5%

nominal_AC_
equality

83 20 15 kB 1.7 MB 2.3%

nominal_AC_
freshness

15 10 5 kB 0.1 MB 0.1 %

nominal_AC_
terms

147 53 30 kB 1.2 MB 1.6 %

Total 2225 762 605 kB 74.3MB 100%

29

Chapter 3

Nominal C-Unification Generalised
With Protected Variables

This chapter describes how we extended the functional nominal C-unification1 algorithm
from Ayala-Rincón et al. [11], adding a parameter X for variables that cannot be in-
stantiated, and obtained a nominal C-unification algorithm generalised with protected
variables. Given a unification problem P , this generalised algorithm can be used to the
task of unification, matching and α-equality checking by correctly setting the parameter X
to ∅, V ars(rhs(P)) or V ars(P) respectively. The extended algorithm has been formalised
in the PVS proof assistant. Moreover, we tested the correctness of a Python manual im-
plementation of the algorithm using the PVS formalisation, through the PVSio feature
(see Section 2.5.2). Most of the content of this Chapter is described in Ayala-Rincón et
al. [3].

Remark 12 (Difference Between This Chapter and [3]). Although both [3] and this Chap-
ter describe a nominal C-unification algorithm generalised with protected variables, there
are two differences between them. The main difference is that [3] also describes how a
set of inductive rules for nominal C-unification specified in Coq can be extended to handle
matching and α-equivalence. A second difference is that this Chapter describes the statis-
tics of the PVS formalisation and the hierarchy of the PVS files (see Section 3.5) in more
details than [3].

1A set X equipped with a commutative operator + that is closed over X but not necessarily associative
defines an algebraic structure (X, +) called commutative magma or commutative groupoid. Commutative
magmas have been used to model a variety of problems, including the NAND logic gate and the rock-
paper-scissors game.

30

3.1 Specifying Unification Via Set of Rules and Via
Algorithms

As mentioned, Ayala-Rincón et al. [3] showed how nominal C-unification could be for-
malised as a set of non-deterministic inference rules in Coq and as a recursive algorithm
in PVS. In this section we discuss the advantages and drawbacks of both approaches.

On one hand, in a rule-based specification, the unification problem is progressively
transformed into a simpler one by the rules. This elegant approach has a higher level of
abstraction than the algorithmic way, which can simplify the analysis of some computa-
tional properties such as correctness and completeness of solutions.

On the other hand, the rule-based approach has the drawback that from a specification
of these non-deterministic rules we cannot extract executable code directly. Instead, from
a set of non-deterministic inductive rules one usually obtains a recursive algorithm by
providing a heuristic on how to apply the rules and then extracts executable code. In
this case, one can use the formalised computational properties of the non-deterministic
rules (soundness, completeness, termination...) to prove the corresponding properties for
the algorithm. Finally, once we have extracted executable code of an algorithm, there
are two possibilities: we can use it directly or use it to test the correctness of manual
implementations of the algorithm, which may contain optimisations and are usually faster.

Finally, the choice of proof assistant may play a role in the approach used to formalise
unification. The Coq and the PVS proof assistants support both approaches to formalise
unification, although inductive formalisations via set of rules are more common in Coq
(e.g. [4, 75]) and recursive formalisations are more common in PVS (e.g. [11,12]).

3.2 Main Algorithm

Algorithm 1 is a functional algorithm for nominal C-unification that let us unify two
terms t and s. By using the appropriate set of protected variables, the algorithm can be
adapted to do C-matching and C-equality checking. The algorithm is recursive and keeps
track of the protected variables, the current context, the substitutions done so far, the
remaining terms left to unify and the current fixpoint equations. Therefore, the algorithm
receives as input a quintuple (X ,∆, σ, P, FP), where X is the set of protected variables,
∆ is the context we are working with, σ represents the substitutions already made, P is
a list of equations we must still solve (each equation t ≈? s is represented as a pair (t, s)
in Algorithm 1) and FP is a list of fixpoint equations we have already computed.

31

The first call to the algorithm in order to unify the terms t and s is done with X = ∅,
∆ = ∅, σ = id, P = {t ≈? s} and FP = ∅. The algorithm eventually terminates,
returning a list (possibly empty) of triples of the form (∆, σ, FP).

Although long, the algorithm is simple. It starts by analysing the list of terms it needs
to unify. If P is an empty list, then it has finished and can return the answer computed
so far, which is a list with only one element: (∆, σ, FP). If P is not empty, then there are
terms to unify, and the algorithm starts by trying to unify the terms t and s in the head
of the list. The algorithm calls itself on progressively simpler versions of the problem until
it finishes.

The pseudocode for the algorithm is presented in Algorithm 1. Although in the PVS
specification all fixpoint equations are stored in FP , in the pseudocode here presented
we show how fixpoint equations π · X ≈? X with X ∈ X can be solved. In relation
to the algorithm presented in [12], there are three changes. First, the addition of the
parameter X for a set of protected variables, which remains constant in the execution of
the algorithm. Second there is the check to see if X is in X or not in lines 5 and 14 to
decide whether there will be an instantiation or not. Third, the algorithm solves fixpoint
equations with protected variables in lines 16-17.

Remark 13 (Minor Changes on the Pseudocode of CUnif). In comparison to [3] we
made minor stylistic changes in the pseudocode of Algorithm 1, to follow the same style of
Algorithm 2 (certified first-order AC-unification) and Algorithm 5 (nominal AC-matching).

Remark 14 (Terms in Nominal C-unification). In the formalisation of first-order AC
unification (Chapter 4) and of nominal AC-matching (Chapter 5) we restrict ourselves to
well-formed terms. In this formalisation we do not, although we impose in the grammar of
term that every commutative function application receives a pair, i.e. for every (sub)term
of the form fCt, t is necessarily a pair.

3.2.1 Auxiliary functions

Following the approach of [11], freshness constraints are handled by auxiliary functions,
making the main function CUnif smaller. To deal with the freshness constraints, the
following auxiliary functions, which come from [11] and were extended to also handle
commutative function applications, were used:

• freshSubs?(σ,∆) recursively returns the minimal context (∆′ in Algorithm 1)
in which a#?Xσ holds, for every a#X in the context ∆, and a boolean (flag in
Algorithm 1), indicating if it was possible to find the mentioned context.

32

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_substitution.pvs#L156-L166

Algorithm 1 Functional Nominal C-Unification

1: procedure CUnif(X ,∆, σ, P, FP)
2: if nil?(P) then cons((∆, σ, FP), nil)
3: else
4: let cons((t, s), P1) = P in
5: if (s matches π ·X) and (X not in t) and (X not in X) then
6: let σ1 = {X 7→ π−1 · t},
7: (∆1,flag) = freshSubs?(σ1,∆) in
8: if flag then CUnif(X , ∆1 ∪ ∆, σ1σ, σ1P1 ∪ σ1FP, nil)
9: else nil

10: else
11: if t matches a and s matches a then CUnif(X ,∆, σ, P1, FP)
12:
13: else if t matches π ·X then
14: if X not in s and X not in X then
15: ▷ Similar to case of lines 5-9, swapping t and s
16: else if s matches π′ ·X and X in X then
17: CUnif(X , ∆ ∪ ds(π, π′)#X, σ, P1, FP

′)
18: else if s matches π′ ·X and X not in X then
19: CUnif(X ,∆, σ, P ′, FP ∪ {π ·X ≈? π′ ·X})
20: else nil
21:
22: else if t matches ⟨⟩ and s matches ⟨⟩ then CUnif(X ,∆, σ, P1, FP)
23:
24: else if t matches ⟨t1, t2⟩ and s matches ⟨s1, s2⟩ then
25: CUnif(X ,∆, σ, {t1 ≈? s1, t2 ≈? s2} ∪ P1, FP)
26:
27: else if t matches [a]t1 and s matches [a]s1 then
28: CUnif(X ,∆, σ, {t1 ≈? s1} ∪ P1, FP)
29:
30: else if t matches [a]t1 and s matches [b]s1 then
31: let (∆1,flag) = fresh?(a, s1) in
32: if flag then CUnif(X ,∆1 ∪ ∆, σ, {t1,≈? (a b) · s1)} ∪ P1, FP)
33: else nil
34:
35: else if t matches f t1 and s matches f s1 then ▷ f is not commutative
36: CUnif(X ,∆, σ, {t1 ≈? s1} ∪ P1, FP)
37:
38: else if t matches fC(t1, t2) and s matches fC(s1, s2) then
39: let sol1 = CUnif(X ,∆, σ, {t1 ≈? s1, t2 ≈? s2} ∪ P1, FP),
40: sol2 = CUnif(X ,∆, σ, {t1 ≈? s2, t2 ≈? s1} ∪ P1, FP) in
41: append(sol1, sol2)
42: else nil

33

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L249-L352

• fresh?(a, t) recursively computes and returns the minimal context (∆′ in Algo-
rithm 1) in which a is fresh in t, and a boolean (flag in Algorithm 1), indicating if
it was possible to find the mentioned context.

3.3 Interesting Points on Adapting the Algorithm to
Handle Protected Variables

3.3.1 Termination

The proof of termination was straightforward and follows the same reasoning of [12].
First, we need the notion of the size of a unification problem P (Definition 24).

Definition 24 (Size of P). The size of a unification problem P is the sum of the size
of every equational constraint t ≈? s in P . The size of an equational constraint t ≈? s

was defined to be size(t) , recursively defined as follows:

• size(a) = 1.

• size(π ·X) = 1.

• size(⟨⟩) = 1.

• size([a]t1) = 1 + size(t1)

• size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).

• size(f t1) = 1 + size(t1).

• size(fC t1) = 1 + size(t1).

The lexicographic measure used was:

lex = (|Vars(P) ∪ Vars(FP)|, size(P)).

In comparison with the Coq specification of nominal C-unification with protected
variables (see [3]), we were able to reduce the number of components in the lexicographic
measure from four parameters to only two, simplifying the proof of termination. The two
extra components in the lexicographic measure of the Coq formalisation count the “size
of all the freshness constraints” and the “number of equations in the problem that are not
fixpoint equations”. First, by using separate functions to solve freshness constraints (see
their description in Section 3.2.1) instead of solving them in the main function CUnif
we got rid of the first extra component. Second, by separating fixpoint equations in

34

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_freshness.pvs#L99-L110
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L112-L118
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominal_term.pvs#L115-L126

a different parameter FP as soon we identify them in P , the component size(P) also
diminishes when we “move” a fixpoint equation from P to FP .

Table 3.1 shows which component decrease in each recursive call of Algorithm 1.

Table 3.1: Decrease of the Components of the Lexicographic Measure.

Recursive Call |Vars(P) ∪ Vars(FP)| size(P)
lines 11, 17, 19, 22, 25, 28, 32, 36, 39, 40 ≤ <

line 8, 15 <

3.3.2 Valid Quintuples and Solution to an Input in Nominal C-
Unification

Before presenting the proofs of soundness and completeness, we need the notions of valid
quintuples and solution to an input.

Valid Quintuples

Valid quintuples have valuable properties and are preserved between the recursive calls
of CUnif. The corresponding concept in the formalisation of first-order AC-unification
(Definition 34) and in the formalisation of nominal AC-matching (Definition 37) is the
notion of nice inputs. If we compare the definitions of nice inputs (Definition 34 and 37)
with the definition of the valid quintuples, we see that less items were necessary in the
definition of valid quintuples.

Definition 25 (Valid Quintuple). The input (X ,∆, σ, P, FP) is a valid quintuple if:

• σ is idempotent.

• dom(σ) ∩ (Vars(P) ∪ Vars(FP)) = ∅.

Solution to an Input in Nominal C-Unification

Definition 22 is solution for a quintuple (Γ, P, σ, V,X) and was used in the formalisation
of nominal AC-matching. Since the nominal C-unification algorithm works with input
(X ,Γ, σ, P, FP) the notion of solution of an input is basically the same of Definition 22,
with changes essentially in the input order.

Definition 26 (Solution to an Input in Nominal C-Unification). In Nominal C-
Unification we say that (∆, δ) is a solution to an input (X ,Γ, σ, P, FP) if:

1. ∆ ⊢ δΓ.

35

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L133-L139
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L141-L153

2. if a#?t ∈ P then ∆ ⊢ a#δt.

3. if t ≈? s ∈ P or t ≈? s ∈ FP then ∆ ⊢ δt ≈α δs.

4. there exists λ such that ∆ ⊢ λσ ≈ δ.

5. dom(δ) ∩ X = ∅.

Explaining Definition 26 in terms of Definition 22, this means that (∆, δ) will be
a solution to input (X ,Γ, σ, P, FP) if (∆, δ) is a solution to the associated quintuple
(Γ, P ∪ FP, σ,X,X). Recall that X is the set of all variables and hence ∆ ⊢ λσ ≈X δ is
equivalent to ∆ ⊢ λσ ≈ δ.

3.3.3 Soundness

We formalised soundness of unification and matching (Corollaries 2 and 3). These corol-
laries rely on Theorem 1.

Theorem 1 (Main Theorem for Soundness of CUnif). Suppose that
(∆sol, σsol, FPsol) ∈ CUnif(X ,∆, σ, P , FP), (∇, δ) is a solution to (X ,∆sol, σsol, ∅, FPsol)
and (X ,∆, σ, P, FP) is a valid quintuple. Then (∇, δ) is a solution to (X ,∆, σ, P, FP).

Proof sketch: The proof is done by induction and is essentially the same as the
corresponding theorem for C-unification in [12].

Corollary 2 (Soundness of CUnif for Unification). Suppose (∇, δ) is a solution to
(∅,∆sol, σsol, ∅, FPsol), and (∆sol, σsol, FPsol) ∈ CUnif(∅, ∅, id, {t ≈? s}, ∅). Then (∇, δ)
is a solution to (∅, ∅, id, {t ≈? s}, ∅).

Proof: Notice that (Vars(s), ∅, id, {t ≈? s}, ∅) is a valid quintuple. Then, we apply
Theorem 1 and prove the corollary.

Corollary 3 (Soundness of CUnif for Matching). Suppose (∇, δ) is a solution to
(Vars(s),∆sol, σsol, ∅, FPsol), and (∆sol, σsol, FPsol) ∈ CUnif(Vars(s), ∅, id, {t ≈? s}, ∅).
Then (∇, δ) is a solution to (Vars(s), ∅, id, {t ≈? s}, ∅).

Proof: Notice that (Vars(s), ∅, id, {t ≈? s}, ∅) is a valid quintuple. Then, we apply
Theorem 1 and prove the corollary.

An interpretation of Corollary 2 (3) is that if (∇, δ) is a unification (matching) solution
to one of the outputs of the algorithm CUnif, then it is a unification (matching) solution
to the original problem.

36

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L394-L400
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L402-L407
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L409-L414

3.3.4 Completeness

We formalised completeness of unification and matching (Corollaries 5 and 6). They rely
on Theorem 4.

Theorem 4 (Main Theorem for Completeness of CUnif). Suppose (∇, δ) is a solution
to (X ,∆, σ, P, FP) and that (X ,∆, σ, P, FP) is a valid quintuple. Then, there exists
(∆sol, σsol, FPsol) such that:

1. (∆sol, σsol, FPsol) ∈ CUnif(X ,∆, σ, P, FP).

2. (∇, δ) is a solution to (X ,∆sol, σsol, ∅, FPsol).

Proof sketch: The proof is done by induction and is essentially the same as the
corresponding theorem for C-unification in [12].

Corollary 5 (Completeness of CUnif for Unification). Suppose (∇, δ) is a solution to
the input quintuple (∅, ∅, id, {t ≈? s}, ∅). Then, there exists (∆sol, σsol, FPsol) such that:

1. (∆sol, σsol, FPsol) ∈ CUnif(∅, ∅, id, {t ≈? s}, ∅).

2. (∇, δ) is a solution to (∅,∆sol, σsol, ∅, FPsol).

Proof: Notice that (∅, ∅, id, {t ≈? s}, ∅) is a valid quintuple. Then, we apply Theorem
4 and prove the corollary.

Corollary 6 (Completeness of CUnif for Matching). Suppose (∇, δ) is a solution
to the input quintuple (Vars(s), ∅, id, {t ≈? s}, ∅). Then, there exists (∆sol, σsol, FPsol) ∈
such that:

1. (∆sol, σsol, FPsol) ∈ CUnif(Vars(s), ∅, id, {t ≈? s}, ∅).

2. (∇, δ) is a solution to (Vars(s),∆sol, σsol, ∅, FPsol).

Proof: Notice that (Vars(s), ∅, id, {t ≈? s}, ∅) is a valid quintuple. Then, we apply
Theorem 4 and prove the corollary.

An interpretation of Corollary 5 (6) is that if (∇, δ) is a unification (matching) solution
to the original problem, then it is a solution to one of the outputs of CUnif.

37

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L416-L422
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L424-L429
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/C_nominalunif.pvs#L431-L436

3.3.5 Possible Pitfalls

Finally, possible pitfalls when adapting a recursive formalisation of C-unification to also
handle C-matching are described in Remarks 15 and 16.

Remark 15 (Equational Constraints with Protected Variables). If the algorithm encoun-
ters non fixpoint equations of the form π ·X ≈? s, where X in X , it cannot simply return
an empty list, since their solubility depends on the form of s. Indeed, if s is a non pro-
tected moderated variable, say π′ ·Y , the equation π ·X ≈? π′ ·Y has solutions of the form
Y 7→ (π′−1 :: π) ·X.

Remark 16 (Considerations on the Parameter X). The theorems of soundness and com-
pleteness of the algorithm had to be specified again, as the algorithm now has a new
parameter X for the protected variables. If one is interested only in C-matching, one
might wonder if it is not possible to plug in Vars(rhs(P)) as the set of protected vari-
ables X directly. However, since the proofs of correctness and completeness are done by
induction and from one recursive call of the algorithm to another the set Vars(rhs(P))
may change, this does not work. The correct way to proceed is to prove the soundness and
completeness of the algorithm with an arbitrary set of protected variables X and then, by a
suitable choice of X , obtain as corollaries the correctness of the algorithm for unification
and matching.

3.3.6 Examples of CUnif

Example 12 illustrates the execution of the algorithm for unification, while Examples 13
and 14 illustrate the execution of the algorithm for matching.

Example 12 (Recursive Nominal C-unification). This example shows how the algorithm
proceeds in order to unify fC⟨(a b) ·X, a⟩ and fC⟨a, b⟩. Notice we have X = ∅ in all calls
to the function CUnif.

CUnif(∅, ∅, id, {fC⟨(a b) ·X, a⟩ ≈? fC⟨a, b⟩}, ∅)

CUnif(∅, ∅, id, {(a b) ·X ≈? a, a ≈? b}, ∅)

CUnif(∅, ∅, {X 7→ b}, {a ≈? b}, ∅)

nil

CUnif(∅, ∅, id, {(a b) ·X ≈? b, a ≈? a}, ∅)

CUnif(∅, ∅, {X 7→ a}, {a ≈? a}, ∅)

CUnif(∅, ∅, {X 7→ a},nil, ∅)

(∅, {X 7→ a}, ∅)

38

Example 13 (Recursive Nominal C-Matching). Suppose our matching problem is:

{[a]⟨f(Z), [b](X ∗ Y)⟩ ≈? [b]⟨f(Z), [a](a ∗X)⟩},

where ∗ is a commutative function symbol that we write infix. This results in the exe-
cution of a nominal C-matching algorithm, with recursive function calls, as shown below:

CUnif({X,Z}, ∅, id, {[a]⟨f(Z), [b](X ∗ Y)⟩ ≈? [b]⟨f(Z), [a](a ∗X)⟩}, ∅)
fresh?(a, ⟨f(Z), [a](a ∗X)⟩)

Branch 1:
fresh?(a, f(Z))
fresh?(a, Z)

return({a#Z}, true)

Branch 2:
fresh?(a, [a](a ∗X))

return(∅, true)
return({a#Z}, true)

CUnif({X,Z}, {a#Z}, id, {⟨f(Z), [b](X ∗ Y)⟩ ≈? ⟨f((a b) ·Z), [b](b ∗ (a b) ·X)⟩}, ∅)

CUnif({X,Z}, {a#Z}, id, {f(Z) ≈? f((a b) · Z), [b](X ∗ Y) ≈? [b](b ∗ (a b) ·X)}, ∅)

CUnif({X,Z}, {a#Z}, id, {Z ≈? (a b) · Z, [b](X ∗ Y) ≈? [b](b ∗ (a b) ·X)}, ∅)

CUnif({X,Z}, {a#Z, b#Z}, id, {[b](X ∗ Y) ≈? [b](b ∗ (a b) ·X)}, ∅)

CUnif({X,Z}, {a#Z, b#Z}, id, {(X ∗ Y) ≈? (b ∗ (a b) ·X)}, ∅)

Branch 1:
CUnif({X,Z}, {a#Z, b#Z}, id, {(X ≈? b, Y ≈? (a b) ·X)}, ∅)

return nil

Branch 2:
CUnif({X,Z}, {a#Z, b#Z}, id, {(X ≈? (a b) ·X, Y ≈? b}, ∅)

CUnif({X,Z}, {a#Z, b#Z, a#X, b#X}, id, {Y ≈? b}, ∅)

39

CUnif({X,Z}, {a#Z, b#Z, a#X, b#X}, {Y 7→ b}, ∅, ∅)
return ({a#Z, b#Z, a#X, b#X}, {Y 7→ b}, ∅)

return ({a#Z, b#Z, a#X, b#X}, {Y 7→ b}, ∅)

Notice that the algorithm bifurcates in two branches of recursive calls when it encoun-
ters an equation constraint t ≈? s such that t and s are commutative functions headed by
the same symbol. The first branch has no solutions, since X ∈ X cannot be instantiated
to b, and therefore the algorithm returns nil for this branch. The second branch gives as
solution:

⟨{a#Z, b#Z, a#X, b#X}, {Y 7→ b}, ∅⟩

which is, since the first branch gives no solution, the output returned by the algorithm.
The theorems of correctness and completeness guarantee that (∇, δ) is a matching so-
lution to the input problem ({X,Z}, ∅, id, {[a]⟨f(Z), [b](X ∗ Y)⟩ ≈? [b]⟨f(Z), [a](a ∗
X)⟩}, ∅) if, and only if, (∇, δ) is a matching solution to output returned by CUnif:
({a#Z, b#Z, a#X, b#X}, {Y 7→ b}, ∅).

Example 14 (Unsolvable Equational Constraints). This example shows how our al-
gorithm handles an unsolvable equational constraints and compares it to the Coq non-
deterministic inference rules approach. Let the equational constraint be:

⟨a, f⟨(b d) ·X, [d]d⟩⟩ ≈? ⟨b, f⟨X, [d]d⟩⟩)

This results in the execution of the nominal C-matching algorithm, with recursive calls
as shown below:

CUnif({X}, ∅, id, {⟨a, f⟨(b d) ·X, [d]d⟩⟩ ≈? ⟨b, f⟨X, [d]d⟩⟩}, ∅)

CUnif({X}, ∅, id, {a ≈? b, f⟨(b d) ·X, [d]d⟩ ≈? f⟨X, [d]d⟩}, ∅)
return nil

Notice that as soon as there is an unsolvable equation constraint in the head of P (the
equational constraints we must still solve) the algorithm returns nil communicating that
there are no solutions possible for our unification problem. This contrasts with the Coq
non-deterministic inference rules approach for nominal C-unification also described in [3],
where the rules to the unification problem are applied until it is no longer possible (if there
is an unsolvable equation constraint in the problem but the rules can be applied to other
equational constraints they continue to be applied).

40

3.3.7 Preserving Information Regarding Protected Variables

In our approach, we keep freshness constraints related with protected variables. Such
freshness information might be useful in applications, since nominal (C-)matching has
direct application in nominal rewriting (which has applications in software engineering,
programming languages, etc - see [41]). Consider, for instance, the nominal rewriting rule
⊕⟨Z,Z⟩ → 0 and the terms λa.a X and λb.b X from the λ-calculus extended with meta-
variables. In the nominal framework these terms can be represented as lam([a]app⟨a,X⟩)
and lam([b]app⟨b,X⟩). Then, to check whether we can use the mentioned nominal rewrit-
ing rule to reduce term ⊕⟨lam[b]app⟨b,X⟩, lam[a]app⟨a,X⟩⟩ one needs to solve the C-
matching problem

P = ⟨{X}, ∅, id, {⊕⟨Z,Z⟩ ≈? ⊕⟨lam[a]app⟨a,X⟩, lam[b]app⟨b,X⟩⟩}⟩.

Applying the algorithm for nominal C-unification, one obtains as output:

⟨{a#X, b#X}, {Z 7→ lam[a]app⟨a,X⟩}, ∅⟩

and
⟨{a#X, b#X}, {Z 7→ lam[b]app⟨b,X⟩}, ∅⟩

Notice that the additional freshness information about protected variables obtained
during the generalised C-unification algorithm is necessary. Indeed, by condition (3) of
Definition 26 we must have ∆ ⊢ δ((a b) · X) ≈ δX and since dom(δ) ∩ Vars(rhs(P)) = ∅
this means that ∆ ⊢ (a b) ·X ≈ X. According to the rules for the α-equivalence relation,
this only holds if {a#X, b#X} ⊆ ∆.

3.4 Testing the Python algorithm

We have manually implemented Algorithm 1 in Python and used the input and output
capabilities provided by PVSio (see Section 2.5.2) to test if the manual Python algorithm
and the formalised algorithm give the same output when run with the same input.

We investigated the literature but could not find a database for unification problems.
In Ayala-Rincón et al. [6] experiments are made for nominal equality-check in the presence
of A, C and AC function symbols, while in Calvès and Fernández [27] experiments are
made for syntactic nominal matching and nominal α-equivalence. In [6], the terms gen-
erated are ground and arbitrary choices were made with respect to the size of unification
problems, the number of different atoms and the different function symbols. The focus
was on the running time of the algorithm. After a term t is randomly generated, the term

41

https://github.com/gabriel951/c-unification_matching/tree/master/python_implementation

s of the unification problem t ≈? s is generated by swapping arguments of commutative
functions and changing the atom being abstracted in an abstraction.

In [27], experiments were made with syntactic nominal α-equivalence and ground
matching problems (i.e. matching problems where there are no variables on the right
hand side). The experiments were restricted to solvable problems. The focus was seeing
how the running time of the algorithm depends on the size of the unification problem and
the type of task (α-equivalence or matching).

In both cases, the terms generated were synthetic and some arbitrary choices were
made (although these choices can be manually altered in the code, if one wants). In our
tests, some arbitrary choices are also made during the term generation, which we describe
now. Our approach covers the approach of [6] as we swap arguments of commutative
functions and change atoms being abstracted in an abstraction. In contrast with [27] we
generate both solvable and unsolvable unification problems.

To compare the Python and the PVS implementation, we generated 2000 unification
problems, consisting of terms t and s to be unified and ran the implementations. By
printing the Python results in the same way as the PVS implementation prints, it was
possible to check whether the implementations match. We generate the term t randomly,
with the same probability of generating each component of the grammar of nominal terms,
i.e, the probability of generating an atom is the same as the probability of generating a
moderated variable and so on. The number of different atoms, variables, function symbols
and commutative function symbols was defined arbitrarily to be 10. When generating a
permutation for a moderated variable the number of swappings is a random number
between 0 and 10.

Finally, we generate the term s as a “copy with modifications” of the term t. These
modifications and their corresponding probabilities (chosen arbitrarily) are:

• With a 10% probability we substitute part of the term t by a random moderated
variable.

• With a 50% probability, if we encounter a commutative function application in t we
change the order of the two arguments.

• With a 50% probability, if we encounter an abstraction [a]t′ we change it to a term
[b](a b) · t′.

• With a 10% probability, if we encounter an atom we change it to another atom. No-
tice that this may result in generating non unifiable terms t and s. This is precisely
what we hoped to accomplish, since we also want to test the implementations when
the terms are not unifiable.

42

Both implementations gave the same result for all 2000 unification problems, sug-
gesting that our Python manual implementation is correct. As expected from a manual
implementation, the Python code executed faster.

3.4.1 Preliminar Experiments Comparing PVSio and Python

We have made preliminar experiments comparing the time the PVS certified algorithm
and the Python manual algorithm took to execute. The machine that ran the experiments
has the following specifications:

• Operating System - MacOS High Sierra

• Processor - 3,6GHz Intel Core i7

• Memory - 16GB 2400 MHz DDR4

• Graphics - Radeon Pro 560 4096 MB

The running time, according to the number of terms being unified is shown in Table 3.2.

Table 3.2: Time PVSio and Python Took to Unify

Number of unification problems Python PVSio

1000 < 1s 43s
2000 < 1s 1min24s
10000 3s Error - stack overflow

3.5 Statistics of the PVS Formalisation

The formalisation described in this chapter extends the functional nominal C-unification
formalisation described in [12] by adding a parameter X for protected variables. Extending
the functions and the proofs to take into account this extra parameter is not automatic.
In other words, the task is interactive theorem proving, and not automated reasoning.

A similar comment applies to the nominal C-unification formalisation of [12]: it ex-
tends the formalisation of [11], adding commutative function symbols. To give an example
on how the reuse of proofs for the formalisation of [12] was done, consider that a lot of
proofs in [11] were done by induction on the structure of a term t. Since the grammar
of terms is extended with commutative function symbols, this means that for the proofs
by induction on the structure of a term t we can reuse the cases where t is not a com-
mutative function but must complete the proof by adding the case of when t is indeed a
commutative function.

43

Below we describe the main theories that are part of the nominal C-unification gen-
eralized with protected variables.

• top_C_nominal_unif_match - High Level description of the nominal C-unification
formalisation.

• C_nominalunif - Contains function CUnif, the lemmas of soundness and complete-
ness of unification and matching for CUnif and Definition 26 (solution to an input
in nominal C-unification)

• C_substitution - Definition and properties about substitutions. Contains function
freshSubs?.

• C_alpha_equivalence - The notion of equality in the nominal setting modulo com-
mutative functions, Definition 19.

• C_freshness - Definition and properties about freshness. Contains function fresh?.

• C_nominal_term - Basic properties about terms.

• C_terms - The grammar of terms.

• atoms - Definition and properties of permutations and their actions on atoms.

• list_aux_equational_reasoning, list_aux_equational_reasoning_nat - Set
of parametric theories that define specific functions for the task of equational rea-
soning (most of them operating on lists).

Figure 3.1 shows the dependency diagram for the PVS theories that compose our
formalisation. Besides the nominal C-unification formalisation, there are other 3 formali-
sations in the nominal library, which we again represent in the picture as orange ellipses.
As shown in Figure 3.1, some of them use theories that are also used by the nominal
C-unification formalisation.

Table 3.3 shows the number of theorems and TCCs proved for each file, along with
the theory’s approximate size and percentage of the total size. In contrast to Table 2.4,
the percentage of the total size shown here is only with respect to the files that are part of
the nominal C-unification formalisation, and not the whole NASALib theory. We group
theories list_aux_equational_reasoning and list_aux_equational_reasoning_nat
under the name list since the specifics of each one are not relevant to our discussion.
Finally, PVS theories C_nominal_term and C_terms are the only ones that are actually
in the same file, so we group them together under the name terms in Table 3.3.

Table 3.3 shows that most of the effort of the formalisation is in file C_nominalunif.
Hence, if one wants to “balance” the formalisation in the future, a possible solution

44

Figure 3.1: PVS formalisation of Nominal C-Unification With Protected Variables.

would be studying if some lemmas or definitions could be moved to different files. For
instance, the definition of solution to input in nominal C-unification (Definition 26) along
with its associated lemmas could be moved to a separate theory. Finally, although
list responds for the 12% of the size of the formalisation in Table 3.3 this data is a
bit misleading: most functions and theorems in list_aux_equational_reasoning and
list_aux_equational_reasoning_nat are not used in the nominal C-unification for-
malisation, but instead in the first-order AC-unification and in the nominal AC-matching
formalisation.

45

Table 3.3: Information for Every File in the Nominal C-Unification Formalisation.

Theory Theorems TCCs Size

.pvs .prf %

list 213 89 48 kB 1 MB 12 %
atoms 14 3 5 kB 0.03 MB < 1 %

C_nominalunif 29 24 21 kB 6.3 MB 76 %
C_substitution 73 14 22 kB 0.6 MB 7 %

C_alpha_equivalence 14 8 5 kB 0.3 MB 4 %
C_freshness 9 7 5 kB 0.04 MB 1%

terms 9 7 6 kB 0.04 MB 1 %
Total 361 152 112 kB 8.31 MB 100 %

46

Chapter 4

Certified First-Order AC-Unification

This chapter describes how we gave the first formalisation of a first-order AC-unification
algorithm. Our approach involved specifying Stickel’s groundbreaking AC-unification
algorithm and proving its termination (using an intricate lexicographic measure, rooted
on Fages’ termination proof), as well as its soundness and completeness. We provide a
comprehensive account of the formalisation process, including explanations of the key
steps in the proofs of termination, soundness, and completeness. Additionally, we delve
into the files that compose the formalisation, detailing their structure, hierarchy and size.
Furthermore we discuss our design choices, including the consequences of our choice for the
grammar of terms. We also discuss applications of the certified AC-unification algorithm,
showing how the formalisation could be used as a starting point to formalise more efficient
AC-unification algorithms or to test implementations of AC-unification algorithms. The
content of this chapter is also described in [9] and in [7].

4.1 Algorithm

For readability, we present the pseudocode of the algorithms, instead of the actual PVS
code. We have formalised Algorithm 2 to be terminating, sound and complete. More-
over, the algorithm is functional and keeps track of the current unification problem P ,
the substitution σ computed so far, and the variables V that are/were in the problem.
The algorithm’s output is a list of substitutions, where each substitution δ in this list is
a unifier of P . The first call to the algorithm, in order to unify two terms t and s, is done
with P = {t ≈? s}, σ = id (because we have not computed any substitution yet), and
V = Vars(t, s).

Remark 17. In the PVS code notation, this means that the initial call is done with
parameters P = cons((t, s),nil), σ = nil, and V = Vars(t, s).

47

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L37-L90

Algorithm 2 Algorithm to Solve an AC-Unification Problem P

1: procedure ACUnif(P, σ, V)
2: if nil?(P) then cons(σ,nil)
3: else let ((t, s), P1) = chooseEq(P) in
4: if (s matches X) and (X not in t) then
5: let σ1 = {X 7→ t} in ACUnif(σ1P1, σ1σ, V)
6:
7: else
8: if t matches a and s matches a then ACUnif(P1, σ, V)
9:

10: else if t matches X then
11: if X not in s then
12: let σ1 = {X 7→ s} in ACUnif(σ1P1, σ1σ, V)
13: else if s matches X then ACUnif(P1, σ, V)
14: else nil
15:
16: else if t matches ⟨⟩ and s matches ⟨⟩ then ACUnif(P1, σ, V)
17:
18: else if t matches f t1 and s matches f s1 then
19: let (P2,flag) = decompose(t1, s1) in
20: if flag then ACUnif(P2 ∪ P1, σ, V)
21: else nil
22:
23: else if t matches fAC t1 and s matches fAC s1 then
24: let InputLst = applyACStep(P,nil, σ, V),
25: LstResults = map(ACUnif, InputLst) in
26: flatten(LstResults)
27:
28: else nil

The algorithm explores the structure of terms. It starts by analysing the list P of
terms to unify. If it is empty (line 2), we have finished, and the algorithm returns a
list containing only one element: the substitution σ computed so far. Otherwise, the
algorithm calls the auxiliary function chooseEq (line 3), which returns a pair (t, s) and
a unification problem P1, such that P = {t ≈? s} ∪P1. The algorithm will try to simplify
our unification problem P by simplifying {t ≈? s}, and it does that by seeing what the
form of t and s is.

Remark 18. The algorithm does not check the arity consistency of the input.

4.1.1 Function chooseEq

The function chooseEq selects a unification pair from the input problem, avoiding
AC-unification pairs if possible. This means that we will only enter on the else if of line 23

48

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L326-L335

of ACUnif (see Algorithm 2) when P = {t1 ≈? s1, . . . , tn ≈? sn} is such that for every i,
ti ≈? si is an AC-unification pair. This heuristic aids us in the proof of termination. It
makes the algorithm more efficient since it guarantees that we only enter the AC-part of
the algorithm when we need it (the AC-part is the computationally heaviest). Also, it is
not a significant deviation from Stickel’s algorithm [73].

4.1.2 Function decompose

If the function decompose receives two terms t and s and these terms are both pairs,
it recursively tries to decompose them, returning a tuple (P,flag), where P is a unification
problem and flag is a boolean that is True if the decomposition was successful. If neither
t nor s is a pair, the unification problem returned is just P = {t ≈? s} and flag = True.
If one of the terms is a pair and the other is not, the function returns (nil,False). In
Algorithm 2, we call decompose (t1, s1) when we encounter an equation of the form
ft1 ≈? fs1 and therefore guarantee that all the terms in the unification problem remain
well-formed. Although it would have been correct to simplify an equation of the form
ft1 ≈? fs1 to t1 ≈? s1, if t1 or s1 were pairs, we would not respect our restriction that
only well-formed terms are in our unification problem.

Example 15. Below, we give examples of the function decompose.

• decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨X, Y ⟩⟩) = ({a ≈? c, b ≈? X, c ≈? Y }, True).

• decompose(a, Y) = ({a ≈? Y }, True).

• decompose(X, ⟨c, d⟩) = (nil, False).

4.1.3 The AC-part of the Algorithm

The AC-part of Algorithm 2 relies on function applyACStep (Section 4.1.3), which
depends on two functions: solveAC (Section 4.1.3) and instantiateStep (Section
4.1.3). Since there are multiple possibilities for simplifying each AC-unification pair,
applyACStep will return a list (InputLst in Algorithm 2), where each entry of the
list corresponds to a branch Algorithm 2 will explore (line 24). Each entry in the list is
a triple that will be given as input to ACUnif, where the first component is the new
AC-unification problem, the second component is the substitution computed so far and
the third component is the new set of variables that are/were in use. After ACUnif
calls applyACStep, it explores every branch generated by calling itself recursively on
every input in InputLst (line 25 of Algorithm 2). The result of calling map(ACUnif,
InputLst) is a list of lists of substitutions. This result is then flattened into a list of
substitutions and returned.

49

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L214-L225

Function solveAC

The function solveAC does what was illustrated in the example of Section 2.2.2.
While applyACStep or ACUnif take as part of the input the whole unification problem,
solveAC takes only two terms t and s. It assumes that both terms are headed by the
same AC-function symbol f . It also receives as input the set of variables V that are/were
in the problem. Since solveAC will introduce new variables, we must know the ones
that are/were already in use.

The first step is eliminating common arguments of t and s. This is done by the function
elimComArg , which returns the remaining arguments and their multiplicity.

To ease the formalisation we do not calculate a basis of solutions for the linear Dio-
phantine equation, but a spanning set (which is not necessarily linearly independent).
To generate this spanning set, it suffices to calculate all the solutions until an upper
bound, computed by the function calculateUpperBound . Given a linear Diophan-
tine equation a1X1 + . . .+ amXm = b1Y1 + . . .+ bnYn, our upper bound (taken from [72])
is the maximum of m and n times the maximum of all the least common multiples (lcm)
obtained by pairing each one of the ais with each one of the bjs. In other words, our
upper bound is:

max(m,n) ∗maxi,j(lcm(ai, bj)).

The Table 2.2 of the Example in Section 2.2.2 is represented in our code as the matrix
D (see Matrix 4.1). This matrix is obtained by calling function dioSolver , which
receives as input the multiplicity of the arguments of t and s and the upper bound
calculated by calculateUpperBound. Each row of D is associated with one solution
and thus with one of the new variables. Each column of D is associated with one of the
arguments of t or s. Modifying dioSolver to calculate a basis of solutions (for instance,
by using the method described in [30]) instead of a spanning set would certainly improve
the algorithm’s efficiency.

D =

0 0 1 0 1
0 1 0 0 1
0 0 2 1 0
0 1 1 1 0
0 2 0 1 0
1 0 0 0 2
1 0 0 1 0

(4.1)

To explore all possible cases, we must decide whether or not we will include each
solution. In our code, this translates to considering submatrices of D by eliminating

50

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L211-L225
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L76-L89
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/diophantine.pvs#L66-L69
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/diophantine.pvs#L144-L153

some rows. In the example of Section 2.2.2, we mentioned that we should observe two
constraints:

1. no “original variable” (the variables X1, . . . , Xm, Y1, . . . , Yn associated with the ar-
guments of t and s) should receive the value 0.

2. an “original variable” which does not represent a variable term cannot be paired
with an AC-function application.

As noted by Fages in [40], in terms of our Diophantine matrix D, these two constraints
are:

1. every column has at least one coefficient different from 0.

2. a column corresponding to one non-variable argument has one coefficient equal to
1 and all the remaining coefficients equal to 0.

The function in our PVS code that extracts (a list of) the submatrices of D that satisfies
these constraints is extractSubmatrices . Let SubmatrixLst be this list.

Finally, we translate each submatrix D1 in SubmatrixLst into a new unification prob-
lem P1, by calling function dioMatrix2acSol . For instance, the unification problem

P1 = {X ≈? Z6, Y ≈? Z4, a ≈? Z4, b ≈? Z4, Z ≈? f(Z6, Z6)}

would be obtained from submatrix D1:

D1 =
0 1 1 1 0

1 0 0 0 2

 .

Notice that this is the submatrix associated with a solution including only rows 4 and 6
(of the variables Z4, Z6).

The function dioMatrix2acSol also updates the variables that are/were in the
unification problem, to include the new variables Zis introduced. In our example, the new
set of variables that are/were in the problem is V1 = {X, Y, Z, Z4, Z6}. Therefore, the
output of dioMatrix2acsol is a pair, where the first component is the new unification
problem (in our example P1) and the second component is the new set of variables that
are/were in use (in our example V1). The output of solveAC is the list of pairs obtained
by applying dioMatrix2acSol to every submatrix in SubmatrixLst.

Remark 19 (New Variables Introduced by solveAC). As mentioned in Remark 2, vari-
ables in our formalisation are represented as natural numbers. When introducing new vari-
ables Z1, Z2, Z3, . . . solveAC checks the parameter V to compute max(V) and internally

51

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L152-L159
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L199-L209

represents these new variables with natural numbers max(V) + 1,max(V) + 2,max(V) +
3, . . .

Common Structure of Unification Problems Returned by solveAC

Suppose function solveAC receives the terms u and v as input, both headed by the same
AC-function symbol f . Let u1, . . . , um be the different arguments of u and let v1, . . . , vn

be the different arguments of v, after eliminating the common arguments of u and v. If
P1 = {t1 ≈? s1, . . . , tk ≈? sk} is one of the unification problems generated by function
solveAC, when it receives as input u and v then:

1. k = m+n and the left-hand side of this unification problem (i.e., the terms t1, . . . , tk)
are the different arguments of u and v:

ti =

ui, if i ≤ m

vi−m otherwise.

2. The terms in the right-hand side of this problem (i.e., the terms s1, . . . , sk) are
introduced by solveAC and are either new variables Zis or AC-functions headed
by f whose arguments are all new variables Zis (This is how we obtained the problem
in Equation (2.2)).

3. A term si is an AC-function headed by f only if the corresponding term ti is a
variable.

Function instantiateStep

After the application of function solveAC, we instantiate the variables that we can by
calling function instantiateStep . For the particular case of equations t ≈? s where
both t and s are variables, instantiateStep instantiates s to t. This decision prioritizes
instantiating the variables on the right-hand side and keeping the variables on the left-
hand side. Recall that in the unification problems obtained immediately after calling
solveAC (see Section 4.1.3), the variables on the right-hand side are the new variables,
while the variables in the left-hand side are variables that were in the problem before
calling solveAC. Indeed, as shown in Example 4, it is necessary to compose the substeps
of the algorithm with some strategy to avoid infinite loops. To prevent loops such as the
one of Example 4 from happening, Algorithm 2 only handles AC-unification pairs when
there are no equations t ≈? s of other type left, and as soon as we apply the function
solveAC we immediately call function instantiateStep.

52

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L276-L301

Algorithm 3 Algorithm That Instantiates When Possible
1: procedure instantiateStep(P1, P2, σ)
2: if nil?(P1) then (P2, σ, False)
3: else
4: let (t, s) = car(P1), P ′

1 = cdr(P1) in
5: if s matches X and X not in t then
6: let σ1 = {X 7→ t} in instantiateStep(σ1P

′
1, σ1P2, σ1σ))

7:
8: else if t matches X and X not in s then
9: let σ1 = {X 7→ s} in instantiateStep(σ1P

′
1, σ1P2, σ1σ)

10:
11: else if t matches X and X matches s then
12: instantiateStep(P ′

1, P2, σ)
13:
14: else if (t matches X and X in s) or (s matches X and X in t) then
15: (nil, σ, T rue) ▷ the terms t and s are impossible to unify
16:
17: else instantiateStep(P ′

1, {t ≈? s} ∪ P2, σ) ▷ we skip the equation

Algorithm 3 is the pseudocode for instantiateStep. It receives as input a unification
problem P1 (the part of our unification problem which we have not yet inspected), a
unification problem P2 (the part of our unification problem we have already inspected)
and σ, the substitution computed so far. Therefore, the first call to this function in order
to instantiate the variables in the unification problem P is with P1 = P , P2 = nil and
σ = nil. The algorithm returns a triple, where the first component is the remaining
unification problem; the second component is the substitution computed by this step;
and the third component is a Boolean to indicate if we found an equation t ≈? s which
is not unifiable (in this case the Boolean is True) or not (in this case the Boolean is
False). The only kind of equations that instantiateStep identifies as not unifiable are
those where one of the terms is a variable, and the other term is a non-variable term that
contains this variable. The algorithm works by progressively inspecting every equation
t ≈? s ∈ P1 and deciding whether:

• One of the terms is a variable and we can instantiate (lines 5-9).

• Both terms are the same variable and we can eliminate this equation from the
problem (lines 11-12).

• The terms are impossible to unify (lines 14-15).

• Neither term is a variable, and so we do not act on this equation (line 17).

53

Function applyACStep

Function applyACStep relies on functions solveAC and instantiateStep, and
is called by Algorithm 2 when all the equations t ≈? s ∈ P are AC-unification pairs.
In a very high-level view, it applies functions solveAC and instantiateStep to every
AC-unification pair in the unification problem P .

It receives as input a unification problem, which is partitioned into sets P1 and P2,
a substitution σ, and the set of variables to avoid V . P1 and P2 are, respectively, the
subset of the unification problem for which functions solveAC and instantiateStep
have not been called, and the subset to which we have already called these functions.
The substitution σ is the substitution computed so far. Therefore, the first call to this
function is with P2 = nil, and as the function recursively calls itself, P1 diminishes while
P2 increases.

We now describe applyACStep in more details (Algorithm 4). The first thing ap-
plyACStep does is check if P1 is the null list. If it is (line 2), we have finished applying
functions solveAC and instantiateStep and we return a list with only one element:
the triple (P2, σ, V).

If P1 is not the null list, we get the AC-unification pair in the head of the list (let us
call it (t, s)) and examine whether we already have t ≈ s. If that is indeed the case (line
4), we simply remove this equation, calling applyACStep with (cdr(P1), P2, σ, V).

If t is not equal (modulo AC) to s, we call function solveAC. This function will return
a list of unification problems PLst (line 8). Next we apply the function instantiateStep
to every problem P in PLst, obtaining a list ACInstLst (lines 10-11), where each entry
is a pair (P ′, δ). P ′ is the unification problem after we instantiate the variables and δ

is the substitution computed by this function. It may happen that instantiateStep
“discovers” that a unification problem is actually unsolvable (this is communicated to
applyACStep via the Boolean value that is part of the output of instantiateStep)
and in this case this problem is not included in ACInstLst.

We check if ACInstLst is null (in this case there are no solutions to the first AC-
unification pair, and therefore there are no solutions to the problem) and return nil if
it is. If ACInstLst is not null (lines 14-19), there will be branches to explore. Given
an entry (P ′, δ) of ACInstLst, the part of the unification problem to which we must
call functions solveAC and instantiateStep is now δ cdr(P1) and the part of the
unification problem we have already explored is P ′ ∪ δP2. The substitution computed
so far is δσ. We take care to update the set of variables that are/were in the problem to
include the new variables introduced by solveAC (in Algorithm 4 we change V to V ′).
In short, we make an input list InputLst of all the branches we need to explore and each
entry (P ′, δ) of ACInstLst gives rise to an entry (δcdr(P1), P ′ ∪ δP2, δσ, V

′) in InputLst.

54

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L88-L113

Algorithm 4 applyACStep
1: procedure applyACStep(P1, P2, σ, V)
2: if nil?(P1) then cons((P2, σ, V),nil)
3: else let (t, s) = car(P1) in
4: if t ≈ s then applyACStep(cdr(P1), P2, σ, V)
5:
6: else
7: ▷ assuming t and s are headed by the same function symbol f
8: PLst = solveAC(t, s, f, V)
9:

10: ▷ Call instantiateStep in every P in PLst obtaining a list ACInstLst,
11: ▷ where each entry in this list is a pair (P ′, δ).
12:
13: if nil?(ACInstLst) then nil
14: else
15: ▷ make an input list InputLst of all the branches we need to explore.
16: ▷ For each (P ′, δ) in ACInstLst, the quadruple in InputLst will be
17: ▷ (δcdr(P1), P ′ ∪ δP2, δσ, V

′) to applyACStep
18: ▷ recursively explore all the branches
19: Flatten(map(applyACStep, InputLst))

Finally, applyACStep calls itself recursively taking as argument every input in
InputLst. This is done by calling map(applyACStep, InputLst) and the output is
flattened using function flatten.

Remark 20 (Eliminating t ≈? s When t ≈ s). In function applyACStep, we eliminate
equations t ≈? s from our unification problem if t ≈ s (line 4). This was done because if we
called function solveAC in line 10 of Algorithm 4 passing as parameter two equal terms
(modulo AC), the value returned would be PLst = nil. applyACStep would interpret
that as meaning that the unification pair had no solution (when actually every substitution
σ is a solution to {t ≈? s}) and also return nil. To prevent this corner case, we eliminate
those trivial equations from our unification problem before calling solveAC. In our code,
the function equal? tests equality (modulo AC) between terms t and s, returning True
if the terms are equal and False otherwise.

4.2 Proving Termination

4.2.1 The Lexicographic Measure

To prove termination in PVS, we must define a measure and show that this measure
decreases at each recursive call the algorithm makes. We have chosen a lexicographic

55

measure with four components:

lex = (|VNAC (P)|, |V>1(P)|, |AS(P)|, size(P)),

where VNAC (P), V>1(P), AS(P), size(P) are given in Definitions 27, 29, 31 and 32,
respectively. Table 4.1 shows which components do not increase (represented by ≤)
and which components strictly decrease (represented by <) for each recursive call that
Algorithm 2 makes.

Definition 27 (VNAC (P)). We denote by VNAC (P) the set of variables that occur in
the problem P , excluding those that only occur as arguments of AC-function symbols.

Example 16. Let f be an AC-function symbol and g be a standard function symbol. Let

P = {X ≈? a, f(X, Y,W, g(Y)) ≈? Z}.

Then VNAC (P) = {X, Y, Z}.

Before defining V>1(P), we need to define the subterms of a unification problem.

Definition 28 (Subterms(P)). The subterms of a unification problem P are given as:

Subterms(P) =
⋃
t∈P

Subterms(t),

where the notion of Subterms(t) of a term t excludes all pairs and is defined recursively
as follows:

• Subterms(a) = {a}.

• Subterms(Y) = {Y }.

• Subterms(⟨⟩) = {⟨⟩}.

• Subterms(⟨t1, t2⟩) = Subterms(t1) ∪ Subterms(t2).

• Subterms(f t1) = {f t1} ∪ Subterms(t1).

• Subterms(fACt1) = ⋃
ti∈Args(fACt1) Subterms(ti) ∪ {fACt1}.

Here, Args(fACt1) denote the arguments of fAC t1.

Remark 21 (Subterms of AC and non-AC functions). The definition of subterms for non-
AC functions cannot be used for AC functions, as the following counterexample shows.
Let f be an AC-function symbol and consider the term t = f⟨f⟨a, b⟩, f⟨c, d⟩⟩. Then

Subterms(t) = {t, a, b, c, d}.

56

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L64-L74
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L98-L104
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L546-L556

However, if we had used the definition of subterms for non-AC functions, we would obtain

Subterms(t) = {t, f⟨a, b⟩, f⟨c, d⟩, a, b, c, d}.

Definition 29 (V>1(P)). We denote by V>1(P) the set of variables that are arguments
of (at least) two terms t and s such that t and s are headed by different function symbols
and t and s are in Subterms(P). The informal meaning is that if X ∈ V>1(P), then X

is an argument to at least two different function symbols.

Example 17. Let f be an AC-function symbol and g be a standard function symbol. Let

P = {X ≈? a, g(X) ≈? h(Y), f(Y,W, h(Z)) ≈? f(c,W)}.

In this case V>1(P) = {Y }.

We define proper subterms in order to define admissible subterms in Definition 31.

Definition 30 (Proper Subterms). If t is not a pair, we define the proper subterms of
t, denoted as PSubterms(t) as:

PSubterms(t) = {s | s ∈ Subterms(t) and s ̸= t}.

We define the proper subterm of a pair ⟨t1, t2⟩ as:

PSubterms(⟨t1, t2⟩) = PSubterms(t1) ∪ PSubterms(t2).

Definition 31 (Admissible Subterm AS). We say that s is an admissible subterm
of a term t if s is a proper subterm of t and s is not a variable. The set of admissible
subterms of t is denoted as AS(t). The set of admissible subterms of a unification problem
P , denoted as AS(P), is defined as

AS(P) =
⋃
t∈P

AS(t).

Example 18. If P = {a ≈? f(Z1, Z2), b ≈? Z3, g(h(c), Z) ≈? Z4} then AS(P) =
{h(c), c}.

Definition 32 (Size of a Unification Problem). We define the size of a term t

recursively as follows:

• size(a) = 1.

• size(Y) = 1.

57

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L53-L58
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L572-L577
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L152-L153
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification.pvs#L146-L152
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L63-L73

• size(⟨⟩) = 1.

• size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).

• size(f t1) = 1 + size(t1).

• size(fAC t1) = 1 + size(t1).

Given a unification problem P = {t1 ≈? s1, . . . , tn ≈? sn}, the size of P is defined as:

size(P) =
∑

1≤i≤n
size(ti) + size(si).

Remark 22 (s ∈ AS(t) =⇒ size(s) < size(t)). If s ∈ AS(t), we have that s is a proper
subterm of t, and therefore the size of s is less than the size of t.

Table 4.1: Decrease of the Components of the Lexicographic Measure.

Recursive Call |VNAC (P)| |V>1(P)| |AS(P)| size(P)
line 5, 12 <

lines 8, 13, 16, 20 ≤ ≤ ≤ <
case 1 - line 26 ≤ <
case 2 - line 26 ≤ ≤ <
case 3 - line 26 ≤ ≤ ≤ <

4.2.2 Proof Sketch for Termination

Non AC Cases

To prove the termination of syntactic unification, we can use a lexicographic measure lexs
consisting of two components: lexs = (|Vars(P)|, size(P)), where Vars(P) is the set of
variables in the unification problem. We adapted this idea to our proof of termination
by using |VNAC (P)| as our first component and size(P) as the fourth. The proof of
termination for all the cases of Algorithm 2 except AC (line 26) is similar to the proof of
termination of syntactic unification, with two caveats.

First, we need to use |VNAC (P)| instead of |Vars(P)| to avoid taking into account
the variables that are arguments of the AC-function terms introduced by solveAC (see
Section 4.1.3). The variable terms introduced by solveAC do not increase |VNAC (P)|,
since they will be instantiated by function instantiateStep and therefore eliminated
from the problem.

Second, in some of the recursive calls (lines 8, 13, 16, 20), we must ensure that the
components introduced to prove termination in the AC-case (|V>1(P)| and |AS(P)|) do
not increase. This is straightforward.

58

The AC-case

Our proof of termination for the AC-case uses the components |V>1(P)| and |AS(P)|,
proposed in [40]. To explain the choice for the components of the lexicographic measure,
let us start by considering the restricted case where P = {t ≈? s}. The idea of the proof of
termination is to define the set of admissible subterms of a unification problem AS(P) in
a way that when we call function solveAC to terms t and s, every problem P1 generated
will satisfy |AS(P1)| < |AS(P)|.

Let t1, . . . , tm be the arguments of t and let s1, . . . , sn be the arguments of s. Then,
as described in Section 4.1.3, the left-hand side of P1 is {t1, . . . , tm, s1, . . . , sn}. De-
note by {t′1, . . . , t′m, s′

1, . . . , s
′
n} the right-hand side of P1, which means that P1 = {t1 ≈?

t′1, . . . , tm ≈? t′m, s1 ≈? s′
1, . . . , sn ≈? s′

n}. This is what motivated our definition of admis-
sible subterms: every term t′i of the right-hand side of P1 will have AS(t′i) = ∅. Therefore,
AS(P1) ⊆ AS(P) always holds.

If we are also in a situation where at least one of the terms on the left-hand side of
P1 is not a variable, we can prove that |AS(P1)| < |AS(P)|. To see that, let u be the
non-variable term in the left-hand side of P1 of the greatest size (if there is a tie, pick
any term with the greatest size). Then, u is an argument of either t or s and therefore
u ∈ AS(P). We also have u ̸∈ AS(P1): otherwise there would be a term u′ in P1 such
that u ∈ AS(u′), which would mean that the size of u′ is greater than u (see Remark
22), contradicting our hypothesis that no term in P1 has size greater than u. Combining
the fact that AS(P1) ⊆ AS(P) and the fact that there is a term u with u ∈ AS(P) and
u ̸∈ AS(P1) we obtain that |AS(P1)| < |AS(P)|.

Example 19. In the example of Section 2.2.2, after we eliminated the common arguments,
we had

P = {f(X,X, Y, a) ≈? f(b, b, Z)}}.

Notice that we had AS(P) = {a, b}. After applying solveAC, one of the unification
problems that is generated is:

P1 = {X ≈? Z6, Y ≈? f(Z5, Z5), a ≈? Z1, b ≈? Z5, Z ≈? f(Z1, Z6, Z6)},

where AS(P1) = ∅.

What happens if all the arguments of t and s are variables? In this case, we would
have AS(P1) = AS(P) = ∅, but this is not a problem since after function solveAC
is called, the function instantiateStep would execute (receiving as input P1), and it
would instantiate all the arguments. The result, call it P2 would be an empty list and we
would have AS(P2) = AS(P) = ∅ and size(P2) < size(P).

59

Therefore, all that is left in this simplified example with only one equation t ≈? s

in the unification problem P is to make sure that when we call instantiateStep in
a unification problem P1 and obtain as output a unification problem P2 we maintain
|AS(P2)| ≤ |AS(P1)|. However, this does not necessarily happen, as Example 20 shows.

Example 20 (A case where instantiateStep increases |AS|). Let f and g be AC-
function symbols and

P1 = {X ≈? f(Z1, Z2), g(X,W) ≈? g(a, c)}.

Calling instantiateStep with input P1 we obtain

P2 = {g(f(Z1, Z2),W) ≈? g(a, c)}.

In this case we have AS(P1) = {a, c} while AS(P2) = {f(Z1, Z2), a, c} and therefore
|AS(P2)| > |AS(P1)|.

This problem motivated the inclusion of the measure |V>1(P)| in our lexicographic
measure, as we now explain. First, notice that if we changed Example 20 to make it so
that X only appears as an argument of AC-functions headed by f , then instantiating X
to an AC-function headed by f would not increase the cardinality of the set of admissible
subterms. This is illustrated in Example 21.

Example 21 (A case where instantiateStep does not increase |AS|). If we change
slightly the problem from Example 20 to

P ′
1 = {X ≈? f(Z1, Z2), f(X,W) ≈? g(a, c)}

and apply instantiateStep we would obtain:

P ′
2 = {f(Z1, Z2,W) ≈? g(a, c)},

and we would have AS(P ′
1) = AS(P ′

2) = {a, c}.

Let’s return to our original example of P = {t ≈? s} and P1 = {t1 ≈? t′1, . . . , tm ≈?

t′m, s1 ≈? s′
1, . . . , sn ≈? s′

n}, and denote by P2 the unification problem obtained by calling
instantiateStep passing as input P1. We will show that in the cases where |AS(P2)|
may be greater than |AS(P)| we necessarily have |V>1(P)| > |V>1(P2)|.

Consider an arbitrary variable termX on the left-hand side of P1. IfX was instantiated
by instantiateStep, it would be instantiated to an AC-function headed by f (see
Section 4.1.3) and therefore would only contribute to increasing |AS(P2)| in relation with

60

|AS(P1)| if it also occurred as an argument to a function term (let’s call it t∗) headed by a
different symbol than f (let’s say g). Since X is in the left-hand side of P1 this means that
it was an argument of t or s in P (suppose t, without loss of generality) and remember that
both t and s are headed by the same symbol f . Then X is an argument of t∗ and t and
therefore, by definition, X ∈ V>1(P). However X was instantiated by instantiateStep
and therefore it is not in V>1(P2). The new variables introduced by solveAC will not
make any difference in favour of |V>1(P2)|: when they occur as arguments of function
terms, the terms are always headed by the same symbol f . Therefore |V>1(P)| > |V>1(P2)|.
Accordingly, to fix our problem we include the measure |V>1(P)| before |AS(P)|, obtaining
the lexicographic measure described in Section 4.2.1.

The situation described is similar when our unification problem P has multiple equa-
tions. Let’s say P = {t1 ≈? s1, . . . , tn ≈? sn}. The only difference is that it is insufficient
to call function solveAC and then function instantiateStep in only the first equation
t1 ≈? s1: we need to call function applyACStep and simplify every equation ti ≈? si.

To see how things may go wrong, notice that in our previous explanation, when the
unification problem P had just one equation, a call to solveAC might reduce the ad-
missible subterms by removing a given term (we called it u). However, now that P has
more than one equation, if u is also present in other equations of the original problem P ,
calling solveAC only in the first equation no longer removes u from the set of admissible
subterms.

4.3 A Structured Proof of Termination for applyAC-
Step

In this Section we detail how we proved termination for function applyACStep. The
proof of termination (Theorem 16) is based on Lemmas 8, 9, 14 and 15. Before presenting
the mentioned results and its proofs, we first introduce some prior notation.

4.3.1 Notation for the Proof of Termination

Algorithm 2 calls applyACStep with input (P,nil, σ, V). Recall that P is represented
as a list and is not nil. Let t ≈? s be the equation in the head of the list P and n ≥ 1
the number of equations in P . Denote by Pi an arbitrary unification problem (recall that
there may be many, since at each call to solveAC the algorithm branches) obtained
after we apply solveAC and instantiateStep to the first i equations, with 0 ≤ i ≤ n.
Hence, P = P0. Denote by P ∗

i a unification problem obtained after calling solveAC with

61

input Pi, but before we call instantiateStep. Schematically, this means that:

Pi
solveAC−−−−−→ P ∗

i
instantiateStep−−−−−−−−−→ Pi+1

Finally, we denote by PC
i only the part of the unification problem P ∗

i that replaces equa-
tion ti ≈? si when we call solveAC(ti, si, Vi, fi).

The substitution computed when we go from problem Pi to problem Pj is denoted by
σij. Given a substitution σ, we consider the function ψσ : X → X such that:

ψσ(X) =

σX if σX is a variable

X otherwise

ψij is syntactic sugar for ψσij
.

Example 22. Let f be an AC-function symbol and g a syntactic function symbol. Suppose
that P = P0 = {f(X, Y) ≈? f(a, b), f(W, g(U)) ≈? f(g(c), d)}. After solveAC but
before instantiateStep, one branch may be:

P ∗
0 = {X ≈? Z1, Y ≈? Z2, a ≈? Z1, b ≈? Z2, f(W, g(U)) ≈? f(g(c), d)},

where PC
0 = {X ≈? Z1, Y ≈? Z2, a ≈? Z1, b ≈? Z2}. After instantiateStep, we have:

P1 = {f(W, g(U)) ≈? f(g(c), d)}
σ01 = {Z1 7→ a, Z2 7→ b,X 7→ a, Y 7→ b} = ψ01

applyACStep will call itself again, this time with P1. After calling solveAC in one
branch we will have

P ∗
1 = {W ≈? Z3, g(U) ≈? Z4, g(c) ≈? Z4, d ≈? Z3} = PC

1

and finally after instantiateStep we have:

P2 = {g(U) ≈? g(c)}
σ12 = {Z3 7→ d,W 7→ d} = ψ12

σ02 = σ12σ01 = {Z1 7→ a, Z2 7→ b,X 7→ a, Y 7→ b, Z3 7→ d,W 7→ d} = ψ02

At this point, applyACStep would return control to ACUnif.

62

Notation 13. If t and s are functions headed by the same function symbol, we represent
this as t ∼fsym s. If t and s are functions headed by different function symbols, we
represent this as t ̸∼fsym s.

Notation 14. We denote by NV S(t) the set of non-variable subterms of P .

Remark 23 (Signature of instantiateStep). Function instantiateStep is recursive
and receives as input a unification problem P1 (the part of our unification problem which
we have not yet inspected), a unification problem P2 (the part of our unification problem
we have already inspected) and σ, the substitution computed so far. Therefore, the first
call to this function in order to instantiate the unification problem P is with P1 = P ,
P2 = nil and σ = nil.

The algorithm returns a triple (P ′, δ, bool), where the first component is the remaining
unification problem; the second component is the substitution computed by this step; and
the third component is a Boolean to indicate if we found an equation t ≈? s which is not
unifiable (in this case the Boolean is True) or not (in this case the Boolean is False).

Notation 15. Denote by JinstantiateStep(P1, P2, σ)Kn the n-th component (n = 1, 2, 3)
of the triple (P ′, δ, bool) returned by instantiateStep(P1, P2, σ).

4.3.2 Auxiliary Lemmas

Lemma 7. (P ′, σ′, V ′) ∈ applyACStep(PA, PB, σ, V) if and only if (P ′, σ′′, V ′) ∈
applyACStep(PA, PB,nil, V), where σ′ = σ′′ ◦ σ.

Lemma 8 (VNAC in applyACStep). Let P0 = PA
0 ∪ PB

0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA

0 , P
B
0 ,nil, V). Then

VNAC(Pn) ⊆ ψ0n(VNAC(P0)).

⟨1⟩1. We proceed by induction on the number of equations in PA
0 . Suffices: to prove

that VNAC(P1) ⊆ ψ01(VNAC(P0)).
Proof: The induction hypothesis give us VNAC(Pn) ⊆ ψ1n(VNAC(P1)) and ψ0n =
ψ1n ◦ ψ01.

Comment: The next recursive call will be applyACStep(PA
1 , P

B
1 , σ01, V1), where

P1 = PA
1 ∪ PB

1 . The third component of the input is not nil anymore, but we can fix
that by using Lemma 7 to prove that if (Pn, σ0n, V

′) ∈ applyACStep(PA
1 , P

B
1 , σ01, Vn)

then there is (Pn, σ1n, Vn) ∈ applyACStep(PA
1 , P

B
1 ,nil, V 1) such that σ0n = σ1n◦σ01.

A similar reasoning happens when we prove Lemmas 9, 14.

63

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L231-L235
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L508-L513

⟨1⟩2. From now until the rest of this proof, we denote σ01 as σ and ψ01 as ψ. Let Y
be an arbitrary variable in VNAC(P1). Then, exists some term t1 in P1 such that
Y ∈ VNAC(t1). A term t1 in P1 is not a variable and can be written as t1 = σt2,
where t2 is a subterm in P ∗

0 .
Proof: t1 is not a variable because P1 is obtained from P ∗

0 by applying instantiat-
eStep.

⟨1⟩3. Y ∈ VNAC(σt2) implies either:

1. exists X in VNAC(t2) such that σX = Y .

2. Y in VNAC(im(σ)).

⟨1⟩4. Case: exists X in VNAC(t2) such that σX = Y . Then we have Y ∈ ψ(VNAC(P0)).
Proof: We have X in VNAC(P ∗

0). Therefore, X in VNAC(P0) and ψX = σX = Y ∈
ψ(VNAC(P0)).

⟨1⟩5. Case: Y in VNAC(im(σ)). Then Y ∈ ψ(VNAC(P0)).
Proof: Y ∈ VNAC(im(σ)) implies there exists X such that σX = Y and X ∈
VNAC(P ∗

0). If X ∈ VNAC(P ∗
0) then X ∈ VNAC(P0). Finally, ψX = σX = Y ∈

ψ(VNAC(P0)).

Lemma 9 (V>1 in applyACStep). Let P0 = PA
0 ∪ PB

0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA

0 , P
B
0 ,nil, V). Then

V>1(Pn) ⊆ ψ0n(V>1(P0)).

⟨1⟩1. We prove by induction on the number of equations in PA
0 . Suffices: to prove that

V>1(P1) ⊆ ψ01(V>1(P0)).
Proof: The induction hypothesis give us V>1(Pn) ⊆ ψ1n(V>1(P1)) and ψ0n = ψ1n◦ψ01.

⟨1⟩2. From now until the rest of this proof, we denote ψ01 by ψ and σ01 by σ. Let: Y be
an arbitrary variable in V>1(P1). Suffices: to prove that Y ∈ ψ(V>1(P0)).

⟨1⟩3. Since Y ∈ V>1(P1), there exist t1 and s1 such that Y is an argument of t1 (for short
Y ∈ Args(t1)) and Y is an argument of s1, where t1 ̸∼fsym s1 and t1 and s1 are
subterms of P1.

⟨1⟩4. There exists some subterm t2 of P ∗
0 such that t2 ∼fsym t1 and there exists X ∈

Args(t2) with σX = Y . Similarly, there exists some subterm s2 of P ∗
0 such that

s2 ∼fsym s1 and there exists W ∈ Args(s2) with σW = Y . Since t1 ̸∼fsym s1, we
get t2 ̸∼fsym s2.

Proof:

64

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L520-L525

⟨2⟩1. We prove the existence of t2 and X. The case for s2 and W is analogous.

⟨2⟩2. Since t1 ∈ Subterms(P1), there exists some t′1 in P1 such that t1 ∈ Subterms(t′1).
This t′1 can be written as σt3, with t3 in P ∗

0 . Hence, t1 ∈ Subterms(σt3).

⟨2⟩3. t1 ∈ Subterms(σt3) and t1 is a function, which means that either:
1. t1 = σt4 with t4 ∈ Subterms(t3) and t4 ∼fsym t1.
2. t1 ∈ Subterms(im(σ)).

⟨2⟩4. Case: t1 ∈ Subterms(im(σ)). If Y is an argument of a term t1 in Subterms(im(σ)),
then there exists a term t4 (same symbol as t1) in Subterms(PC) and a variable
X1 immediately under t4 such that σX1 = Y . Pick t2 as t4 and X as X1.

⟨2⟩5. Case: t1 = σt4 with t4 ∈ Subterms(t3) and t4 ∼fsym t1. Then Y ∈ Args(σt4)
and either:

1. There is a variable X1 ∈ Args(t4) with σX1 = Y . Pick X as X1 and t2 as
t4.

2. There is a variable X1 ∈ Args(t4) and σX1 is an AC-function with Y as
one of its argument. In this case, Y is an argument of a term t5, where
t5 ∈ Subterms(im(σ)). Hence, the reasoning in Step ⟨2⟩4 apply.

⟨1⟩5. Let: t ≈? s be the first unification pair in P0. Let: f be the function symbol they
are both headed.

⟨1⟩6. We divide our proof in four cases, according to whether X is equal to Y or not and
according to whether W is equal to Y or not. The two following facts will be used:

1. σY = Y .

2. If t′ ∈ Subterms(P ∗
0) and is headed by a symbol different than f , then t′ ∈

Subterms(P0).

Proof:
⟨2⟩1. Recall that Y ∈ Args(t1). The term t1 ∈ Subterms(P1) can be written as σt3,

where t3 ∈ Subterms(P ∗
0). If we had Y ∈ dom(σ), then Y would not happen in

t1 = σt3 (recall that σ is idempotent). Therefore, Y ̸∈ dom(σ), i.e. σY = Y .

⟨2⟩2. If a term t′ is in Subterms(P ∗
0) −Subterms(P0) it is necessarily in the right hand

side of PC
0 . All function terms in the right hand side of PC

0 are headed by f .

⟨1⟩7. Case: X = Y and W = Y , i.e. Y ∈ Args(t2) and Y ∈ Args(s2). Then ψ(Y) ∈
ψ(V>1(P0)).

Proof:
⟨2⟩1. Case: t2 ∼fsym t. Then, s2 ̸∼fsym t and, by Step ⟨1⟩6, s2 ∈ Subterms(P0).

Since Y ∈ Args(s2), this implies Y ∈ V ars(P0). From that and the fact that

65

Y ∈ V ars(t2) we get that t2 ∈ Subterms(P0). Hence, we have that Y ∈ V>1(P0)
and therefore ψ(Y) ∈ ψ(V>1(P0)).

⟨2⟩2. Case: t2 ̸∼fsym t. We repeat the reasoning of Step ⟨2⟩1, exchanging the roles of
t2 and s2.

⟨1⟩8. Case: X = Y and W ̸= Y .
Proof:
⟨2⟩1. Since σW = Y , both W and Y are in PC

0 .

⟨2⟩2. Y must be in the left-hand side of PC
0 .

Proof: Indeed if Y were in the right-hand side of PC
0 it would have been instantiated

by σ (see the description of instantiateStep in Section 4.1.3), which contradicts
the fact that σY = Y (see Step ⟨1⟩6).

⟨2⟩3. Since Y is in the left-hand side of PC
0 , it is an argument of either t or s (the terms

in the first unification pair). Let: t3 be the term Y is an argument.

⟨2⟩4. Suffices: to assume that t2 ∼fsym t3.
Proof: If t2 ̸∼fsym t3 then t2 ∈ Subterms(P0) (see Step ⟨1⟩6). t3 is either t or s,
hence t3 ∈ Subterms(P0). By definition (Pick t2 and t3) we have Y ∈ V>1(P0) and
therefore ψY ∈ ψ(V>1(P0)). Finally, from Step ⟨1⟩6 and from the definition of ψ we
have ψY = σY = Y , which allow us to conclude that Y ∈ ψ(V>1(P0)).

⟨2⟩5. If t2 ∼fsym t3 then s2 ̸∼fsym t3. Then, s2 ∈ Subterms(P0) (Fact from ⟨1⟩6). Since
W ∈ Args(s2) this means that W ∈ V ars(P0). Together with Step ⟨2⟩1, this let
us conclude that W is in the left-hand side of PC

0 . Therefore, it is an argument
of one of the terms of the first unification pair. Let: s3 be this term.

⟨2⟩6. Case: s2 ̸∼fsym s3. Then by definition (Pick s2 and s3) we have W ∈ V>1(P0).
Therefore ψW = σW = Y ∈ ψ(V>1(P0)).

⟨2⟩7. Case: s2 ∼fsym s3. Together with t2 ∼fsym t3 and t2 ̸∼fsym s2 we conclude that
s3 ̸∼fsym t3. This however contradicts the fact that both s3 and t3 are terms of
the first equation, functions headed by f .

⟨1⟩9. Case: X ̸= Y and W = Y . Proof is analogous with Step ⟨1⟩8.

⟨1⟩10. Case: X ̸= Y and W ̸= Y .
⟨2⟩1. σX = Y let us conclude that X and Y are in PC

0 . σW = Y let us conclude that
W is in PC

0 .

⟨2⟩2. Y must be in the left-hand side of PC
0 .

Proof: By contradiction. If Y were in the right-hand side of PC
0 it would have been

instantiated by σ, which contradicts the fact that Y = σY = ψ(Y) (Fact from Step
⟨1⟩6).

66

⟨2⟩3. Since Y is in the left-hand side of PC
0 , it is an argument of either t or s. Let: t′

be the term Y is an argument of P0.

⟨2⟩4. Case: t2 ̸∼fsym t′. Then, t2 ∈ Subterms(P0) (Fact from ⟨1⟩6). Since X is
in Args(t2) we have X ∈ V ars(P0). This, together with the fact that X is in
PC

0 let us conclude that X is in the left-hand side of PC
0 . It is therefore an

argument of one of the terms of the first unification pair (t or s). Let: t3 be
this term. Then, by definition (Pick t2 and t3) we have X ∈ V>1(P0) and hence
ψX = σX = Y ∈ ψ(V>1(P0)).

⟨2⟩5. Case: s2 ̸∼fsym t′. Then, s2 ∈ Subterms(P0) (Fact from ⟨1⟩6). Since W is
in Args(s2) we have W ∈ V ars(P0). This, together with the fact that W is
in PC

0 let us conclude that W is in the left-hand side of PC
0 . It is therefore an

argument of one of the terms of the first unification pair (t or s). Let: s3 be
this term. Then, by definition (Pick s2 and s3) we have W ∈ V>1(P0) and hence
ψW = σW = Y ∈ ψ(V>1(P0)).

⟨2⟩6. By ⟨2⟩4 and ⟨2⟩5 all that is left is to consider the case where t2 ∼fsym t′ and
s2 ∼fsym t′. This, however, would mean that s2 ∼fsym t2, contradicting ⟨1⟩4.

Lemma 10 (Admissible Subterms of σt). Let σ be a substitution and let ts ∈ AS(σt).
We have one of 3 things

1. ts ∈ σAS(t).

2. ts ∈ AS(im(σ)).

3. There is t1 ∈ Subterms(t) and X ∈ Args(t1) such that σX = ts and if ts is an AC
function symbol, then t1 ̸∼fsym ts.

Lemma 11. Let σ = JinstantiateStep(P,nil,nil)K2. If σX is not a variable, then
there exists a non-variable term t ∈ P such that σX = σt.

Next, we introduce the definition of a nice unification problem with respect to f

(Definition 33). It let us prove Lemma 13, which is used in Lemma 14.

Definition 33 (Nice Unification Problem with respect to f). Let P be a unification
problem, f be a function symbol and σ = JinstantiateStep(P,nil,nil)K2. Suppose that
for every function term t ∈ Subterms(P), if there is a variable X ∈ Args(t) such that
σX is not a variable then t is an AC function headed by f . In this case we say that P is
nice with respect to f .

67

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L402-L409
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L1216-L1220
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L181-L187

Lemma 12 (Terms after AC-step). Suppose that

(Pn, σ0n, V
′) ∈ applyACStep(Pu, Ps,nil, V) and V>1(Pn) = ψ0n(V>1(P))

A term tn ∈ Pn can be written as σ0nt0 where t0 ∈ Ps or t0 is a non-variable argument of
some term t ∈ Pu.

Remark 24. Recall that the first time we call applyACStep we have P0 = Pu and
Ps = nil.

Lemma 13 (AS of the Substitution in the output of instantiateStep). Let σ =
JinstantiateStep(P,nil,nil)K2. Let PA be the set of terms of P that are AC functions
headed by f and let PB be the remaining terms of P . Suppose P is nice with respect to
f . Then, AS(im(σ)) ⊆ σAS(PA) ∪ σNV S(PB).

Lemma 14 (AS in applyACStep). Let P0 = PA
0 ∪ PB

0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA

0 , P
B
0 ,nil, V). If

V>1(Pn) = ψ0n(V>1(P0))

then
AS(Pn) ⊆ σ0n(AS(P0)).

Proof:
⟨1⟩1. We do a proof by induction. By induction hypothesis, we get that when V>1(Pn) =

ψ1n(V>1(P1)) we have AS(Pn) ⊆ σ1n(AS(P1)).

⟨1⟩2. V>1(Pn) = ψ1n(V>1(P1)).
Proof:
⟨2⟩1. By Lemma 9, we have V>1(Pn) ⊆ ψ1n(V>1(P1)). Hence, it suffices to prove that

ψ1n(V>1(P1)) ⊆ V>1(Pn).

⟨2⟩2. Since V>1(Pn) ⊆ ψ1n(V>1(P1)) we get
ψ1n(V>1(P1)) ⊆ ψ1n ◦ ψ01(V>1(P0)) = ψ0n(V>1(P0)).

Since by hypothesis ψ0n(V>1(P0)) = V>1(Pn) we get ψ1n(V>1(P1)) ⊆ V>1(Pn).

⟨1⟩3. By induction hypothesis, we obtain AS(Pn) ⊆ σ1n(AS(P1)). Since we want to prove
AS(Pn) ⊆ σ0n(AS(P0)), it suffices to prove AS(P1) ⊆ σ01(AS(P0)).

⟨1⟩4. From now until the remaining of the proof, we denote σ01 by σ and ψ01 by ψ.

⟨1⟩5. Let: t1s ∈ AS(P1). Suffices: to prove that t1s in σ(AS(P0)). There exists
t1 ∈ P1 such that t1s ∈ AS(t1). Then, there exists t2 ∈ P ∗

0 such that t1 = σt2.
Hence, t1s ∈ AS(σt2) and by Lemma 10 we have 3 possibilities:

68

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L539-L548
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L455-L463
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L551-L558

1. t1s ∈ σ(AS(t2)).

2. t1s ∈ AS(im(σ))

3. There is t3 ∈ Subterms(t2) and X ∈ Args(t3) such that σX = t1s and if t1s is
an AC function symbol, then t3 ̸∼fsym t1s.

⟨1⟩6. Let: t ≈? s be the first equation of P0 and f be the function symbol that both t

and s are headed. PC
0 is a nice problem with respect to f .

Proof:
⟨2⟩1. By contradiction. Suppose that PC

0 is not nice, then there exists a term t′ ∈
Subterms(PC

0) that is not an AC-function term headed by f and a variable X
such that X ∈ Args(t′), σX = t3 and t3 is not a variable.

⟨2⟩2. X ∈ V>1(P0) and therefore X = ψ0n(X) ∈ ψ0n(V>1(P0)).
Proof: Since t′ is not an AC-function term headed by f , we get that t′ ∈ Subterms(lhs(PC

0))
and therefore X ∈ Subterms(lhs(PC

0)). This, along with the fact that X ∈ dom(σ),
let us conclude that X ∈ Args(t) ∪Args(s). Suppose without loss of generality that
X ∈ Args(t). Then, X ∈ V>1(P0) (Pick t and t′) and therefore, by the definition of
ψ0n we have X = ψ0n(X) ∈ ψ0n(V>1(P0)).

⟨2⟩3. X ̸∈ V>1(Pn).
Proof: If we had X ∈ V>1(Pn) there would be some term t3 ∈ Subterms(Pn)
such that X ∈ V ars(t3). However, every term in Pn can be written as σ0nt4, where
t4 ∈ Subterms(P0). Hence we would get X ∈ V ars(σ0nt4). This cannot happen
because X ∈ dom(σ0n) and σ0n is idempotent.

⟨2⟩4. From Steps ⟨2⟩2 and ⟨2⟩3 we would get V>1(Pn) ̸= ψ0n(V>1(P0)), which contra-
dicts our hypothesis.

⟨1⟩7. Case: t1s ∈ σAS(t2). Then t1s ∈ σAS(P0).
Proof: It suffices to prove that t2 ∈ P0. We have t2 ∈ P ∗

0 . If t2 was in P ∗
0 − P0 we

would have t2 ∈ rhs(PC
0) and therefore AS(t2) = ∅, which contradicts the fact that

t1s ∈ σAS(t2).

⟨1⟩8. Case: t1s ∈ AS(im(σ)). Then t1s ∈ σAS(P0).
Proof:
⟨2⟩1. Let: PA = rhs(PC

0) and PB = lhs(PC
0). We can apply Lemma 13 and obtain

that t1s ∈ σAS(PA) ∪ σNV S(PB).

⟨2⟩2. Since AS(rhs(PC
0)) = ∅ we conclude that t1s ∈ σNV S(lhs(PC

0)).

⟨2⟩3. NV S(lhs(PC
0)) ⊆ AS(P0) and therefore t1s ∈ σAS(P0).

⟨1⟩9. Case: There is t3 ∈ Subterms(t2) and X ∈ Args(t3) such that σX = t1s and if t1s
is an AC function symbol, then t3 ̸∼fsym t1s. Then t1s ∈ σAS(P0).

69

Proof:
⟨2⟩1. t1s ∈ im(σ), which implies that there exists a non-variable term t4 ∈ PC

0 such
that t1s = σt4.

⟨2⟩2. Suffices: to consider the case where t4 ∈ rhs(PC
0).

Proof: If t4 ∈ lhs(PC
0) then it is in Args(t) ∪ Args(s) and therefore t4 ∈ AS(P0).

Hence t1s = σt4 ∈ σAS(P0).

⟨2⟩3. t4 is an AC-function headed by f and therefore t1s = σt4 is an AC-function headed
by f .

Proof: Since t4 ∈ rhs(PC
0), it is either a variable or an AC-function headed by f .

By Step ⟨2⟩1, t4 is not a variable.

⟨2⟩4. X ∈ V>1(P0) and therefore X = ψ0n(X) ∈ ψ0n(V>1(P0)).
Proof:
⟨3⟩1. X ∈ PC

0 , since X ∈ dom(σ).

⟨3⟩2. Notice that since t1s is headed by an AC-function symbol and t1s ̸∼fsym t3 we
get that t3 is a function that is not headed by f . Hence, t3 ∈ Subterms(P0) and
therefore X ∈ Subterms(P0). Since X ∈ PC

0 , we conclude that X ∈ lhs(PC
0).

⟨3⟩3. X ∈ Args(t) ∪ Args(s). Suppose without loss of generality that X ∈ Args(t).
Then by picking t and t3 we get that X ∈ V>1(P0).

⟨3⟩4. Since σX = t1s which is not a variable, we have that σ0n = σ1nσX is not a vari-
able. Therefore, by the definition of ψ, we have X = ψ0n(X) ∈ ψ0n(V>1(P0)).

⟨2⟩5. X = ψ0n(X) /∈ V>1(Pn).
Proof: We have σX = t1s, which is not a variable. Then, σ0nX = σ1nσX is not
a variable and therefore X ∈ dom(σ0n). If we had X ∈ V>1(Pn) there would be
some term t5 ∈ Subterms(Pn) such that X ∈ V ars(t5). There exists some term
t6 ∈ Subterms(P0) such that t5 = σ0nt6. Hence, X ∈ V ars(σ0nt6). This however,
contradicts the fact that X ∈ dom(σ0n) and σ0n is idempotent.

⟨2⟩6. Steps ⟨2⟩4 and ⟨2⟩5 let us conclude that V>1(Pn) ̸= ψ0n(V>1(P0)), contradicting
our hypothesis.

Lemma 15 (Decrease ofAS in applyACStep). Let P0 = PA
0 ∪PB

0 and let (Pn, σ0n, Vn) ∈
applyACStep(PA

0 , P
B
0 ,nil, V). If

V>1(Pn) = ψ0n(V>1(P0)) and Pn ̸= nil.

70

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_termination_alg.pvs#L568-L574

Then
|AS(Pn)| < |AS(P0)|.

Proof:
⟨1⟩1. By Lemma 14, we have AS(Pn) ⊆ σ0n(AS(P0)).

⟨1⟩2. Pick a term t′ ∈ Pn with the biggest size. Notice that t′ ̸∈ AS(Pn).
Proof: Since Pn ̸= nil, it is possible to pick a term t′ ∈ Pn with the biggest size.
If t′ ∈ AS(Pn), there would be some term t′′ ∈ Pn such that t′ ∈ AS(t′′). But then
size(t′′) > size(t′), which contradicts our hypothesis that t′ ∈ Pn has the biggest size.

⟨1⟩3. By Lemma 12, the term t′ in Pn can be written as σt1, where t1 is a non-variable
argument of some term t ∈ P0. So, t′ = σti ∈ σ0nAS(P0).

⟨1⟩4. By Steps ⟨1⟩2 and ⟨1⟩3, we conclude that σ0n(AS(P0)) ⊈ AS(Pn). Along with
AS(Pn) ⊆ σ0nAS(P0) this let us conclude that |AS(Pn)| < |σ0nAS(P0)|. Since
|σ0nAS(P0))| ≤ |AS(P0)|, the result follows.

4.3.3 Termination of applyACStep

Theorem 16 (Termination of applyACStep). Suppose that Algorithm 2 is called with
the nice input (P, σ, V) and enters the branch of applyACStep (lines 24-26). Let
(Pn, σ′, Vn) ∈ applyACStep(P,nil, σ, V). Then

(|VNAC(Pn)|, |V>1(Pn)|, |AS(Pn)|, size(Pn)) <lex (|VNAC(P)|, |V>1(P)|, |AS(P)|, size(P))

Proof:
⟨1⟩1. By Lemma 7 we have that (Pn, σ0n, Vn) ∈ applyACStep(P,nil,nil, V), where

σ′ = σ0nσ.

⟨1⟩2. By Lemma 8 we have VNAC(Pn) ⊆ ψ0n(VNAC(P)). Hence
|VNAC(Pn)| ≤ |ψ0n(VNAC(P))| ≤ |VNAC(P)|.

⟨1⟩3. By Lemma 9 we have V>1(Pn) ⊆ ψ0n(V>1(P)). Hence
|V>1(Pn)| ≤ |ψ0n(V>1(P))| ≤ |V>1(P)|.

⟨1⟩4. Case: V>1(Pn) = ψ0n(V>1(P)).
Proof:
⟨2⟩1. Case: Pn = nil. Then |AS(Pn)| = 0 ≤ AS(P) and

size(Pn) = 0 < size(P),
since P is not null.

⟨2⟩2. Case: Pn ̸= nil. Then by Lemma 15 we have |AS(Pn)| < |AS(P)|

71

⟨1⟩5. Case: V>1(Pn) ̸= ψ0n(V>1(P)). Then, V>1(Pn) ⊊ ψ0n(V>1(P)) and hence
|V>1(Pn)| < |ψ0n(V>1(P))| ≤ |V>1(P)|.

4.4 Proving Soundness and Completeness

4.4.1 Nice Inputs

As mentioned, to unify terms t and s we use Algorithm 2 with P = {t ≈? s}, σ = id and
V = Vars((t, s)). However, since the parameters of ACUnif may change between the
recursive calls, we cannot directly prove soundness (Corollary 21) by induction. We must
prove the more general Theorem 20, with generic parameters for the unification problem
P , the substitution σ, and the set V of variables that are/were in use. To aid us in this
proof, we notice that while the recursive calls of ACUnif may change P , σ, and V , some
nice relations between them are preserved. These relations between the three components
of the input are captured by Definition 34.

Definition 34 (Nice input). Given an input (P, σ, V), we say that this input is nice
if:

1. σ is idempotent.

2. Vars(P) ∩ dom(σ) = ∅.

3. σ ⊆ V .

4. Vars(P) ⊆ V .

4.4.2 Soundness

As mentioned, once we prove Theorem 20, then soundness (Corollary 21) is obtained
immediately. In order to prove Theorem 20, we used Theorem 18 and Theorem 19.
Finally, to establish Theorem 18 (soundness of applyACStep), we used Theorem 17
(soundness of solveAC).

Theorem 17 (Soundness of solveAC). Suppose that (P1, V1) ∈ solveAC(t, s, V, f),
that δ unifies P and that t and s are AC-function applications headed by the same symbol
f . Then δ unifies {t ≈? s}.

Theorem 18 (Soundness of applyACStep). Suppose that (P ′, σ′, V ′) ∈
applyACStep(P1, P2, σ, V), that δ unifies P ′, that ∃σ1 : δ = σ1σ

′, that dom(σ) ⊆ V and
that dom(σ) ∩ (Vars(P1) ∪ Vars(P2)) = ∅. Then δ unifies P1.

72

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L136-L140
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L940-L944
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L294-L300

Remark 25. Hypotheses dom(σ) ⊆ V and dom(σ)∩(Vars(P1)∪Vars(P2)) = ∅ of Theorem
18 are immediately satisfied when ACUnif calls applyACStep, since in this case we
have P1 = P , P2 = ∅ and (P, σ, V) is a nice input.

Theorem 19 (Soundness of Variable Instantiation). Suppose that (P, σ, V) is a nice
input, σ1 = {X 7→ t}, P = {X ≈? t} ∪ P1, X ̸∈ Vars(t) and δ ∈ ACUnif(σ1P1, σ1σ, V).
If δ unifies σ1P1, then δ unifies {X ≈? t} and δ unifies P1.

Theorem 20 (Soundness for Nice Inputs). Let (P, σ, V) be a nice input, and δ ∈
ACUnif(P, σ, V). Then, δ unifies P .

Theorem 20 was proved by induction on the lexicographic measure we used for termi-
nation. It branches in many cases, according to the type of the equation t ≈? s selected
by chooseEq (see Algorithm 2). There are two interesting cases. The first case is in
lines 24-26 when we only have AC-unification pairs (in that case, we used the soundness
of applyACStep, i.e. Theorem 18). The second case happens when we instantiate a
variable (lines 5 and 12) and is solved by using Theorem 19.

Corollary 21 (Soundness of ACUnif). If δ ∈ ACUnif({t ≈? s}, id,Vars((t, s)))
then δ unifies t ≈? s.

4.4.3 Completeness

A Structured Proof of Completeness of solveAC

Theorem 22 is completeness for solveAC. Recalling the structure of a unification prob-
lem obtained after applyACStep (Section 4.1.3), we see that the hypothesis δ ⊆ V of
Theorem 22 means that the substitution δ will only impact the left-hand side of P1 (since
δ ⊆ V and the variables in the left-hand side of P1 are all in V). Theorem 22 guarantees
that the substitution γ will only impact the new variables introduced by solveAC, since
dom(γ) ⊆ V1 − V . In terms of P1, this means that γ will only impact the right-hand side
of P1.

We give a structured proof (à la Leslie Lamport [51, 52]) of the completeness of
solveAC (Theorem 22). In a structured proof, the main steps are numbered in the
form ⟨1⟩x., and they may decompose into substeps (of the form ⟨2⟩.y) and so on.

Theorem 22 (Completeness of solveAC). Suppose that t and s are AC-function
applications headed by the same symbol f , t and s are not equal modulo AC, δ unifies
{t ≈? s}, δ ⊆ V , and that Vars((t, s)) ⊆ V .Then, there is (P1, V1) ∈ solveAC(t, s, V, f)
and a substitution γ such that γδ unifies P1, dom(γ) ⊆ V1 − V , and Vars(im(γ)) ⊆ V1.

73

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L111-L119
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L121-L125
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L127-L130
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_first_order_AC_unification.pvs#L959-L972

Proof:
⟨1⟩1. It suffices to consider the case where t and s do not share common arguments.

Proof: Let t∗ and s∗ be the terms obtained after eliminating the common argu-
ments of t and s. Notice that if δ unifies {t∗ ≈? s∗} then δ unifies {t ≈? s}. Also,
since the first step of solveAC is to eliminate the common arguments, the output of
solveAC(t, s, V, f) is the same as solveAC(t∗, s∗, V, f).

⟨1⟩2. Let t ≡ f(t1, . . . , tm) and s ≡ f(s1, . . . , sn), where each ti occurs ai times as an
argument of t and each sj occurs bj times as an argument of s. The associated
linear Diophantine equation is:

a1X1 + . . .+ amXm = b1Y1 + . . .+ bnYn.

Let |t|A be the number of times the term A (or some term that is equal to A

modulo AC) appears in the list of arguments of t, i.e. in Argsf (t). Let Args(δt) =
{A1, . . . , Ak} be the set of all the different arguments (modulo AC) of δt.

⟨1⟩3. Since δt ≈ δs, for each Ai, we have |δt|Ai
= |δs|Ai

. Therefore:
a1|δt1|Ai

+ . . .+ am|δtm|Ai
= b1|δs1|Ai

+ . . .+ bn|δsn|Ai

⟨1⟩4. Let D be the matrix obtained when solveAC calls dioSolver and let
−→
Z ′

1, . . . ,
−→
Z ′
l′

be the rows of D. Then {
−→
Z ′

1, . . . ,
−→
Z ′
l′} is a spanning set of solutions.

Comment: since dioSolver calculates all the solutions until an upper bound, this
relies on the proof that our bound is correct.

⟨1⟩5. Let −→nAi
be the vector (|δt1|Ai

, . . . , |δtm|Ai
, |δs1|Ai

, . . . , |δsn|Ai
). Since −→nAi

solves the
Diophantine equation, it can be written as a linear combination of the spanning set
of solutions:

−→nAi
= c′

i1
−→
Z ′

1 + . . .+ c′
il′

−→
Z ′
l′ .

We can do that for every equation:

−→nA1 = c′
11

−→
Z ′

1 + . . .+ c′
1l′

−→
Z ′
l′

...
−→nAk

= c′
k1

−→
Z ′

1 + . . .+ c′
kl′

−→
Z ′
l′ .

Let C = [c′
ij] be the matrix of coefficients.

⟨1⟩6. Let D1 be the Diophantine submatrix of D that includes row
−→
Z ′
j if and only if the

j-th column of C is not the zero column. Let C1 be the submatrix of C that includes
column j if and only if it is not the zero column. Denoting the entries of C1 by cij

74

and the rows of D1 by −→
Z1, . . . ,

−→
Zl , we have:

−→nA1 = c11
−→
Z1 + . . .+ c1l

−→
Zl

...
−→nAk

= ck1
−→
Z1 + . . .+ ckl

−→
Zl .

(4.2)

Let’s denote by zi1, . . . , zi(m+n) the entries of the vector −→
Zi, for i = 1, . . . , l. Notice

that D1 = (−→Z1, . . . ,
−→
Zl) = [zij] is a l × (m+ n) matrix.

⟨1⟩7. Let (P1, V1) be the output of dioMatrix2acSol when called with matrix D1.
The problem P1 is of the form:

P1 = {t1 ≈? t′1, . . . , tm ≈? t′m, s1 ≈? s′
1, . . . , sn ≈? s′

n}.

⟨1⟩8. Every column of D1 has at least one coefficient different than zero.
Proof:
⟨2⟩1. Let’s prove for the arbitrary column j. Recall that the j-th term of the vector

(t1, . . . , tm, s1, . . . sn) is associated with column j of D1. Let’s denote by tj this
term.

⟨2⟩2. There exists an Ai such that |δtj|Ai
> 0.

⟨2⟩3. Analysing the j-th component of i-th equality in Equation 4.2, we have
|δtj|Ai

= ci1z1j + . . .+ cilzlj.

Therefore, there exists some zxj greater than zero, i.e. the j-th column of D1 has
at least one coefficient different than zero.

⟨1⟩9. Define γ such that

γZj =

Ai, if cij = 1 and cix = 0 for k ̸= j.

f(A1, . . . A1︸ ︷︷ ︸
c1j

, . . . , Ak, . . . , Ak︸ ︷︷ ︸
ckj

), otherwise

for the new variables Zj’s and for all the other variables X, γX = X. Notice that
dom(γ) ⊆ V1 − V and that Vars(im(γ)) ⊆ V1.

Proof:
⟨2⟩1. Due to Step ⟨1⟩8, this γ is well-defined, as we will never have a case where

c1j, . . . , ckj are all zero.

⟨2⟩2. dom(γ) ⊆ V1 − V since the new variables Zis introduced by solveAC are in
V1 − V .

⟨2⟩3. The variables in im(γ) are the variables in A1, . . . , Ak. These are the variables
occurring in δt (see Step ⟨1⟩2). By hypothesis, Vars(t) ⊆ V and δ ⊆ V , which let
us conclude that im(γ) ⊆ V . Since V ⊆ V1 we get that im(γ) ⊆ V1.

⟨1⟩10. γδ unifies P1.
Proof:

75

⟨2⟩1. It suffices to prove that for an arbitrary i we have γδti ≈ γδt′i.

⟨2⟩2. This can be simplified to δti ≈ γt′i.
Proof:
⟨3⟩1. On one hand, since

Vars(δti) ⊆ (Vars(im(δ)) ∪ Vars(ti)) ⊆ V

and dom(γ) ∩ V = ∅ we have γδti = δti.

⟨3⟩2. On the other hand, since Vars(t′i) ∩ V = ∅ and dom(δ) ⊆ V , we have δt′i = t′i

and therefore γδt′i = γt′i.

⟨2⟩3. It suffices to prove that the list of arguments Argsf (δti) is a permutation of
Argsf (γt′i). It suffices to prove that for an arbitrary term u, we have |δti|u = |γt′i|u.

Comment: from the hypothesis that Argsf (δti) is a permutation of Argsf (γt′i), it
is only possible to conclude that δti ≈? γt′i because neither δti nor γt′i is a pair. This
is guaranteed here because we restrict ourselves to well-formed terms (Definitions 2
and 4) and substitutions.

⟨2⟩4. It suffices to consider the case where u is equal (modulo AC) to one of the Ajs.
Otherwise we would have |δti|u = |γt′i|u = 0.

⟨2⟩5. Let u ≈ Aj. Since
−→nAj

= cj1
−→
Z1 + . . .+ cjl

−→
Zl ,

we analyse the i-th entry of this vectorial equality and conclude that
|δti|u = |δti|Aj

= cj1z1i + . . .+ cjlzli.

⟨2⟩6. Recall that Z1 will appears z1i times in Argsf (t′i), Z2 will appear z2i times
in Argsf (t′i) and so on - see Section 4.1.3, specially the part about dioMa-
trix2acSol . Therefore,

|γt′i|u = |γt′i|Aj
= z1i|γZ1|Aj

+ . . .+ zli|γZl|Aj
= cj1z1i + . . .+ cjlzli.

⟨2⟩7. Comparing the expressions in ⟨2⟩6 and ⟨2⟩5, we conclude that |δti|u = |δt′i|u.

⟨1⟩11. (P1, V1) ∈ solveAC(t, s, V, f).
Proof:
⟨2⟩1. All that is left to prove is that extractSubmatrices does not discard the

matrix D1. It is enough to show that D1 satisfies the two constraints mentioned
in Section 4.1.3.

⟨2⟩2. As proved in Step ⟨1⟩8, D1 satisfies the first constraint: every column has one
coefficient greater than 0.

⟨2⟩3. D1 satisfies constraint 2: a column corresponding to a non-variable argument will
only have one coefficient equal to 1, and the others are 0.

Proof:

76

⟨3⟩1. We will prove for the arbitrary column j, associated with the j-th element of
the vector (t1, . . . , tm, s1, . . . , sn). Denote this term by tj. By our hypothesis,
tj is a non-variable argument.

⟨3⟩2. Since tj is an argument of either t or s, it is not an AC-function application
headed by f . Additionally, since tj is also a non-variable term, for any substi-
tution σ, σtj is not an AC-function headed by f .

⟨3⟩3. One of the equations in P1 is tj ≈? t′j. Suppose by contradiction that in j-th
column of matrix D1 there is not exactly one coefficient equal to 1, and the
others are zero. Then t′j cannot be a new variable Zi, and it is instead an
AC-function application headed by f whose arguments (at least two) are the
new variables Zis. This means that for any substitution σ we would have that
σt′j is an AC-function application headed by f .

⟨3⟩4. According to Steps ⟨3⟩2 and ⟨3⟩3, it would be impossible to unify tj ≈? t′j and
therefore P1. This, however, contradicts Step ⟨1⟩10.

Completeness of applyACStep

Theorem 23 is completeness for applyACStep.

Theorem 23 (Completeness of applyACStep). Suppose that δ unifies P1 ∪ P2, P1

consists of only AC-unification pairs, δ ⊆ V , σ ≤ δ and (P1 ∪ P2, σ, V) is a nice input.
Then, there exists (P ′, σ′, V ′) ∈ applyACStep(P1, P2, σ, V) and a substitution γ such
that γδ unifies P ′, dom(γ) ⊆ V ′ − V , im(γ) ⊆ V ′ and σ′ ≤ γδ.

Completeness of ACUnif

Lemma 26 states the completeness of Algorithm 2 with an arbitrary parameter V and an
extra hypothesis δ ⊆ V . Similarly to the soundness case, it is proved immediately once
we prove Lemma 25.

Lemma 24 (Completeness for Variable Instantiation). Suppose that (P, σ, V) is a nice
input, σ1 = {X 7→ t}, P = {X ≈? t} ∪ P1, X ̸∈ Vars(t) and σ ≤ δ. If δ unifies P , then
σ1σ ≤ δ and δ unifies σ1P1.

Lemma 25 (Completeness for Nice Inputs). Let (P, σ, V) be a nice input, δ unifies P ,
σ ≤ δ, and δ ⊆ V . Then, there is a substitution γ ∈ ACUnif(P, σ, V) such that γ ≤V δ.

Lemma 25 was proved by induction on the lexicographic measure we used for termina-
tion. It branches in many cases, according to the type of the equation t ≈? s selected by

77

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_apply_ac_step.pvs#L302-L312
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L132-L140
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L142-L149

chooseEq (see Algorithm 2). There are two interesting cases. The first case is in lines
24-26 when we only have AC-unification pairs (in that case, we used the completeness of
applyACStep, i.e. Lemma 23). The second case happens when we instantiate a variable
(lines 5 and 12) and is solved by using Lemma 24.

To see the need for hypothesis σ ≤ δ in Lemma 25, consider the case where P = ∅
and recall that in this case, ACUnif returns a list with only one substitution: σ. Then,
any δ unifies P , and if we did not have the hypothesis that σ ≤ δ we would not be able
to prove our thesis.

Lemma 26 (Completeness of ACUnif with δ ⊆ V). Let V be a set of variables such
that δ ⊆ V and Vars((t, s)) ⊆ V . If δ unifies t ≈? s, then ACUnif computes a substitution
more general than δ, i.e., there is a substitution γ ∈ ACUnif({t ≈? s}, id, V) such that
γ ≤V δ.

In the proof of Lemma 26, the hypothesis δ ⊆ V is a technicality that was put in
order to guarantee that the new variables introduced by the algorithm do not clash with
the variables in dom(δ) or in the terms in im(δ) and could be replaced by a different
mechanism that guarantees that the variables introduced by the AC-part of ACUnif are
indeed new.

As an example, let’s go back to the substitutions (see Equation 2.3) computed in the
example of Section 2.2.2 and notice that the set of variables in the original problem is
V = {X, Y, Z}. If

δ = {X 7→ f(Z2, a, b), Z 7→ f(a, Y, Z2, a, Z2, a), Z4 7→ c}

there is some overlap between the variables in dom(δ) and in the terms in im(δ) and the
ones introduced by the algorithm, but the substitution

σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}

that we computed is still more general than δ (restricted to the variables in V). Indeed,
if we take δ1 = {Z6 7→ f(Z2, a)} then δW = δ1σ4W for all variables W ∈ V .

Finally, had we considered the set V ′ = {X, Y, Z, Z1, Z2, Z3, Z4} instead of V =
{X, Y, Z} we would have δ ⊆ V ′ and the set of solutions would be:

σ′
1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ′

2 = {Y 7→ f(Z4, b, b), Z 7→ f(a, Z4, X,X)}.
σ′

3 = {X 7→ b, Z 7→ f(a, Y)}.
σ′

4 = {X 7→ f(Z4, b), Z 7→ f(a, Y, Z10, Z10)}.

78

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L151-L158

instead of
σ1 = {Y 7→ f(b, b), Z 7→ f(a,X,X)}.
σ2 = {Y 7→ f(Z2, b, b), Z 7→ f(a, Z2, X,X)}.
σ3 = {X 7→ b, Z 7→ f(a, Y)}.
σ4 = {X 7→ f(Z6, b), Z 7→ f(a, Y, Z6, Z6)}.

Notice that the difference between the two sets of solutions is just in the name given to
the new variables.

First, we give a high-level description of how to remove hypothesis δ ⊆ V from Lemma
26. The key step to prove completeness of ACUnif (an improvement of Lemma 26 where
V = Vars(t, s) and without the hypothesis δ ⊆ V) is to prove that the substitutions
computed when we call ACUnif with input (P, σ, V) “differ only by a renaming” from
the substitutions computed when we call ACUnif with input (P, σ, V ′), where δ ⊆ V ′.
Formalising this intuitive reasoning is harder than it appears at first sight. This cannot be
proven by induction directly because if V and V ′ differ and ACUnif enters the AC-part,
the new variables introduced for each input may “differ only by a renaming”, i.e. the
first component of the two inputs, will also “differ only by a renaming”. Once ACUnif
instantiates variables, it may happen that the substitutions computed so far, i.e. the
second component of the two inputs, will also “differ only by a renaming.” The solution
is to prove by induction the more general statement that if the inputs (P, σ, V) and
(P ′, σ′, V ′) “differ only by a renaming” then the substitutions computed when we call
ACUnif with (P, σ, V) “differ only by a renaming” from the substitutions computed
when we call ACUnif with (P ′, σ′, V ′).

The idea of two inputs differing only by a renaming is captured in the definition
of renamed inputs (Definition 35). The number of items in this definition may seem
excessive, but they were all used in our proof, as will be explained in Remark 27.

Definition 35 (Renamed Inputs Fixing ψ). We say that (P, σ, V) and (P ′, σ′, V ′) are
renamed inputs fixing ψ, if there is a renaming ρ such that:

1. P ′ = ρP .

2. σ′ =ψ ρσ.

3. max(V) ≤ max(V ′).

4. ψ ⊆ V .

5. dom(ρ) ⊆ V

6. Vars(im(ρ)) ⊆ V ′.

7. If X ∈ Vars(im(ρ)) and X ̸∈ dom(ρ) then X ̸∈ V

79

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_rename_inputs.pvs#L41-L52

Example 23. Consider the inputs

({X ≈? g(Z2)}, {Y 7→ f(Z1, Z3)}, {X, Y, Z1, Z2, Z3}) and

({X ≈? g(Z3)}, {Y 7→ f(Z2, Z4)}, {X, Y, Z2, Z3, Z4})

Notice that they are renamed inputs fixing ψ = {X, Y }, where we pick the renaming
ρ = {Z1 7→ Z2, Z2 7→ Z3, Z3 7→ Z4}.

Remark 26 (On the Name Renamed Inputs). Let (P, σ, V) and (P ′, σ′, V ′) be renamed
inputs fixing ψ. The name “Renamed Inputs” comes from the fact that P ′ is a renaming
of P (Item 1) and that, restricted to the set ψ, σ′ is a renaming of σ (Item 2). However,
the only necessary relation between V and V ′ (the third component of the inputs) in the
Definition of Renamed Inputs is that max(V) ≤ max(V ′). An alternative name for
Definition 35 could have been “Variant Inputs”.

We can state Theorem 29 with this definition. The proof of Theorem 29 is done by
induction, and the hardest cases are when we instantiate a variable (Lemma 27) and,
inside the function applyACStep, when we call solveAC (Lemma 28). We give a
structured proof (à la Leslie Lamport) of the mentioned lemmas below.

Lemma 27 (Correctness of Renamed Inputs - Variable Instantiation). Let σ1 = {X 7→
t} and σ′

1 = {ρX 7→ ρt}. Suppose that P1 ⊆ P , P ′
1 = ρP1, X ̸∈ Vars(t), X ∈ P ,

t ∈ P and (P, σ, V) and (P ′, σ′, V ′) are renamed inputs fixing ψ with renaming ρ. Then,
(σ1P1, σ1σ, V) and (σ′

1P
′
1, σ

′
1σ

′, V ′) are renamed inputs fixing ψ with renaming ρ.

Proof:
⟨1⟩1. First we prove that σ′

1ρ =V ρσ1.
Proof:
⟨2⟩1. Suffices: to prove that for every variable Z ∈ V we have σ′

1ρZ = ρσ1Z, i.e.,
that [ρX 7→ ρt]ρZ = ρ[X 7→ t]Z.

⟨2⟩2. Case: Z = X. Then both sides are equal to ρt.

⟨2⟩3. Case: Z ̸= X.
Proof:
⟨3⟩1. The right-hand side is ρ[X 7→ t]ρZ = ρZ, which means that it suffices to prove

that [ρX 7→ ρt]ρZ (the left-hand side) is also equal to ρZ. To do that, it suffices
to prove that ρZ ̸= ρX.

⟨3⟩2. Suppose by contradiction that ρZ = ρX.

⟨3⟩3. Case: X ∈ dom(ρ) and Z ∈ dom(ρ). Since ρ is a renaming, ρZ = ρX and
both Z and X are in dom(ρ) we must have X = Z. This, however, contradicts
the fact that we are in the case where Z ̸= X.

80

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_rename_inputs.pvs#L98-L107

⟨3⟩4. Case: X ̸∈ dom(ρ) and Z ∈ dom(ρ). We have ρZ = ρX = X, which means
that X ∈ Vars(im(ρ)). Since we also have that X ̸∈ dom(ρ), by Item 7 of
the Definition of Renamed Inputs, we get that X ̸∈ V . However, X ∈ P and
Vars(P) ⊆ V (see item 4 of the Definition of Nice Input). This means that
X ∈ V . Contradiction.

⟨3⟩5. Case: X ∈ dom(ρ) and Z ̸∈ dom(ρ). Similar to the previous case, exchanging
the roles of X and Z and noticing that Z ∈ V is one of our hypotheses (Step
⟨2⟩1).

⟨3⟩6. Case: X ̸∈ dom(ρ) and Z ̸∈ dom(ρ). Then ρZ = ρX 7→ Z = X, which
contradicts the fact that we are in the case where Z ̸= X.

⟨1⟩2. Item 1 in the Definition of Renamed Inputs is satisfied: σ′
1P

′
1 = ρσ1P1.

Proof:
⟨2⟩1. Let ti be an arbitrary term in P1 and let t′i be the correspondent in P ′

1. It suffices
to prove that σ′

1t
′
i = ρσ1ti. Since P ′

1 = ρP1 we have t′i = ρti, which means that
we must prove σ′

1ρti = ρσti.

⟨2⟩2. It suffices to prove that for every variable Z ∈ Vars(ti) we have σ′
1ρZ = ρσ1Z.

This follows from σ′
1ρ =V ρσ1 (Step ⟨1⟩1), since Z ∈ Vars(P1) ⊆ Vars(P) and

Vars(P) ⊆ V (this last one is because of the definition of nice input).

⟨1⟩3. Item 2 in the Definition of Renamed Inputs is satisfied: σ′
1σ

′ =ψ ρσ1σ.
Proof:
⟨2⟩1. Since (P, σ, V) and (P ′, σ′, V ′) are renamed inputs, by Item 2 of the definition,

we have σ′ =ψ ρσ. Therefore σ′
1σ

′ =ψ σ
′
1ρσ.

⟨2⟩2. Since σ′
1ρ =V ρσ1 (by Step ⟨1⟩1) and Vars(im(σ)) ⊆ V (By Item 3 of the Defini-

tion of Nice Input) we have σ′
1ρσ =V ρσ1σ. Since ψ ⊆ V (Item 4 of the Definition

of Renamed Inputs), we have σ′
1ρσ =ψ ρσ1σ.

⟨1⟩4. The remaining items to prove that (σ1P1, σ1σ, V) and (σ′
1P

′
1, σ

′
1σ

′, V ′) are renamed
inputs depend only on ψ, ρ, V and V ′ and therefore are immediately proved from
the fact that (P, σ, V) and (P ′, σ′, V ′) are renamed inputs.

Lemma 28 (Correctness of Renamed Inputs - solveAC). Let (P1 ∪P2, σ, V) be a re-
named input of (P ′

1 ∪P ′
2, σ

′, V ′) fixing ψ with renaming ρ, let car(P1) = t ≈? s be the unifi-
cation problem that we will apply solveAC, where t and s are rooted by the same function
symbol f . Let V1 be the new set of variables to avoid after we call solveAC(t, s, V, f) and
V ′

1 the new set of variables to avoid after we call solveAC(ρt, ρs, V ′, f). Let P ′
c be a uni-

fication problem in solveAC(ρt, ρs, V ′, f). Then, there exists Pc in solveAC(t, s, V, f)

81

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_rename_inputs.pvs#L165-L178

such that (cdr(P1) ∪ Pc ∪ P2, σ, V1) and (cdr(P ′
1) ∪ P ′

c ∪ P ′
2, σ

′, V ′
1) fixing ψ.

Proof:
⟨1⟩1. Let: Z ′

1, . . . , Z
′
l be the l new variables introduced by solveAC(ρt, ρs, V ′, f). When

we call solveAC(t, s, V, f), it will also introduce l new variables, which we denote
by Z1, . . . , Zl. Notice that

V1 = V ∪ {Z1, . . . , Zl}

V ′
1 = V ′ ∪ {Z ′

1, . . . , Z
′
l}.

Finally, notice that:
|Zi| = max(V) + i

|Z ′
i| = max(V ′) + i

for every 1 ≤ i ≤ l.

⟨1⟩2. Define: ρ1 as

ρ1X =

Z
′
i if X = Zi for i = 1, . . . , l

ρX otherwise.
Notice that ρ1 =V ρ.

Comment: Recall that in our PVS code, substitutions are defined as a list, where
each entry is of the form {X 7→ t}. To define ρ1 in our formalisation, first we defined
ρ∗ = {Z1 7→ Z ′

1, . . . , Zl 7→ Z ′
l}. Then, the renaming ρ1 is defined in our formalisation

as ρ1 = append(ρ, ρ∗). This was of constructing ρ1 only works due to the fact that
dom(ρ) ⊆ V (Item 5 of the Definition of Renamed Inputs) and that {Z ′

1, . . . , Z
′
l}∩V = ∅.

⟨1⟩3. If P ′
c is a unification problem in solveAC (ρt, ρs, V, f), there exists a unification

problem Pc in solveAC (t, s, V, f) such that P ′
c = ρ1Pc.

Proof:
⟨2⟩1. The Diophantine equation associated with both calls of solveAC will be the

same, and so will be the matrix returned by dioSolver. As a consequence
there exists a unification problem PC in solveAC(t, s, V, f) such that the only
difference between the terms in the right-hand side of Pc and P ′

c will be in the
name of the variables: they will be Z1, . . . , Zl in Pc and correspondingly Z ′

1, . . . , Z
′
l

in P ′
c. Therefore, given a term u′ in the right-hand side of P ′

c, its correspondent
term u in Pc is such that u′ = ρ1u.

⟨2⟩2. Let: t1, . . . , tm be the arguments of t and s1, . . . , sn be the arguments of s. The
terms in the left-hand side of every unification problem returned by solveAC(t, s, V, f)
will be respectively t1, . . . , tm, s1, . . . , sn. Similarly, the terms in the left-hand side
of every unification problem returned by solveAC(ρt, ρs, V, f) will be respec-
tively ρt1, . . . , ρtm, ρs1, . . . , ρsn. Therefore, given a term u′ in the left-hand side
of P ′

c, its correspondent term u in Pc is such that u′ = ρu. Additionally, since

82

ρ1 =V ρ we have u′ = ρ1u.

⟨1⟩4. Item 1 of the Definition of Renamed Inputs holds:
cdr(P ′

1) ∪ P ′
c ∪ P ′

2 = ρ1(cdr(P1) ∪ Pc ∪ P2).
Proof: We have that (P ′

1 ∪P ′
2, σ

′, V ′) is a renamed input of (P1 ∪P2, σ, V) fixing ψ with
renaming ρ, which gives us cdr(P ′

1) = ρ cdr(P1) and P ′
2 = ρP2 (Item 1 of the Definition

of Renamed Inputs). Since ρ1 =V ρ we get cdr(P ′
1) = ρ1 cdr(P1) and P ′

2 = ρ1P2.
Finally, by Step ⟨1⟩3, P ′

c = ρ1Pc.

⟨1⟩5. Item 2 of the Definition of Renamed Inputs holds: σ′ =ψ ρ1σ.
Proof: Since ψ ⊆ V and ρ1 =V ρ, it suffices to prove that σ′ =ψ ρσ. This holds since
(P ′

1 ∪ P ′
2, σ

′, V ′) is a renamed input of (P1 ∪ P2, σ, V) fixing ψ with renaming ρ (Item 2
of the Definition of Renamed Inputs).

⟨1⟩6. Item 3 of the Definition of Renamed Inputs holds: max(V1) ≤ max(V ′
1).

Proof: We have
max(V1) = |Zl| = l +max(V)
max(V ′

1) = |Z ′
l | = l +max(V ′).

Since max(V) ≤ max(V ′) we obtain max(V1) ≤ max(V ′
1).

⟨1⟩7. Item 4 of the Definition of Renamed Inputs holds: ψ ⊆ V1.
Proof: This follows from ψ ⊆ V (from the Definition of Renamed Inputs in our
hypothesis) and from V ⊆ V1.

⟨1⟩8. Item 5 of the Definition of Renamed Inputs holds: dom(ρ1) ⊆ V1.
Proof: We have

dom(ρ1) ⊆ dom(ρ) ∪ {Z1, . . . , Zl}.
Since dom(ρ) ⊆ V (Item 5 of the Definition of Renamed Inputs in our hypothesis) and
V1 = V ∪ {Z1, . . . , Zl} the result follows.

⟨1⟩9. Item 6 of the Definition of Renamed Inputs holds: Vars(im(ρ1)) ⊆ V ′
1 .

Proof: We have
Vars(im(ρ1)) ⊆ Vars(im(ρ)) ∪ {Z ′

1, . . . , Z
′
l}.

Since Vars(im(ρ)) ⊆ V ′ (Item 6 of the Definition of Renamed Inputs in our hypothesis)
and V ′

1 = V ′ ∪ {Z ′
1, . . . , Z

′
l} the result follows.

⟨1⟩10. Item 7 of the Definition of Renamed Inputs holds: If X ∈ im(ρ1) and X ̸∈ dom(ρ1)
then X ̸∈ V1.

Proof:
⟨2⟩1. Case: max(V) = max(V ′).

Proof:
⟨3⟩1. Zi = Z ′

i for every 1 ≤ i ≤ l and therefore ρ1 = ρ.

83

⟨3⟩2. We have X ∈ im(ρ) and X ̸∈ dom(ρ). Hence, by Item 7 of the Definition of
Renamed Inputs, X ̸∈ V .

⟨3⟩3. Since V1 = V ∪{Z1, . . . , Zl}, all there is to prove is that X ̸∈ {Z1, . . . , Zl}. Due
to Step ⟨3⟩1, it suffices to prove that X ̸∈ {Z ′

1, . . . , Z
′
l}.

⟨3⟩4. Suppose by contradiction that X ∈ {Z ′
1, . . . , Z

′
l}. Then, X ̸∈ V ′. However, this

contradicts the fact that X ∈ im(ρ), by Item 6 of the Definition of Renamed
Inputs.

⟨2⟩2. Case: max(V) < max(V ′).
Proof:
⟨3⟩1. We have

dom(ρ1) = dom(ρ) ∪ {Z1, . . . , Zl}

im(ρ1) = im(ρ) ∪ {Z ′
1, . . . , Z

′
l}

V1 = V ∪ {Z1, . . . , Zl}.

⟨3⟩2. Case: X ∈ im(ρ). We also have X ̸∈ dom(ρ) and hence, by Item 7 of the
Definition of Renamed Inputs, X ̸∈ V . Since X ∈ V1, this implies X ∈
{Z1, . . . , Zl}. This, however, contradicts the fact that X ̸∈ dom(ρ1).

⟨3⟩3. Case: X ̸∈ im(ρ). Then, X ∈ {Z ′
1, . . . , Z

′
l}. We have

|X| > max(V ′) > max(V)
and hence X ̸∈ V . Additionally, X ̸∈ {Z1, . . . , Zl} because otherwise we would
have X ∈ dom(ρ1). Hence, we get that X ̸∈ V1.

With Lemmas 27 and 28 it is possible to prove Theorem 29, shown below.

Theorem 29 (Correctness of Renamed Inputs). Let (P, σ, V) and (P ′, σ′, V ′) be re-
named inputs fixing ψ and suppose γ′ ∈ ACUnif(P ′, σ′, V ′). Then, there exist a renaming
ρ and a substitution γ ∈ ACUnif(P, σ, V) such that γ′ =ψ ργ.

Proof sketch:
⟨1⟩1. The proof is by induction using the lexicographic measure we used in the proof of

termination, for P ′.

⟨1⟩2. Case: nil?(P ′) (line 2 of Algorithm 2).
Then, ACUnif(P ′, σ′, V ′) returns and we have γ′ = σ′. Due to Item 1 of the Definition
of Renamed Inputs, P = ρP ′ = ∅ and hence ACUnif(P, σ, V) returns σ, i.e, γ = σ.
Then, γ′ = σ′ =ψ ρσ = ργ, due to Item 2 of the Definition of Renamed Inputs.

⟨1⟩3. If P ′ is not null, let ((t′, s′), P ′
1) = chooseEq(P ′). The proof is divided into cases

according to the structure of t and s, as Algorithm 2.

84

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L106-L109

⟨1⟩4. Case: (s′ matches X) and (X not in t′) (lines 4-5 of Algorithm 2).
⟨2⟩1. Then,

ACUnif(P ′, σ′, V ′) = ACUnif(σ′
1P

′
1, σ

′
1σ

′, V ′)
ACUnif(P, σ, V) = ACUnif(σ1P1, σ1σ, V).

⟨2⟩2. By Lemma 27, (σ1P1, σ1σ, V) and (σ′
1P

′
1, σ

′
1σ

′, V ′) are renamed inputs fixing χ

and therefore we can apply the induction hypothesis and conclude.

⟨1⟩5. Case: t′ ≈? s′ is an AC-unification pair (lines 24-26 of Algorithm 2).
⟨2⟩1. Since γ′ ∈ ACUnif(P ′, σ′, V ′) there will be

(P ′
∗, σ

′
∗, V

′
∗) ∈ applyACStep(P ′, σ′, V ′)

such that γ′ ∈ ACUnif(P ′
∗, σ

′
∗, V

′
∗).

⟨2⟩2. We can prove that there will be
(P∗, σ∗, V∗) ∈ applyACStep(P, σ, V)

such that (P∗, σ∗, V∗) and (P ′
∗, σ

′
∗, V

′
∗) are renamed inputs. Since function apply-

ACStep calls functions solveAC and instantiateStep to every AC-unification
pair in the unification problem, this result is established as soon as we prove
the lemmas of the correctness of functions solveAC and instantiateStep for
renamed inputs. For function solveAC, this is Lemma 28. Finally, since func-
tion instantiateStep only performs variable instantiation, the corresponding
Lemma is proved in the same manner as Lemma 27.

⟨2⟩3. Hence, we apply the induction hypothesis and conclude.

⟨1⟩6. The case when (t′ matches X) and (X not in s′) (lines 11-12 of Algorithm 2) is
similar to Step ⟨1⟩4. The remaining cases are straightforward.

Remark 27 (Necessity of Every Item in Definition of Renamed Inputs). Items 1 and
2 of the Definition of Renamed Inputs (Definition 35) are used in the main proof of
Theorem 29. However, to prove that we stay with renamed inputs during the recursive
calls ACUnif makes, we needed to add Items 3 through 7, as explained next. Notice that
Items 4 and 7 were used in Lemma 27 to prove that (σ1P1, σ1σ, V) and (σ′

1P
′
1, σ

′
1σ

′, V ′)
satisfy Items 1 and 2 of the Definition 35 and hence should be included in the definition.
Finally, in Lemma 28, we used Items 3, 5, 6 to prove that (cdr(P1) ∪ Pc ∪ P2, σ, V1) and
(cdr(P ′

1) ∪ P ′
c ∪ P ′

2, σ
′, V ′

1) satisfy Item 7 of Definition 35.

Finally, Theorem 29 is used along with Lemma 26 to prove the completeness of ACU-
nif (Theorem 30).

85

Theorem 30 (Completeness of ACUnif). If δ unifies t ≈? s, then ACUnif com-
putes a substitution more general than δ, i.e., there is a substitution γ ∈ ACUnif({t ≈?

s}, id,Vars(t, s)) such that γ ≤Vars(t,s) δ.

Proof:
⟨1⟩1. Let: V = Vars(t, s) and V ′ = V ∪ dom(δ) ∪ Vars(im(δ)). By Theorem 26 we have

that there exists a substitution γ′ ∈ ACUnif({t ≈? s}, id, V ′) such that γ′ ≤V ′ δ.
Hence, there exists δ1 such that δ =V ′ δ1γ

′

⟨1⟩2. Notice that the inputs ({t ≈? s}, id, V) and ({t ≈? s}, id, V ′) are renamed inputs
fixing V with renaming id. We can apply the Theorem of Renamed Inputs and ob-
tain that there exists a renaming ρ and a substitution γ ∈ ACUnif({t ≈? s}, id, V)
such that γ′ =V ργ.

⟨1⟩3. δ =V ′ δ1γ
′ =V = δ1ργ. Therefore, γ ≤V δ.

Remark 28 (The parameter ψ in the Definition of Renamed Inputs). The parameter ψ
in the definition of Renamed Inputs is used in the proof of Theorem 30 as

ψ = Vars(t, s) = V = Vars(P).

One may wonder if we could have eliminated this parameter from the Definition of Re-
named Inputs and used instead V or Vars(P) in its place. The answer is “no” because ψ
is unaffected by the recursive calls ACUnif makes and, hence, can perfectly represent the
variables in the original unification problem. P and V are the first and third parameters
of ACUnif and, therefore, can change as the algorithm calls itself recursively. Hence,
neither one can be used to replace ψ in the Definition of Renamed Inputs.

4.5 Statistics of the PVS Formalisation

Below we describe the main theories that are part of the first-order AC-unification for-
malisation. Since the nominal library contain other 3 formalisations, the theories that are
only part of the first-order AC-unification formalisation have a first_order_AC_ prefix
to their names (see Table 2.4), which we omit in this Section in order not to clutter the
presentation.

• top_first_order_AC_unification - High Level description of the first-order AC-
unification formalisation.

• unification_alg - Function ACUnif (Algorithm 2) and the theorems of soundness
and completeness.

86

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_unification_alg.pvs#L160-L166

• renamed_inputs - The Definition of Renamed Inputs and auxiliary lemmas to es-
tablish correctness.

• termination_alg - Definitions and theorems necessary for proving termination.

• apply_ac_step - Function applyACStep, the Definition of Nice Inputs and its
properties.

• aux_unification - Auxiliary functions such as solveAC, chooseEq and instan-
tiateStep and its properties.

• Diophantine - Code to solve Diophantine equations.

• unification - Definition of a unification problem and basic properties.

• substitution - Properties about substitutions.

• equality - Properties about equality modulo AC.

• term_properties - Basic properties about terms.

• terms - The grammar of terms.

• list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_more and list_aux_equational_reasoning_nat
- Set of parametric theories that define specific functions for the task of equational
reasoning (most of them operating on lists).

• structures - This is a different library that is being used by the formalisation, with
results about data structures.

Figure 5.1 shows the dependency diagram for the PVS theories that compose the
first-order AC-unification formalisation. Besides the nominal AC-matching formalisation,
there are other 3 formalisations in the nominal library, which we again represent in the
picture as orange ellipses. As shown in Figure 5.1, some of them use theories that are
also used by the nominal AC-matching formalisation.

As mentioned in Section 2.5.1, when specifying functions and theorems, PVS may
generate proof obligations to be discharged by the user. These proof obligations are called
Type Correctness Conditions (TCCs), and the PVS system includes several pre-defined
proof strategies that automatically try to discharge TCCs. In our code, several simple
TCCs related to the well-typedness and termination of functions were proved by PVS
automatically. However, manual proofs were still required for more elaborated functions
(see Example 24).

87

Figure 4.1: PVS formalisation of First-Order AC-Unification.

Example 24 (Automatic and Manual TCCs in PVS). Below, we give an example of how
PVS can handle simple TCCs. Recall that a substitution σ in our code is specified as a
list of nuclear substitutions. For instance, the substitution σ = {X 7→ a, Y 7→ b} would
be represented as cons((X, a),cons((Y, b),nil)). Consider the function supset_dom

defined below, which computes a superset of the domain of σ, returning a finite set of
variables.

supset_dom(sigma): RECURSIVE finite_set[variable] =
IF null?(sigma) THEN emptyset
ELSE LET (X, t) = car(sigma) IN add(X, supset_dom(cdr(sigma)))
ENDIF

MEASURE sigma BY <<

PVS extends high-order logic with predicate subtyping, allowing the definition of a new
type as a subset {x : T | p(x)} of a type T that satisfies a predicate p over T . Subtyping
is used when defining a finite_set (as a subtype of a set) and PVS profits from this
concept in the case of our function supset_dom: it is able to automatically check that
the set returned by supset_dom is indeed finite (it does not even generate a TCC), and
automatically proves the TCC regarding termination of this function.

88

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L107-L112

In contrast to that, consider the definition of the domain of a substitution σ in
PVS:

dom(sigma): finite_set[variable] = {X | subs(sigma)(X) /= variable(X)}

PVS generates a proof obligation (slightly simplified below) saying that we must prove
that this set is indeed finite:

% Subtype TCC generated (at line 120, column 35) for
% X | subs(sigma)(X) /= variable(X)
% expected type finite_set[variable]

% unfinished
dom_TCC1: OBLIGATION

FORALL (sigma: sub):
is_finite[variable]({X | subs(sigma)(X) /= variable(X)});

PVS cannot discharge this TCC automatically. We must prove it manually. To prove
this TCC, we first show that the set computed by supset_dom(sigma) is indeed a superset
of dom(sigma). Then, we argue that a subset of a finite set is necessarily finite.

The number of theorems and TCCs proved for each theory, along with each theory’s
approximate size and percentage of the total size, is shown in Table 4.2. For this table, we
omit file top_first_order_AC_unification since it contains only a high-level description
of the formalisation and library structures as it is a separated library. We group theories
list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_more and list_aux_equational_reasoning_nat un-
der the name list, since the specifics of each one is not relevant to our discussion. Finally,
PVS theories term_properties and terms are the only ones that are actually in the same
file, so we group them together under the name terms in Table 4.2.

Remark 29 (Hardest Proofs of the Formalisations). The two hardest parts of the three
formalisations described in Chapters 3, 4 and 5 were both about first-order AC-unification:
the proof of termination for applyACStep (Section 4.3) and the proof of completeness
(Section 4.4.3).

4.6 Additional Information on the Formalisation

4.6.1 Grammar of Terms and the Need for Well-Formed Terms

First we explain function Argsf . This function acts recursively on the structure of a
term (see Example 25) and is used to obtain a list of arguments of an AC-function headed

89

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_substitution.pvs#L119-L120
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L207-L211

Table 4.2: Information for Every File In the First-Order AC-Unification Formalisation.

Theory Theorems TCCs Size

.pvs .prf %

unification_alg 10 19 6 kB 2.3 MB 5%
renamed_inputs 21 23 10 kB 2.7 MB 6%
termination_alg 80 35 23 kB 11 MB 26%
apply_ac_step 29 12 15 kB 9.7 MB 22%

aux_unification 204 58 59 kB 8.2 MB 19%
Diophantine 73 44 24 kB 1.1 MB 3%
unification 86 14 20 kB 1.0 MB 2%
substitution 144 22 27 kB 2.4 MB 6%
AC_equality 67 18 12 kB 1.1 MB 3%

terms 131 48 28 kB 1.1 MB 3%
list 268 108 60 kB 2.2 MB 5%
Total 1113 401 284 kB 42.8 MB 100%

by f .

Example 25. Some examples to illustrate the behaviour of Argsf .

• Argsf (a) = (a).

• Argsf (Y) = (Y).

• Argsf (⟨a, ⟨b, c⟩⟩) = (a, b, c).

• Argsf (f⟨c, b⟩) = (c, b).

• Argsf (f f⟨c, b⟩) = (c, b).

• Argsf (g⟨c, b⟩) = (g⟨c, b⟩).

As mentioned before, terms were defined as shown in Definition 1 in order to make it
easier to eventually adapt the formalisation to the nominal setting (previous papers in the
subject, such as Nominal Unification [75] by Urban et al. and Nominal C-unification [3]
by Ayala et al. use a similar grammar). However, two issues arose in the formalisation
that motivated us to define well-formed terms (Definition 2) and restrict the terms in the
unification problem that our algorithm receive to well-formed terms.

The first issue concerns AC-functions that receive only one argument, something al-
lowed in the grammar of terms. Let f be an AC-function symbol and consider Example
26, which shows that ff⟨a, b⟩ ≈? f⟨a, b⟩. This is problematic because it means that a uni-
fication problem such as P = {X ≈? fX} has a solution, for instance σ = {X 7→ f⟨a, b⟩}.
Notice that if Algorithm 2 received this unification problem P , it would return nil (line

90

14). In defining well-formed terms, we avoid this problem by requiring that every AC-
function application fACs that is a subterm of a well-formed term t does not receive only
one argument.

Example 26. Let f be an AC-function symbol. Consider the terms t ≡ ff⟨a, b⟩ and
s ≡ f⟨a, b⟩. Two AC function applications are equal (modulo AC) if and only if their list
of arguments are permutations of each other. In our particular case we have Argsf (t) =
(a, b) = Argsf (s) and therefore t ≈ s.

The second issue is with terms that are pairs. As mentioned before, pairs are to be
used inside a term t to encode a tuple of arguments to a function. If t and s are not
pairs and Argsf (t) and Argsf (s) are permutations of each other, then it is possible to
prove that t ≈ s. This result we just described was used in the proof of completeness
of solveAC (see the proof for Theorem 22) and is the reason why we imposed that a
well-formed term t is not a pair.

Example 27 (Well-Formed Terms and Non Well-Formed Terms). Let f be an AC-
function symbol and g be a syntactic function symbol. The following terms are well-formed
terms:

• f⟨a, ⟨b, c⟩⟩.

• f f⟨a, ⟨b, c⟩⟩ (here Argsf (f f⟨a, ⟨b, c⟩⟩) = (a, b, c)).

• a.

• g(Y).

The following terms are not well-formed terms:

• fX.

• ⟨a, b⟩.

4.6.2 Equal Terms May Not Have the Same Size

A drawback of our grammar of terms is that we can have well-formed terms that are
equal modulo AC but do not have the same size. Let f be an AC-function symbol and
consider, for instance, the terms t ≡ f⟨f⟨a, b⟩, c⟩ and s ≡ f⟨⟨a, b⟩, c⟩. These terms are
equal modulo AC. Indeed Argsf (t) = (a, b, c) = Argsf (s) but according to the definition
of size we have size(t) = 7 and size(s) = 6. An alternative definition of size, called
size2, which has this property (Theorem 31) is given below.

Definition 36 (size2). We define the size2 of a term t recursively as follows:

91

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_terms.pvs#L620-L630

• size2(a) = 1

• size2(Y) = 1

• size2(⟨⟩) = 1

• size2(⟨t1, t2⟩) = size2(t1) + size2(t2)

• size2(ft1) = 1 + size2(t1)

• size2(fACt1) = ∑
ti∈Argsf (fACt1)

size2(ti)

Theorem 31. If t ≈ s then size2(t) = size2(s).

Theorem 31 is used to prove that if X ∈ Vars(s) and s is a well-formed term that
is not equal to X, then X ≈? s is not unifiable. This is used in the proof of completeness
of our algorithm to argue that if δ unifies {X ≈? s} then we do not enter the else of line
14.

4.7 Applications

In this section, we discuss two applications of our certified AC-unification algorithm. First,
how it can be used as a first step to formalise more efficient first-order AC-unification
algorithms. Second, how it could be to test implementations of AC-unification.

4.7.1 Formalising More Efficient AC-Unification Algorithms

Our formalisation could be used as a starting point to prove the correctness of more effi-
cient algorithms. For instance, when we solve a linear Diophantine equation, we generate
a spanning set of solutions instead of a basis. If we modify the corresponding code to
generate a basis of solutions, there would be fewer branches to explore. A second possible
path to sharpen our formalisation has to do with the bound used to compute solutions
to the linear Diophantine equations: we use a bound proved sufficient by Stickel [73], but
we can adapt the formalisation to use a smaller bound, such as the one mentioned by
Clausen and Fortenbacher [30]. Finally, a third way to be more efficient when solving the
mentioned Diophantine equation is to use the graph approach also described in [30].

There are efficient algorithms for AC-unification that rely on using directed acyclic
graphs (DAGs) to represent terms (e.g., Boudet’s [21]). Hence, a different path would
be to adapt our formalisation to formalise those algorithms. The dependency diagram of
Figure 4.1 hints at why adapting our formalisation to prove the correctness of algorithms
representing terms as DAGs should give us more work than solving the linear Diophan-
tine equations more efficiently. Changing the representation of terms would impact mostly

92

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/first_order_AC_equality.pvs#L267-L268

terms.pvs but would also require modification in lemmas from other files proved by in-
duction on terms. This means file changes that depend on terms.pvs, especially the ones
that more closely depend on terms.pvs, such as equality.pvs, substitution.pvs and
unification.pvs. In contrast, solving the linear Diophantine equations more efficiently
should effectively only require changes in Diophantine.pvs.

To further illustrate the additional work of changing the term representation in com-
parison to solving the linear Diophantine equations more efficiently, let’s consider the
proof of termination of ACUnif, described in Section 4.2.1, which is effectively done in
file termination_alg.pvs (one of the hardest parts of our formalisation, see Table 4.2).
Recalling that the lexicographic measure used is:

lex = (|VNAC(P)|, |V>1(P)|, |AS(P)|, size(P))

we see that the procedure used to solve the linear Diophantine equations plays no role in
this proof. In contrast to that, VNAC(P), V>1(P), AS(P), size(P) depend respectively
on VNAC(t), Subterms(t) and size(t) which were all defined inductively on the structure
of terms and would need to be adjusted in case we changed the way we represent terms.

4.7.2 Testing Implemented AC-Unification Algorithms

Although PVS does not support code extraction to a programming language such as
OCaml or Haskell, we can use our formalisation to test implementations of first-order
AC-unification algorithms in two different manners. The first approach is to manually
translate our implementation to a programming language of our choice (Python, for in-
stance) and then run both the manual translation of the formalised algorithm and the
nominal AC-unification algorithm we wish to test against the same examples, comparing
the results.

The second approach is to use the PVSio feature of PVS. As mentioned in Section
2.5.2, PVSio is a PVS package that extends the capabilities of the ground evaluator with
a predefined library of imperative programming language features, among them input
and output operators. This implies that sometimes we can run the formalised algorithm
inside the PVS environment passing the input we want and seeing the output returned.
However, some code fragments of our formalisation would need to be adapted in order
to use this resource or semantic attachments must be provided (see Section 2.5.2 for a
description of what types of code fragments must be adapted). Compared to the first
approach (manually translating to a programming language), the second approach (using
the PVSio feature) is less error-prone but requires more effort.

93

Chapter 5

Nominal AC-Matching

This chapter describes how we extended the first-order AC-unification formalisation (Chap-
ter 4), providing the mechanisms to deal with atoms, permutations, suspended variables,
abstraction, and obtained a formalisation of nominal AC-matching. To the best of our
knowledge, this is the first algorithm for nominal AC-matching. As was done in Chapter
3, the formalisation uses a parameter X for protected variables. By correctly setting this
parameter, in addition to a nominal AC-matching algorithm, it was possible to obtain a
nominal AC-equality checker as a byproduct. The results of this Chapter are described
in less details in Ayala-Rincón et al. [8].

5.1 Algorithm

Following the approach of Chapters 3 and 4, we present the algorithm’s pseudocode
instead of the actual PVS code for readability. We developed a functional algorithm
(Algorithm 5) for matching terms t and s. The algorithm is recursive and needs to
keep track of the current context Γ, the equational constraints P that we have to unify,
the substitution σ computed so far, the set of variables V that are/were in the problem
and the set of protected variables X . Hence, its input is a quintuple (Γ, P, σ, V,X). The
output is a list of solutions, each of the form (Γ1, σ1). The freshness constraints are
treated by auxiliary functions (see Section 5.1.3), and the equational constraints P are
represented as a list in our PVS code, where each element of the list is a pair (ti, si) that
represents an equation ti ≈? si.

The first call to the algorithm, in order to match t to s, is done with P = {t ≈? s};
Γ = ∅; σ = id (because we have not computed any freshness constraint or substitution
yet); V = Vars(t, s) and X = Vars(s).

Remark 30. In the PVS code, this means that the initial call is done with parameters
P = cons((t, s),nil), Γ = nil, σ = nil, V = Vars(t, s) and X = Vars(s).

94

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L42-L111

Algorithm 5 Nominal AC-Matching

1: procedure ACMatch(Γ, P, σ, V,X)
2: if nil?(P) then cons((Γ, σ),nil)
3: else let ((t, s), P1) = chooseEq(P) in
4: if t matches a and s matches a then ACMatch(Γ, P1, σ, V,X)
5:
6: else if t matches π ·X and X ̸∈ Vars(s) and X ̸∈ X then
7: let σ1 = {X 7→ π−1 · s},
8: (Γ1,flag) = freshSubs?(σ1, Γ) in
9: if flag then ACMatch(Γ1 ∪ Γ, σ1P1, σ1σ, V,X)

10: else nil
11:
12: else if t matches π ·X and s matches π′ ·X then
13: let Γ1 = ds(π, π′)#X ∪ Γ in ACMatch(Γ1, P1, σ, V,X)
14:
15: else if t matches ⟨⟩ and s matches ⟨⟩ then ACMatch(Γ, P1, σ, V,X)
16:
17: else if t matches f t1 and s matches f s1 then
18: let (P2,flag) = decompose(t1, s1) in
19: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X)
20: else nil
21:
22: else if t matches [a] t1 and s = [a] s1 then
23: let (P2,flag) = decompose(t1, s1) in
24: if flag then ACMatch(Γ, P2 ∪ P1, σ, V,X)
25: else nil
26:
27: else if t matches [a] t1 and s = [b]s1 then
28: let (Γ1,flag1) = fresh?(a, s1),
29: (P2,flag2) = decompose(t1, (a b) · s1) in
30: if flag1 and flag2 then ACMatch(Γ ∪ Γ1, P2 ∪ P1, σ, V,X)
31: else nil
32:
33: else if t matches fAC t1 and s matches fAC s1 then
34: let InputLst = applyACStep (Γ, cons((t, s), P1), σ, V,X),
35: LstResults = map(ACMatch, InputLst) in flatten(LstResults)
36:
37: else nil

Although extensive, Algorithm 5 is simple. It starts by analysing the list P of terms to
match. If it is empty (line 2), it has finished and can return the answer computed so far,
a list with a unique element: (Γ, σ). Otherwise, the algorithm calls the auxiliary function
chooseEq (line 3), which returns a pair (t, s) and a list of equational constraints P1 such
that P = {t ≈? s} ∪ P1. Then, P is updated by simplifying {t ≈? s} and this is done by

95

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L42-L111

seeing the form of t (an atom, a moderated variable, a unit, and so on).

5.1.1 Function chooseEq

The function chooseEq(P) selects an equational constraint t ≈? s in P , picking the
one with the biggest size. Notice that the behaviour of this function is different from its
first-order AC-unification counterpart, since in that formalisation chooseEq (see Section
4.1.1) avoids selecting AC-unification pairs, instead of picking the equational constraint
with the biggest size. The design of chooseEq, in both formalisations, helped us in the
proof of termination (see Sections 4.2 and 5.2.3).

5.1.2 Function decompose

The function decompose (lines 18, 23 and 29) works as its corresponding one in the
first-order AC-unification formalisation (see Section 4.1.2). It receives two terms t and
s, and if they are both pairs, it recursively tries to decompose them, returning a tuple
(P,flag), where P is a list of equational constraints and flag is a boolean that is True
if the decomposition was successful. If neither t nor s is a pair, the unification problem
returned is just P = {t ≈? s} and flag = True. If one of the terms is a pair and the
other is not, the function returns (nil, False). In Algorithm 5, we call decompose(t1,
s1) when we encounter equations such as ft1 ≈? fs1 to guarantee that all the terms in the
unification problem remain well-formed. Although it would have been correct to simplify
an equation of the form ft1 ≈? fs1 to t1 ≈? s1, if t1 or s1 were pairs, we would not respect
our restriction that only well-formed terms are in the matching problem.

Example 28. Examples of the function decompose acting on nominal terms are given
below.

• decompose(⟨a, ⟨b, c⟩⟩, ⟨c, ⟨π ·X, Y ⟩⟩) = ({a ≈? c, b ≈? π ·X, c ≈? Y }, True).

• decompose(a, [a]Y) = ({a ≈? [a]Y }, True).

• decompose(X, ⟨c, [b]π · Z⟩) = (nil, False).

5.1.3 Handling Freshness Constraints - Functions freshSubs?
and fresh?

As described in Chapter 3, we followed the approach of [11] and handled freshness con-
straints separately by using the auxiliary functions fresh? and freshSubs? .
These functions were already implemented in [11], and extending them to handle AC-
functions is straightforward.

96

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L81-L88
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_unification.pvs#L245-L256
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_freshness.pvs#L100-L113
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_fresh_subs.pvs#L57-L67

• freshSubs?(σ,Γ) returns the minimal context (Γ1 in Algorithm 5) in which a#?σX

holds, for every a#X in the context Γ and a boolean (flag in Algorithm 5), indicating
if it was possible to find the mentioned context.

• fresh?(a, t) computes and returns the minimal context (Γ1 in Algorithm 5) in
which a is fresh for t and a boolean (flag in Algorithm 5), indicating if it was
possible to find the aimed context.

5.1.4 The Function applyACStep

The function applyACStep was adapted from the formalisation of first-order AC-
unification (see [9]). In contrast to its first-order counterpart, it handles only one equa-
tional constraint t ≈? s, where t and s are rooted by the same AC function symbol. As we
will see, termination for nominal AC-matching is a simpler problem than for first-order
AC-unification and that makes it is sufficient for applyACStep to handle only one equa-
tional constraint. Hence, in a high-level overview, applyACStep will apply solveAC
to the first equational constraint and then call function instantiateStep in the result,
instantiating the variables that it can. This function returns a list (InputLst in line 34
of Algorithm 5) with each entry in this list corresponding to a branch ACMatch will
explore. ACMatch explores every branch generated by calling itself recursively on every
input in InputLst (line 34 of the algorithm). The algorithm’s output is a list of solutions
of the form (Γ, σ), where Γ is a context and σ is a substitution. In addition, the result
of calling map(ACMatch, InputLst), LstResults in line 35 of Algorithm 5, is a list of
lists of solutions. Hence, LstResults is flattened and then returned.

Remark 31 (solveAC and instantiateStep). applyACStep relies on two functions:
solveAC and instantiateStep , which are fully described in Chapter 4. Recall
that, in short, the function solveAC finds the linear Diophantine equational system as-
sociated with the AC-matching equational constraint, generates the basis of solutions, and
uses these solutions to generate the new AC-matching equational constraints. The function
instantiateStep instantiates the moderated variables that it can.

5.1.5 Modifications to Adapt the Algorithm to the Nominal Set-
ting

The example of Section 2.2.2 describes the process of trying to unify two terms t ≡
f(t1, . . . , tm) and s ≡ f(s1, . . . , sn), where f is an AC-function symbol. In this Section
we detail the four modifications that were necessary to adapt this process to the nominal
setting, referring to the example of Section 2.2.2 when convenient.

97

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L267-L281
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_nominal_AC_unification.pvs#L224-L238
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_inst_step.pvs#L114-L142

The first is related to eliminating common arguments: we do not eliminate arguments
ti and sj of t and s if they are equal modulo AC, we eliminate them if they are α-equivalent
(modulo AC) under the context Γ that we are working with, i.e., if Γ ⊢ ti ≈ sj. If we
have as hypothesis that (∆, δ) is the solution to the quintuple we are working with (see
Definition 22), the correctness of this step boils down to proving that from Γ ⊢ ti ≈ sj

we have ∆ ⊢ δti ≈ δsj. This is possible to prove by using the fact that ∆ ⊢ δΓ (item 1 of
Definition 22).

The second change is related with the new variables (Zis in the Section 2.2.2) intro-
duced and the fact that in the nominal setting a moderated variable π · X always has
a permutation π suspended on the variable X. What should be the permutation π sus-
pended on the new variables? Since the ultimate goal of these new variables is to outline
the combinatory between the arguments of t and the arguments of s, we put the identity
permutation suspended on the new variables. For instance, in the example of Section
2.2.2 we would have the moderated variables id ·Z1, . . . , id ·Z7, which we would write (see
Remark 9) simply as Z1, . . . , Z7.

In example of Section 2.2.2, we have variables X1, X2, X3, Y1, Y2 to represent respec-
tively the arguments X, Y, a, b, Z and we say that when generating the new unification
problems we can discard the ones “where a variable that does not represent a variable term
is paired with an AC-function application”. Here, we can also discard problems where a
moderated variable π · X, with X ∈ X , is paired with an AC-function application. This
is the third change to adapt to the nominal setting.

Finally, we must guarantee that the new variables Zis introduced by the algorithm
can be instantiated. Since those new variables are not in the set V , we ensure that by
putting the restriction that X ⊆ V in the definition of nice inputs (Definition 37).

5.1.6 Common Structures of Equational Constraints Returned
by solveAC

Suppose function solveAC is called to simplify s ≈? t, where both s and t are headed
by the same AC-function symbol f . Let s1, . . . , sm be the different arguments of s and
let t1, . . . , tn be the different arguments of t, after eliminating the common arguments of
s and t. An arbitrary set of equational constraints P1 obtained after we apply solveAC
is of the form

{t1 ≈? t′1, . . . , tn ≈? t′n, s1 ≈? s′
1, . . . , sm ≈? s′

m}

where:

1. A term t′i in the right-hand side is a new variable Zj.

98

2. A term s′
i in the right-hand side is either a new variable Zj or an AC-function headed

by f whose arguments are all new variables Zj.

A term s′
i will only be an AC-function headed by f if the corresponding term si is an

unprotected variable. This is the reason why t′i cannot be an AC-function headed by f :
the corresponding term ti is part of the right-hand side of s ≈? t and therefore is not an
unprotected variable.

After calling solveAC, we must instantiate the variables that we can. We must handle
first the equational constraints ti ≈? t′i and only then go to the equational constraints
si ≈? s′

i, in order to keep all the protected variables in the right-hand side, as shown in
Example 29.

Example 29. Let f be an AC function symbol and g be a syntactic function symbol.
Consider the equational constraint P0 = {f(g(X), g(W)) ≈? f(g(a), g(b))}, and let X = ∅
be our set of protected variables. After we apply solveAC, one of the branches has the
following equational constraints:

g(X) ≈? Z1

g(Y) ≈? Z2

g(a) ≈? Z2

g(b) ≈? Z1

If instantiateStep instantiates the variables that it can in the order shown above,
we get as result the equational constraints

{g(a) ≈? g(Y), g(b) ≈? g(X)},

and there would be unprotected variables in the right-hand side of the problem, i.e. we
would not have a matching problem anymore. To prevent this situation from happening,
every equational constraints ti ≈? t′i is handled by instantiateStep before any equational
constraint si ≈? s′

i.

Recall that the set of equational constraints

{t1 ≈? t′1, . . . , tn ≈? t′n, s1 ≈? s′
1, . . . , sm ≈? s′

m}

is represented in the PVS code as a list. Then, this order of which equational constraint
to handle first is done in the PVS code by putting equations ti ≈? t′i before equations
si ≈? s′

i in the list and having instantiateStep iterate through the list.

99

5.2 Formalisation

As was done in the formalisation of first-order AC-unification (see Chapter 4), to help us
in the proofs of termination (Section 5.2.3), soundness (Section 5.2.4) and completeness
(Section 5.2.5) we define the notion of a nice input (Section 5.2.2). Before diving in
these proofs, we show how every new moderated variable Zi introduced by solveAC is
instantiated by instantiateStep.

5.2.1 Instantiation of the New Variables Introduced By solveAC

In contrast to first-order AC-unification, in nominal AC-matching it is possible to prove
that the new variables Z1, . . . , Zn introduced by solveAC are instantiated by instan-
tiateStep. This fundamental result was used to prove that the notion of nice inputs
(Definition 37) is preserved between recursive calls of ACMatch and to establish termi-
nation of nominal AC-matching.

Indeed, let f be an AC function symbol and suppose that the equational constraint
that solveAC is simplifying is f(s1, . . . , sm) ≈? f(t1, . . . , tn). Since we are dealing with
matching, there are no unprotected variables in the right-hand side and therefore every
ti is either a protected variable or a non-variable term. The new variable Zi introduced
by solveAC is associated with row i of the Diophantine matrix D, and this row is a
non-zero solution to the Diophantine equation. Hence, at least one column j + m, that
corresponds to a term tj on the right-hand side, will have its i-th entry non-zero. In other
words, there is some j such that Di,j+m ̸= 0.

This means that one of our equational constraints after we apply solveAC will be
tj ≈? Zi and the new variable Zi will be instantiated. Could we have instead:

tj ≈? f(Zi, other arguments)?

No. Since tj is not an unprotected variable and is not an AC function headed by f this
kind of equation has no solution and is eliminated by our algorithm.

5.2.2 Nice Input

Nice input is an invariant under the action of the ACMatch function with valuable
properties. Notice that Item 7 of Definition 37 would need to be removed for the proofs
of termination, soundness, and completeness to be used in unification.

Definition 37 (Nice Input). An input (Γ, P, σ, V,X) is said to be nice if:

1. σ is idempotent.

100

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L50-L54

2. Vars(P) ∩ dom(σ) = ∅.

3. σ ⊆ V .

4. Vars(P) ⊆ V .

5. Vars(Γ) ⊆ V .

6. X ⊆ V .

7. Vars(rhs(P)) ⊆ X .

Items 1 to 4 were present in the definition of nice input for the formalisation of first-
order AC-unification, while Items 5 to 7 were added. Item 5 of Definition 34 was expected,
since we already have similar hypotheses for P and σ. Item 6 guarantees that the new
variables introduced by the algorithm can be instantiated (see Section 5.1.5).

Preservation of Vars(rhs(P)) ⊆ X

Although proving that Items 1-6 are preserved between the recursive calls of ACMatch is
straightforward, this is not the case for Item 7. The complicated case is when ACMatch
calls applyACStep to simplify t ≈? s. Recall that applyACStep essentially calls
solveAC and then instantiateStep in the results returned by solveAC. The issue is
that after calling solveAC (see Section 5.1.6) and before calling instantiateStep we
do not have Vars(rhs(P)) ⊆ X .

To prove that after applyACStep we still have Item 7, we proceed in two steps:

1. Let P0 be the equational constraints before we apply solveAC. Vars(rhs(P0)) ⊆ X .
Let P ∗

0 be the equational constraints after solveAC but before we call instanti-
ateStep. Although Vars(rhs(P ∗

0)) ̸⊆ X , we proved that P ∗
0 satisfies some valuable

properties, that we encapsulate in the definition of matching condition (Definition
39).

2. Let P1 be the equational constraints after we call instantiateStep on P ∗
0 . We

proved that if P ∗
0 satisfies the matching condition then P1 satisfies Vars(rhs(P1)) ⊆

X .

The motivation for the definition of matching condition is to guarantee that every
unprotected variable introduced by solveAC gets instantiated to a term with protected
variables. It relies on the definition of a matching equation (Definition 38).

Definition 38 (Matching Condition Equation). We say that t ≈? s is a matching
condition equation if s is a variable and Vars(t) ⊆ X .

101

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_nominal_AC_unification.pvs#L288-L289

Definition 39 (Matching Condition). We say that the equational constraints P satisfy
the matching condition with respect to X if for every variable X ∈ rhs(P) that is not in
X there exists i such that:

• For every j < i, X is not in the variables of the j-th equation of P .

• X is a member of the i-th equation of P .

• The i-th equation is a matching condition equation.

Notice that Item 1 of Definition 39 guarantee that X won’t be instantiated before
the i-th equation, while Items 2 and 3 guarantee that X will be instantiated in the i-th
equation to a term that only contains protected variables.

5.2.3 Termination

For the lexicographic measure used in the proof of termination, we need the definition of
the size of an equational constraint t ≈? s (Definition 40).

Definition 40 (Size of an Equational Constraint). The size of an equational constraint
t ≈? s is size(t) + size(s), where the size of a term t is recursively defined as follows:

• size(a) = 1.

• size(π ·X) = 1.

• size(⟨⟩) = 1.

• size(⟨t1, t2⟩) = 1 + size(t1) + size(t2).

• size(f t1) = 1 + size(t1).

• size(fAC t1) = 1 + size(t1).

• size([a]t1) = 1 + size(t1).

Although the nominal AC-matching algorithm is based on the first-order AC-unification
algorithm, the proof of termination was done from scratch and it was much easier than
the corresponding one for first-order AC-unification. It was possible to prove that for
the particular case of matching (unlike unification) all the new moderated variables in-
troduced by solveAC are instantiated by instantiateStep, which greatly simplified
the proof. This allowed us to use a simpler lexicographic measure than the one used for
first-order AC-unification (see Chapter 4).

The lexicographic measure used has as its first component the number of variables in
the equational constraints P and as a second component the multiset order of the size of

102

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/aux_nominal_AC_unification.pvs#L291-L300
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_unification.pvs#L174-L176
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/AC_nominal_term.pvs#L69-L80

each equation t ≈? s ∈ P . Although PVS does not directly implement multiset orders,
this part can be emulated easily by analysing the maximum size n of all equations t ≈? s in
P and the number of equations t ≈? s in P with maximal size (in this order). Algorithm 5
always selects an equation with maximal size to simplify (the heuristic selection is enforced
by the function chooseEq).

Let MS(P) be the maximum size n of all equations t ≈? s in P and let NMS(P)
 be the number of equations t ≈? s whose size is equal to MS(P). The lexicographic
measure is then

lex = (|Vars(P)|,MS(P), NMS(P)).

Table 5.1 shows which components do not increase (represented by ≤) and which compo-
nents strictly decrease (represented by <).

Table 5.1: Decrease of the Components of the Lexicographic Measure.

Recursive Call |Vars(P)| MS(P) NMS(P)
line 4, 13, 15, 19, 24, 30, 35 (case 1) ≤ ≤ <
line 4, 13, 15, 19, 24, 30, 35 (case 2) ≤ <

line 9 <

5.2.4 Soundness

As mentioned, to match terms t and s we first call Algorithm 5 with parameters Γ = ∅,
P = {t ≈? s}, σ = id, V = Vars(t, s) and X = Vars(s). However, since the parameters
of ACMatch change after recursive calls, the proof of soundness (Corollary 33) cannot
be done directly by induction, and we must instead prove first Theorem 32 with generic
parameters Γ, P , σ, V and X . Once Theorem 32 is proved, it is also immediate to adapt
the algorithm to solve nominal AC-equality checking, by setting X = Vars(t, s), and prove
its soundness (Corollary 34).

Theorem 32 (Soundness for Nice Inputs). Let the pair (Γ1, σ1) be an output of
ACMatch(Γ, P, σ, V,X) and suppose that (Γ, P, σ, V,X) is a nice input. If (∆, δ) is a
solution to (Γ1, ∅, σ1,X,X) then (∆, δ) is a solution to (Γ, P, σ,X,X).

Corollary 33 (Soundness for AC-Matching). Let the pair (Γ1, σ1) be an output of
ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(s)). If (∆, δ) is an instance of (Γ1, σ1) that
does not instantiate the variables in s, then (∆, δ) is a solution to (∅, {t ≈? s}, id,X,Vars(s)).

Corollary 34 (Soundness for AC-Equality Checking). Let (Γ1, σ1) be an output of
ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(t, s)). If (∆, δ) is an instance of (Γ1, σ1) that
doesn’t instantiate variables in t or s, then (∆, δ) is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)).

103

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L63-L68
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L78-L79
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_step.pvs#L78-L79
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L141-L145
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L147-L150
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L152-L155

Remark 32. An interpretation of Corollary 33 is that if (∆, δ) is an AC-matching in-
stance to one of the outputs of ACMatch, then (∆, δ) is an AC-matching solution to the
original problem. Corollary 34 has a similar interpretation, replacing AC-matching with
AC-equality checking.

The proof of soundness was mainly a straightforward adaptation from the proof of
soundness of first-order AC-unification (see Section 4.4.2). The soundness of fresh? and
freshSubs? were straightforward adaptations from the work of [11], since the only case
not covered in [11] (the case of AC-functions) is similar to the case of syntactic functions.

5.2.5 Completeness

Completeness of Algorithm 5 with extra hypotheses δ ⊆ V and Vars(∆) ⊆ V is given
by Corollary 36 and similarly to the soundness proof, it is derived easily after proving
Theorem 35.

Theorem 35 (Completeness for Nice Inputs). Let (Γ, P, σ, V,X) be a nice input.
Suppose that (∆, δ) is a solution to (Γ, P, σ,X,X), that δ ⊆ V and that Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) such that:

1. (Γ1, σ1) ∈ ACMatch(Γ, P, σ, V,X).

2. (∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables in X .

Corollary 36 (Completeness for AC-Matching With Arbitrary V). Suppose that (∆, δ)
is a solution to (∅, {t ≈? s}, id,X,Vars(s)), that δ ⊆ V and that Vars(∆) ⊆ V . Then,
there exists (Γ1, σ1) such that:

1. (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(s)).

2. (∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of s.

Corollary 37 (Completeness for AC-equality Checking With Arbitrary V). Suppose
(∆, δ) is a solution to (∅, {t ≈? s}, id,X,Vars(t, s)) satisfying δ ⊆ V and Vars(∆) ⊆ V .
Then, there exists (Γ1, σ1) such that:

1. (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(t, s)).

2. (∆, δ) is an instance (restricted to the variables of V) of (Γ1, σ1) that does not
instantiate the variables of t or s.

104

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L206-L213
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L215-L222
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L224-L231

As was the case for first-order AC-unification (see Section 4.4.3), the hypothesis δ ⊆ V

in the proof of completeness is a technicality that was put in order to guarantee the new
variables introduced by the algorithm in the AC-part do not clash with the variables in
dom(δ) or in the terms in im(δ). This mechanism could be replaced by a different one
that assures that the variables introduced by the AC-part of ACMatch are indeed new.
When going from the first-order setting to the nominal setting, we go from having a unifier
δ to a pair (∆, δ) and hence we must add the hypothesis Vars(∆) ⊆ V .

First, we give a high-level description of how to remove hypotheses δ ⊆ V and
Vars(∆) ⊆ V from Lemma 36. The critical step to prove a variant of Theorem 35 with
V = Vars(t, s) and without the hypotheses δ ⊆ V and Vars(∆) ⊆ V is to prove that the
outputs computed when we call ACMatch with input (Γ, P, σ, V,X) “differ only by the
name of the new variables” from the outputs computed when we call ACMatch with
input (Γ, P, σ, V ′,X). However, this cannot be proved directly by induction because if V
and V ′ differ and ACMatch enters in the AC-part, the new variables introduced for each
input may “differ only by the name of the new variables” and once we instantiate those
variables, it may happen that the substitutions computed so far (the third component in
the input quintuple) will also “differ only by the name of the new variables”. The solution
is to prove the more general statement that if the inputs (Γ, P, σ, V,X) and (Γ, P, σ′, V ′,X)
“differ only by the name of the new variables”, then the output of ACMatch with the
first input “differ only by the name of the new variables” from the output of ACMatch
with the second input.

The third and fourth components of the input “differ only by the name of the new
variables”, but in contrast to what happened in first-order AC-unification, the remaining
components stay equal between the recursive calls of ACMatch. This occurs due to
every variable Zi introduced by solveAC being instantiated by instantiateStep.

The idea described in the previous paragraphs has been formalised and it relies on the
concept of Variant Inputs (Definition 41). Another crucial concept is the Variant Input
Condition (Definition 42) .

Definition 41 (Variant Inputs). We say that (Γ, P, σ, V,X) and (Γ′, P ′, σ′, V ′,X ′) are
variant inputs fixing Ψ if:

1. Γ = Γ′, P = P ′, X = X ′.

2. σ′ =Ψ σ.

3. Ψ ⊆ V and Ψ ⊆ V ′.

4. Vars(P) ⊆ Ψ and Vars(Γ) ⊆ Ψ and X ⊆ Ψ.

5. max(V) ≤ max(V ′).

105

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_variant_inputs.pvs#L53-L59

Definition 42 (Variant Input Condition). We say that (Γ, P, σ, V,X , σ′,Ψ, ρ, V1) sat-
isfy the variant input condition if:

1. P satisfies the matching condition with respect to X .

2. X ⊆ Ψ, Vars(Γ) ⊆ Ψ, Vars(lhs(P)) ⊆ Ψ.

3. σ =Ψ σ′.

4. dom(ρ) ∩ V = ∅.

5. Vars(im(σ)) ⊆ V .

6. Vars(P) ⊆ V1 and V ⊆ V1.

7. If X ∈ Vars(im(ρ)) and X ̸∈ dom(ρ) then X ̸∈ V1.

We can state Theorem 38 will be fundamental to prove completeness for the tasks of
nominal AC-matching (Corollary 39) and nominal AC-equality checking (Corollary 40).

Theorem 38 (Correctness of Variant Inputs). Let (Γ, P, σ, V,X) and (Γ, P, σ′, V ′,X)
be variant inputs fixing Ψ. If (Γ1, σ

′
1) ∈ ACMatch(Γ, P, σ′, V ′,X) then exists σ1 such

that:

1. (Γ1, σ1) ∈ ACMatch(Γ, P, σ, V,X).

2. σ1 =Ψ σ′
1.

The hardest part of the proof of Theorem 38 is when ACMatch calls applyACStep.
Recall that applyACStep essentially calls solveAC in an equational constraint t ≈? s

and then instantiateStep in the results returned by solveAC.
Let input0 and input′0 be the two inputs before we call solveAC. Let input1 and

input′1 be the two inputs after we call solveAC and before we call instantiateStep.
Finally, let input2 and input′2 be the two inputs after we call instantiateStep. We
prove that input2 and input′2 are variant inputs fixing ψ in two steps:

1. Although we cannot prove that input1 and input′1 are variant inputs, we can prove
that the components of inputs input1 and input′1 satisfy some valuable properties,
that we encapsulate in the definition of variant input condition (Definition 42).

2. We prove that if we call instantiateStep on the equational constraints of input1
and on the equational constraints of input′1, obtaining respectively inputs input2
and input′2 then input2 and input′2 are variant inputs.

106

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_variant_inputs.pvs#L62-L68
https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L285-L288

Remark 33 (Two-Step Strategy in Vars(rhs(P)) ⊆ X and in Variant Inputs). Notice
that both the proof that applyACStep preserves the condition Vars(rhs(P)) ⊆ X between
recursive calls (Section 5.2.2) and the proof that applyACStep preserves variant inputs
fixing ψ follows a two-step strategy. The issue in both cases is that although our problem
P0 has a certain condition X that is present before applyACStep and we must prove
that it remains present in the problem P1 obtained after applyACStep, this condition X
does not hold after we call solveAC and before we call instantiateStep. The solution
is to prove that after solveAC we have a problem P ∗

0 with a weaker condition Y , and
that if we call instantiateStep in P ∗

0 , we get back a problem P1 with the condition X

that we wanted. Schematically:

P0 (Condition X) solveAC−−−−−→ P ∗
0 (Condition Y) instantiateStep−−−−−−−−−→ P1 (Condition X)

Finally, we used Theorem 38 and Corollaries 36 and 37 to prove completeness of
Algorithm 5 for matching (Corollary 39) and AC-equality checking (Corollary 40).

Corollary 39 (Completeness for AC-Matching). Suppose that (∆, δ) is a solution to
the quintuple (∅, {t ≈? s}, id,X,Vars(s)). Then, there exists (Γ1, σ1) such that:

1. (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(s)).

2. (∆, δ) is an instance (restricted to the variables of Vars(t, s)) of (Γ1, σ1) that does
not instantiate the variables of s.

Proof:
⟨1⟩1. Let: V = Vars(t, s) and V ′ = V ∪ dom(δ) ∪ Vars(im(δ)) ∪ Vars(∆). By Corollary

39, there exists (Γ1, σ
′
1) ∈ ACMatch(∅, {t ≈? s}, id, V ′,Vars(s)) such that (∆, δ)

is an instance (restricted to the variables of V ′) of (Γ1, σ
′
1) that does not instantiate

the variables of s.

⟨1⟩2. The inputs (∅, {t ≈? s}, id, V,Vars(s)) and (∅, {t ≈? s}, id, V ′,Vars(s)) are variant
inputs fixing V . Hence, by Theorem 38 there is σ1 such that

1. (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id, V,Vars(s)).

2. σ1 =V σ
′
1.

⟨1⟩3. If (∆, δ) is an instance (restricted to the variables of V ′) of (Γ1, σ
′
1) that does not

instantiate the variables of s and σ1 =V σ
′
1 then (∆, δ) is an instance (restricted to

the variables of V) of (Γ1, σ
′
1) that does not instantiate the variables of s.

Proof:
⟨2⟩1. It is immediate that ∆ ⊢ δΓ1.

107

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L290-L296

⟨2⟩2. There exists λ such that ∆ ⊢ λσ1 ≈V δ.
Proof: Notice that since (∆, δ) is an instance (restricted to the variables of V ′) of
(Γ1, σ

′
1), there is λ such that ∆ ⊢ λσ′

1 ≈V ′ δ. Pick this same λ and notice that since
σ1 =V σ

′
1 and V ⊆ V ′ the result follow.

⟨2⟩3. It is immediate that dom(δ) ∩ Vars(s) = ∅.

Corollary 40 (Completeness for AC-Equality Checking). Suppose that (∆, δ) is a
solution to (∅, {t ≈? s}, id,X,Vars(t, s)). Then, there exists (Γ1, σ1) such that:

1. (Γ1, σ1) ∈ ACMatch(∅, {t ≈? s}, id,Vars(t, s),Vars(t, s))

2. (∆, δ) is an instance (restricted to the variables of Vars(t, s)) of (Γ1, σ1) that does
not instantiate the variables of t or s.

Proof sketch: Similar to the proof of Corollary 39.

Remark 34. An interpretation of Corollary 39 is that if (∆, δ) is an AC-matching solu-
tion to the initial problem, then (∆, δ) is an AC-matching instance of one of the outputs
of ACMatch. Corollary 40 has a similar interpretation, replacing AC-matching with
AC-equality checking.

5.3 Statistics of the PVS Formalisation

Below we describe the main theories that are part of the nominal AC-matching formal-
isation. Since the nominal library contain other 3 formalisations, the theories that are
only part of the nominal AC-matching formalisation have a nominal_AC_ prefix to their
names (see Table 2.4), which we omit in this Section order not to clutter the presentation.

• top_nominal_ac_match_alg - High level description of the nominal AC-matching
formalisation.

• ac_match_alg - contains the function ACMatch and the lemmas of soundness and
completeness.

• variant_inputs - Definition of variant inputs and related lemmas.

• ac_step - contains function applyACStep and lemmas about its properties.

• inst_step contains function instantiateStep and related lemmas.

• aux_unification contains functions solveAC (with lemmas about its properties)
and the main functions called by solveAC (with lemmas about its properties).

108

https://github.com/nasa/pvslib/blob/fca5a531aaa6b7bc82392be0b8ead21f199498fa/nominal/nominal_AC_ac_match_alg.pvs#L298-L304

• diophantine - definitions and properties about solving linear Diophantine equa-
tions.

• unification - definition of solution to a quintuple and lemmas about unification.

• fresh_subs - definition and properties of freshSubs?.

• substitution - definition and properties about substitutions.

• equality - definition and properties about nominal AC-equality checking.

• freshness - definition and properties about freshness. Contains function fresh?.

• terms - definition and properties about terms.

• atoms - definition and properties of permutations and their actions on atoms.

• list - Set of parametric theories that define specific functions for the task of equa-
tional reasoning (most of them operating on lists).

Figure 5.1 shows the dependency diagram for the PVS theories that compose the
nominal AC-matching formalisation. Besides the nominal AC-matching formalisation,
there are other 3 formalisations in the nominal library, which we again represent in the
picture as orange ellipses. As shown in Figure 5.1, some of them use theories that are
also used by the nominal AC-matching formalisation.

Table 5.2 shows the number of theorems and TCCs proved for each file, along with the
theory’s approximate size and percentage of the total size. In contrast to Table 2.4, the
percentage of the total size shown here is only with respect to the files that are part of the
nominal AC-matching formalisation, and not the whole NASALib theory. We group theo-
ries list_aux_equational_reasoning, list_aux_equational_reasoning2parameters,
list_aux_equational_reasoning_nat, list_aux_equational_reasoning_more under
the name list since the specifics of each one are not relevant to our discussion. Finally,
PVS theories term_properties and terms are the only ones that are actually in the same
file, so we group them together under the name terms in Table 5.2.

109

Figure 5.1: PVS formalisation of Nominal AC-Matching.

110

Table 5.2: Information for Every File in the Nominal AC-Matching Formalisation.

Theory Theorems TCCs Size

.pvs .prf %

ac_match_alg 22 35 12 kB 2.6 MB 10%
variant_inputs 22 5 8 kB 1.4 MB 5%

ac_step 48 11 13 kB 1.6 MB 6%
inst_step 75 17 21 kB 2.1 MB 8%

aux_unification 152 52 49 kB 7.1 MB 27%
Diophantine 77 44 24 kB 1.1 MB 4%
unification 120 13 28 kB 1.8 MB 7%
fresh_subs 38 5 12 kB 0.6 MB 2%

substitution 175 36 30 kB 2.6 MB 10%
equality 83 20 15 kB 1.7 MB 6%
freshness 15 10 5 kB 0.1 MB < 1 %

terms 147 53 30 kB 1.2 MB 5 %
atoms 14 3 4 kB 0.1 MB < 1 %
list 263 109 60 kB 2.2 MB 8 %
Total 1251 413 311 kB 26.2 MB 100%

111

Chapter 6

Towards Nominal AC-Unification

In this Chapter we discuss our work in progress towards obtaining a nominal AC-unification
algorithm. Drawing from our experience on formalising nominal AC-matching, we believe
that the two main challenges in order to go from nominal AC-matching to nominal AC-
unification are correctly solving fixpoint equations (Section 6.1) and proving termination
of problems such as f(X,W) ≈? f(π ·X, π ·Y) (Section 6.2). A fragment of the discussion
in this Chapter regarding termination of nominal AC-unification was briefly mentioned
in Ayala-Rincón et al. [8].

Notation 16. In this Chapter, we may write a moderated variable π ·X simply as πX.

6.1 Fixpoint Equations π ·X ≈? X

In nominal AC-unification, as in nominal C-unification, there may be infinite pairs (Γ, σ)
that are solutions to πX ≈? X. Hence, as was the case for nominal C-unification, when
devising a nominal AC-unification algorithm, we should include fixpoint equations as part
of the solution.

A different, but also valuable goal, is to find an efficient enumeration procedure to
list every solution (Γ, σ) to a fixpoint equation πX ≈? X. Notice that the problem of
solving πX ≈? X is equivalent to finding all the terms t such that there exists a context Γ
where Γ ⊢ π · t ≈ t. Therefore, a trivial enumeration procedure is to list every term t and
compute (if possible) the minimal context Γ such that Γ ⊢ π · t ≈ t. The corresponding
solution is then (Γ, {X 7→ t}).

The enumeration procedure sketched in the last paragraph is trivial and has as its
main flaw the generation of solutions that are less general. For instance, if we are solving
(a b)X ≈? X and g is a syntactic function symbol, the solution (∅, {X 7→ g(c)}) should
not be included, since it is less general than the solution ({a#X, b#X}, id).

112

Notation 17. We denote a solution (∆, δ) being less general than (Γ, σ) by (Γ, σ) ≤
(∆, δ).

An even more interesting example happens when we are solving (a b)X ≈? X and the
AC symbol + is part of our signature. At first glance one would think that the solution
(∅, {X 7→ a+ b}) should be included in the list of generated solutions. Indeed, if we think
only about the previous solution, ({a#X, b#X}, id) we do not have (∅, {X 7→ a + b})
less general than ({a#X, b#X}, id)1 nor the opposite. However, if consider instead the
solution (∅, {X 7→ X1 + (a b)X1}) we can see that:

(∅, {X 7→ X1 + (a b)X1}) ≤ (∅, {X 7→ a+ b}).

Notation 18 (Cycle Decomposition Notation). In this Section, we may represent a per-
mutation π using cycle decomposition notation (see [35]). In this notation, we show how
π acts on atoms by expressing π as a product of disjoint cycles. A cycle is a sequence of
elements, where each element is mapped to the next one in the sequence by π and the last
element is mapped to the first. For instance, the cycle (abc) means that π · a = b, π · b = c

and π · c = a. As an example of a permutation π written as a product of disjoint cycles
consider:

π = (abd)(ce).

Here π · a = b, π · b = d, π · d = a, π · c = e and π · e = c.

6.1.1 Motivation For The Rules of An Enumeration Procedure

We have devised a non-deterministic enumeration procedure given as a set of rules to
generate all the solutions of a fixpoint equation πX ≈? X (see Section 6.1.2). Before
presenting the rules, we motivate them. Suppose that (Γ, σ) is a solution, let’s denote σX
as t and think inductively of the form of t.

t is an atom ai. In this base case, we necessarily have ai ̸∈ dom(π), and the solution
is of the form:

(Γ, σ) = (∅, X 7→ ai).

Notice however, that this solution is less general than (dom(π)#X, id), which suggest that
we may drop the base case where t is an atom.

t is a moderated variable. In this base case, the solution is of the form

(Γ, σ) = (dom(π)#X, id).
1We cannot argue that (∅, {X 7→ a + b}) is less general than ({a#X, b#X}, id) by considering the

instantiation X 7→ a + b because we do not have a#a + b or b#a + b.

113

t is the unit, i.e. t ≡ ⟨⟩. In this base case the solution is of the form:

(Γ, σ) = (∅, X 7→ ⟨⟩).

Notice that this solution is less general than (dom(π)#X, id).
t is a syntactic function application. Let g be a syntactic function symbol with

arity m. Suppose that our solution (Γ, σ) is such that σX = t = g(t1, . . . , tm). Since it is
a solution of πX ≈? X we have:

Γ ⊢ π · g(t1, . . . , tm) ≈? g(t1, . . . , tm)

which means:

Γ ⊢ π · t1 ≈ t1

Γ ⊢ π · t2 ≈ t2
...

Γ ⊢ π · tm ≈ tm

(6.1)

Looking at each individual equation of the set of Equations 6.1, it is as if we computed
σ′ = {X 7→ g(X1, . . . , Xm)} and then inductively proceeded to solve πXi ≈? Xi. Once we
find every (Γi, σi) that solves πXi ≈? Xi we generate the solution to our original problem
as:

(Γ, σ) = (
⋃

1≤i≤n
Γi, σn . . . σ1σ

′).

t is an abstraction [a]t1, where a ̸∈ dom(π). Our solution (Γ, σ) is such that:
Γ ⊢ π · [a]t1 ≈ [a]t1 which means Γ ⊢ π · t1 ≈ t1. Let σ′ = {X 7→ [a]X1}. Our solution
(Γ, σ) could be written in terms of σ′ and some (Γ1, σ1) that solves πX1 ≈? X1:

(Γ, σ) = (Γ1, σ1σ
′).

t is an abstraction [a]t1, where a ∈ dom(π). Let b = π · a. Our solution (Γ, σ) is
such that:

Γ ⊢ [b] π · t1 ≈ [a]t1,

which means that

Γ ⊢ a#π · t1
Γ ⊢ t1 ≈ ((a b) ◦ π) · t1

114

Let σ′ = X 7→ [a]X1 and π′ = ((a b) ◦ π). Suppose that we generate every solution
(Γ1, σ1) to π′X1 ≈? X1 and for each one we computed the minimal context Γ2 such that
Γ2 ⊢ a#π·σ1X1, dropping the cases where there is no context under which Γ2 ⊢ a#π·σ1X1

holds. Our solution (Γ, σ) could be written in terms of a particular choice of Γ1, Γ2 and
σ1 as:

(Γ, σ) = (Γ1 ∪ Γ2, σ1σ
′).

t is an associative commutative function application. Let f be an AC func-
tion symbol and m be the number of arguments of the flattened version of σX = t =
f(t1, . . . , tm). Since Γ ⊢ π · t ≈ t, then

Γ ⊢ f(π · t1, . . . , π · tm) ≈ f(t1, . . . , tm)

and hence there exists a permutation ψ : {1, . . . ,m} → {1, . . . ,m} such that

Γ ⊢ ti ≈ π · tψ(i).

We’ll represent ψ using cycle decomposition notation. Let

ψ = (x1x2 . . . xm1)(xm1+1xm1+2 . . . xm2) . . . (xmk−1+1xmk−1+2 . . . xmk
)

and let l1, . . . , lk be the length of the cycles. Notice that x1, x2, . . . , xmk
are numbers from

1 to m. Let’s analyse the first cycle and suppose, without loss of generality, that x1 = 1.
Then,

Γ ⊢ t1 ≈ π · tx2

Γ ⊢ tx2 ≈ π · tx3

...
Γ ⊢ txm1

≈ π · tx1 = πt1

(6.2)

Equations 6.2 show that once we know t1 = tx1 it is possible to find tx2 , . . . , txm1
.

Moreover, if we combine all these equations we get:

Γ ⊢ t1 ≈ πl1 · t1,

115

where l1 is the length of cycle (x1x2 . . . xm1). This last equation suggests 2 that we must
solve recursively X1 ≈? πl1X1. Repeating this reasoning for every cycle of

ψ = (x1x2 . . . xm1)(xm1+1xm1+2 . . . xm2) . . . (xmk−1+1xmk−1+2 . . . xmk
)

and remembering that l1, . . . , lk are the length of the cycles it seems that we must solve
πl1X1 ≈? X1, ..., πlkXk ≈? Xk and then assemble the solutions together via the substitu-
tion

σ′ = {X 7→ f(X1, π
1X1 . . . , π

l1−1X1︸ ︷︷ ︸, . . . , Xk, π
1Xk, . . . , π

lk−1Xk︸ ︷︷ ︸)}.
6.1.2 A Non-Deterministic Enumeration Procedure to Solve Fix-

point Equations

The enumeration procedure is given as a set of non-deterministic rules that operate on
triples of the form (Γ, σ, FP), where Γ is the context already computed, σ represents the
instantiations we have done so far and FP is the set of fixpoint equations and of freshness
problems we still have to solve. Hence, the initial triple to solve π · X ≈? X is simply
(∅, id, {πX ≈? X}).

To handle freshness problems such as a#?t we may use what is in the standard liter-
ature of nominal unification (see [3, 75]). To handle the set of fixpoint equations we use
the rules:

• (Var)

• (Func)

• (Abs a) and (Abs b)

• (AC Func)

The (Var) Rule

(Γ, σ, {πX ≈? X} ∪ FP) (V ar)===⇒ (Γ ∪ dom(π)#X, σ, FP).

The (Func) Rule

Let g be an arbitrary syntactic function symbol of aritym and let σ′ = {X 7→ g(X1, . . . , Xm)},
where X1, . . . , Xm are new variables. The (Func) rule is:

(Γ, σ, {πX ≈? X} ∪ FP) (Func)====⇒ (Γ, σ′σ, {πX1 ≈? X1, . . . , πXm ≈? Xm} ∪ σ′FP).
2recall that solving πX ≈? X is equivalent to finding all the terms t such that there is a context Γ

where Γ ⊢ πt ≈ t.

116

The (Abs a) Rule

Suppose a ̸∈ dom(π) and let σ′ = {X 7→ [a]X1}, where X1 is a new variable. The (Abs a)
rule is:

(Γ, σ, {πX ≈? X} ∪ FP) (Abs a)====⇒ (Γ, σ′σ, {πX1 ≈? X1} ∪ σ′FP).

The (Abs b) Rule

Suppose a ∈ dom(π). Let π · a = b, π′ = (a b) π, σ′ = {X 7→ [a]X1}, where X1 is a new
variable. The (Abs b) rule:

(Γ, σ, {πX ≈? X} ∪ FP) (Abs b)====⇒ (Γ, σ′σ, {π′X1 ≈? X1} ∪ σ′FP ∪ {a#?πX1}).

The (AC Func) Rule

Let m be an arbitrary number and let ψ be an arbitrary permutation from {1, . . . ,m} to
{1, . . . ,m}, such that:

ψ = (x1x2 . . . xm1)(xm1+1xm1+2 . . . xm2) . . . (xmk−1+1xmk−1+2 . . . xmk
),

where l1, . . . , lk are the length of the cycles. Let

σ′ = {X 7→ f(X1, π
1X1 . . . , π

l1−1X1︸ ︷︷ ︸, . . . , Xk, π
1Xk, . . . , π

lk−1Xk︸ ︷︷ ︸)}
The (AC Func) rule is:

(Γ, σ, {πX ≈? X} ∪ FP) (AC)===⇒ (Γ, σ′σ, {πl1X1 ≈? X1, ..., π
lkXk ≈? Xk} ∪ σ′FP)

6.1.3 Examples of The Enumeration Procedure

In this section we give examples of how our rule-based enumeration procedure could be
used to find certain solutions to some fixpoint equations. In these examples, we use
syntactic sugar and denote atoms a1, a2, . . . by numbers 1, 2, . . . We also assume that +
and ∗ are AC function symbols and represent permutations using cycle decomposition
notation.

Example 30. Let π = (123456) and consider πX ≈? X. Can our enumeration procedure
generate the solution

(∅, {X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))})?

117

A more general solution than the one presented would be found by the following appli-
cation of the rules:

1. First, we would apply (AC Func), considering m = 3 and the permutation ψ =
(123). Let σ1 = {X 7→ ∗(X1, π

1X1, π
2X1)} and notice that the triples before and

after (AC Func) are:

(∅, id, {πX ≈? X}) (AC)===⇒ (∅, σ1, {π3X1 ≈? X1}).

2. Then, we would apply (AC Func), considering m = 2 and the permutation ψ =
(12). Let σ′

2 = {X1 7→ +(X2, π
3X2)} and notice that the triples before and after

(AC Func) are:

(∅, σ1, {π3X1 ≈? X1}) (AC)===⇒ (∅, σ2σ1, {(π3)2X2 ≈? X2}).

3. We would eliminate equation {(π3)2X ≈? X} since (π3)2 = π6 = Id and return 3:

(∅, σ2σ1) = (∅, {X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))}).

Notice that the particular solution:

(∅, {X 7→ ∗(+(1, 4),+(2, 5),+(3, 6))})

can be obtained from:

(∅, {X 7→ ∗(+(X2, π
3X2),+(πX2, π

4X2),+(π2X2, π
5X2))})

by instantiating X2 to 1.

Example 31. Consider again π = (123456) and the fixpoint equation πX ≈? X. Can
our enumeration procedure generate the solution:

(∅, {X 7→ ∗(+(1, 3, 5),+(2, 4, 6))})?

A more general solution than the one presented would be found by the following appli-
cations of the rules:

1. First, we would apply (AC Func), considering m = 2 and the permutation ψ = (12).
Let σ1 = X 7→ ∗(X1, πX1) and notice that the triples before and after (AC Func)

3We omit the instantiations of X1 and X2, since the only variable in our original fixpoint equation
πX ≈? X is X.

118

are:
(∅, id, {πX ≈? X}) (AC)===⇒ (∅, σ1, {π2X1 ≈? X1}).

2. Then, we would apply of (AC Func) we may consider m = 3 and the permutation
ψ = (123). Let σ2 = X1 7→ +(X2, π

2X2, π
4X2) and notice that the triples before and

after (AC Func) are:

(∅, σ1, {π2X1 ≈? X1}) (AC)===⇒ (∅, σ2σ1, {(π2)3X2 ≈? X2}).

3. We would eliminate equation {(π3)2X2 ≈? X2} since (π3)2 = π6 = Id and return:

(∅, σ2σ1) = (∅, {X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2))}).

Notice that the particular solution:

(∅, {X 7→ ∗(+(1, 3, 5),+(2, 4, 6))})

can be obtained from

(∅, {X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2))})

by instantiating X2 to 1.

Example 32 (Adapting the Previous Example). What would happen if we changed the
previous example and considered π = (123456)(7891011)? The first two steps would be
exactly the same. In the third, we would have the equation π6X2 ≈? X2, where π6 =
(7891011) and we would then apply rule (Var):

(∅, σ2σ1, {π6X2 ≈? X2}) (V ar)===⇒ ({7, 8, 9, 10, 11}#X2, σ2σ1, ∅)

and return

({7, 8, 9, 10, 11}#X2, {X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2))}).

Again, notice that the particular solution:

(∅, {X 7→ ∗(+(1, 3, 5),+(2, 4, 6))})

119

can be obtained from

({7, 8, 9, 10, 11}#X2, {X 7→ ∗(+(X2, π
2X2, π

4X2),+(πX2, π
3X2, π

5X2))})

by instantiating X2 to 1.
Indeed, recall that 1, 2, . . . , 11 are syntax sugar for atoms a1, . . . , a11 and for our in-

stantiation of X2 to a1 to be valid we must guarantee that ∅ ⊢ ai#a1, with i = 7, 8, 9, 10, 11.
It is trivial that this holds.

Example 33. Consider π = (123456)(78) and the fixpoint equation πX ≈? X. Can our
enumeration procedure generate the solution:

(∅, {X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))})?

A more general solution than the one presented would be found by the following applica-
tions of the rules:

1. First, we would apply (AC Func), considering m = 2 and the permutation ψ = (12).
Let σ1 = {X 7→ ∗(X1, πX1)} and notice that the triples before and after (AC Func)

are:
(∅, id, {πX ≈? X}) (AC)===⇒ (∅, σ1, {π2X1 ≈? X1}).

2. Then, we would apply (AC Func), considering m = 4 and the permutation ψ =
(123)(4). Let σ′

2 = {X1 7→ +(X2, π
2X2, π

4X2, X3)} and notice that the triples before
and after (AC Func) are:

(∅, σ1, {π2X1 ≈? X1}) (AC)===⇒ (∅, σ1, {(π2)3X2 ≈? X2, (π2)1X3 ≈? X3}).

3. We would eliminate equation {(π3)2X2 ≈? X2} since (π3)2 = π6 = Id. Finally, we
would apply rule (Var) to handle π2X3 ≈? X3 returning

({1, 2, 3, 4, 5, 6}#X3, {X 7→ ∗(+(X2, π
2X2, π

4X2, X3),+(πX2, π
3X2, π

5X2, πX3))}

Notice that the particular solution:

(∅, {X 7→ ∗(+(1, 3, 5, 7),+(2, 4, 6, 8))})?

can be obtained from

({1, 2, 3, 4, 5, 6}#X3, {X 7→ ∗(+(X2, π
2X2, π

4X2, X3),+(πX2, π
3X2, π

5X2, πX3))}

120

by instantiating X2 to 1 and X3 to 7.

6.1.4 A Comparison With Fixpoint Equations in Nominal C-
Unification

In Ayala-Rincón et al. [5], it is shown how we can solve fixpoint equations in nominal C-
unification. The approach here described could also be adapted to nominal C-unification
by incorporating two adaptations. First, we would need a rule for commutative functions.
For this case, we could adapt and simplify rule (AC Func), since commutative functions
do not have a flattened form. This rule (see Section 6.1.2) would be modified to consider
only permutations ψ : {1, 2} → {1, 2}. Second, the rules described above only work when
there is one fixpoint equation for a given variable X. What happens if we have to solve
both π1X ≈? X and π2X ≈? X? This is sketched in the next section.

In comparison with [5] our approach has the advantage of not generating some less
general solutions that are generated by the technique in [5]. In contrast with [5] we do
not include solutions (Γ, σ) that instantiate variables to terms with atoms, which are less
general. Consider for instance the equational constraint (a b)X ≈? X and let + be a
commutative symbol. The technique in [5] generates as solution (∅, {X 7→ a + b}) and
our non-deterministic procedure does not: it generate instead (∅, {X 7→ X1 + (a b)X1}),
which is more general.

6.1.5 Handling More Than One Fixpoint Equation With The
Same Variable

We believe we could adapt the approach taken by Ayala-Rincón et al. in [5] to handle
cases like {π1X ≈? X, π2X ≈? X} where we have two or more fixpoint equations with the
same variable. In this approach, given equational constraints {π1X ≈? X, . . . , πnX ≈? X}
we:

1. Compute solutions (Γi, {X 7→ ti}) to πiX ≈? X.

2. Find pairs (Γ′, δ) that unify {t1 ≈? t2, t1 ≈? t3, . . . , t1 ≈? tn}.

3. Find the minimal context Γ such that Γ ⊢ δΓi.

4. Return solutions of the form (Γ ∪ Γ′, {X 7→ δt1}).

121

6.2 Termination of Nominal AC-Unification

6.2.1 The Loop in f(X,W) ≈? f(π ·X, π · Y)

Stickel’s AC-unification algorithm relies on solving Diophantine equations where new vari-
ables are used to represent arguments of AC operators. Using the same approach to solve
nominal AC-unification problems may lead to a loop in cases where the same variable
occurs as an argument of an AC operator multiple times with different suspended per-
mutations.

As an example, suppose that we are working under an empty context (i.e. Γ = ∅) and
want to unify the equational constraint f(X,W) ≈? f(πX, πY). The linear Diophantine
equation associated with this problem U1 +U2 = V1 + V2, where variable U1 is associated
with argument X, variable U2 is associated with argument W , variable V1 is associated
with argument πX and variable V2 is associated with argument πY . A basis of solutions
to this linear Diophantine equation is shown in Table 6.1.

Table 6.1: Solutions for Equation U1 + U2 = V1 + V2

U1 U2 V1 V2 U1 + U2 V1 + V2 New Variables

0 1 0 1 1 1 Z1
0 1 1 0 1 1 W1
1 0 0 1 1 1 Y1
1 0 1 0 1 1 X1

We choose the names of the new variables to be Z1, W1, Y1 and X1 deliberately to make
the loop in nominal AC-unification clearer. Finally, we will branch into new equational
constraints, using Table 6.1 to construct them. The algorithm bifurcates into 7 branches,
shown below along with their corresponding equational constraints:

branch1 = {X ≈? X1,W ≈? Z1, πX ≈? X1, πY ≈? Z1}.

branch2 = {X ≈? Y1,W ≈? W1, πX ≈? W1, πY ≈? Y1}.

branch3 = {X ≈? Y1 +X1,W ≈? W1, πX ≈? W1 +X1, πY ≈? Y1}.

branch4 = {X ≈? Y1 +X1,W ≈? Z1, πX ≈? X1, πY ≈? Z1 + Y1}.

branch5 = {X ≈? X1,W ≈? Z1 +W1, πX ≈? W1 +X1, πY ≈? Z1}.

branch6 = {X ≈? Y1,W ≈? Z1 +W1, πX ≈? W1, πY ≈? Z1 + Y1}.

branch7 = {X ≈? Y1 +X1,W ≈? Z1 +W1, πX ≈? W1 +X1, πY ≈? Z1 + Y1}.

122

The next step is to instantiate moderated variables. We denote branch i by Bi, the
substitution computed in this branch by σBi and show the result after performing the
instantiations. For brevity, when presenting σBi we omit the instantiation of variables
X1, W1, Y1, Z1 since they were not in the initial problem.

B1 − {πX ≈? X}, σB1 = {W 7→ πY }.

B2 − σB2 = {W 7→ π2Y,X 7→ πY }.

B3 − {f(π2Y, πX1) ≈? f(W,X1)}, σB3 = {X 7→ f(πY,X1)}.
B4 −No solution.

B5 −No solution.

B6 − σB6 = {W 7→ f(Z1, πX), Y 7→ f(π−1Z1, π
−1X)}.

B7 − {f(πY1, πX1) ≈? f(W1, X1)},
σB7 = {X 7→ f(Y1, X1), W 7→ f(Z1,W1), Y 7→ f(π−1Z1, π

−1Y1)}.

(6.3)

Branches 3 and 7 are a renaming of the original problem

f(X,W) ≈? f(πX, πY).

Regarding Branch 3, notice that if we rewrite σB3 = {X 7→ f(πY,X1)} as σ′
B3 = {Y 7→

π−1Y1, X 7→ f(πY,X1), }, then the equational constraint of the mentioned branch is
simply:

f(X1,W1) ≈? f(πX1, πY1).

Regarding Branch 7, it’s even simpler to see the renaming, as the equational constraint
is:

f(X1,W1) ≈? f(πX1, πY1).

This problem does not arise in first-order AC-unification because, in the corresponding
first-order problem, we would not have two different permutations (id and π in this case)
suspended on the same variable (X in this case). Instead, we would have the same variable
X as an argument to both terms and eliminate it. Finally, this problem also does not arise
in nominal AC-matching because X would be a protected variable, as it is in the right-
hand side of the equational constraint. Hence, we would not compute the substitutions
of branches 3 and 7, we would instead discard these branches.

123

6.2.2 Solving the Loop in f(X,W) ≈? f(π ·X, π · Y)

Let k be the order of the permutation π. We will show that it is enough to branch into
branches 3 or 7 at most 2k times. Since those branches are the only ones that cause us to
loop, we can compute a finite set of triples (Γ, σ, FP) that is a complete set of solutions
to the equational constraint f(X,W) ≈? f(πX, πY).

If we denote X, W and Y by X0, W0 and Y0 then, after i iterations of taking branches
3 or 7, the problem will be:

Pi = {f(Xi,Wi) ≈? f(π ·Xi, π · Yi)},

and the substitutions of branches 3 and 7 after the (i+ 1)-th iteration will be:

σ
(i+1)
B3 = {Xi 7→ f(Yi+1, Xi+1),Wi 7→ Wi+1, Yi 7→ π−1Yi+1} and
σ

(i+1)
B7 = {Xi 7→ f(Yi+1, Xi+1),Wi 7→ f(Zi+1,Wi+1), Yi 7→ f(π−1Zi+1, π

−1Yi+1)}.

The equivalent of Equations 6.3 after the (i+ 1)-th iteration is shown below:

B1 − {πXi ≈? Xi}, σ(i+1)
B1 = {Wi 7→ πYi}

B2 − σ
(i+1)
B2 = {Wi 7→ π2Yi, Xi 7→ πYi}

B3 − {f(πYi+1, πXi+1) ≈? f(Wi+1, Xi+1)},
σ

(i+1)
B3 = {Xi 7→ f(Yi+1, Xi+1),Wi 7→ Wi+1, Yi 7→ π−1Yi+1}

B4 −No solution

B5 −No solution

B6 − σ
(i+1)
B6 = {Wi 7→ f(Zi+1, πXi), Y 7→ f(π−1Zi+1, π

−1Xi)}
B7 − {f(πYi+1, πXi+1) ≈? f(Wi+1, Xi+1)},

σ
(i+1)
B7 = {X 7→ f(Y1, X1), W 7→ f(Z1,W1), Y 7→ f(π−1Z1, π

−1Y1)}

(6.4)

The triples (Γ, σ, FP) are such that Γ = ∅ (see Equations 6.3); σ is of the form
σ

(n+1)
By σ

(n)
Bxn

. . . σ
(1)
Bx1 , where xi is either 3 or 7 and y is different than 3 or 7; and FP is a set

of fixpoint equations. We may have n = 0, i.e., σ is of the form σ
(1)
By where y is different

than 3 or 7. Notice that we have n ≤ 2k, i.e, we take branches 3 or 7 at most 2k times.

Remark 35. From now on, when it is clear the iteration we are referring, we may omit
the superscript. For instance, we may omit the superscript (i) in σ

(i)
Bxi

, denoting this
substitution simply as σBxi

.

124

The following notation will be used to prove that it is enough to take branches 3 and
7 at most 2k times (Theorem 41).

Notation 19. [π1, . . . , πn]X. From now on, we may use [π1, . . . , πn]X as a syntactic
sugar for π1X, . . . , πnX when specifying terms. For instance, we write f([π1, . . . , πn]Y, Z)
to denote the term f(π1Y, . . . , πnY, Z).

Notation 20 (Optional Argument Notation). We may use Optional Argument Notation
to denote terms that are of a certain form. In this notation, the superscript o indicates
that certain part of a term is optional. For instance,

• if a term is of the form f(Zo, X, Y) then the term is either f(X, Y) or f(Z,X, Y).

• if a term is of the form f(Zo, Xo, Y) then the term is either Y , f(Z, Y), f(X, Y)
or f(Z,X, Y).

Finally, if a term is of the form f([Id, π, π2]Zo, X, Y) then either all the arguments
Id Z, πZ, π2Z are in the term or none of them are. Hence, the term is either f(X, Y) or
f([Id, π, π2]Z,X, Y).

Theorem 41. Let (∆, δ) be a solution to f(X0,W0) ≈? f(πX0, πY0) and k be the order
of π. There exists a triple (Γ, σ, FP) such that:

• σ takes branches 3 or 7 at most 2k times.

• σ ≤ δ.

Proof sketch:
⟨1⟩1. If (∆, δ) is an arbitrary solution to f(X0,W0) ≈? f(πX0, πY0) then δ can be written

as δ′σ
(m+1)
By σ

(m)
Bxm

. . . σ
(1)
Bx1 , where xi is either 3 or 7 and y is different than 3 or 7.

Notice that m may be arbitrarily large. The case where m < 2k is trivial.
Proof sketch: δ being written as δ′σ

(m+1)
By σ

(m)
Bxm

. . . σ
(1)
Bx1 rests on the assumption that

our branch generation step is complete. Although this has not been formally proved
for nominal AC-unification, it has been done for nominal AC-matching and the case
for nominal AC-unification should be identical.

⟨1⟩2. The form of the terms obtained when we apply σBxn . . . σBx1 to X0, Y0 and W0 are:
X0 7→ f(π−1Zo

2 , . . . , [π−(n−1), . . . , π−1]Zo
n, [π−(n−1), . . . , Id]Yn, Xn)

W0 7→ f(Zo
1 , Z

o
2 , . . . , Z

o
n,Wn)

Y0 7→ f(π−1Zo
1 , π

−2Zo
2 , . . . , π

−nZo
n, π

−nYn)

A similar formula holds for σBxm . . . σBx1 , simply replacing n by m.

125

The notation Zo
i means that the term Zi may be present or not, according to the

branch σBxi
that we took (3 or 7). If σBxi

is branch 3, then Zi is not present (see
Equations 6.4). Alternatively, if σBxi

is branch 7, then it is.
Proof: Indeed notice that the form of the terms obtained when we apply σBxn . . . σBx1

to X0 is:
X0 7→ f(Y1, X1)

7→ f(π−1Zo
2 , [π−1, Id]Y2, X2)

7→ f(π−1Zo
2 , [π−2, π−1]Zo

3 , [π−2, π−1, Id]Y3, X3)
...
7→ f(π−1Zo

2 , . . . , [π−(n−1), . . . , π−1]Zo
n, [π−(n−1), . . . , Id]Yn, Xn).

The form of the terms obtained when we apply σBxn . . . σBx1 to W0 is:
W0 7→ f(Zo

1 ,W1)
7→ f(Zo

1 , Z
o
2 ,W2)

...
7→ f(Zo

1 , Z
o
2 , . . . , Z

o
n,Wn).

The form of the terms obtained when we apply σBxn . . . σBx1 to Y0 is:
Y0 7→ f(π−1Zo

1 , π
−1Y1)

7→ f(π−1Zo
1 , π

−2Zo
2 , π

−2Y2)
...
7→ f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−nZo

n, π
−nYn).

⟨1⟩3. The proof divides in three cases, according to whether By is B1, B2 or B6. Some
preliminar steps are common to all the cases. Let: n be such that k ≤ n < 2k
(the exact value of n changes according to our case). Let: σ∗ be the substitution
defined as σn . . . σ1, where

σi =

σ
(i)
B7, if i ≤ k and ∃j : j ≡ i (mod k) and Zj ∈ Args(σBxm . . . σBx1W0)

σ
(i)
B3, otherwise.

This means that we only take branch 7 in σi if there is some σBxj
, with j ≡ i (mod k)

that took branch 7.

⟨1⟩4. Pick the triple (∅, σ(n+1)
B1 σ∗, FP

(n+1)
B1), where FP (n+1)

B1 is the set of fixpoint equations
of branch 1 in the n+ 1 iteration.

⟨1⟩5. Suffices: to prove that exists λ (the form of λ depends whether By is B1, B2

126

or B6) such that λσ(n+1)
B1 σ∗ = σ

(m+1)
B1 σ

(m)
Bxm

. . . σ
(1)
Bx1 . Then δ′λσ

(n+1)
B1 σ∗ = δ, which

proves that σ(n+1)
B1 σ∗ ≤ δ.

⟨1⟩6. Case: By = B1. Then, σ(m+1)
By = {Wm 7→ πYm} and σ

(n+1)
B1 = {Wn 7→ πYn}.

Proof:
⟨2⟩1. Pick n such that k ≤ n < 2k and n ≡ m (mod k).

⟨2⟩2. Let: λ be defined as:
• For every i < k let j1, . . . , jl be all the indices that are equal to i modulo k

such that Zj1 , . . . , Zjl appear in Args(σBxm . . . σBx1W0). Then,
λZi = f(Zj1 , . . . , Zjl).

• λYn = Ym.
• Let Args be the list of arguments (counting repetitions) that are in

f(π−1Zo
2 , . . . , [π−(m−1), . . . , π−1]Zo

m, [π−(m−1), . . . , Id]Ym, Xm)
but not in

λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn)
Define: λXn as f(Args).

⟨2⟩3. For X0 we have:
λσ

(n+1)
B1 σ∗X0 = λσ

(n+1)
B1 f(π−1Zo

2 , . . . , [π−(n−1), . . . , π−1]Zo
n, [π−(n−1), . . . , Id]Yn, Xn)

= λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn, Xn)
= f(π−1Zo

2 , . . . , [π−(m−1), . . . , π−1]Zo
m, [π−(m−1), . . . , Id]Ym, Xm)

= σ
(m+1)
B1 σ

(m)
Bxm

. . . σ
(1)
Bx1X0.

For W0 we have:
λσ

(n+1)
B1 σ∗W0 = λσ

(n+1)
B1 f(Zo

1 , Z
o
2 , . . . , Z

o
n,Wn)

= λf(Zo
1 , Z

o
2 , . . . , Z

o
n, πYn)

= f(Zo
1 , Z

o
2 , . . . , Z

o
m, πYm)

= σ
(m+1)
B1 f(Zo

1 , Z
o
2 , . . . , Z

o
m,Wm)

= σ
(m+1)
B1 σ

(m)
Bxm

. . . σ
(1)
Bx1W0.

For Y0 we have:
λσ

(n+1)
B1 σ∗Y0 = λσ

(n+1)
B1 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−nZo

n, π
−nYn)

= λf(π−1Zo
1 , π

−2Zo
2 , . . . , π

−nZo
n, π

−nYn)
= f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−mYm)

= σ
(m+1)
B1 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−mYm)

= σ
(m+1)
B1 σ

(m)
Bxm

. . . σ
(1)
Bx1Y0.

127

Notice that in the computation of λσ(n+1)
B1 σ∗Y0 we used that n ≡ m (mod k) to

obtain π−nYm = π−mYm.

⟨1⟩7. Case: By = B2. Then, σ(m+1)
By = {Wm 7→ π2Ym, Xm 7→ πYm}.

⟨2⟩1. Pick n such that k ≤ n < 2k and n ≡ m (mod k).

⟨2⟩2. Let: λ be defined as:
• For every i < k let j1, . . . , jl be all the indices that are equal to i modulo k

such that Zj1 , . . . , Zjl appear in Args(σBxm . . . σBx1W0). Then,
λZi = f(Zj1 , . . . , Zjl).

• λYn = πYm.
• Let Args be the list of arguments (counting repetitions) that are in

f(π−1Zo
2 , . . . , [π−(m−1), . . . , π−1]Zo

m, [π−(m−1), . . . , Id]Ym, πYm)
but not in

λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn)
Define: λXn as f(Args).

⟨2⟩3. Notice that σ(n+1)
By = {Wn 7→ πYn}. For X0 we have:

λσ
(n+1)
B1 σ∗X0 = λσ

(n+1)
B1 f(π−1Zo

2 , . . . , [π−(n−1), . . . , π−1]Zo
n, [π−(n−1), . . . , Id]Yn, Xn)

= λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn, Xn)
= f(π−1Zo

2 , . . . , [π−(m−1), . . . , π−1]Zo
m, [π−(m−1), . . . , Id]Ym, πYm)

= σ
(m+1)
B2 f(π−1Zo

2 , . . . , [π−(m−1), . . . , π−1]Zo
m, [π−(m−1), . . . , Id]Ym, Xm)

= σ
(m+1)
B2 σ

(m)
Bxm

. . . σ
(1)
Bx1X0.

For W0 we have:
λσ

(n+1)
B1 σ∗W0 = λσ

(n+1)
B1 f(Zo

1 , Z
o
2 , . . . , Z

o
n,Wn)

= λf(Zo
1 , Z

o
2 , . . . , Z

o
n, πYn)

= f(Zo
1 , Z

o
2 , . . . , Z

o
m, π

2Ym)
= σ

(m+1)
B2 f(Zo

1 , Z
o
2 , . . . , Z

o
m,Wm)

= σ
(m+1)
B2 σ

(m)
Bxm

. . . σ
(1)
Bx1W0.

For Y0 we have:
λσ

(n+1)
B1 σ∗Y0 = λσ

(n+1)
B1 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−nZo

n, π
−nYn)

= λf(π−1Zo
1 , π

−2Zo
2 , . . . , π

−nZo
n, π

−nYn)
= f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−(n−1)Ym)

= f(π−1Zo
1 , π

−2Zo
2 , . . . , π

−mZo
m, π

−mYm)
= σ

(m+1)
B2 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−mYm)

= σ
(m+1)
B2 σ

(m)
Bxm

. . . σ
(1)
Bx1Y0.

⟨1⟩8. Case: By = B6. Then, σ(m+1)
By = {Wm 7→ f(Zm+1, πXm), Ym 7→ f(π−1Zm+1, π

−1Xm)}

128

⟨2⟩1. Pick n such that k ≤ n < 2k and n ≡ m− 1 (mod k).

⟨2⟩2. Let: λ be defined as:
• For every i < k, let j1, . . . , jl be all the indices that are equal to i modulo k

such that Zj1 , . . . , Zjl appear in Args(σBxm . . . σBx1W0). Then,
λZi = f(Zj1 , . . . , Zjl).

• λYn = f(π−1Zm+1, Xm).
• Let Args be the list of arguments (counting repetitions) that are in

f(π−1Zo
2 , . . . , [π−(m−1), . . . , π−1]Zo

m, [π−m, . . . , π−1]Zm+1, [π−m, . . . , Id]Xm)
but not in

λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn)
Define: λXn as f(Args).

⟨2⟩3. For X0 we have:
λσ

(n+1)
B1 σ∗X0 = λσ

(n+1)
B1 f(π−1Zo

2 , . . . , [π−(n−1), . . . , π−1]Zo
n, [π−(n−1), . . . , Id]Yn, Xn)

= λf(π−1Zo
2 , . . . , [π−(n−1), . . . , π−1]Zo

n, [π−(n−1), . . . , Id]Yn, Xn)
= f(π−1Zo

2 , . . . , [π−(m−1), . . . , π−1]Zo
m, [π−m, . . . , π−1]Zm+1, [π−m, . . . , Id]Xm)

= σ
(m+1)
B6 f(π−1Zo

2 , . . . , [π−(m−1), . . . , π−1]Zo
m, [π−(m−1), . . . , Id]Ym, Xm)

= σ
(m+1)
B6 σ

(m)
Bxm

. . . σ
(1)
Bx1X0.

For W0 we have:
λσ

(n+1)
B1 σ∗W0 = λσ

(n+1)
B1 f(Zo

1 , Z
o
2 , . . . , Z

o
n,Wn)

= λf(Zo
1 , Z

o
2 , . . . , Z

o
n, πYn)

= f(Zo
1 , Z

o
2 , . . . , Z

o
m, Zm+1, πXm+1)

= σ
(m+1)
B6 f(Zo

1 , Z
o
2 , . . . , Z

o
m,Wm)

= σ
(m+1)
B6 σ

(m)
Bxm

. . . σ
(1)
Bx1W0.

For Y0 we have:
λσ

(n+1)
B1 σ∗Y0 = λσ

(n+1)
B1 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−nZo

n, π
−nYn)

= λf(π−1Zo
1 , π

−2Zo
2 , . . . , π

−nZo
n, π

−nYn)
= f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−(n+1)Zm+1, π

−(n+1)Xm+1)
= f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−(m+1)Zm+1, π

−(m+1)Xm+1)
= σ

(m+1)
B6 f(π−1Zo

1 , π
−2Zo

2 , . . . , π
−mZo

m, π
−mYm)

= σ
(m+1)
B6 σ

(m)
Bxm

. . . σ
(1)
Bx1Y0.

Remark 36 (Motivation for the Definition of λ in Theorem 41). To construct λ in the
proof of Theorem 41 we proceeded in three steps, leaving the calculation of λXn for last,

129

since this was “the hardest to get it right”.

1. Instatiate λZi introducing every variable Zj such that i ≡ j (mod k).

2. Calculate the value of λYn by looking how we could make λσ
(n+1)
B1 σ∗W0 equal to

σ
(m+1)
By σ

(m)
Bxm

. . . σ
(1)
Bx1W0.

3. Calculate the relation between m and n by repeating the previous step with Y0 instead
of W0.

4. Only when those “easy instantiations” had been performed we decided the value of
λXm, since this is the most complicated expression. We did it by looking at how we
could make λσ(n+1)

B1 σ∗X0 equal to σ(m+1)
By σ

(m)
Bxm

. . . σ
(1)
Bx1X0.

A Python script to generate all solutions to f(X,W) ≈? f(π · X, π · Y) was devised
and more details about it are shown in Appendix A.

6.2.3 f(2X1, X2, X3) ≈? f(2π ·X2, Y1)

Section 6.2.2 shows that it is enough to loop a limited amount of times to generate a
complete set of solutions for the equational constraint. In this section we investigate

f(2X1, X2, X3) ≈? f(2πX2, Y1).

This problem is an adaptation from Stickel’s example described in Section 2.2.2, with only
variable arguments and the same variable X2 appearing in both terms (but with different
permutations suspended on it).

To aid us in this investigation we used a Python script that calculates a basis of
solution to a Diophantine equation and constructs the associated equation (similar to
Table 2.2 and Equations 2.1 of Section 2.2.2). The script is available here.

The script correctly solves the equation4 associated with

P0 = {f(2X1, X2, X3) ≈? f(2πX2, Y1)}
4notice it is the same equation as the one in Section 2.2.2

130

https://github.com/gabriel951/nominal_ac_unification
https://github.com/gabriel951/nominal_ac_unification

and the equational constraints in one of the branches are:

X1 ≈? f(Z3, Z4)
X2 ≈? f(Z1, 2Z5, Z6)
X3 ≈? f(Z2, Z6, 2Z7)
πX2 ≈? f(Z3, Z5, Z6, Z7)
Y2 ≈? f(Z1, Z2, 2Z4)

After we perform the instantiations, a substitution σ1 is computed and a new set of
equational constraints needs to be solved:

P1 = {f(πZ1, 2πZ5, πZ6) ≈? f(Z3, Z5, Z6, Z7)},
σ0 = {X1 7→ f(Z3, Z4), X2 7→ f(Z1, 2Z5, Z6), X3 7→ f(Z2, Z6, 2Z7), Y2 7→ f(Z1, Z2, 2Z4)}.

Running the Python script again to solve the associated Diophantine equation will
result in the following equational constraints in one of the branches:

πZ1 ≈? f(Z8, Z9, Z10, Z11)
πZ5 ≈? f(Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25)
πZ6 ≈? f(Z12, Z13, Z14, Z15)
Z3 ≈? f(Z8, Z12, 2Z16, Z17, Z19, Z22)
Z5 ≈? f(Z9, Z13, Z17, 2Z18, Z20, Z23)
Z6 ≈? f(Z10, Z14, Z19, Z20, 2Z21, Z24)
Z7 ≈? f(Z11, Z15, Z22, Z23, Z24, 2Z25)

After we perform the instantiations, the substitution σ2 computed is:

σ2 = {Z1 7→ π−1 · f(Z8, Z9, Z10, Z11),
Z5 7→ π−1 · f(Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25)
Z6 7→ π−1 · f(Z12, Z13, Z14, Z15)
Z3 7→ f(Z8, Z12, 2Z16, Z17, Z19, Z22)
Z7 7→ f(Z11, Z15, Z22, Z23, Z24, 2Z25).}

131

The new set of equational constraints P2 is:

P2 = {π−1 · f(Z16, Z17, Z18, Z19, Z20, Z21, Z22, Z23, Z24, Z25) ≈? f(Z9, Z13, Z17, 2Z18, Z20, Z23),
π−1 · f(Z12, Z13, Z14, Z15) ≈? f(Z10, Z14, Z19, Z20, 2Z21, Z24)}.

From this calculations it is not clear whether we can rewrite the problem to get into
a loop or whether the expressions necessarily keep getting more and more complicated.
Further investigation is necessary and we could start by improving the Python script.
The script could be improved if, in addition to solving the Diophantine equation it also
computed the substitution (in terms of the original variables X1, X2, X3, Y1) and listed
the new set of equational constraints that must be solved.

6.2.4 Additional Considerations

What if we try include equational constraints such as f(X,W) ≈? f(π · X, π · Y) in the
output returned by our to-be-devised nominal AC-unification algorithm? More precisely,
what if we include in the output of the algorithm equational constraints of the form

s ≡ f(s1, . . . , sm) ≈? f(t1, . . . , tn) ≡ t

when one of the arguments of s is a moderated variable π · X and one of the arguments
of t is a moderated variable π′ ·X, i.e. when the same variable appears on both sides, but
with different permutations suspended on it?

This is not ideal, because sometimes equational constraints such as the one described
will be unsolvable. For instance, let 0 and 1 be constants and notice that

f(X, 0) ≈? f(πX, 1)

has no solution, since no matter how we instantiate X, the number of occurrences of 0 in
the left-hand side and in the right-hand side will never be the same.

Another point: could we try some sort of combinatorial argument to solve f(X,W) ≈?

f(πX, πY)? Perhaps by finding all solutions to {X ≈? πX, W ≈? πY } and also all
the solutions to {X ≈? πY,W ≈? πX}? Unfortunately, this approach is not complete.
Consider π = (a b) and let

σ = {X 7→ f(a, c),W 7→ f(b, d), Y 7→ f(b, d)}.

The issue is that the arguments of σX (a and c) are partially present in σπX = f(b, c)
(c is present, a is not) and partially present in σπY = f(a, d). The same happens for the

132

arguments b and d of σW : b is present in σπX but not in σπY , while d is present in σπY
but not in σπX.

6.3 Nominal AC-Unification Via AC-Unification of
Higher-Order Patterns?

A promising way to obtain a nominal AC-unification would be to explore the connection
between higher-order pattern unification and nominal unification described in Cheney [28]
and Levy and Villaret [54] and use the work that has been done by Boudet and Conte-
jean [22] in AC-unification of higher-order patterns.

λ-terms are built using the grammar:

t ::= x | c | λx.t | t1 t2

where x is a variable, c is a constant, λx.t is a lambda abstraction and t1 t2 is a function
application. We use syntactic sugar and represent terms of the form (. . . ((a t1) t2) . . . tn)
as a(t1, t2, . . . , tn), where a is a constant or a variable. Additionally, terms such as
λx1.λxn.t may be denoted simply as λx1 . . . xn.t or even more succintly as λx⃗.t, where
x⃗ is shorthand notation for x1 . . . xn.

A possible way to start investigating the connection between nominal AC-unification
and higher-order pattern unification would be by looking at how problems such as π ·
X ≈? X and f(X,W) ≈? f(π · X, π · Y) would be “translated” to higher-order pattern
AC-unification (as described in [54]), solved in higher-order pattern AC-unification (as
described in [22]) and how the solutions would be “translated back” to the nominal setting
(as described in [28]). The mentioned translations described in [54] and [28] would need
to be extended to handle AC function symbols.

6.3.1 From Nominal to Higher-Order Pattern

Levy and Villaret [54] show that nominal unification can be reduced to higher-order
pattern unification. The main idea of [54] is to translate atoms into bound variables, and
moderated variables into free variables that receive as arguments a list of bound variables
they can capture. This idea is a bit surprising at first, as atoms in nominal represent
object level variables and may or may not be bound, while suspended variables represent
meta level variables, are not bound by abstractions and are instantiated by substitutions
(something that does not happen for atoms).

133

The translation described in [54] depends on ordering the atoms that appear in the
unification problem into a list L. In order to translate nominal terms into higher-order
patterns we have Definition 43.

Definition 43 (Translating Nominal Terms to Higher-Order Patterns). Given a context
∇ and a list of atoms L we define a translation function J K from nominal terms into
higher-order patterns inductively as :

• JaKL,∇ = a

• Jf(t1, . . . , tn)KL,∇ = f(Jt1KL,∇, . . . , JtnKL,∇)

• J [a]t KL,∇ = λa.JtKL,∇

• Jπ ·XKL,∇ = X(Jπ · a1KL,∇, . . . , Jπ · anKL,∇), where (a1, . . . , an) is a sublist of atoms
of L defined by (a1, . . . , an) = (a ∈ L | a#X ̸∈ ∇).

We believe the rule for AC function symbols, should be analogous with the one for
syntactic function applications:

JfAC(t1, . . . , tn)KL,∇ = fAC(Jt1KL,∇, . . . , JtnKL,∇).

Once we have a translation function from nominal terms to higher-order patterns, we can
extend it to translate a set of nominal equational constraints to a higher-order pattern
unification problem, as shown in Definition 44.

Definition 44. Let L = (a1, . . . , an) be a list containing all the atoms of a set of equational
constraints P . The translation function defined in P given L is:

JP KL = {λa1 . . . an.JtKL,∅ ≈? λa1 . . . an.JsKL,∅ | t ≈? s ∈ P}

Finally, we do not have to worry about freshness constraints of the form a#?t (see [54]),
as we can (and should in order for the mentioned translation to work) substitute them by
equational constraints of the form [a][b]t ≈? [b][b]t, where b is some new atom.

Example 34. We illustrate how the translation would work for πX ≈? X and f(X,W) ≈?

f(πX, πY) when π = (a b).

• The translation of (a b)X ≈? X is

λab.X(a, b) ≈? λab.X.

• The translation of f(X,W) ≈? f((a b)X, (a b)Y) is

λab.f(X,W) ≈? λab.f(X(a, b), Y (a, b)).

134

6.3.2 AC-Unification of Higher-Order Patterns

Boudet and Contejean [22] presented an algorithm for AC-unification of higher-order
patterns that relies on Boudet et al. [24] first-order AC-unification algorithm. Equations
such as λab.X(a, b) ≈? λab.X(b, a) are called flexible-flexible equations with the same
head variable on both sides, and are kept by the algorithm (see [22, 65]). Indeed, it has
been proved that those equation are always solvable, however they may not have a finite
complete set of unifiers, as shown in Example 35.

Example 35 (AC-Unification of Patterns is Nullary). This example was adapted from
[65]. Consider the equation λab.X(a, b) ≈? λab.X(b, a) and let + be an AC function
symbol in our signature. The substitutions

σm = {X 7→ λab.Gm(Y1(a, b) + Y1(b, a), . . . , Ym(a, b) + Ym(b, a))}

for m = 1, 2, . . . are all AC-unifiers. It is possible to prove that every solution of λab.X(a, b) ≈?

λab.X(b, a) is an instance of some σm and that σm+1 is strictly more general than σm.

Notice that if we employ the translation described in [53] to πX ≈? X, where
π = (a b) we get a flexible-flexible equation with the same head variable on both sides:
λab.X(a, b) ≈? λab.X. This seems to suggest that the corresponding problem in nominal
is nullary and reinforces that an enumeration procedure is the right approach.

When the algorithm of [24] deals with AC function symbols, it generates a system of
linear Diophantine equations for one single equation, a different approach than the one
of Stickel. Before discussing the bounds on this system of equations, we consider the
equation

λabc.2X(a, b, c) +X(b, c, a) ≈? λabc.2Y (a, b, c)

as an example.
A solution σ to this equation may introduce terms t(a, b, c) that do not depend on the

order of the arguments, i.e. t(a, b, c) = t(b, c, a) and terms t(a, b, c) that depend on the
order of the arguments, i.e. t(a, b, c) ̸= t(b, c, a). We analyse these two cases.

If σ instantiates X to something containing the term t(a, b, c), where t(a, b, c) does not
depend on the order of arguments then, on one hand, this term is introduced 2α times by
σ2X(a, b, c) and α times by σX(b, c, a). On the other hand t(a, b, c) must be introduced
2β times by σ2Y (a, b, c), where α and β are solutions to the linear Diophantine equation
3m = 2n. This is a linear Diophantine equation whose set of minimal solutions is simply
{(2, 3)}. We associate a new variable Z1 with this solution of the Diophantine system, as
shown in Table 6.2.

135

Table 6.2: Solutions for 3m = 2n.

m n New Variable

2 3 Z1

Finally, let θ be a substitution such that

θZ1(a, b, c) = θZ1(b, c, a) = θZ1(c, a, b).

Notice that
{X 7→ λabc.θ2Z1(a, b, c), Y 7→ λabc.θ3Z1(a, b, c)}

is a solution to the original problem.
Now for the case of σ instantiating X to something containing the term t(a, b, c), where

t(a, b, c) depends on the order of arguments. Let α1, α2 and α3 be the number of times
σX(a, b, c) introduces t(a, b, c), t(b, c, a) and t(c, a, b) respectively. Similarly, let β1, β2,
β3 be the number of times σY (a, b, c) introduces t(a, b, c), t(b, c, a) and t(c, a, b). Then,
(α1, α2, α3, β1, β2, β3) are solutions to the system of linear Diophantine equations:

2n1 + n3 = 2m1

2n2 + n1 = 2m2 (6.5)
2n3 + n2 = 2m3

The basis of solution for this system, along with the new variables associated to each
solution, is shown on Table 6.5.

Table 6.3: Solutions for Equations 6.5.

n1 n2 n3 m1 m2 m3 New Variables

2 0 0 2 1 0 Z2
0 2 0 0 2 1 Z3
0 0 2 1 0 2 Z4

We could combine the results expressed in Tables 6.2 and 6.3 to express solutions of
the original problem. For instance,

{X 7→ λabc.θ2Z1(a, b, c) + 2Z2(a, b, c) + 2Z3(b, c, a) + 2Z4(c, a, b)
Y 7→ λabc.θ3Z1(a, b, c) + 2Z2(a, b, c) + Z2(b, c, a) + 2Z3(b, c, a)

+ Z3(c, a, b) + Z4(a, b, c) + 2Z4(c, a, b)}

136

where we are again making the assumption that:

θZ1(a, b, c) = θZ1(b, c, a) = θZ1(c, a, b).

As discussed for first-order AC-unification, we may omit some of the new variables,
as long as the “old” variables X and Y are not mapped on an “empty” term and obtain
other solutions.

Remark 37 (Variable Abstraction and Restriction to Terms of the Form X(a1, . . . , an)).
The considerations so far have been focused exclusively on terms of the form X(a1, . . . , an),
where a1, . . . , an are variables. This is not a restriction, as Boudet et al. [22] uses variable
abstraction to guarantee that unification problems of the form X(. . . , t1, . . .) where t1 is a
function application do not occur.

As illustrated in the previous example, the algorithm employed in the AC-part is
different than the one from Stickel’s, obtaining a system of linear Diophantine equations
from only one equational constraint. Termination of the procedure relies on a bound in
the number of new variables introduced. Let n be the number of coefficients in the AC
equational constraint. Let Π be the subgroup of permutations of all bound variables in
the problem. It has been proved that the number of new variables introduced is bound
by n×|Π|. For instance, the system corresponding to the higher-order pattern equational
constraint λab.f(X,W) ≈? λab.f(X(a, b), Y (a, b)) would be bound by 4 × 2 = 8 new
variables.

6.3.3 From Higher-Order Patterns to Nominal

Cheney [28] established the opposite reduction than the one described in [54]: that full
higher-order pattern unification can be reduced to nominal unification. This reduction
employs nominal patterns, a variant of nominal terms closer to higher-order patterns that
has a concretion operation (see [28] for more details). More precisely, Cheney [28] first
shows that higher-order pattern unification can be reduced to nominal pattern unification
and then goes on to show that nominal pattern unification can be reduced to nominal
unification.

137

Chapter 7

Related Work

Syntactic unification seems1 to have appeared first in the work of Herbrand [42], although
Robinson [66] was the first who gave an algorithm accompanied by a proof of termination
and correctness. Since Robinson’s algorithm was exponential, it was later independently
refined by others [19, 43]. In particular, Paterson and Wegman [63] discovered a linear
unification algorithm that uses directed acyclic graphs (DAGs) to represent a unification
problem, while Martelli and Montanari [56] gave an efficient unification algorithm which
represents the unification problem as a set of equations.

Stickel [72] was the first to solve unification in the presence of AC-function symbols.
He showed how the problem is connected to finding nonnegative integral solutions to
linear equations and proved that his algorithm was sound, complete and terminating for
a subclass of the general case [72, 73]. However, Stickel’s proof of termination did not
apply to the general case and almost a decade after the introduction of this algorithm,
Fages discovered the flaw and proposed a measure fixing the termination proof for the
general case [39, 40]. Since then, investigations on solving AC-unification efficiently and
on the complexity of AC-unification were carried out.

Regarding the complexity of AC-unification, Benanav et al. [20] showed that the
decision problem for AC-matching is NP-complete, and the decision problem for AC-
unification is NP-hard. In addition, Kapur and Narendran [48] showed that the complex-
ity of computing a complete set of AC-unifiers is double-exponential.

Both AC- and C-unification problems are of finitary type, but the complexity of com-
puting a complete set of unifiers for the former problem is double-exponential, while for
the latter one, it is “only” exponential as shown by Kapur and Narendran [48]. Indeed,
to build complete sets of C-unifiers, only simple swapping-argument-combinations need
to be considered to instantiate variables. However, to build complete sets of AC-unifiers,

1the information on this paragraph was taken from Baader and Nipkow seminal book “Term Rewriting
and All That” [15]. See it for more interesting bibliographic notes on the subject.

138

all possible associations and permutations of arguments should be considered, which is
precisely expressed by Stickel’s method based on solving Diophantine equations.

Regarding solving AC-unification efficiently, Boudet et al. [24] proposed an AC-unification
algorithm that explores constraints more efficiently than the standard algorithm. Further,
Boudet [21] described and compared an implementation of this algorithm to previous ones.
Also, Adi and Kirchner [2] implemented an AC-unification algorithm, proposed bench-
marks and showed that their algorithm improves over previous ones in time and space.

Regarding formalisations, in 2004, Contejean [31] gave the first certified AC-matching
algorithm in Coq. Additionally, in 2008, Meßner et al. [57] gave a formally verified solver
for homogeneous linear Diophantine equations in Isabelle/HOL. As we shall see, the prob-
lem of AC-unification is connected to solving linear Diophantine equations. However, no
formalisation of AC-unification was available until 2022, when we proved termination,
soundness and completeness of Stickel’s AC-unification algorithm [9] using the proof as-
sistant PVS [62].

On the matter of nominal unification, as mentioned before, Urban et. al [75] gave
the first nominal unification algorithm in 2004. It is a rule-based algorithm that was
formalised terminating, correct and complete in Isabelle/HOL [74,75]. Research continued
in the direction of making algorithms improvements to solve this problem, with works
from Levy and Villaret [53], Calvès [25] and Calvès and Fernández [26, 27]. Another
step ahead in nominal unification was taken in 2016, when Schmidt-Schauß et al. [69]
presented a nominal unification approach for higher-order expressions with recursive let.
Furthermore, one application of nominal unification in software systems is α-Prolog [29]:
“a logic programming language with built-in names, fresh name generation, name binding,
and unification up to α-equivalence (that is, consistent renaming of bound names)2”.

There have been previous works on nominal equational theories using the PVS proof
assistant. In [11], Ayala-Rincón et. al presented a nominal syntactic unification algorithm
specified as a functional program and verified it in the proof assistant PVS3. Enriching
nominal unification with equational reasoning started with developing rule-based tech-
niques for commutative operators in Coq (see Ayala-Rincón et al. [4] or de Carvalho
Segundo [33]) and then specifying functional algorithms in PVS (see Ayala-Rincón et
al. [12]). An interesting difference between nominal unification and nominal C-unification
was found: when expressing solutions as pairs consisting of a freshness context and sub-
stitutions, nominal unification is finitary whereas nominal C-unification is not. This
compelling difference is based on the fact that the correct approach to solving fixpoint
equations of the form π · X ≈? π′ · X in nominal unification is not complete in nomi-

2quote taken from https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/
3This is also described in Oliveira [61].

139

https://homepages.inf.ed.ac.uk/jcheney/programs/aprolog/

nal C-unification (see [5] on how to generate every solution to this equation). Finally,
in Ayala-Rincón et al. [6] a formalisation of nominal α-equivalence with A, C, and AC
functions is given.

140

Chapter 8

Conclusion and Future Work

8.1 Conclusion

We presented and discussed our formalisations of nominal C-unification, first-order AC-
unification and nominal AC-matching that were done using the PVS proof assistant and
are part of PVS’ main repository of formalisations: NASALib. In each one of the three
formalisations we delved into the files that compose the formalisation, detailing their
structure, hierarchy and size.

Regarding nominal C-unification, we extended the nominal C-unification algorithm
of Ayala-Rincón et al. [12] to also handle matching and equality-checking and proved
that our extension is terminating, sound and complete. This was done by adding the
parameter X of protected variables, i.e, variables that cannot be instantiated. Let P
be the set of equational constraints we must unify. By setting X to ∅, V ars(lhs(P)) or
V ars(P) one can use our generalised algorithm for unification, matching or α-equality
checking, respectively. Furthermore, we used the PVSio feature to test the correctness of
a Python manual implementation of the algorithm.

Regarding first-order AC-unification we have given the first formalisation of first-order
AC-unification by specifying and verifying Stickel’s seminal AC-unification algorithm.
The proof of termination used an intricate lexicographic measure based on Fages’ ter-
mination proof. Proving completeness is done by first using an “additional hypothesis”
δ ⊆ V and an arbitrary set V as the parameter of the algorithm that corresponds to the
variables in the problem (Lemma 26); and then using the notion of a renamed inputs
(Definition 35) to obtain completeness (Theorem 30) without this extra hypothesis and
with V = V ars(t, s), where t and s are the terms we want to unify.

Regarding nominal AC-matching we have proposed the first nominal AC-matching
algorithm and formalised it to be terminating, sound and complete. We did it by extending
the first-order AC-unification formalisation to the nominal setting and using the parameter

141

X for protected variables. The condition X ⊆ V ars(rhs(P)), where P is the set of
equational constraints, in the input of our algorithm means that it cannot be used for
nominal AC-unification, although the algorithm can be used both for AC-matching and
AC-equality-checking. In contrast to first-order AC-unification, in nominal AC-matching
it is possible to prove that all the variables introduced “in the combinatorial part of
the AC-step” (by solveAC) are immediately instantiated (by instantiateStep). This
made the proof of termination of the nominal AC-matching much easier than its first-order
AC-unification counterpart.

Finally, we presented our work in progress towards nominal AC-unification. The two
main issues are solving fixpoint equations π · X ≈? X and proving termination. Con-
cerning solving fixpoint equations we provided a non-deterministic enumeration proce-
dure and exemplified how it can compute interesting solutions. In comparison to the
approach of Ayala-Rincón et al. [5] for fixpoint equations in nominal C-unification, the
non-deterministic procedure here described has the advantage of not generating some
less general solutions. Concerning termination we showed how the problem f(X,W) ≈?

f(π · X, π · Y) gives rise to a loop in some branches and why it is enough to take these
branches a limited amount of times, where this limit depend on the order k of the per-
mutation π. We were unable to show whether this behaviour happens in other problems
such as f(2X1, X2, X3) ≈? f(2π ·X2, Y1).

8.2 Future Work

Although the most pressing future work is solving the open theoretical question of ter-
mination in nominal AC-unification, there is room for work in first-order AC-unification,
nominal AC-matching and other areas of equational reasoning. Regarding first-order
AC-unification, one possible path of future work is using our formalisation as a basis to
formalise more efficient algorithms. This can be done by generating a basis of solution
to a linear Diophantine equation (instead of a spanning set that we currently generate)
or by using a smaller bound (see [30]) when calculating solutions to a linear Diophantine
equation or by formalising more efficient algorithms for first-order AC-unification that
rely on representing terms as directed acyclic graphs DAGs (see [21]). A second valid
path of future work is adapting the formalisation to leverage the PVSio feature of PVS
in order to test implementations of PVS.

A different possible path of future work is formalising more efficient nominal AC-
matching algorithms. Since the nominal AC-matching formalisation is based on the first-
order AC-unification formalisation, improvements in the efficiency of the first-order AC-
unification algorithm could be adapted to the nominal setting to get a more efficient

142

nominal AC-matching algorithm. An alternative approach would be formalising a first-
order AC-matching algorithm (for instance [31]) and then adapting it to the nominal
setting. This could be more efficient than obtaining nominal AC-matching via first-order
AC-unification, but would probably require more effort.

Another path of future work is investigating unification in the presence of multiple
equational theories. For instance: how would one define an algorithm for unification in
the presence of syntactic, commutative and associative-commutative function symbols?
An approach would be to formalise the combination of equational unification algorithms.
As a starting point, there have been works on this topic in first-order by Baader [16] and
Schmidt-Schauß [68] . Formally verifying those works in a proof assistant or extending
these theoretical results to the nominal setting are both interesting future work endeavors.
We note that Boudet [23] has extended those results to higher-order patterns, and per-
haps the lessons in [23] could be useful when considering the combination of equational
unification algorithms in the nominal setting.

Finally, the most pressing future work is obtaining a nominal AC-unification algorithm
and then formalising it to be sound and complete. There are two main open questions,
about fixpoint equations π ·X ≈? X and termination. Regarding fixpoint equations, the
non-deterministic enumeration procedure presented for the task should be proved sound
and complete. Regarding termination we should be able to determine in which cases we
get a loop such as the one described for f(X,W) ≈? f(π · X, π · Y) and whether there
always exists a bound in the number of times we need to take branches that loop. A
promising approach would be to investigate the connection between higher-order pattern
AC-unification and nominal AC-unification (see [28, 54]) since Boudet et al. [22] already
devised an algorithm for AC-unification of higher-order patterns. Once devised, a nominal
AC-unification algorithm would have applications in logic programming languages that
employ the nominal paradigm, such as α-Prolog [29].

An alternative path of future work is formalising established theoretical results that
are important in equational reasoning. One could consider formalising nominal unification
modulo other equational theories, such as those that include distributivity, neutral element
or idempotency. Formalising nominal anti-unification [18] and nominal disunification [10]
are other interesting paths of future work.

143

Bibliography

[1] Abadi, M., Cardelli, L., Curien, P., and Lévy, J. Explicit Substitutions. In
Conference Record of the 17th Annual (ACM) Symposium on Principles of Program-
ming Languages (1990), F. E. Allen, Ed., ACM Press, pp. 31–46. 2

[2] Adi, M., and Kirchner, C. AC-Unification Race: The System Solving Approach,
Implementation and Benchmarks. J. of Sym. Computation 14, 1 (1992), 51–70. 139

[3] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Ferreira-
Silva, G., and Nantes-Sobrinho, D. Formalising Nominal C-Unification Gen-
eralised with Protected Variables. Math. Struct. Comput. Sci. 31, 3 (2021), 286–311.
3, 13, 25, 30, 31, 32, 34, 40, 90, 116

[4] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., and
Nantes-Sobrinho, D. Nominal C-Unification. In Logic-Based Program Synthesis
and Transformation - 27th International Symposium, (LOPSTR) (2017), vol. 10855
of Lecture Notes in Computer Science, Springer, pp. 235–251. 21, 31, 139

[5] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., and
Nantes-Sobrinho, D. On Solving Nominal Fixpoint Equations. In Frontiers
of Combining Systems - 11th International Symposium, (FroCoS) (2017), vol. 10483
of Lecture Notes in Computer Science, Springer, pp. 209–226. 20, 121, 140, 142

[6] Ayala-Rincón, M., de Carvalho Segundo, W., Fernández, M., Nantes-
Sobrinho, D., and Oliveira, A. C. R. A Formalisation of Nominal α-
Equivalence with A, C, and AC Function Symbols. Theor. Comput. Sci. 781 (2019),
3–23. 21, 41, 42, 140

[7] Ayala-Rincón, M., Fernández, M., Ferreira-Silva, G., Kutsia, T., and
Nantes-Sobrinho, D. Certified First-Order AC-Unification and Applications. Sub-
mitted to J. of Autom. Reasoning (2023). 3, 47

[8] Ayala-Rincón, M., Fernández, M., Ferreira-Silva, G., Kutsia, T., and
Nantes-Sobrinho, D. Nominal AC-Matching. In Intelligent Computer Mathemat-
ics - 16th International Conference, (CICM) (2023), vol. 14101 of Lecture Notes in
Computer Science, Springer, pp. 53–68. 4, 13, 21, 25, 94, 112

[9] Ayala-Rincón, M., Fernández, M., Ferreira-Silva, G., and Nantes-
Sobrinho, D. A Certified Algorithm for AC-Unification. In 7th International Con-
ference on Formal Structures for Computation and Deduction, (FSCD) (Dagstuhl,

144

2022), vol. 228 of LIPIcs, Leibniz-Zentrum für Informatik, pp. 8:1–8:21. 3, 10, 25,
47, 97, 139

[10] Ayala-Rincón, M., Fernández, M., Nantes-Sobrinho, D., and Vale, D.
On Solving Nominal Disunification Constraints. In Proceedings of the 14th Workshop
on Logical and Semantic Frameworks with Applications, (LSFA) (2019), vol. 348 of
Electronic Notes in Theoretical Computer Science, Elsevier, pp. 3–22. 143

[11] Ayala-Rincón, M., Fernández, M., and Oliveira, A. C. R. Completeness
in PVS of a Nominal Unification Algorithm. ENTCS 323 (2016), 57–74. 25, 30, 31,
32, 43, 96, 104, 139

[12] Ayala-Rincón, M., Fernández, M., Silva, G. F., and Nantes-Sobrinho,
D. A Certified Functional Nominal C-Unification Algorithm. In Logic-Based Program
Synthesis and Transformation - 29th International Symposium, (LOPSTR) (2019),
vol. 12042 of Lecture Notes in Computer Science, Springer, pp. 123–138. 24, 31, 32,
34, 36, 37, 43, 139, 141

[13] Ayala-Rincón, M., and Ferreira-Silva, G. Why We Need Structured Proofs
in Mathematics. In Workshop on Natural Formal Mathematics - NatFoM (2023). 21

[14] Baader, F. The Theory of Idempotent Semigroups is of Unification Type Zero. J.
of Autom. Reasoning 2, 3 (1986), 283–286. 9

[15] Baader, F., and Nipkow, T. Term Rewriting and All That. Cambridge University
Press, 1998. 1, 138

[16] Baader, F., and Schulz, K. U. Unification in the Union of Disjoint Equational
Theories: Combining Decision Procedures. J. of Sym. Computation 21, 2 (1996),
211–243. 143

[17] Barras, B., Boutin, S., Cornes, C., Courant, J., Filliatre, J.-C.,
Gimenez, E., Herbelin, H., Huet, G., Munoz, C., Murthy, C., et al.
The Coq proof assistant reference manual: Version 6.1, 1997. 23

[18] Baumgartner, A., Kutsia, T., Levy, J., and Villaret, M. Nominal Anti-
Unification. In Proceedings of the 28th International Workshop on Unification,
(UNIF) (2014), pp. 62–68. 143

[19] Baxter, L. D. The Complexity of Unification. PhD thesis, University of Waterloo,
Ontario, Canada, 1976. 138

[20] Benanav, D., Kapur, D., and Narendran, P. Complexity of Matching Prob-
lems. J. of Sym. Computation 3, 1/2 (1987), 203–216. 9, 138

[21] Boudet, A. Competing for the AC-Unification Race. J. of Autom. Reasoning 11,
2 (1993), 185–212. 92, 139, 142

[22] Boudet, A., and Contejean, E. AC-Unification of Higher-Order Patterns. In
3rd International Conference on Principles and Practice of Constraint Programming
(CP) (1997), vol. 1330 of LNCS, Springer, pp. 267–281. 133, 135, 137, 143

145

[23] Boudet, A., and Contejean, E. Combining Pattern E-Unification Algorithms.
In Rewriting Techniques and Applications, 12th International Conference, (RTA)
(2001), vol. 2051 of LNCS, Springer, pp. 63–76. 143

[24] Boudet, A., Contejean, E., and Devie, H. A New AC Unification Algorithm
with an Algorithm for Solving Systems of Diophantine Equations. In Proceedings
of the 5th Annual Symposium on Logic in Computer Science (LICS) (Washington,
1990), IEEE Computer Society, pp. 289–299. 135, 139

[25] Calvès, C. Complexity and Implementation of Nominal Algorithms. PhD Thesis,
King’s College London, 2010. 139

[26] Calvès, C., and Fernández, M. A Polynomial Nominal Unification Algorithm.
Theor. Comput. Sci. 403, 2-3 (2008), 285–306. 139

[27] Calvès, C., and Fernández, M. Matching and alpha-equivalence check for nom-
inal terms. J. Comput. Syst. Sci. 76, 5 (2010), 283–301. 21, 41, 42, 139

[28] Cheney, J. Relating Nominal and Higher-order Pattern Unification. In Proc. of the
19th international workshop on Unification, (UNIF) (2005), pp. 104–119. 133, 137,
143

[29] Cheney, J., and Urban, C. alpha-Prolog: A Logic Programming Language
with Names, Binding and α-Equivalence. In Logic Programming, 20th International
Conference, (ICLP) (2004), vol. 3132 of LNCS, Springer, pp. 269–283. 139, 143

[30] Clausen, M., and Fortenbacher, A. Efficient Solution of Linear Diophantine
Equations. J. of Sym. Computation 8, 1-2 (1989), 201–216. 50, 92, 142

[31] Contejean, E. A Certified AC Matching Algorithm. In Rewriting Techniques
and Applications, 15th International Conference, (RTA) (Berlin, Heidelberg, 2004),
vol. 3091 of LNCS, Springer, pp. 70–84. 10, 139, 143

[32] Crow, J., Owre, S., Rushby, J., Shankar, N., and Stringer-Calvert, D.
Evaluating, testing, and animating PVS specifications. Tech. rep., Computer Science
Laboratory, SRI International, 2001. 25

[33] de Carvalho Segundo, W. Nominal Equational Problems Modulo Associativ-
ity, Commutativity and Associativity-Commutativity. PhD thesis, Universidade de
Brasília, 2019. 139

[34] de Moura, L., Kong, S., Avigad, J., Van Doorn, F., and von Raumer,
J. The Lean Theorem Prover (system description). In International Conference on
Automated Deduction (2015), Springer, pp. 378–388. 23

[35] Dummit, D. S., and Foote, R. M. Abstract Algebra. Wiley Hoboken, 2004. 113

[36] Dutle, A., Muñoz, C. A., Narkawicz, A., and Butler, R. W. Software
validation via model animation. In Tests and Proofs - 9th International Conference,
(TAP) (2015), vol. 9154 of LNCS, Springer, pp. 92–108. 25

146

[37] Eker, S. Associative-Commutative Rewriting on Large Terms. In Proc. of the 14th
International Conference on Rewriting Techniques and Applications, (RTA) (2003),
vol. 2706 of LNCS, Springer, pp. 14–29. 2

[38] Eker, S. Associative unification in Maude. J. Log. Algebraic Methods Program. 126
(2022), 100747. 9

[39] Fages, F. Associative-Commutative Unification. In Proceedings 7th International
Conference on Automated Deduction (CADE) (Heidelberg, 1984), vol. 170 of LNCS,
Springer, pp. 194–208. 3, 9, 138

[40] Fages, F. Associative-Commutative Unification. J. of Sym. Computation 3, 3
(1987), 257–275. 3, 9, 13, 51, 59, 138

[41] Fernández, M., and Gabbay, M. Nominal Rewriting. Information and Compu-
tation 205, 6 (2007), 917–965. 2, 41

[42] Herbrand, J. Recherces sur la théorie de la démonstracion. PhD thesis, University
of Paris, 1930. 138

[43] Huet, G. Résolution d’équations dans les langages d’ordre 1, 2, ..., ω. PhD thesis,
Université Paris VII, 1976. 138

[44] Jouannaud, J., and Kirchner, C. Solving Equations in Abstract Algebras: A
Rule-Based Survey of Unification. In Computational Logic - Essays in Honor of Alan
Robinson (1991), The MIT Press, pp. 257–321. 1

[45] Kamareddine, F., and Ríos, A. A Lambda-Calculus à la de Bruijn with Explicit
Substitutions. In Programming Languages: Implementations, Logics and Programs,
7th International Symposium, (PLILP) (1995), M. V. Hermenegildo and S. D. Swier-
stra, Eds., vol. 982 of Lecture Notes in Computer Science, Springer, pp. 45–62. 2

[46] Kapur, D., and Narendran, P. Matching, unification and complexity. SIGSAM
Bull. 21, 4 (1987), 6–9. 9

[47] Kapur, D., and Narendran, P. Complexity of Unification Problems with
Associative-Commutative Operators. J. of Autom. Reasoning 9, 2 (1992), 261–288.
9

[48] Kapur, D., and Narendran, P. Double-exponential Complexity of Computing
a Complete Set of AC-Unifiers. In Proceedings 7th Annual Symposium on Logic in
Computer Science (LICS) (Washington, 1992), IEEE Computer Society, pp. 11–21.
138

[49] Klíma, O. Unification Modulo Associativity and Idempotency Is NP-complete.
In Mathematical Foundations of Computer Science, 27th International Symposium,
(MFCS) (2002), vol. 2420 of Lecture Notes in Computer Science, Springer, pp. 423–
432. 9

147

[50] Kumar, R., and Norrish, M. (Nominal) Unification by Recursive Descent with
Triangular Substitutions. In Interactive Theorem Proving, (ITP) (2010), vol. 6172
of Lecture Notes in Computer Science, Springer, pp. 51–66. 7

[51] Lamport, L. How to Write a Proof. The American mathematical monthly 102, 7
(1995), 600–608. 21, 73

[52] Lamport, L. How to Write a 21st Century Proof. Journal of fixed point theory and
applications 11, 1 (2012), 43–63. 21, 22, 23, 73

[53] Levy, J., and Villaret, M. An Efficient Nominal Unification Algorithm. In
Proceedings of the 21st International Conference on Rewriting Techniques and Ap-
plications, (RTA) (2010), vol. 6 of LIPIcs, pp. 209–226. 21, 135, 139

[54] Levy, J., and Villaret, M. Nominal Unification from a Higher-Order Perspec-
tive. ACM Trans. Comput. Log. 13, 2 (2012), 10:1–10:31. 133, 134, 137, 143

[55] Makanin, G. S. The Problem of Solvability of Equations in a Free Semigroup.
Matematicheskii Sbornik 145, 2 (1977), 147–236. 9

[56] Martelli, A., and Montanari, U. An Efficient Unification Algorithm. ACM
Trans. Program. Lang. Syst. 4, 2 (1982), 258–282. 9, 138

[57] Meßner, F., Parsert, J., Schöpf, J., and Sternagel, C. A Formally Veri-
fied Solver for Homogeneous Linear Diophantine Equations. In Interactive Theorem
Proving - 9th International Conference, (ITP) (Cham, 2018), vol. 10895 of LNCS,
Springer, pp. 441–458. 139

[58] Muñoz, C. Rapid prototyping in PVS. Tech. Rep. NASA/CR-2003-212418, NIA-
2003-03, NASA Langley Research Center (NIA), 2003. 24

[59] Nadathur, G. The Suspension Notation for Lambda Terms and its Use in Meta-
language Implementations. In 9th Workshop on Logic, Language, Information and
Computation, (WoLLIC) (2002), vol. 67 of Electronic Notes in Theoretical Computer
Science, Elsevier, pp. 35–48. 2

[60] Nipkow, T., Paulson, L. C., and Wenzel, M. Isabelle/HOL: A Proof Assistant
For Higher-Order Logic, vol. 2283. Springer Science & Business Media, 2002. 23

[61] Oliveira, A. C. R. Unificação, confluência e tipos com interseção para sistemas
de reescrita nominal. PhD thesis, Universidade de Brasília, 2016. 139

[62] Owre, S., Rushby, J., and Shankar, N. PVS: A Prototype Verification System.
In Automated Deduction - CADE-11, 11th International Conference on Automated
Deduction (Berlin, Heidelberg, 1992), vol. 607 of LNCS, Springer, pp. 748–752. 23,
139

[63] Paterson, M., and Wegman, M. N. Linear Unification. In Proceedings of the
8th Annual ACM Symposium on Theory of Computing (1976), ACM, pp. 181–186.
9, 138

148

[64] Pitts, A. M. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013. 2

[65] Qian, Z., and Wang, K. Modular AC Unification of Higher-Order Patterns. In
Constraints in Computational Logics - 1st International Conference, (CCL) (1994),
vol. 845 of Lecture Notes in Computer Science, Springer, pp. 105–120. 135

[66] Robinson, J. A. A machine-oriented logic based on the resolution principle. J. of
the ACM 12, 1 (1965), 23–41. 9, 138

[67] Schmidt-Schauß, M. Unification under Associativity and Idempotence is of Type
Nullary. J. of Autom. Reasoning 2, 3 (1986), 277–281. 9

[68] Schmidt-Schauß, M. Unification in a Combination of Arbitrary Disjoint Equa-
tional Theories. J. of Sym. Computation 8, 1/2 (1989), 51–99. 143

[69] Schmidt-Schauß, M., Kutsia, T., Levy, J., and Villaret, M. Nominal
Unification of Higher Order Expressions with Recursive Let. In Logic-Based Program
Synthesis and Transformation - 26th International Symposium, (LOPSTR) (2016),
vol. 10184 of Lecture Notes in Computer Science, Springer, pp. 328–344. 139

[70] Shankar, N. Abstraction Engineering with the Prototype Verification System
(PVS). Talk given for the Topos Institute Colloquium. Link: https://www.youtube.
com/watch?v=MHf07noO9KA, 2013. 23

[71] Silva, G. F. Why We Need Structured Proofs, 2020. Blog
post available at https://medium.com/@gabrielferreirasilva/
why-we-need-structured-proofs-in-mathematics-34a3034f2f90. 21

[72] Stickel, M. E. A Complete Unification Algorithm for Associative-Commutative
Functions. In Advanced Papers of the Fourth International Joint Conference on
Artificial Intelligence (1975), pp. 71–76. 3, 9, 12, 50, 138

[73] Stickel, M. E. A Unification Algorithm for Associative-Commutative Functions.
J. of the ACM 28, 3 (1981), 423–434. 3, 9, 10, 49, 92, 138

[74] Urban, C. Nominal Unification Revisited. In Proceedings 24th International Work-
shop on Unification, (UNIF) (2010), vol. 42 of EPTCS, pp. 1–11. 139

[75] Urban, C., Pitts, A. M., and Gabbay, M. Nominal Unification. Theor. Com-
put. Sci. 323, 1-3 (2004), 473–497. 3, 21, 31, 90, 116, 139

149

https://www.youtube.com/watch?v=MHf07noO9KA
https://www.youtube.com/watch?v=MHf07noO9KA
https://medium.com/@gabrielferreirasilva/why-we-need-structured-proofs-in-mathematics-34a3034f2f90
https://medium.com/@gabrielferreirasilva/why-we-need-structured-proofs-in-mathematics-34a3034f2f90

Appendix A

Generating All Solutions To
f (X,W) ≈? f (π ·X, π · Y)

We made a Python script to output all the solutions of f(X,W) ≈? f(π ·X, π · Y). The
results below generate all the solutions computed by taking branches 3 or 7 at most 3
times. We choose this bound since we believe it is enough to “give a feel” for the solutions
computed while still not being too large, but the script could be easily adapted for other
values other than 3. The output of the script, first in a non-verbose manner and then in
a verbose manner, is shown below:

The solution of path [1] is: (∅, σB1, πX0 ≈? X0)
The solution of path [2] is: (∅, σB2, ∅)
The solution of path [6] is: (∅, σB6, ∅)
The solution of path [3, 1] is: (∅, σB1σB3, πX1 ≈? X1)
The solution of path [3, 2] is: (∅, σB2σB3, ∅)
The solution of path [3, 6] is: (∅, σB6σB3, ∅)
The solution of path [7, 1] is: (∅, σB1σB7, πX1 ≈? X1)
The solution of path [7, 2] is: (∅, σB2σB7, ∅)
The solution of path [7, 6] is: (∅, σB6σB7, ∅)
The solution of path [3, 3, 1] is: (∅, σB1σB3σB3, πX2 ≈? X2)
The solution of path [3, 3, 2] is: (∅, σB2σB3σB3, ∅)
The solution of path [3, 3, 6] is: (∅, σB6σB3σB3, ∅)
The solution of path [3, 7, 1] is: (∅, σB1σB7σB3, πX2 ≈? X2)
The solution of path [3, 7, 2] is: (∅, σB2σB7σB3, ∅)
The solution of path [3, 7, 6] is: (∅, σB6σB7σB3, ∅)
The solution of path [7, 3, 1] is: (∅, σB1σB3σB7, πX2 ≈? X2)
The solution of path [7, 3, 2] is: (∅, σB2σB3σB7, ∅)
The solution of path [7, 3, 6] is: (∅, σB6σB3σB7, ∅)

150

https://github.com/gabriel951/nominal_ac_unification

The solution of path [7, 7, 1] is: (∅, σB1σB7σB7, πX2 ≈? X2)
The solution of path [7, 7, 2] is: (∅, σB2σB7σB7, ∅)
The solution of path [7, 7, 6] is: (∅, σB6σB7σB7, ∅)
The solution of path [3, 3, 3, 1] is: (∅, σB1σB3σB3σB3, πX3 ≈? X3)
The solution of path [3, 3, 3, 2] is: (∅, σB2σB3σB3σB3, ∅)
The solution of path [3, 3, 3, 6] is: (∅, σB6σB3σB3σB3, ∅)
The solution of path [3, 3, 7, 1] is: (∅, σB1σB7σB3σB3, πX3 ≈? X3)
The solution of path [3, 3, 7, 2] is: (∅, σB2σB7σB3σB3, ∅)
The solution of path [3, 3, 7, 6] is: (∅, σB6σB7σB3σB3, ∅)
The solution of path [3, 7, 3, 1] is: (∅, σB1σB3σB7σB3, πX3 ≈? X3)
The solution of path [3, 7, 3, 2] is: (∅, σB2σB3σB7σB3, ∅)
The solution of path [3, 7, 3, 6] is: (∅, σB6σB3σB7σB3, ∅)
The solution of path [3, 7, 7, 1] is: (∅, σB1σB7σB7σB3, πX3 ≈? X3)
The solution of path [3, 7, 7, 2] is: (∅, σB2σB7σB7σB3, ∅)
The solution of path [3, 7, 7, 6] is: (∅, σB6σB7σB7σB3, ∅)
The solution of path [7, 3, 3, 1] is: (∅, σB1σB3σB3σB7, πX3 ≈? X3)
The solution of path [7, 3, 3, 2] is: (∅, σB2σB3σB3σB7, ∅)
The solution of path [7, 3, 3, 6] is: (∅, σB6σB3σB3σB7, ∅)
The solution of path [7, 3, 7, 1] is: (∅, σB1σB7σB3σB7, πX3 ≈? X3)
The solution of path [7, 3, 7, 2] is: (∅, σB2σB7σB3σB7, ∅)
The solution of path [7, 3, 7, 6] is: (∅, σB6σB7σB3σB7, ∅)
The solution of path [7, 7, 3, 1] is: (∅, σB1σB3σB7σB7, πX3 ≈? X3)
The solution of path [7, 7, 3, 2] is: (∅, σB2σB3σB7σB7, ∅)
The solution of path [7, 7, 3, 6] is: (∅, σB6σB3σB7σB7, ∅)
The solution of path [7, 7, 7, 1] is: (∅, σB1σB7σB7σB7, πX3 ≈? X3)
The solution of path [7, 7, 7, 2] is: (∅, σB2σB7σB7σB7, ∅)
The solution of path [7, 7, 7, 6] is: (∅, σB6σB7σB7σB7, ∅)
The solution of path [1] is: (∅, σB1, πX0 ≈? X0) where σB1:

X0 7→ Id ∗X0

Y0 7→ Id ∗ Y0

W0 7→ π1 ∗ Y0

151

The solution of path [2] is: (∅, σB2, ∅) where σB2:

X0 7→ π1 ∗ Y0

Y0 7→ Id ∗ Y0

W0 7→ π2 ∗ Y0

The solution of path [6] is: (∅, σB6, ∅) where σB6:

X0 7→ Id ∗X0

Y0 7→ f(π−1Z1, π
−1X0)

W0 7→ f(Id1Z1, π
1X0)

The solution of path [3, 1] is: (∅, σB1σB3, πX1 ≈? X1) where σB1σB3:

X0 7→ f(Id1Y1, Id
1X1)

Y0 7→ π−1 ∗ Y1

W0 7→ π1 ∗ Y1

The solution of path [3, 2] is: (∅, σB2σB3, ∅) where σB2σB3:

X0 7→ f([Id1, π1]Y1)
Y0 7→ π−1 ∗ Y1

W0 7→ π2 ∗ Y1

The solution of path [3, 6] is: (∅, σB6σB3, ∅) where σB6σB3:

X0 7→ f(π−1Z2, [π−1, Id1]X1)
Y0 7→ f(π−2Z2, π

−2X1)
W0 7→ f(Id1Z2, π

1X1)

The solution of path [7, 1] is: (∅, σB1σB7, πX1 ≈? X1) where σB1σB7:

X0 7→ f(Id1Y1, Id
1X1)

Y0 7→ f(π−1Z1, π
−1Y1)

W0 7→ f(π1Y1, Id
1Z1)

152

The solution of path [7, 2] is: (∅, σB2σB7, ∅) where σB2σB7:

X0 7→ f([Id1, π1]Y1)
Y0 7→ f(π−1Z1, π

−1Y1)
W0 7→ f(π2Y1, Id

1Z1)

The solution of path [7, 6] is: (∅, σB6σB7, ∅) where σB6σB7:

X0 7→ f(π−1Z2, [π−1, Id1]X1)
Y0 7→ f(π−1Z1, π

−2Z2, π
−2X1)

W0 7→ f(Id1Z2, π
1X1, Id

1Z1)

The solution of path [3, 3, 1] is: (∅, σB1σB3σB3, πX2 ≈? X2) where σB1σB3σB3:

X0 7→ f([π−1, Id1]Y2, Id
1X2)

Y0 7→ π−2 ∗ Y2

W0 7→ π1 ∗ Y2

The solution of path [3, 3, 2] is: (∅, σB2σB3σB3, ∅) where σB2σB3σB3:

X0 7→ f([π−1, Id1, π1]Y2)
Y0 7→ π−2 ∗ Y2

W0 7→ π2 ∗ Y2

The solution of path [3, 3, 6] is: (∅, σB6σB3σB3, ∅) where σB6σB3σB3:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1]X2)
Y0 7→ f(π−3Z3, π

−3X2)
W0 7→ f(Id1Z3, π

1X2)

The solution of path [3, 7, 1] is: (∅, σB1σB7σB3, πX2 ≈? X2) where σB1σB7σB3:

X0 7→ f(π−1Z2, [π−1, Id1]Y2, Id
1X2)

Y0 7→ f(π−2Z2, π
−2Y2)

W0 7→ f(π1Y2, Id
1Z2)

153

The solution of path [3, 7, 2] is: (∅, σB2σB7σB3, ∅) where σB2σB7σB3:

X0 7→ f(π−1Z2, [π−1, Id1, π1]Y2)
Y0 7→ f(π−2Z2, π

−2Y2)
W0 7→ f(π2Y2, Id

1Z2)

The solution of path [3, 7, 6] is: (∅, σB6σB7σB3, ∅) where σB6σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1]X2)
Y0 7→ f(π−2Z2, π

−3Z3, π
−3X2)

W0 7→ f(Id1Z3, π
1X2, Id

1Z2)

The solution of path [7, 3, 1] is: (∅, σB1σB3σB7, πX2 ≈? X2) where σB1σB3σB7:

X0 7→ f([π−1, Id1]Y2, Id
1X2)

Y0 7→ f(π−1Z1, π
−2Y2)

W0 7→ f(π1Y2, Id
1Z1)

The solution of path [7, 3, 2] is: (∅, σB2σB3σB7, ∅) where σB2σB3σB7:

X0 7→ f([π−1, Id1, π1]Y2)
Y0 7→ f(π−1Z1, π

−2Y2)
W0 7→ f(π2Y2, Id

1Z1)

The solution of path [7, 3, 6] is: (∅, σB6σB3σB7, ∅) where σB6σB3σB7:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1]X2)
Y0 7→ f(π−1Z1, π

−3Z3, π
−3X2)

W0 7→ f(Id1Z3, π
1X2, Id

1Z1)

The solution of path [7, 7, 1] is: (∅, σB1σB7σB7, πX2 ≈? X2) where σB1σB7σB7:

X0 7→ f(π−1Z2, [π−1, Id1]Y2, Id
1X2)

Y0 7→ f(π−1Z1, π
−2Z2, π

−2Y2)
W0 7→ f(π1Y2, Id

1Z2, Id
1Z1)

154

The solution of path [7, 7, 2] is: (∅, σB2σB7σB7, ∅) where σB2σB7σB7:

X0 7→ f(π−1Z2, [π−1, Id1, π1]Y2)
Y0 7→ f(π−1Z1, π

−2Z2, π
−2Y2)

W0 7→ f(π2Y2, Id
1Z2, Id

1Z1)

The solution of path [7, 7, 6] is: (∅, σB6σB7σB7, ∅) where σB6σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1]X2)
Y0 7→ f(π−1Z1, π

−2Z2, π
−3Z3, π

−3X2)
W0 7→ f(Id1Z3, π

1X2, Id
1Z2, Id

1Z1)

The solution of path [3, 3, 3, 1] is: (∅, σB1σB3σB3σB3, πX3 ≈? X3) where σB1σB3σB3σB3:

X0 7→ f([π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ π−3 ∗ Y3

W0 7→ π1 ∗ Y3

The solution of path [3, 3, 3, 2] is: (∅, σB2σB3σB3σB3, ∅) where σB2σB3σB3σB3:

X0 7→ f([π−2, π−1, Id1, π1]Y3)
Y0 7→ π−3 ∗ Y3

W0 7→ π2 ∗ Y3

The solution of path [3, 3, 3, 6] is: (∅, σB6σB3σB3σB3, ∅) where σB6σB3σB3σB3:

X0 7→ f([π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−4Z4, π

−4X3)
W0 7→ f(Id1Z4, π

1X3)

The solution of path [3, 3, 7, 1] is: (∅, σB1σB7σB3σB3, πX3 ≈? X3) where σB1σB7σB3σB3:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−3Z3, π
−3Y3)

W0 7→ f(π1Y3, Id
1Z3)

155

The solution of path [3, 3, 7, 2] is: (∅, σB2σB7σB3σB3, ∅) where σB2σB7σB3σB3:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−3Z3, π

−3Y3)
W0 7→ f(π2Y3, Id

1Z3)

The solution of path [3, 3, 7, 6] is: (∅, σB6σB7σB3σB3, ∅) where σB6σB7σB3σB3:

X0 7→ f([π−2, π−1]Z3, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−3Z3, π

−4Z4, π
−4X3)

W0 7→ f(Id1Z4, π
1X3, Id

1Z3)

The solution of path [3, 7, 3, 1] is: (∅, σB1σB3σB7σB3, πX3 ≈? X3) where σB1σB3σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−2Z2, π
−3Y3)

W0 7→ f(π1Y3, Id
1Z2)

The solution of path [3, 7, 3, 2] is: (∅, σB2σB3σB7σB3, ∅) where σB2σB3σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−2Z2, π

−3Y3)
W0 7→ f(π2Y3, Id

1Z2)

The solution of path [3, 7, 3, 6] is: (∅, σB6σB3σB7σB3, ∅) where σB6σB3σB7σB3:

X0 7→ f(π−1Z2, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−2Z2, π

−4Z4, π
−4X3)

W0 7→ f(Id1Z4, π
1X3, Id

1Z2)

The solution of path [3, 7, 7, 1] is: (∅, σB1σB7σB7σB3, πX3 ≈? X3) where σB1σB7σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−2Z2, π
−3Z3, π

−3Y3)
W0 7→ f(π1Y3, Id

1Z3, Id
1Z2)

156

The solution of path [3, 7, 7, 2] is: (∅, σB2σB7σB7σB3, ∅) where σB2σB7σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−2Z2, π

−3Z3, π
−3Y3)

W0 7→ f(π2Y3, Id
1Z3, Id

1Z2)

The solution of path [3, 7, 7, 6] is: (∅, σB6σB7σB7σB3, ∅) where σB6σB7σB7σB3:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−2Z2, π

−3Z3, π
−4Z4, π

−4X3)
W0 7→ f(Id1Z4, π

1X3, Id
1Z3, Id

1Z2)

The solution of path [7, 3, 3, 1] is: (∅, σB1σB3σB3σB7, πX3 ≈? X3) where σB1σB3σB3σB7:

X0 7→ f([π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−1Z1, π
−3Y3)

W0 7→ f(π1Y3, Id
1Z1)

The solution of path [7, 3, 3, 2] is: (∅, σB2σB3σB3σB7, ∅) where σB2σB3σB3σB7:

X0 7→ f([π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−1Z1, π

−3Y3)
W0 7→ f(π2Y3, Id

1Z1)

The solution of path [7, 3, 3, 6] is: (∅, σB6σB3σB3σB7, ∅) where σB6σB3σB3σB7:

X0 7→ f([π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−1Z1, π

−4Z4, π
−4X3)

W0 7→ f(Id1Z4, π
1X3, Id

1Z1)

The solution of path [7, 3, 7, 1] is: (∅, σB1σB7σB3σB7, πX3 ≈? X3) where σB1σB7σB3σB7:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−1Z1, π
−3Z3, π

−3Y3)
W0 7→ f(π1Y3, Id

1Z3, Id
1Z1)

157

The solution of path [7, 3, 7, 2] is: (∅, σB2σB7σB3σB7, ∅) where σB2σB7σB3σB7:

X0 7→ f([π−2, π−1]Z3, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−1Z1, π

−3Z3, π
−3Y3)

W0 7→ f(π2Y3, Id
1Z3, Id

1Z1)

The solution of path [7, 3, 7, 6] is: (∅, σB6σB7σB3σB7, ∅) where σB6σB7σB3σB7:

X0 7→ f([π−2, π−1]Z3, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−1Z1, π

−3Z3, π
−4Z4, π

−4X3)
W0 7→ f(Id1Z4, π

1X3, Id
1Z3, Id

1Z1)

The solution of path [7, 7, 3, 1] is: (∅, σB1σB3σB7σB7, πX3 ≈? X3) where σB1σB3σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−1Z1, π
−2Z2, π

−3Y3)
W0 7→ f(π1Y3, Id

1Z2, Id
1Z1)

The solution of path [7, 7, 3, 2] is: (∅, σB2σB3σB7σB7, ∅) where σB2σB3σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−1Z1, π

−2Z2, π
−3Y3)

W0 7→ f(π2Y3, Id
1Z2, Id

1Z1)

The solution of path [7, 7, 3, 6] is: (∅, σB6σB3σB7σB7, ∅) where σB6σB3σB7σB7:

X0 7→ f(π−1Z2, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−1Z1, π

−2Z2, π
−4Z4, π

−4X3)
W0 7→ f(Id1Z4, π

1X3, Id
1Z2, Id

1Z1)

The solution of path [7, 7, 7, 1] is: (∅, σB1σB7σB7σB7, πX3 ≈? X3) where σB1σB7σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1]Y3, Id
1X3)

Y0 7→ f(π−1Z1, π
−2Z2, π

−3Z3, π
−3Y3)

W0 7→ f(π1Y3, Id
1Z3, Id

1Z2, Id
1Z1)

158

The solution of path [7, 7, 7, 2] is: (∅, σB2σB7σB7σB7, ∅) where σB2σB7σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−2, π−1, Id1, π1]Y3)
Y0 7→ f(π−1Z1, π

−2Z2, π
−3Z3, π

−3Y3)
W0 7→ f(π2Y3, Id

1Z3, Id
1Z2, Id

1Z1)

The solution of path [7, 7, 7, 6] is: (∅, σB6σB7σB7σB7, ∅) where σB6σB7σB7σB7:

X0 7→ f(π−1Z2, [π−2, π−1]Z3, [π−3, π−2, π−1]Z4, [π−3, π−2, π−1, Id1]X3)
Y0 7→ f(π−1Z1, π

−2Z2, π
−3Z3, π

−4Z4, π
−4X3)

W0 7→ f(Id1Z4, π
1X3, Id

1Z3, Id
1Z2, Id

1Z1)

159

	Dedicatória
	Agradecimentos
	Resumo
	Resumo
	Abstract
	Introduction
	Contributions
	Organisation

	Background
	First-Order Syntax and AC-Unification
	Complexity of -Equivalence, Matching and Unification in First-Order Modulo Equational Theories

	Examples of AC-Unification
	What Makes AC-Unification Hard
	Unifying f(X, X, Y, a, b, c) and f(b, b, b, c, Z)
	Avoiding Infinite Loops

	The Nominal Setting
	Atoms, Variables, Nominal Terms, Substitutions and Permutations
	Freshness and -Equality
	Solution to a Quintuple and Additional Notation
	Fixpoint Equations
	Complexity of Unification and Matching Modulo Equational Theories in the Nominal Setting

	Structured Proofs
	The PVS Proof Assistant
	TCCs - Type Correctness Conditions
	PVSio

	NASALib and the Nominal Library

	Nominal C-Unification Generalised With Protected Variables
	Specifying Unification Via Set of Rules and Via Algorithms
	Main Algorithm
	Auxiliary functions

	Interesting Points on Adapting the Algorithm to Handle Protected Variables
	Termination
	Valid Quintuples and Solution to an Input in Nominal C-Unification
	Soundness
	Completeness
	Possible Pitfalls
	Examples of CUnif
	Preserving Information Regarding Protected Variables

	Testing the Python algorithm
	Preliminar Experiments Comparing PVSio and Python

	Statistics of the PVS Formalisation

	Certified First-Order AC-Unification
	Algorithm
	Function chooseEq
	Function decompose
	The AC-part of the Algorithm

	Proving Termination
	The Lexicographic Measure
	Proof Sketch for Termination

	A Structured Proof of Termination for applyACStep
	Notation for the Proof of Termination
	Auxiliary Lemmas
	Termination of applyACStep

	Proving Soundness and Completeness
	Nice Inputs
	Soundness
	Completeness

	Statistics of the PVS Formalisation
	Additional Information on the Formalisation
	Grammar of Terms and the Need for Well-Formed Terms
	Equal Terms May Not Have the Same Size

	Applications
	Formalising More Efficient AC-Unification Algorithms
	Testing Implemented AC-Unification Algorithms

	Nominal AC-Matching
	Algorithm
	Function chooseEq
	Function decompose
	Handling Freshness Constraints - Functions freshSubs? and fresh?
	The Function applyACStep
	Modifications to Adapt the Algorithm to the Nominal Setting
	Common Structures of Equational Constraints Returned by solveAC

	Formalisation
	Instantiation of the New Variables Introduced By solveAC
	Nice Input
	Termination
	Soundness
	Completeness

	Statistics of the PVS Formalisation

	Towards Nominal AC-Unification
	Fixpoint Equations X ? X
	Motivation For The Rules of An Enumeration Procedure
	A Non-Deterministic Enumeration Procedure to Solve Fixpoint Equations
	Examples of The Enumeration Procedure
	A Comparison With Fixpoint Equations in Nominal C-Unification
	Handling More Than One Fixpoint Equation With The Same Variable

	Termination of Nominal AC-Unification
	The Loop in f(X, W) ? f(X, Y)
	Solving the Loop in f(X, W) ? f(X, Y)
	f(2X1, X2, X3) ? f(2 X2, Y1)
	Additional Considerations

	Nominal AC-Unification Via AC-Unification of Higher-Order Patterns?
	From Nominal to Higher-Order Pattern
	AC-Unification of Higher-Order Patterns
	From Higher-Order Patterns to Nominal

	Related Work
	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Generating All Solutions To f(X, W) ? f(X, Y)

