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Extended Abstract

Colorectal cancer (CRC) is one of the most common and lethal types of cancer worldwide,
being the second most common cancer in Brazil [1]. CRC is a heterogenous cancer that
affects the lower part of the large bowel and can be classified according to its anatomical
site as: colon, rectum, or rectosigmoid junction cancer. The most common type of CRC is
adenocarcinoma, accounting for 90% of cases. Most CRC deaths are related to metastases
and, if early detected, patient survival rates increase considerably. This disease can be
impacted by many environmental factors, such as: eating habits, age, and weight. Treat-
ment can differ depending on anatomical site and usually consists of surgery followed by
chemotherapy. Inaccurate identification of the CRC anatomical site can lead to under or
overtreatment, which can impact the patient’s likelihood of mortality. The understand-
ing of the molecular mechanisms and external factors that affect CRC development and
progression is crucial to improving CRC prognosis, prevention, and treatment.

Considering the biological aspects of CRC, three types of coding and non-coding RNAs
are of particular impact on the disease’s underlying mechanisms. Highlighting: long non-
coding RNAs (lncRNAs), micro RNAs (miRNAs), and messenger RNAs (mRNAs). In
eukaryotes, mature mRNAs are formed after the pre-mRNA generated from the tran-
scription undergoes a process known as splicing, which removes some regions (introns)
of the pre-mRNA, while binding others (exons), thus forming the mature mRNA. The
splicing process can generate more than one protein from a single gene in a process known
as alternative splicing. The generated proteins are then used to regulate the organism’s
functions through use in metabolic reactions, by affecting many biological processes, such
as disease development.

MiRNAs play an essential role in gene expression, by binding to mRNAs and initiating
the inhibition or degradation of their target. In contrast, lncRNAs are not directly por-
trayed in this mRNA expression regulation process but play essential roles, such as altering
other molecules’ functions and therefore affecting protein expression and the development
and suppression of disease. Given the specific role of each RNA described above in disease
development, recent studies also highlight the importance of a mechanism known as com-
peting endogenous RNA (ceRNA) networks, in which lncRNAs, miRNAs, and mRNAs
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interact. In this mechanism, in addition to binding to mRNAs, miRNAs can also bind
to ceRNAs, which then act as modulators of miRNAs and therefore indirectly regulate
mRNA expression. The identification of ceRNA networks related to CRC development
and its underlying mechanisms can help doctors better understand the disease and pa-
tient’ prognosis. Some studies have been carried out using bioinformatic approaches to
analyze and create ceRNA networks and to indicate potential prognosis biomarkers for
colon, rectal, and CRC in general [2, 3, 4, 5, 6, 7, 8].

Although some studies were done with ceRNA network constructions in mind, to the
best of my knowledge, this study is the first to establish specific ceRNA networks for:
(i) colon; (ii) rectum; and (iii) rectosigmoid junction, and to relate them with specific
biological mechanisms in order to identify differences and common factors between these
sites.

Other studies suggest the use of machine learning methods using clinical features to
predict CRC patient prognosis [9, 10, 11]. Specifically, Gründner et al. [9] explored a
method that combines biological and clinical features to predict prognosis characteristics
for CRC patients from South Africa. These studies showed promising results in predicting
CRC patient’ prognosis, but to the best of my knowledge, this study is to use open data
and machine learning to predict CRC recurrence and patient survival by using biological
markers extracted from the colon, rectal and rectosigmoid cancer ceRNA networks in
combination with clinical features.

In this thesis, I begin by proposing a pipeline using open-access data from patients
with CRC extracted from The Cancer Genome Atlas (TCGA) to construct CRC-specific
ceRNA networks and potential biological markers that affect patient prognosis. Through
analysis, I aim to identify RNAs that can be used as biological markers for the three CRC
anatomical sites: colon, rectum, and rectosigmoid junction. To construct these networks
and propose the biological markers, I collected RNA raw expression and clinical data from
CRC patients. Using bioinformatic analysis tools to assess RNA expression profiles and
building a ceRNA network for each CRC anatomical site, generated output in the form of
ceRNA networks and the RNAs present on them. Next, through a functional enrichment
analysis I assessed the potential biological pathways activated by the molecules obtained
in the previous step. Finally, an overall survival analysis to identify the impact of these
RNAs on patient prognosis, produced a list of potential biological markers as output.

Overall, the first pipeline of this thesis resulted in: the identification of several potential
prognostic markers for colon, rectum, and rectosigmoid junction cancer; the construction
of specific ceRNA networks for each anatomical site; and the identification of biological
pathways that highlight differences in CRC behavior at distinct anatomical sites, thus
reinforcing the importance of correct identification of tumor site. The output of this
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pipeline consisted in a group of potential biological markers involved in CRC prognosis
namely, the following site-specific prognosis biomarkers are of note: hsa-miR-1271-5p,
NRG1, hsa-miR-130a-3p, SNHG16, and hsa-miR-495-3p in the colon; E2F8 in the rectum;
and DMD and hsa-miR-130b-3p in the rectosigmoid junction.

After generating the list of potential biological markers related to CRC prognosis,
I proceed to the second part of this thesis: the proposal of a pipeline to predict CRC
recurrence and patient survival using supervised machine learning (ML) methods. Clinical
factors such as age and weight, as well as biological factors, can affect CRC progression
and prognosis. To better CRC mechanisms and to identify the impact of both clinical
and biological factors in prognosis, I used patient clinical features combined with the
previously found biological markers as biological features to train the ML models. To
improve predictive performance and interpretability of the proposed findings I evaluated
and compared the following ML algorithms: Random Forest (RF), Logistic Regression
(LR), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT),
and Adaptative Boosting (AB). To establish the importance of each feature while building
the models to predict CRC recurrence and patient survival, first, I performed a feature
extraction analysis to filter and rank the actual impact of these features on the constructed
prediction model. With the selected relevant biological and clinical features in hand, I then
constructed the ML models and evaluated their performance. As output, this pipeline
generated the ML models to predict CRC recurrence and patient survival along with a
list of potential biological and clinical features relevant to patient prognosis.

Overall, the second pipeline resulted in the identification of several potential biological
and clinical markers as important in CRC recurrence and patient survival. For feature
importance: SNHG16, hsa-miR-130b-3p, hsa-miR-495-3p, and KCNQ1OT1 stood out
as biological features; and age, ethnicity, pathological stage, chemotherapy, height and
weight, positive lymph node count and lymph node count as clinical features. Finally, LR
and RF achieved a best accuracy of 90% and 82% for predicting patient survival and CRC
recurrence respectively. Also, the six proposed ML algorithms showed good performance
overall, specifically, LR and RF displayed good overall results, which is coherent with
findings from other studies [9, 10, 11].

This study strongly suggests that the use of bioinformatic approaches should be con-
currently used with ML algorithms to enhance interpretation of CRC mechanisms and
patient prognosis. However, some limiting factors are noteworthy: the amount of avail-
able data, being that the number of available patients for certain anatomical sites was
low; and that the data mainly consisted of patients from the USA. Following the pro-
posed pipelines, doctors can better understand the underlying mechanisms of CRC at
its anatomical sites, and also use our model to help predict patient prognosis. Finally,
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running these pipelines with Brazilian patient data could improve CRC data interpreta-
tion, especially in circumstances of diversity and inequality in a country’s demographic
landscape, which can affect CRC prognosis.

Keywords: non-coding RNAs, long non-coding RNAs, miRNAs, mRNAs, ceRNAs, ma-
chine learning, cancer, colorectal cancer
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Resumo Expandido

O câncer colorretal (CRC) é um dos tipos de câncer mais comuns e letais em todo o mundo,
sendo o segundo câncer mais comum no Brasil [1]. O CRC é um câncer heterogêneo, que
se instala na parte inferior do intestino grosso e pode ser classificado de acordo com seu
campo anatômico, como câncer de cólon, de reto ou na junção retossigmoide. O tipo
mais frequente de CRC é o adenocarcinoma, que corresponde a 90% dos casos. A maioria
das mortes causadas por CRC acontece quando esse entra em estado de metástase. No
entanto, se detectado em seus estágios iniciais, a sobrevida do paciente com CRC pode
melhorar consideravelmente. Esta doença pode ser influenciada por diversos aspectos
ambientais, tais como: hábitos alimentares, idade e peso. Normalmente, o tratamento
recomendado para pacientes com CRC é a cirurgia para sua remoção e, depois, o uso de
quimioterapia, porém o tratamento pode diferir de acordo com seu campo anatômico. O
diagnóstico do CRC em um campo anatômico incorreto pode levar o médico a prescrever
um tratamento não recomendado ao paciente, o que pode afetar a sua taxa de mortalidade.
Para auxiliar o prognóstico, prevenção e tratamento de CRC, é fundamental entender os
mecanismos moleculares e os indicadores clínicos que afetam o desenvolvimento do CRC.

Quanto aos aspectos biológicos do CRC, podemos descrever o impacto dos RNAs cod-
ificadores e não-codificadores nos mecanismos subjacentes à doença. Em específico, pode-
mos destacar três moléculas: RNAs longos não codificadores (em inglês, long non-coding
RNAs - lncRNAs), micro RNAs (miRNAs) e RNAs mensageiros (em inglês, messenger
RNAs - mRNAs). Nos eucariotos, os mRNAs maduros são formados a partir do pré-
mRNA que, por sua vez, é produzido a partir do processo de transcrição passar por um
processo conhecido como excisão (em inglês, splicing), que remove algumas regiões (ín-
trons) do pré-mRNA e liga outras regiões (exons), formando assim o mRNA maduro. O
processo de splicing possibilita gerar mais de uma proteína a partir de um único gene, em
um processo conhecido como excisão alternativa (em inglês, alternative splicing. Por sua
vez, as proteínas coordenam quase todos os processos vitais no organismo, sendo utilizadas
em reações metabólicas e afetando diversos processos biológicos, como o desenvolvimento
de doenças.
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Os miRNAs desempenham um papel essencial na expressão gênica, mais especifica-
mente, ligando-se aos mRNAs e iniciando os processos de inibição ou degradação de seu
alvo. Por sua vez, os lncRNAs não estão diretamente presentes neste processo de regu-
lação da expressão de mRNA, mas desempenham papéis essenciais no organismo, como a
alteração das funções de outras moléculas e, assim, afetam a expressão de proteínas indire-
tamente, o que pode contribuir para o surgimento e supressão de doenças. Considerando
o papel específico de cada uma das moléculas descritas no desenvolvimento de doenças,
estudos recentes destacaram a importância de um mecanismo conhecido como redes de
RNAs endógenos concorrentes (em inglês, competing endogenous RNAs - ceRNAs), nos
quais os lncRNAs, os miRNAs e os mRNAs interagem entre si. Nesse mecanismo, os miR-
NAs, que se ligam aos mRNAs pelos binding sites, podem também se ligar aos ceRNAs,
assim, regulando indiretamente a expressão dos mRNAs. A identificação de redes ceRNA
relacionadas ao surgimento do CRC e seus mecanismos subjacentes podem auxiliar os
médicos a entender melhor a doença e realizar um melhor prognóstico do paciente. Na
literatura, podemos encontrar alguns estudos que usam abordagens baseadas em bioinfor-
mática para criar redes ceRNAs e auxiliar a identificação de biomarcadores para o câncer
de cólon, reto e o câncer colorretal em geral.

Embora alguns estudos tenham foco na construção de redes ceRNA, até onde sabe-
mos, nosso estudo foi o primeiro a estabelecer redes ceRNAs específicas para: (i) cólon; (ii)
reto; e (iii) junção retossigmóide, além de relacioná-los com mecanismos biológicos especí-
ficos, a fim de esclarecer as diferenças e fatores comuns entre essas diferentes localizações
anatômicas.

Por outro lado, alguns estudos sugerem o uso de métodos de aprendizagem de máquina
e também o uso de características clínicas para predizer marcadores que podem ser usados
para prognóstico de pacientes com CRC [9, 10, 11]. Especificamente, Gründner et al. [9]
sugeriram um método que combina características biológicas e clínicas para predizer mar-
cadores de prognóstico de pacientes com CRC na África do Sul. Esses estudos descreveram
bons resultados obtidos a partir de modelos de predição. Tanto quanto saibamos, nosso
estudo foi o primeiro que usou dados abertos e métodos de aprendizagem de máquina
para predizer a reincidência de CRC e a sobrevivência do paciente usando marcadores bi-
ológicos extraídos de redes ceRNAs de câncer de cólon, de reto e na junção retossigmoide,
combinados com características clínicas.

Nesta tese, na primeira etapa, propusemos um pipeline utilizando dados de livre acesso
de pacientes com CRC, extraídos do banco de dados The Cancer Genome Atlas (TCGA),
para construir redes ceRNAs específicas para o CRC e marcadores biológicos que afetam
o prognóstico do paciente. Nosso objetivo foi o de realizar uma análise para identificar
moléculas que possam ser usadas como marcadores biológicos para os três sítios anatômi-
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cos do CRC, cólon, reto e junção retossigmoide. Para construir tais redes e propor os
marcadores biológicos, a expressão de RNA e os dados clínicos dos pacientes com CRC
foram coletados. Os perfis de expressão de RNA foram produzidos por meio de ferramen-
tas de análise que utilizam técnicas de bioinformática. Em seguida, encontramos redes
ceRNA específicas para cada campo anatômico, para as quais, como dados de saída, ob-
tivemos as redes ceRNA e as moléculas nelas presentes. Após essa etapa, foi realizada
uma análise funcional, onde identificamos potenciais vias metabólicas relacionadas ao
surgimento de câncer, as quais têm participação das moléculas obtidas na etapa anterior.
Finalmente, uma análise de sobrevida global para identificar o impacto dessas moléculas
no prognóstico do paciente foi realizada, resultando em uma lista de potenciais marcadores
biológicos.

Nessa etapa, ficaram evidenciados diversos potenciais biomarcadores que afetam o
prognóstico do paciente em câncer de cólon, de reto e na junção retossigmoide. Além
disso, redes ceRNA específicas para cada campo anatômico foram construídas, e foram
identificadas diferentes vias biológicas que destacam diferenças no comportamento do
CRC nos diferentes campos anatômicos, reforçando assim, a importância de identificar
corretamente o campo anatômico em que o tumor ocorre. Como resultados, geramos
um grupo de potenciais biomarcadores biológicos que afetam o prognóstico do CRC, em
particular, podemos destacar: hsa-miR-1271-5p, NRG1, hsa-miR-130a-3p, SNHG16 e
hsa-miR-495-3p para câncer de cólon; E2F8 para câncer retal; e DMD e hsa-miR-130b-3p
para câncer na junção retossigmoide.

Com a lista de potenciais marcadores biológicos que podem afetar no prognóstico de
CRC, prosseguimos para a segunda etapa desta tese, em que propusemos um pipeline
para prever a reinicindiva do CRC e a sobrevida dos pacientes, utilizando métodos de
aprendizagem de máquina supervisionados. Fatores clínicos, como idade e peso, assim
como fatores biológicos, podem afetar o prognóstico e o surgimento do CRC. Para melhor
entender os mecanismos do CRC e identificar o impacto, tanto dos fatores clínicos, quanto
dos fatores biológicos em seu prognóstico, usamos as características clínicas do paciente
combinadas com os marcadores biológicos encontrados no passo anterior, como carac-
terísticas biológicas, para treinar nossos modelos. Para alcançar um maior desempenho
na predição e na possibilidade de interpretação dos resultados propostos, avaliamos e
comparamos os seguintes algoritmos de aprendizagem de máquina: Random Forest - RF,
Logistic Regression - LR, Support Vector Machine - SVM, K-Nearest Neighbors - KNN,
Decision Tree - DT e Adaptative Boosting - AB. Para encontrar a importância de cada
característica durante a construção dos modelos de predição, primeiro foi realizada uma
análise de seleção de características, para filtrar e classificar quais dessas características
de fato tinham impacto no modelo de predição construído. Com essas características
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biológicas e clínicas relevantes selecionadas, construímos os modelos de aprendizagem de
máquina e avaliamos seu desempenho. Finalmente, como resultado, geramos modelos
de aprendizagem de máquina para prever a reincidência do CRC e a sobrevivência do
paciente, e uma lista de potenciais características biológicas e clínicas relevantes para o
prognóstico do paciente.

Nesta etapa, identificamos diversos potenciais marcadores biológicos e clínicos como
importantes na reincindiva do CRC e na sobrevida do paciente. Quanto à importância das
características, identificamos: SNHG16, hsa-miR-130b-3p, hsa-miR-495-3p e KCNQ1OT1
como características biológicas; e idade, etnia, estágio patológico, quimioterapia, altura
e peso, contagem positiva de linfonodos e contagem de linfonodos como características
clínicas. Finalmente, usando LR e RF, alcançamos uma precisão de 90% e 82% para
predição da sobrevivência do paciente e da reincidiva do CRC, respectivamente. Além
disso, o uso dos seis algoritmos de apredizagem de máquina propostos mostrou um bom
desempenho geral, em específico, o RF apresentou bons resultados, o que também foi
destacado em outros estudos [9, 10, 11].

Por fim, a pesquisa desenvolvida neste tese mostrou que o uso de técnicas de bioinfor-
mática em conjunto com o uso de algoritmos de aprendizagem de máquina pode melhorar
a interpretação dos mecanismos presentes no CRC. No entanto, devemos destacar alguns
fatores limitantes com os quais nos deparamos, como a quantidade de dados disponíveis
para pacientes com câncer de junção rectosigmoide e a especificidade regional dos da-
dos clínicos dos pacientes, visto que o banco de dados utilizado continha informações
principalmente de pacientes dos Estados Unidos. Perspectivas de uso dos métodos desen-
volvidos nesta tese são, primeiro, os pipelines propostos poderiam fornecer aos médicos
um entendimento melhor dos mecanismos subjacentes ao CRC em seus diferentes campos
anatômicos. Além disso, nossos modelos poderiam ser usados para auxiliar na predição
de prognóstico do paciente. Por fim, executar esses pipelines com dados de pacientes
brasileiros poderia ajudar os médicos a entender melhor as características específicas no
surgimento do CRC e prognóstico dos pacientes que vivem nas diferentes regiões do Brasil.

Palavras-chave: RNAs não-codificadores, miRNAs, mRNAs, ceRNAs, aprendizagem de
máquina, câncer, câncer colorretal
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Chapter 1

Introduction

Two types of nucleic acid are found in nature, DNA (deoxyribonucleic acid) and RNA
(ribonucleic acid). DNA stores information to generate amino acids and RNA molecules.
Among the RNAs, some are expressed in proteins while many others do not code for
proteins, but participate in many important cell functions. This last group is known as
non-coding RNAs (ncRNAs). The fact that ncRNAs play important cellular roles is well
known, e.g, chemical reaction catalyzes, gene expression, and chromatin regulation [12,
13]. In the human genome, less than 2% of the RNAs are transcribed into proteins, while
the remaining RNAs exhibit no protein-coding function [14, 15, 16].

Messenger RNA (mRNA) is one of the types of RNA molecules transcribed into pro-
teins, which via the translating process, acts as a protein blueprint used by the cell’s ma-
chinery to build the protein. Proteins are molecules made up of amino acids, which play
diverse essential roles in organisms, such as accelerating chemical reactions, transporting
nutrients, eliminating toxic waste, and building complex structures [17]. Several studies
designed to discover the role of specific proteins in cancer are pertinent to this thesis. For
example, Her-2 is a protein related to increased proliferation and cell malignancy while
inhibiting cells’ differentiation and apoptosis [18]. Additionally, in cancer, several proteins
have been shown to interact with ncRNAs, which can regulate gene expression [19].

NcRNAs can be classified as small ncRNAs, which are small in size (under 200 nu-
cleotides) with some other known characteristics; and long ncRNAs (lncRNAs), longer
than 200 nucleotides, which have almost no capacity to synthesize proteins and are, the
least known transcripts [20, 21]. LncRNAs were once considered to be evolutionary junk
or transcriptional noise [22], however, several studies have revealed the diverse biological
roles played by lncRNAs in a variety of organisms (e.g., chromatin regulation [23]; growth
limitation of the placenta in mammals [24]; regulation of good embryonic development [25];
regulation of the developmental cycle in the maturation of bone marrow [26]; and tumor
suppression [27]). Among the presented roles of lncRNAs, disease regulation, especially
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in cancer development is noteworthy [28, 29]. One type of small ncRNAs, microRNAs (or
miRNAs) are responsible for the regulation of mRNAs, but also act to regulate the ex-
pression of genes responsible for development mechanisms, metabolism, cell proliferation,
differentiation, and apoptosis [30], which can influence cancer initiation and progression.
Regarding lncRNAs, Fachel et al [29], Beckedorff et al [31] and Reis et al. [32] show the
involvement of lncRNAs in renal cancer cells, their participation in processes related to
cancer epigenetics, and their potential as tumor indicators in the diagnosis and prognosis
of cancer respectively. Several studies aimed to identify lncRNAs related to cancer using
biological and bioinformatics techniques [33, 34, 19, 35, 36].

Cancer is a complex disease and one of the biggest causes of death in the world [37].
The emergence of the disease may be related to many factors, including genetic and epige-
netic changes [38]. Increased understanding of the molecular mechanisms that cause the
changes that initiate cancer is one of the most important aspects of cancer research [39].
Predicting the factors related to the emerging mechanisms of cancer can help prevent
its development and facilitate its identification. In addition, the understanding of can-
cer mechanisms in cells can help identify cancer factors, which can be used to prevent
it. To date, the literature in molecular biology and bioinformatics indicates lncRNAs
and some classes of small ncRNAs (e.g., miRNAs) as biomarkers to understand cancer
emergence [40, 21, 41, 42]. In addition to these biomarkers, clinical markers, e.g., racial,
ethnic, or geographical, have been shown to be important in understanding the underlying
mechanisms and behavior of cancer emergence [43].

This thesis focuses on colorectal cancer (CRC), one of the most common and lethal
cancers in the world [44]. CRC occurs in the digestive tract, specifically in the colon, rec-
tum, and rectosigmoid junction. The behavior and treatment of CRC can differ according
to its anatomical site. Although prognosis, prevention, and treatment have advanced, due
to the growing number of people diagnosed with CRC each year, better understanding of
mechanisms in CRC development and progression continues to be crucial [3, 44].

Given the importance of mRNAs, miRNAs, and lncRNAs in cancer, recent studies
also show the importance of their underlying interaction system in cancer progression,
the so-called: competing endogenous RNAs (ceRNAs) mechanism [45, 46, 47, 48]. These
molecules form a ceRNA network, which can play an essential role in cancer develop-
ment [40, 49]. Therefore, exploring miRNAs, lncRNAs, mRNAs, and the ceRNA networks
formed by them, along with clinical factors, could lead to a better understanding of the
underlying mechanisms of CRC. In this context, this thesis aims to predict patient survival
and CRC recurrence, by highlighting biological and clinical markers to characterize CRC
behavior (and help in patient prognosis), taking into account the different anatomical
sites: colon, rectum, and rectosigmoid junction. In more detail, it is common knowledge
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that interactions among proteins, miRNAs, and lncRNAs influence cancer, since they can
regulate suppressive and oncogenic functions in various types of cancer [40]. As previously
stated, understanding these mechanisms may help prevent tumor emergence and cancer
development, as well as facilitate its identification. Although several biological studies
presented protein and ncRNAs’ relationship with cancer [50, 22, 51, 52, 53, 54], few fo-
cus on predicting patient cancer-related prognosis by using protein, miRNA and lncRNA
markers and patient clinical characteristics through computational techniques [9, 10, 11],
despite the fact that several databases present disease-related information [55, 56, 57, 58]
and others present cancer specific information [59, 60, 61, 39, 62].

Other studies relate the importance of patient clinical aspects for cancer, e.g., impact
of race, age, and demographics on CRC emergence behavio [63, 64], but few explore the
importance of these clinical aspects in combination with biological aspects to predict CRC
recurrence and patient survival through machine learning.

1.1 Problem

To date, the use of computational methods to predict the importance of biological and
clinical markers in the prognosis of colon, rectum, and rectosigmoid junction cancer is an
open research problem.

1.2 Goals

The main goal of this thesis is to propose methods using bioinformatic tools, feature
extraction, and machine learning techniques, to analyze the importance of clinical and
biological markers in CRC prognosis.

The specific goals are:

• To build a reliable data repository containing proteins, miRNAs, and lncRNAs
related to CRC;

• To propose a method based on interactions of miRNAs, lncRNAs, and proteins to
infer ceRNAs, in order to analyze the importance of biological markers for the colon,
rectum, and rectosigmoid junction; and

• To propose a method, based on supervised machine learning techniques and bioinfor-
matics tools, to analyze the importance of biological and clinical features to predict
patient survival and CRC recurrence.
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1.3 Thesis outline

In Chapter 2, I first discuss the object of research, CRC. Then, I describe interactions
between lncRNAs, miRNA, mRNAs, and ceRNAs and their relationships with CRC.
After defining some machine learning techniques used in this thesis, focusing particularly
on methods for feature extraction, I describe the bioinformatics tools and databases used
in the proposed pipelines.

In Chapter 3, I propose a method to analyze the importance of biological markers for
colon, rectum, and rectosigmoid junction, based on interactions of miRNAs, lncRNAs,
and proteins to infer ceRNAs.

In Chapter 4, based on supervised machine learning techniques and bioinformatics
tools, I devise a method to analyze the importance of biological and clinical features to
predict patient survival and CRC recurrence.

Finally, in Chapter 5, I conclude this thesis and present future work.
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Chapter 2

Background

In this chapter, I present the definitions, methods, and data used in this thesis. First, in
Section 2.1, I briefly describe important aspects related to the object of study of this thesis,
CRC. In Section 2.2, I describe the central dogma of molecular biology; lncRNAs, mRNAs,
miRNAs, and proteins; and, based on the interactions of these genes, the competing
endogenous RNA mechanism, called ceRNAs, and how they affect CRC progression. Next,
in Section 2.3, I present basic concepts on machine learning and its paradigms, specifically
exploring feature selection methods and how they are used in bioinformatics. Finally, in
Section 2.4, I discuss methods proposed in the literature to predict ceRNAs and markers
related to CRC progression as well as present databases containing information regarding
ncRNAs related to cancer.

2.1 Biological aspects of colorectal cancer

In this section, I first describe the biological aspects of cancer, then I present some details
on CRC, relevant to this thesis.

2.1.1 Cancer disease

Humans, in their adult phase, are estimated to have about 1015 cells, many of which
need to divide and differentiate in order to replace other cells in organs and tissues [65].
This cell proliferation is required, for example, for embryogenesis, growth, maintaining
the proper function of several adult tissues, and tumorigenesis [66].

The so-called stem cells are capable of dividing themselves, and it is estimated that
they perform around 1012 divisions per day [65]. This process of proliferation creates many
cell generations, and increased cellular multiplicity can sometimes be detected and called
neoplasia (new growth) [65]. The neoplasia can be classified as: benign, when in spite of
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presenting a high rate of cellar growth, the cells are still similar to normal tissues, and,
do not generally have the ability to spread to other tissues and organs; and malignant,
when cells tend to multiply quickly and spread to other tissues and organs, and even with
proper treatment, recurrences of the disease are common. Malignant neoplasia can also
be called cancer.

Cancer is a complex disease, one of the biggest causes of death and one of the main
public health problems in the world [67]. The emergence of the disease may be related to
many factors, including genetic and epigenetic changes [38]. Because genes can modify the
birth rate or the death rate of individual cells, researchers have suggested their regulation
as causative of the carcinogenic process [65]. One of the most important aspects of cancer
research is the understanding of the molecular mechanisms that cause the changes that
lead to its emergence [68]. In addition to improving to understanding of mechanisms of
cancer cells, the prediction of factors can help to prevent it. Thus, several studies, both in
molecular biology and in bioinformatics relate that ncRNAs and their interactions with
proteins partake in mechanisms involved in cancer [69].

As previously stated, cancer can be characterized as a malignant neoplasm, where
cells tend to multiply rapidly and spread to other tissues and organs. Because cancer can
manifest in diverse tissues and organs, it can be considered a "group" of diseases. Even
though all these diseases are characterized by abnormal cell division, each one presents
specific peculiarities.

The understanding of genes and factors that affect its mechanisms is essential to
better understand cancer. Although similar genes have been found to regulate processes
in different types of cancer, some features that are specific to each type may be crucial
to improving understanding of the disease. Taking this into account, the focus of this
thesis is to propose a more curated prediction model to identify interactions of some
genes involved in a specific type of cancer, CRC.

2.1.2 CRC disease

CRC is one of the most frequent and lethal types of cancer in the world [44]. According to
its incidence, this disease manifests in three forms: family, hereditary, and sporadic. CRC
can be classified based on three main affected sites, the colon, rectum, and rectosigmoid
junction (Figure 2.1). Together, they form the large bowel. The colon is the largest
portion, the rectum is located at the end, and the rectosigmoid junction is the transition
between the colon and rectum [70]. A tumor site is classified as present in the rectosigmoid
junction when differentiation between the rectum and sigmoid colon is impossible.

CRC can be impacted by many environmental aspects. Its development can be affected
by unfavorable aspects (e.g., smoking, alcohol consumption, obesity, eating red meat,
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Figure 2.1 Three general main sites of lower bowel: colon (A), rectosigmoid junction
(B), and rectum (C). The colon is the largest of the three anatomical regions, measuring
around 180 cm, and can also be divided into: ascending, transverse, descending, and
sigmoid colon. The rectosigmoid junction (B) corresponds to an anatomical site between
the sigmoid colon and rectum measuring around 0.5 and 3.7 cm. The rectum (C) is the
last part of the large intestine, measuring between 12 and 16 cm, and connects the colon
to the anal canal. Adapted from [71].

diabetes, and sedentary lifestyle) and by favorable aspects (such as having a balanced
diet including fruits and vegetables, whole grains, fibers, milk, and calcium). The impact
of factors such as a balanced diet call attention to the patient demographic, as more
developed populations tend to consume more processed food and consequently have a
higher obesity rate, which can affect CRC development. Thus, development can also be
impacted by other clinical factors such as race and gender. In this thesis, I also used some
of these clinical factors associated with biological aspects.

There are a few groups of procedures that can help with CRC diagnosis: physical,
endoscopic, and radiological examination. In the physical examination group, the doctor
can perform anal inspection, rectal touch, and abdominal palpation, looking for signs
of metastasis and abnormal behavior. Usually the development of CRC is difficult to
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identify through physical examination. In the endoscopic examination group, the doctor
can perform a rigid sigmoidoscopy, which explores up to twenty-five centimeters, does
not require anesthesia or preparation, as well as colonoscopy, which is the gold standard
for CRC diagnosis, but is expensive, requires sedation and is quite uncomfortable for
the patient. In the radiological examination group, the doctor can perform: a virtual
colonoscopy (which simulates a colonoscopy through tomography, but with less accuracy),
tomography, and MRI (which detects lymph nodes). Although these exams are all used
for CRC diagnosis, the one with most accuracy and that is most used is the colonoscopy,
which can be expensive and uncomfortable for the patient, so it is usually not done unless
it is truly necessary.

The most common type of CRC is adenocarcinoma, which accounts for 90% of cases.
Most CRC deaths are related to metastases, and when CRC stays confined to the intestinal
wall and is early detected it is potentially curable, as its development rate can be around
five years [69]. A patient with CRC can be classified according to his or her individual risk
factor by: medium, increased, and self-risk. Patients with medium risk are over 45 years
old without other risk factors and are recommended to do a colonoscopy every five years
and occult blood screening each year. Patients with increased risk either have a personal
history of polyps or CRC, or have a first-degree relative with cancer or polyps and are
recommended to do a colonoscopy and occult blood screening after 45 years old. Self-risk
patients include members of families with polyposis, recommended to do a colonoscopy
after puberty; members of families with lynch syndrome, recommended to do a Biennial
colonoscopy after age 21 and annually from age 40 on; and people with Ulcerative colitis
or Crohn’s disease, recommended to do colonoscopies every one-two years, starting 8
years after diagnoses. As many countries do not have a prevention program, and the high
cost of colonoscopy poses a challenge to frequent examination, other methods of CRC
diagnosis in its early stages can improve treatment as well as the prediction of its course
of development, the so-called, prognosis.

CRC can be classified through the TNM system (Table 2.1), where: T stands for
tumor size; N stands for the spread to nearby lymph nodes; and M stands for metastasis
to distant sites. The TNM system allows CRC to be classified into five pathological stages
- 0, I, II, III, and IV. In stage 0, the patient has not been compromised and cancer cannot
be considered invasive. In stage I the patient presents superficial tumors. In stage II
the patient presents bigger tumors that already present an important penetration in the
bowel wall, but do not present lymph node involvement. In stage 3 the tumor presents
lymph node involvement. Finally, in stage IV the tumor presents distant metastasis. The
lower the patient stage, the easier to treat the cancer. The patient stage can be assessed
as a clinical-stage when based on pre-surgery information, and as a pathological stage
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when based on post-surgery tumor information [72].

Table 2.1 TNM classification for CRC
Stage Level of involvements
T2 Tumor involves muscularis propria
T3 Tumor beyond muscularis propria
N0 No involved nodes
N1 Up to three perirectal/colic nodes
N2 Four or more perirectal/colic nodes
M0 No distant metastasis
M1 Distant metastasis

CRC treatment is based largely on its stage and can differ depending on site. The
recommended treatment for colon cancer is first surgery and then chemotherapy, most ad-
juvant treatment lasting around six months. Patients with rectum cancer usually undergo
surgery and sometimes recieve chemotherapy and radiation before or after the surgery. In
the case of the rectosigmoid junction, although it is anatomically considered part of the
sigmoid colon, it shares the surgically important vascular system with the rectum, and is
therefore better considered part of the rectum and treated independently [73]. Defining
in which site the CRC occurs is important, given that inaccurate identification of the site
can lead to undertreatment or overtreatment, which increases likelihood of mortality.

While CRC diagnosis and therapy have been progressing, given the growing number of
CRC diagnosis in the population, improvement of prognosis is necessary [3, 74]. To better
CRC diagnosis, prevention, and treatment, understanding the molecular mechanisms in
CRC development and progression is crucial.

For this thesis, I collaborated with an expert on CRC who is a Professor at the
Medical Faculty of the Universidade de Brasília (UnB), Professor João Batista. Through
this collaboration, we chose features to propose the prediction model, the results of which
have to be further validated experimentally.

2.2 Description of mRNAs, ncRNAs, and ceRNAs

In this section, I present biological concepts surrounding mRNAs and non-coding RNAs
(ncRNAs). First, I briefly describe the biological aspects of messenger RNAs (mRNAs),
small ncRNAs (in particular, miRNAs), and lncRNAs, and their role in cancer develop-
ment. Then, I discuss the ceRNA mechanism and its potential roles in disease regulation.
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2.2.1 The central dogma of molecular biology

Biological processes of regulation and structural maintenance occurring in organisms are
driven by the interaction between two groups of molecules, proteins and nucleic acids.
There are two types of nucleic acids in nature, DNA (deoxyribonucleic acid) and RNA
(ribonucleic acid), which play essential roles in protein creation and system regulation.

As postulated by the central dogma of molecular biology [17, 75] (Figure 2.2), there
are three main processes related to the interaction involving nucleic acids and proteins:
(i) replication, in which a DNA strand is replicated, (ii) transcription, in which a portion
of the DNA is transformed into RNA molecules, (iii) and translation, in which RNAs are
used to produce a protein.

Figure 2.2 The central dogma of molecular biology explains the process of protein syn-
thesis from information stored in DNA, performed with RNA molecules. This protein
synthesis mechanism involves transcription, replication, and translation processes. In
contrast to the central dogma flow, we have the reverse transcription and RNA replica-
tion processes.

The proteins generated after the translation process are molecules made up of amino
acids, which play a variety of essential roles in organisms, accelerating chemical reactions,
transporting nutrients, eliminating toxic waste, and building complex structures [17].

There exist many types of RNA molecules, which can play different roles in the cellu-
lar mechanisms [76]. RNAs can be divided into two groups: protein-coding (PC) RNAs,
which can be translated into proteins, and non-coding RNAs (ncRNAs), which play reg-
ulation and structural roles in the cell.

Among the protein-coding RNAs, messenger RNAs (mRNAs) have been the major
focus of research in biology for a long time. Among the ncRNAs, two categories are of
note: (i) the small ncRNAs, which are small in size (20 to 300 nucleotides) and usually
have known characteristics, (ii) and the long ncRNAs (lncRNAs), which are longer than
200 nucleotides, have almost no capacity to synthesize proteins, and are the least known
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transcript [20, 21]. Next, I describe the biological aspects of mRNAs, small RNAs, and
lncRNAs.

2.2.2 mRNAs

To better understand mRNAs, we must explore processes of the central dogma in more
detail. During the replication process, the double-stranded DNA is separated into two
strands by the helicase enzyme. When the separation of the strands begins, the transcrip-
tion process is also initiated. In the transcription process, when the RNA polymerase
identifies the promoter region, it guides the DNA transcription process in a messenger
RNA that is not mature (pre-mRNA) in eukaryotes and in a messenger RNA (mRNA) in
procaryotes [77]. In eukaryotes, the pre-mRNA generated by the transcription undergoes
a process known as splicing. Splicing removes some regions (introns) of the pre-mRNA,
while binding others (exons), thus forming the mature mRNA. Note that splicing can
generate more than one protein from a single gene, known as alternative splicing (Fig-
ure 2.3). After the transcription process and splicing, translation begins, synthesizing
a protein from the mature mRNA. The splicing process can play a key role point in
numerous diseases, such as cancer [78].

Figure 2.3 Process of alternative splicing, a mechanism that enables the production of
multiple protein isoforms from a single pre-mRNA in which specific exons are included in
or excluded from the mature mRNA [78].

2.2.3 Small ncRNAs

As cited, some specific classes of small ncRNAs are well known, and currently, there are
almost 3,444 known classes (according to RFAM [79] in January 2023). The ncRNAs
classes can also be classified according to their roles in an organism [80].
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Small RNAs’ functions are highly associated with their tertiary structure, which is
derived from their secondary structure. When working with small RNAs, the secondary
structure is used as an approximation [81, 79]. Some of best known classes of RNA stand
out due to the roles they perform, such as: (i) tRNAs, which transport amino acids to
assist in protein synthesis, (ii) rRNAs, responsible for the catalysis of protein synthesis,
(iii) siRNAs, which can cause interference in protein translation, separating and promoting
the degradation of stretches of mRNAs, (iii) snoRNAs, which can modify rRNAs, tRNAs,
and snRNAs, (iv) and miRNAs, which regulates the translation process [80].

The functions of small ncRNAs in an organism include the development and suppres-
sion of diseases. For example, siRNAs can be used for the treatment of some diseases, such
as cancer [82]. Also, miRNAs can regulate the expression of genes responsible for develop-
ment, metabolism, cell proliferation, differentiation, and apoptosis mechanisms [83, 84],
which can participate in the outset and progression of cancer.

Because they are used in the methods of this thesis, I will now discuss miRNAs in more
detail. miRNAs are single-stranded small ncRNAs, normally approximately 22 nucleotides
in length. As previously stated, miRNAs are known for regulating gene expression through
translation inhibition or degradation of their target mRNAs in post-transcription [83]
(Figure 2.4).

Figure 2.4 In the pre-miRNA process, the pre-miRNA is transformed into a miRNA, and
regulates gene expression by binding to a mRNA and starting the process of inhibition or
degradation of their target [85].
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Processes like cell proliferation, differentiation, and apoptosis have also been proved
to involve miRNA interactions [84]. Changes in miRNA expression can cause diseases,
in particular tumor initiation, progression, and metastasis [86]. Several mechanisms, e.g.,
gene locus amplification, chromosomal deletion, mutation, and epigenetic silencing have
been identified as responsible for deregulating miRNA expression in cancer [30].

2.2.4 LncRNAs

Unlike small ncRNAs, the lncRNAs are long molecules that are normally more than
200 nucleotides in length and have a poor capacity for synthesizing proteins. lncRNAs
are usually classified into seven categories (Figure 2.5): (i) sense or (ii) antisense, when
the lncRNA overlaps the transcription region of one or more exons of another gene, on
the same or the opposite strand, respectively; (iii) bidirectional, when the start of the
lncRNA transcription and another gene in the opposite strand are close; (iv) intronic,
when the lncRNA is derived entirely from introns; (v) enhancer, when the lncRNA is
located in enhancer regions1; (vii) intergenic, also called lincRNA, when the lncRNA is
located between two genes; (vii) or promoter, when the lncRNAs are located in promoter
regions [87]2.

Unlike the studies on small ncRNAs, which use their secondary structure as a starting
point to infer their cellular roles, given the long length of lncRNA, research is limited by
current tools to build the spatial models of these molecules. Even with the restriction
posed by limited analysis of their secondary structure, several studies show that lncRNAs
can interact with DNA, proteins, and other RNAs in transcription processes, therefore
sharing responsiblility for growth, differentiation, suppression, and establishment of cells,
which are usually deregulated in cancer [87, 89].

Yet, lncRNAs can exhibit an mRNA-like structure with a poly-A tail3 in certain
cases, and can exert roles to act as: (i) decoy, by binding to other RNAs and proteins to
alter their functions; (ii) scaffold, by connecting chromatin-modified proteins and DNA
regions to form signal connections; (iii) guide, by miRNA sequestration; and (iv) signal,
by modulating miRNA regulation [89].

Like small ncRNAs, lncRNAs play diverse roles in an organism, which can include
participation in the development and suppression of diseases. Thus, several studies, both
in molecular biology and in bioinformatics propose lncRNAs as biomarkers to understan-
dand cancer emmergence [69, 50, 22, 51, 52]. These studies show the role of lncRNAs in

1Enhancer region is a region of DNA that amplifies transcription by interplaying with their target
promoters.

2Pomoter region is a region of DNA in which molecules bind to initiate transcription.
3A poly-A tail is a long chain of adenines, which are added to a RNA.
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Figure 2.5 Long non-coding RNA classes: (i) sense; (ii) antisense; (iii) bidirectional; (iv)
intronic; (v) enhancer; (vi) intergenic; and (vii) promoter. Adapted from [88].

epigenetics as well as the interaction between lncRNAs and miRNAs in cancer develop-
ment.

2.2.5 Competing endogenous RNAs (ceRNAs)

As previously described, proteins play diverse essential roles in organisms, any distur-
bance in their expression could lead to different behavior in the organism, such as cancer.
The mRNAs and the miRNAs are directly related, miRNAs bind to mRNAs and can
affect the translation process, therefore, both can directly affect normal protein expres-
sion. Although lncRNAs are not directly involved in the described process, they can also
interact with miRNAs and mRNAs, therefore indirectly affecting gene expression and also
potentially contributing to cancer development. This lncRNA-miRNA-mRNA interaction
is seen when, in addition to the regulation of mRNAs by miRNAs, the miRNAs bind to
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lncRNAs. These interactions act as a new miRNA regulation mechanism, impacting the
ability of other RNAs to compete for miRNA binding sites4 [30, 90]. This mechanism
is also known as the "target mimicry" process, while other RNAs, e.g., lncRNAs, act as
miRNAs "decoys" ("sponges") and affect transcriptional regulation [30]. Simply put, the
sponge shares a binding site target with a miRNA, and when the sponge interacts with
the targets, it releases them from the miRNA, affecting miRNA mechanisms (Figure 2.6).
This mechanism is also called competing endogenous RNAs (ceRNAs). Poliseno et al. [91]
and Sumazin et al. [92] show this sponge behavior in cancer emergence.

For example, lncRNA’s role as a decoy when interacting with miRNAs has been
pointed as possibly responsible for the emergence of lung, prostate, breast, pancreatic,
CRC, and other types of cancer [94, 95, 87, 89, 42]. Another example, for CRC, Zhang
et al. [96] point to the interaction among the PC SIX4, the lncRNA H19, and miRNA
miR-193b-3p. In this interaction, H19 acts as ceRNA for the miR-193b-3p, which affects
SIX4 regulation and affects transcription regulation. Other studies, such as Lin et al. [97],
Li et al. [98], and Gao et al. [3] also describe the roles played by lncRNA.

2.3 Concepts of machine learning and feature selec-
tion

In this section I present machine learning (ML) concepts, exploring feature selection
definitions and methods. First, I present basic concepts and the learning paradigms of
ML and detail ensemble learning and random forest, which are both used in this thesis.
Then, I highlight the importance of data in ML, along with general techniques commonly
used to build a prediction model.

2.3.1 Learning paradigms

ML focuses on the development of algorithms that detect patterns and learn through expe-
rience. According to Russel et al. [99], a machine learns when it improves its performance
in future tasks from observations made in the past. Machine learning is a category of
artificial intelligence algorithms through which, given an input, a machine becomes accu-
rate in predicting outcomes, and then produces an output without having been explicitly
programmed for these tasks. ML has four learning paradigms - unsupervised, supervised,
learning by reinforcement, and semi-supervised, briefly described as follows.

Supervised algorithms are based on the knowledge of the classes being analyzed. Ba-
sically, it classifies input data into previously known classes. To do so, the method builds

4A binding site is a region on a macromolecule (e.g., protein) that binds to another molecule.
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Figure 2.6 Competing endogenous RNAs mechanism. (A) illustrates the interaction
among ceRNA molecules, where RNAs compete for miRNAs affecting the splicing and a
different mRNA [90]. (B) describes the scenarios in which the miRNA and the ceRNAs are
over and under-expressed, affecting the regulation of molecules in the organism. Adapted
from [93].

a function called hypothesis that, according to the features, maps the input to the out-
put. This function is used as a model that becomes capable of classifying new input data
as belonging to specific classes. Examples include support vector machine (SVM) [100],
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Decision tree (DT) [101] and K-nearest neighbors (KNN) [102].
Unsupervised learning recognizes patterns in an input collection. The classes of the

input collection are not used in the algorithm process, even if they are known. Based on
the input features, the algorithm searches for patterns in the input data, labeling portions
of the data, which have been recognized as a class. The output is composed of groups of
input data. Some examples are k-medoids [103] and k-means [104].

Learning by reinforcement is based on learning each interaction to achieve a final goal.
The algorithm interacts with the environment, which is characterized by elements other
than the program itself. A decision made by the program receives a score, used to decide
the best classification. The decisions taken by the program receive rewards, which inform
the best action to take, given the possible known states of the environment [105].Some
examples are SARSA [106] and LSTD [107].

Lastly, the semi-supervised learning paradigm is method that extends supervised learn-
ing by using unsupervised learning techniques. In some cases, its performance exceed both
unsupervised and supervised learning approaches used separately [99]. Some examples are
Label Spreading [108] and Label Propagation [109]. Given the learning paradigms, I next
describe the supervised ML algorithms adopted in this thesis.

2.3.2 Logistic Regression

Logistic Regression (LR) is a supervised ML algorithm based on the statistical technique
with the same name. The LR algorithm is a special case of linear regression, which creates
a function from the available features to map the input data to the targets to predict the
probability of a new data point belonging to the target class [110]. In this thesis, I used
LR because of its simple implementation and interpretation, and for its calculation time
speed.

2.3.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised algorithm that classifies groups based on
the creation of separation margins. These margins, found by a fraction of the training
data, are called support vectors, and they separate sets of data into known labeled classes
(Figure 2.8). In this thesis, I used SVM based on its good capacity for generalization,
reducing classification errors, and for working well with a low amount of data (when
compared to other ML methods).
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Figure 2.7 Example of logistic regression curve. The S-curve is generated from the
logistic function, which estimates the probability of the target. The probabilities are
bound between 0 and 1. Adapted from [111].

2.3.4 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is a non-parametric lazy learning supervised algorithm, based
on a parameter K, which represents the number of neighbors that influences the classifi-
cation. The distance among the input data generates a classification model. KNN plots
the input data in a feature space where we have a notion of distance.

Basically, KNN finds a group of K objects in the training set that is closest to the
test input data object and labels each point as belonging to a particular class in this
neighborhood. There are three major parts to this algorithm: a set of labeled input
data; a distance metric to compute the distance between two data points; and the value
of K, the number of nearest neighbors [112]. Figure 2.9 shows an example of KNN. In
this thesis, I used KNN given its simple implementation and interpretation, and for its
calculation time speed.

2.3.5 Decision Tree

Decision Trees (DT) [101] is a non-parametric regression tree estimator that embeds tree-
structured regression models into a well-defined theory of conditional inference procedures.
The DT structure is represented by two types of nodes: (i) the decision node, which is
used to represent a decision based on a feature, and (ii) a leaf node, which is the decision
output. The root node is the starting point, which further expands to various branches
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Figure 2.8 Example of support vectors with dimension 2, where the support vectors
separate circles from square objects. Adapted from [88].

Figure 2.9 Example of KNN with neighbors influence example, for K = 3 and K = 7.
Adapted from [113].

making a tree-like structure. On each decision node, the data point class is defined through
hierarchy, based on a yes or no question [114]. I used DT in this thesis because of its
simplicity in ranking and, interpretation, and for its calculation time speed.
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Figure 2.10 Example of DT. The higher the tree node the more relevant the feature in
data classification. In this case, when input data has a glucose value less than or equal
to 127, it is most likely labeled as negative. Adapted from [115].

2.3.6 Ensemble

Ensemble based systems consult many sources before making a decision, given their known
variability and accuracy in other records [116]. This consulting happens because, most of
the time, knowledge from a single source is not enough to make trustworthy predictions,
and complementary knowledge from other sources can improve predictions.

Therefore, the ML method called Ensemble [117] uses a combination of a set of classifier
estimators, to build a classification model with improved generalizability, as compared to a
single estimator model. Ensemble methods are known for their capacity for generalization,
which mostly achieves better results than when results are obtained through independent
execution of each method.

Based on how the learners are generated, the ensemble methods are divided into two
paradigms: sequential ensemble (boosting methods); and parallel ensemble (averaging
methods) [117]. The averaging methods hinge on the construction of several parallel in-
dependent estimators, which produce output in the form of a prediction based on the
average of their estimators. Normally, their combination is better than a single estima-
tor because the model variance is reduced. On the other hand, in boosting methods,
where several estimators are built sequentially, to reduce the bias of these estimators’
combinations.

When using boosting, the combination of several weak models can produce an im-
proved model, while averaging methods work better using the combination of strong esti-
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mators. Ensemble learning is a well fabricated and frequently used ML method for classi-
fication and can perform well in fields such as feature selection [118]. Given the learning
paradigms and metrics for the performance measurement, I next describe Random forest
(RF) and Adaptative boosting (AB) which are the ensemble algorithms adopted in this
thesis.

2.3.7 Random Forest

RF is thus named because it builds a number n of decision trees as an ensemble, to create
a better classification model. A RF is an estimator that fits decision tree classifiers on
various subsamples of the dataset, also using averaging to improve the predictive accuracy
while simultaneously controlling overfitting [117]5.

In a random forest, each tree in the ensemble is built from a sample in the training
set. In addition, when splitting a node, the chosen split is no longer the best split among
all the features. Instead, the split that is chosen is the best one among a random part of
the features [117]. As a result of this randomness, the bias of the forest usually increases
slightly but, due to averaging, its variance also decreases, usually more than compensating
for the increase in bias and yielding an overall better model. The feature importance can
also be extracted by the analysis of the relative rank of a feature used as a decision node
in a tree. Features used at the top of the tree are most significant in the final prediction.
Figure 2.11 shows a RF example. I used RF in this thesis because of its simplicity in
performing feature ranking and its reduced prediction error rate.

RF is a ML algorithm that can be used for feature selection because it can identify the
features that are most important in predicting the target variable. This is done by training
a large number of decision trees on different subsets of the data, and then averaging the
predictions made by each tree (Figure 2.11).

By comparing the relative importance of each feature, measured by the number of
times it is selected by the trees, the RF algorithm can rank the features according to their
importance. This can be useful in identifying the most important features, which can
then be used to build a more interpretable and efficient model. One of the advantages
of using RF for feature selection is that it can handle high-dimensional data, such as
transcriptomics data, which may have hundreds or thousands of features. It is also robust
against noise and outliers in the data, making it suitable for use with real-world data that
may contain errors or irregularities.

5Overfitting is when a model is accurate in predicting training data, but not capable of generalization
for predicting new data.
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Figure 2.11 RF prediction model in which a large number of decision trees are generated
from a dataset. Each decision tree prediction is combined to make a final prediction. Each
decision tree is trained on a random subset of the data, and the final prediction is made
by averaging the predictions of all the decision trees.

In summary, RF is a useful tool for feature selection in transcriptomics because it
can identify the most important features in a high-dimensional dataset, and it is robust
against noise and outliers in the data.

2.3.8 Adaptative Boosting

Adaptative Boosting (AB or AdaBoost) is a boosting algorithm that can be used to
improve the accuracy of other algorithms. It works by repeatedly training the weak
learner with different weights given to each training data point, where more weight is
given to the examples that the weak learner previously misclassified (Figure 2.12). The
final output of the AdaBoost algorithm is a combination of all the weak learners, where
each weak learner votes on the outcome with a weight proportional to its accuracy [119].

In this thesis, I used AdaBoost combined with the DT estimator. The main difference
between this approach and RF is that in AdaBoost the constructed trees are usually just
a node and two leaves, meanwhile, in RF, a full-sized tree is built in each interaction. I
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used AdaBoost in this thesis because of its ability to build a strong learner from multiple
weak learners.

Figure 2.12 Example of the boosting technique used in AdaBoost, a prediction model in
which a large number of decision trees are generated from a dataset. The first tree receives
the dataset as input adjusts the model according to a feature, weights the dataset, and
gives the adjusted knowledge to the next tree. The last adjusted tree makes the class
prediction.

2.3.9 Feature selection and ranking

Feature selection is the process of selecting a subset of relevant characteristics to be
further used in ML methods. This is often done in order to reduce the data dimension-
ality, improve interpretability of results, and increase analysis efficiency. Several different
techniques can be used for feature selection, such as: filter methods; wrapper methods;
embedded methods; and hybrid methods [120]. Next, I briefly describe these techniques.

Filter methods involve ranking the features based on some statistical measure of rele-
vance, such as the p − value from a t − test, and then selecting a subset of the top-ranked
features. Wrapper methods evaluate the performance of a predictive model on a subset
of the features and then select the subset that leads to the best performance. Embedded
methods involve learning the features and the model jointly, such as using regularization
to select features that are more important for prediction. Finally, the hybrid methods
combine elements of multiple feature selection techniques, such as using a filter method
to pre-select a set of features and then using a wrapper method to further refine the
selection.

The fact that working with datasets containing a large number of features is common
and it can present some challenges being that some ML methods do not deal well with
high dimensionality. There are also cases in which the specialist helping to build the
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model needs to understand the features (i.e., doctor, biologist, and others) to check for
business value.

Feature selection is a field of itself, which focuses on helping produce a correct selection
of features that can improve the inductive learner, either in terms of learning speed,
generalization, or simplicity [121]. Feature selection is commonly divided in two ways:
one that returns a subset of the giving features; and another that returns a ranking of the
giving features.

One example of a feature selection method is Recursive Feature Elimination (RFE),
which tries to select the optimal features for a model based on its accuracy [122]. RFE
is often times, used in combination with custom regressors to optimize feature selection.
Specifically, the Least Absolute Shrinkage and Selection Operator (LASSO) [123] is widely
used. LASSO is a statistical formula that aims to identify the used variables and to assign
coefficients to them, leading to a model with minimal prediction error. Given the implicit
feature ranking capability of feature selection methods and of the previously described
RF, we can further explore RF to better understand each feature’s impact on a model’s
prediction, as well as use RF in combination with RFE.

2.3.10 SHAP

Contrary to the common view of ML models as a black box, Shapley Additive exPlanations
(SHAP) is a mathematical method for explaining the output of ML models. SHAP
estimates feature attribution for individual runs and captures the contribution of each
feature given a prediction model [124].

SHAP is a mathematical method for explaining the output of a ML model based on
the idea of Shapley values, which come from game theory and measure the contribution
of each feature to the prediction made by the model. In simple terms, SHAP allows for an
understanding of how each feature of a model contributes to the final prediction made by
the model. For example, given a model that predicts whether or not a customer will get
a loan, SHAP can help to understand which features of the customer’s data (e.g., income
and credit score, among others) are most important in making that prediction.

This method works by calculating the contribution of each feature to the final pre-
diction made by the model by comparing the model prediction with and without each
feature and then quantifying the difference in the prediction. This sheds light on how
much each feature contributes to the overall model prediction. Therefore, SHAP can be
used to explain the predictions made by any ML model, including DT, RF, and LR. Also,
it is a powerful tool for improving the transparency and accountability of ML systems.
SHAP estimates feature attribution on individual runs and captures the contribution of
each feature given a prediction model [124].

24



2.3.11 Generic machine learning techniques

In this section, I describe the ML techniques used in this thesis.

Input data preparation

Here, I address the importance of having a good quality data collection. Gathering the
data collection is considered the starting point of building a ML model. As previously
stated, ML is a process that, given an input, allows a machine to predict outcomes and
produce an output. If an input has mislabeled data, the ML function will probably
map a new input to output incorrectly, since it learned from erroneous observations.
Additionally, if we build a model with just one input, the model will be unlikely to learn
enough to classify other data differently from this single input. These aspects lead to very
relevant problems when building a ML model, and introduce the issues of data with noisy
information and not having a suitable amount of data.

Techniques to remove outliers (or noisy information) should be used in building the
input database in order to minimize this problem. These techniques can vary from simple
approaches, like removing points given the standard deviation, to the use of unsupervised
learning to cluster data and use only points near a centroid. Regarding the amount of
data, there are several ways to minimize the problem of inappropriate amounts of data,
using techniques that vary from under-sampling the data collection (e.g., random under-
sampling) to over-sampling the data (e.g., SMOTE [125]). Aside from these techniques,
when building the input data collection, the evaluation of a specialist is always recom-
mended, for example, working with a biologist when building a model to predict RNAs.

Another problem that must be considered is the selection of suitable input data groups
when working with supervised and semi-supervised learning techniques. For example, in
classical binary (two classes) classification problems, data is normally divided into two
classes, positive and negative. For example, if a model is built to classify a data point as
a car, data containing cars are chosen as positive. Now, if the negative group is defined
as fruit, the model can build a hypothesis that classifies a data point as a car with high
accuracy, using features such as tires and windows. But, if the model receives a motorcycle
as input, it will probably be erroneously classified as a car. This problem arises when the
negative group is not wisely chosen. Basically, it classifies the input data as belonging to
one of the previously learned classes.

Despite the recent increase in related biological data, because many biological database
entries are not fully annotated, sparsity of available datasets continues to be a problem,
which may not be ideal for statistical learning and construction of ML models [126]. Also,
the privacy aspects inherent to human data create a further problem of limited access to
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data. The fact that diseases occur only in a small fraction of a population further limits the
portion of biological data. This can lead to imbalanced data, which can generate overfit
models, and false-positive findings [127]. The participation of specialists in curating the
data, giving biological meaning, and using other performance metrics can improve ML
methods applied to biological data [126, 127].

Training, testing, and validation phases

Usually, there are three steps in the creation of ML models, training, validation, and
testing. Training is the step that aims to generate the model [117], and through which
the prediction hypothesis is built. This step uses a fraction of the input data, which is
not used in the testing step. In simple terms, training is the step where the model learns.

In the validation step, the hyperparameters of the model created in the training step
are tuned. Again, a fraction of the input data is used that is not used in the training and
testing steps.

After building a model through the training step, testing is performed in order to
validate the prediction hypothesis. Yet again, a fraction of the input data is used that is,
not used in training and validation. In this step, the model’s prediction performance is
calculated.

Performance measures

In addition to classification, and assuring the good input data quality, predictions made
by the model must be verified to be correct. Most metrics used to analyze the quality
of the built model, are usually calculated based on the number of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN), from the output
classification of the constructed model in the testing phase. TP (TN) shows the outputs
where a test observes a positive (negative), and a positive (negative) was also predicted.
FP (FN) shows the outputs where a test observes a positive (negative) for a negative
(positive) input, or the model predicted as a positive (negative), a negative (positive)
input. These numbers are usually shown in the so-called confusion table (Table 2.2),
often used to visualize the performance of the model.

Table 2.2 The confusion table, shows the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) predicted by the model constructed
in the training phase.

Predicted Value
Real Value Yes No

Yes TP FN
No FP TN
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The confusion matrix calculates metrics that evaluate the performance of the model
constructed in the training phase. Some commonly used metrics are recall, precision,
specificity, F-measure, and accuracy (each of which measures a particular aspect of the
built model).

Recall shows the rate of positives predicted as so, and it is calculated by:

recall = TP

TP + FN

Precision shows the rate of input data classified as positive, which are really positive,
and is calculated by:

precision = TP

TP + FP

Specificity calculates the rate of negatives predicted as so, and it is calculated by:

specificity = TN

TN + FP

F-measure combines precision and recall using a harmonic mean, and it is calculated
by:

F − measure = 2 · Precision · recall

Precision + recall

Finally, accuracy is a metric that calculates the general rate of the model:

accuracy = TP + TN

TP + TN + FP + FN

The performance can also be represented by the use of charts, in order to facilitate
interpretation. For example, the Receiver Operating Characteristics (ROC) curve can
help in understanding the ratio of true positives to false positives by analyzing the Area
Under the Curve (AUC), where the closer results are to 1, the better the model.

As previously stated, model performance is an important aspect of data classification.
In this thesis, I cite two techniques that can be used to improve performance of a built
model: k-fold cross-validation and grid search. In k-fold cross-validation, data is divided
into k segments (folds) of equal size. Then, k training and testing iterations are performed,
and in each iteration, a segment of the data is used as validation, while the other k − 1
segments are used for training. During the process, the segments are rearranged to ensure
that each segment is representative [128]. Figure 2.13 shows an example of the use of
k-fold cross-validation, with k = 10.

The grid search method performs a hyperparameter optimization, in order to improve
the model performance, by manually setting a range of possible parameters for the chosen
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Figure 2.13 Cross-validation, illustrated on a data set containing k = 10 segments. Each
segment in turn serves as a single validation segment. The model is built using the
remaining k - 1 segments.

model algorithm and searching in a brute-force way for its optimal parameters according
to the performance metric established [129]. See an example in Figure 2.14.

Figure 2.14 Illustration of grid search, where a grid with a range of possible parameters
is set and searched over to achieve the best performance. Adapted from [129]

2.4 Databases, tools, and methods for cancer disease

In this section, I describe the databases, tools, and pipelines present in the literature,
which have been used for a variety of analyses on cancer and CRC in particular.
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2.4.1 Databases

Improvements in molecular biology technologies have created a large volume of biological
data through several projects to analyze DNA, RNA, and proteins of many organisms
around the world [130, 131]. Databases containing the output data of these studies can
be found on the web, some with open access. According to Xiang et al. [132], biolog-
ical databases can be divided into three categories: primary databases, which contain
archives of raw sequence or structural data; secondary databases, which contain compu-
tationally processed or manually curated information, based on original information from
the primary databases; and specialized databases, which contain information of particular
research interest.

ncRNA databases

The ncRNA databases aim to store and organize data with relevant information on ncR-
NAs, which can be used by researchers to identify new sequences and in analysis [80].
Some ncRNAs databases are:

• NONCODE [133] has data collected from three sources: literature mining, GenBank,
and specialized databases, such as: lncRNAdb [134] and LNCipedia [135] (http:
//www.noncode.org/browse.php);

• RFAM [79] contains ncRNA sequences and secondary structures. The RFAM data
varies from data obtained through the use of multiple alignments, annotations of
secondary structures, and covariance models (https://rfam.xfam.org/);

• miRbase [136] contains sequences, annotation and predictions of microRNAs (http:
//www.mirbase.org/);

Cancer Databases

As said before, ncRNAs play several roles in organisms, and interactions among these
ncRNAs, such as lncRNAs and miRNAs, can influence disease regulation. Some special-
ized databases that focus on storing information on ncRNAs related to disease, and to
cancer in particular, are:

• LncRNADisease [137] contains around 480 entries of experimentally supported as-
sociations between lncRNA and disease, including ncRNA interacting partners such
as RNAs, miRNAs, and DNA (http://www.cuilab.cn/lncrnadisease);

• Lnc2Cancer [68] is a manually curated database that provides associations between
lncRNA and human cancer (http://www.bio-bigdata.net/lnc2cancer/), exper-
imentally supported;
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• miRCancer [62] contains a collection of miRNAs related to human cancer, which are
automatically extracted from articles in PubMed (http://mircancer.ecu.edu/);

• Gene Expression Omnibus DataSets portal (GEO) [138] stores original submitter-
supplied records (series, samples, and tools) from NCBI articles, as well as curated
datasets. The available search tool allows for filtering by cancer related files (https:
//www.ncbi.nlm.nih.gov/gds);

• The Cancer Genome Atlas (TCGA) [139] is a project that aims to catalog and dis-
cover major cancer-causing genomic alterations. Although it is not a database fo-
cused on ncRNAs, the TCGA contains several types of cancer related data, including
sequencing reads, lincRNAs, and miRNAs (https://portal.gdc.cancer.gov/).

2.4.2 Tools

Given the biological aspects of the ncRNAs, there are several computational tools that
use these features to predict, analyze, annotate and infer functions to these genes. These
tools can be used alone or in conjunction with other tools, depending on the research
goal.

ncRNA interactions and disease emergence

Most of the research that correlates ncRNAs interactions (mainly miRNAs and lncRNAs)
with disease emergence is biological and focuses on the "decoy" effect [140, 30]. Most
of the computational tools used in these biological studies are those that point to the
miRNA binding site, which is used to identify whether a specific lncRNA can work as a
decoy for the specific miRNA. These bioinformatic tools are:

• TargetScanS [141] (http://www.targetscan.org/vert_72/), which predicts bio-
logical targets of miRNAs by searching for conserved 8mer, 7mer, and 6mer sites
that match the seed region of each miRNA;

• miRanda-mirSVR [142] (http://www.microrna.org/microrna/getDownloads.do),
which uses a ML method to rank microRNA target sites by a down-regulation score;

• StarBase [143] (http://starbase.sysu.edu.cn/starbase2/index.php), which s
decodes the interaction networks of lncRNAs, miRNAs, competing endogenous
RNAs(ceRNAs), RNA-binding proteins (RBPs) and mRNAs from large-scale CLIP-
Seq data.
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2.4.3 Biological and computational methods related to CRC

In order to discuss the literature review of biological and computational methods related
to CRC, I used the following three points as analysis criteria: (i) the research output of
the study is a database with ncRNAs related to CRC; (ii) the study presents features
associated to ncRNAs related to CRC, where these features can be used to build a ML
model; and (iii) the study presents ncRNAs or experimentally proven interactions among
proteins and ncRNAs, related to CRC.

Biological methods

The following studies present only biological methods and some used statistical analysis
programs to generate information. Next, I describe these papers.

Han et al. [144] investigated the significance and biological function of the lncRNA
UCA1 in CRC. Authors used biological methods and tools such as: RT-qPCR kits to eval-
uate the expression of UCA1 from tissue samples or cells; siRNAs designed from siRNA
Construct software, in order to silence UCA1; cell proliferation assay, which evaluates the
proliferation; and cell invasion assay6. Results correlated a high level of UCA1 expression
to larger tumor size and suggested that UCA1 may regulate the expression of multiple
genes influencing cancer cell proliferation, cell cycle progression, and apoptosis. Regard-
ing the analysis criteria: (i) no output database was found; (ii) no ncRNA feature could
be used; and (iii) the lncRNA UCA1 was experimentally confirmed as associated with
CRC.

Zhong et al. [145] investigated the sponge effect of the lncRNA NEAT1 and miR-
196a-5p. First, authors performed a study to relate mir-196 and CRC, where the results
showed that miR-196a-5p inhibited both the protein level and mRNA level of the GDNF
protein, which is related to cancer. After showing the role of mir-196 in CRC, the authors
showed that NEAT1 acts as a decoy of mir-196 by using RT-qPCR, cell migration assay,
cell viability assay7 and through statistical analysis. In summary, the study found that
NEAT1 inhibited the cell proliferation and migration potential of colorectal cells by acting
as a miR-196a-5p decoy. Regarding the analysis criteria: (i) no output database was found;
(ii) no ncRNA feature could be used; and (iii) the lncRNA NEAT1 and the miRNA miR-
196a-5p were experimentally confirmed as associated with CRC.

Zhou et al. [74] investigated the relationship between the lncRNA HAND2-AS1 and
miR-1275 interaction with the regulation of the KLF14 protein. Understanding of this
relationship revealed HAND2-AS1 as a novel suppressor of CRC by sponging miR-1275.

6A cell invasion assay enables quantification of in vitro cell migration towards a membrane or a layer
of cells such as endothelial cells.

7The cell viability assay analyzes the ability of cells to maintain or recover themselves.
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For the study, the authors selected CRC samples from 74 patients undergoing surgery
at Wenzhou Center Hospital. To evaluate the role played by HNAD2-AS1, the authors
performed a biological pipeline using: cell counting assays; cell invasion assay; RT-qPCR;
xenograft assay8; luciferase reporter assay; and statistical analysis using Student’s t-test
and one-way ANOVA. Regarding the analysis criteria: (i) no output database was found;
(ii) no ncRNA feature could be used; and (iii) the lncRNA HAND2-AS1 and the miRNA
miR-1275 were experimentally confirmed as associated with CRC.

Lu et al. [146] looked into the relationship between the lncRNA XIAP-AS1 and CRC.
For the study, the authors collected 75 cancer tissue samples, and corresponding adja-
cent normal tissues were obtained from patients who underwent surgery for colon cancer
without preoperative chemotherapy or radiotherapy. The authors performed a biologi-
cal pipeline using: RT-qPCR; western blot9; cell viability assay; cell invasion assay; and
statiscal analysis using SPSS. Results indicated that XIAP-AS1 promoted cell growth and
invasion by facilitating the Wnt/β-catenin pathway and EMT. Regarding the analysis cri-
teria: (i) no output database was found; (ii) no ncRNA feature could be used; and (iii)
the lncRNA XIAP-AS1 was experimentally associated with colon cancer.

Gao et al. [3] studied the role played by lncRNA CACS15 in resistance to oxaliplatin
(OXA) (a medicine used for CRC treatment) by sponging miR-145 in CRC. In order
to perform the study, the authors collected 48 cancer tissue samples and corresponding
adjacent normal tissues from CRC patients who underwent surgery at Shanghai Tongji
Hospital of Tongji University School of Medicine. As the goal of the authors was to find
the relationship with OXA resistance, the patients were divided into two groups: 25 were
classified as OXA-resistant and 23 were classified as OXA-sensitive, where OXA regimen
was defined as the appearance of new lesions or tumor growth > 30% after 2 months of
chemotherapy while tumor growth < 20% was defined as non-resistance to OXA. The au-
thors performed a biological pipeline using: cell transfection; RT-qPCR; OXA sensitivity
assay; flow cytometric analysis; luciferase reporter assay; RNA pull-down assay10; RNA
immunoprecipitation (RIP) assay11; western blot; and lentivirus production and infection.
In the end, the study demonstrated that CASC15 knockdown enhanced OXA sensitivity
in CRC cells by sponging miR-145 in CRC. Regarding the analysis criteria: (i) no output
database was found; (ii) no ncRNA feature could be used; and (iii) the lncRNA CACS15
and the miRNA miR-145 were experimentally confirmed as associated with CRC and

8The xenograft assay serves to determine tumorigenic activity.
9The western blot is a technique to identify specific proteins from a complex mixture of proteins

extracted from cells.
10RNA pull-down assay is a technique that enables the identification of proteins that interact with an

RNA.
11The RNA immunoprecipitation (RIP) method shows the physical association between individual

proteins and RNA molecules in vivo.
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OXA resistance.
Ke et al. [147] investigated the role of miR-92a in the metastasis of CRC. To perform

the study, authors used CRC tumor tissues from 158 patients who underwent surgical
resection for CRC at the Department of Surgery, China Medical University Hospital. The
authors performed a biological pipeline using: RT-qPCR; MiR-92a precursor and inhibitor
transfection; cell invasion and migration assay; and statistical analysis using SPSS. Re-
sults demonstrated that miR-92a expression levels in the tumor tissues of CRC patients
were positively correlated with nodal metastasis, where miR-92a promoted metastasis by
suppressing PTEN gene expression and activating the PI3K/AKT pathway. Regarding
the analysis criteria: (i) no output database was found; (ii) no ncRNA feature could
be used; and (iii) the miRNA miR-92a was experimentally confirmed as associated with
CRC.

Igarashi et al. [148] looked at the role of miR-31-5p in anti-EGFR therapy in CRC.
Epidermal growth factor receptor (EGFR) is the target of anti-EGFR therapy, commonly
used for treating CRC patients. The authors used 102 primary tumors of CRCs of pa-
tients who underwent surgical treatment and chemotherapy with anti-EGFR antibodies
at Sapporo Medical University Hospital and Keiyukai Sapporo Hospital. All patients
underwent surgical resection of primary CRC tumors before receiving anti-EGFR ther-
apy. The authors performed a biological pipeline using: RT-qPCR and statistical analysis
with JMP software, and found high miR-31-5p expression to be associated with survival
in patients with metastatic CRC who underwent surgical treatment and chemotherapy
with anti-EGFR. Regarding the analysis criteria: (i) no output database was found; (ii)
no ncRNA feature could be used; and (iii) the miRNA miR-31-5p was experimentally
associated with CRC.

Inoue et al [48] investigated the clinical significance and biological function of miR-
29b in CRC. To perform the study, authors used tissues from 245 patients who underwent
primary tumors at Osaka University Hospital, and performed: RT-qPCR, to quantify
miR-29b expression; proliferation assay; flow cytometry; western blot; and statistical
analysis with JMP10 software. Results indicated that miR-29b may be a novel prognostic
marker and may play important roles in regulating tumor progression in CRC. Regarding
the analysis criteria: (i) no output database was found; (ii) no ncRNA feature could
be used; and (iii) the miRNA miR-29b was experimentally confirmed as associated with
CRC.

Wang et al. [47] explored the role of serum miR-135a-5p and the potential of this RNA
as a biomarker for diagnosis of CRC. To perform the study, authors used samples from
60 patients with primary CRC, 40 patients with CRC polyps, and 50 healthy controls,
and performed: serum RNA extraction; cDNA synthesis; and statistical analysis using
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SPSS. Through the biological pipeline, the authors detected that miR-135a-5p expression
was elevated in the serum of CRC patients, and identified it as a potential biomarker for
the diagnosis of CRC. Regarding analysis criteria: (i) no output database was found; (ii)
no ncRNA feature could be used; and (iii) the miRNA miR-135a-5p was identified as a
potential biomarker for CRC diagnosis.

Zu et al. [149] investigated the effects of miR-506 in CRC. The authors used data
from the CRC cell lines SW480, SW620, HCT-116, and HT-29, which were cultured in
DMEM medium (Gibco, USA)12, and applied biological methods and tools such as: RT-
qPCR; cell viability assay; colony formation assay; cell invasion and migration assay; and
statistical analysis using SPSS. Authors found that miR-506 acts as a tumor suppressor
in CRC by directly targeting LAMC1. Regarding the analysis criteria: (i) no output
database was found; (ii) no ncRNA feature could be used; and (iii) the miRNA miR-506
was experimentally confirmed as associated with CRC.

Ozawa et al [150] evaluated the clinical significance of lncRNAs mapped in 8q24.21,
the genomic region known as the gene desert in CRC. The 8q24.21 region is known for a
lack of PC genes, which suggests the potential impact of lncRNAs in CRC. To evaluate
significance of the lncRNAs, authors used 280 CRC and 20 adjacent tissues of patients
from three institutes (Mie University, National Cancer Center Hospital, and Tokyo Med-
ical and Dental University), and applied RT-qPCR assays to analyze the expression of 12
lncRNAs (PCAT1, PRNCR1, PCAT2, CCAT1, CCAT1-L, CASC19, CCAT2, CASC21,
CASC8, CASC11, PVT1, and CCDC26). Using the results of differential expression and
ROC curves with Youden’s Index, the authors established optimal cut-off values for each
lncRNA, as related to relapse-free survival (RFS)13 and overall survival (OS)14. Find-
ings showed that expression of CCAT1, CCAT1-L, CCAT2, PVT1, and CASC19 were
elevated in cancer tissues, and high expression of CCAT1 and CCAT2 was significantly
associated with poor RFS and OS, indicating them as potentially useful biomarkers for
predicting tumor recurrence or CRC prognosis. Regarding the analysis criteria: (i) no
output database was found; (ii) no ncRNA feature could be used; and (iii) the expression
of lncRNAs CCAT1, CCAT1-L, CCAT2, PVT1, and CASC19 was shown to be elevated
in CRC.

Dou et al. [151] investigated whether at decrease in lncRNA HOTAIR expression would
inhibit CRC stem cells. Authors extracted data for this study from the human CRC LoVo
cell line15, and used biological methods and tools such as: RT-qPCR; proliferative assay;

12Dulbecco’s Modified Eagle Medium (DMEM) is used for supporting the growth of many different
mammalian cells.

13Measuring the relapse-free survival is one way to see how well a new treatment works.
14The percentage of people in a study or treatment group who are still alive for a certain period of

time after they were diagnosed with or started treatment for a disease.
15Derived from a colon metastatic tumor, it is used to assess cancer immunotherapy agents in vitro.
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colony forming assay; cell migration assay; cell invasion assay; western blot; and statistical
analysis through a two-tailed paired Student’s t-test. Results demonstrated that down-
regulation of the HOTAIR expression in CRC decreases potential of tumorigenesis and
metastasis. Regarding the analysis criteria: (i) no output database was found; (ii) no
ncRNA feature could be used; and (iii) the lncRNA HOTAIR was found to be related to
CRC.

Dou et al. [45] evaluated the role of miR-223 in resistance to doxorubicin, a drug used
in CRC treatment. To perform the study, authors collected data from 50 paired CRC
tissues and adjacent normal tissues from patients from Xianning Central Hospital, and
used biological methods and tools such as: cytotoxicity assay; western blot; RT-qPCR;
miRNA transfection; EGFP reporter assay; and statistical analysis through GraphPad
Prism software. Results suggested that miR-223 promotes the doxorubicin resistance of
CRC cells by targeting the FBXW7 protein. Regarding analysis criteria: (i) no output
database was found; (ii) no ncRNA feature could be used; and (iii) the miRNA miR-223
and the protein FBXW7 were experimentally confirmed as associated with CRC.

Ma et al. [152] investigated the roles of the lncRNA BANCR and CSE1L gene in
CRC. The author used 32 pairs of CRC tumor tissues and adjacent normal tissues and
applied biological methods and tools such as: cell transfection; RT-qPCR assay; western
blot; luciferase assay; MTT assay16; cell apoptosis assay; matrigel invasion assay; and
statistical analysis using one-way ANOVA and Student’s t-test. Results showed that
BANCR silencing makes the CRC progression harder and enhances ADR, which is a
drug used for CRC treatment, by regulating miR-203/CSE1L. The authors stated that
targeting BANCR may be potentially therapeutic for CRC management. Regarding the
analysis criteria: (i) no output database was found; (ii) no ncRNA feature could be used;
and (iii) the miRNA miR-203 and the lncRNA BANCR were experimentally confirmed
as associated with CRC.

Lee et al. [153] aimed to identify differentially expressed lncRNAs in 5-fluorouracil-
resistant (a cancer drug) colon cancer cells. Authors extracted data from the cancer cell
lines SNU-C4 and SNU-C5 and used biological methods and tools such as: MTT assay;
RT-qPCR; flow cytometric analysis; and lncRNA profiling. The results suggested that
the lncRNA snaR has a potential role as a negative regulator of cell growth in response
to 5-fluorouracil-resistance. Regarding the analysis criteria: (i) no output database was
found; (ii) no ncRNA feature could be used; and (iii) the lncRNA snaR was indicated to
be involved in colon cancer drug resistance.

Yin et al. [154] explored the role of lncRNA GAS5 in CRC. Authors extracted data
from 66 patients from the First Affiliated Hospital of Nanjing Medical University and

16The MTT is an assay for assessing cell metabolic activity.
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used biological methods and tools such as: cell transfection; RT-qPCR; cell proliferation
assays; tumor formation assays; and statistical analysis with SPSS. The results showed
that overexpressed GAS5 could inhibit cell proliferation and demonstrated that GAS5
is downregulated in human CRC tumor tissues. Regarding the analysis criteria: (i) no
output database was found; (ii) no ncRNA feature could be used; and (iii) the lncRNA
GAS5 was experimentally confirmed to be associated with CRC.

Han et al. [155] examined the role of the lncRNA AFAP1-AS1 in tumor growth and
metastasis of CRC. Authors extracted data from 15 patients from the Affiliates Hospital
of Beihua University and used biological methods and tools such as: RT-qPCR; MTT
assay; wound scratch assay; western blot; and statistical analysis by using SPSS. The
results suggested that AFAP1-AS1 contributes to CRC tumor growth and metastasis.
Regarding the analysis criteria: (i) no output database was found; (ii) no ncRNA feature
could be used; and (iii) the lncRNA AFAP1-AS1 was experimentally associated with
CRC.

Table 2.3 shows a summary of the biological methods developed for CRC found in
the literature. Note that some of the studies do not present proteins, but rather interac-
tions among lncRNAs, miRNAs and/or proteins. This is because the authors study the
interaction with a protein that is confirmed to be related to CRC by previous studies.

Computational methods

Next, I describe another set of studies analyzed based on the use of biological data and
tools, or biological databases along with a computational method.

Yuan et al. [156] studied the relationship among lncRNAs, miRNAs, and mRNAs in
CRC. Authors extracted data from TCGA using a total of 480 CRC tumor tissues and
41 non-tumor tissues as input for bioinformatics prediction and correlation analysis; and
authors selected 136 lncRNAs, 29 miRNAs, and 138 mRNAs to construct a lncRNA-
miRNA-mRNA ceRNA network. The collected data also included clinical information
such as age, gender, race, pathologic stage, pathologic tumor (pathologic T), pathologic
node (pathologic N), and pathologic metastasis (pathologic M), noting that the authors
filtered data based on expression level. The R package edgeR [157] was used to analyze
the differential expression of mRNAs, miRNAs, and lncRNAs between the CRC tumor
tissues and the normal samples. To identify the miRNA-lncRNA interactions, authors
used data on experimentally verified miRNA-target genes from miRcode [158] and the
miRTarBase, targetScan, and miRDB tools. To validate the miRNAs related to CRC,
they used the miRCancer [62]. The final step of the study consisted in a Gene Ontology
(GO) analysis using DAVID [159], in which authors also analyzed the correlation between
the lncRNA-miRNA-mRNA and survival time by using the "survival" R package [160].
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Table 2.3 Summary of biological methods, with observations regarding proteins, lncR-
NAs, miRNAs, and their interactions.

Paper Biological methods Proteins LncRNAs MiRNAs Interactions
Han et al. [144] RT-qPCR, cell proliferation assay and no UCA1 no yes

cell invasion assay
Zhong et al. [145] RT-qPCR, cell migration assay and no NEAT1 miR-196a-5p yes

cell viability assay
Zhou et al. [74] RT-qPCR, xenograft assay and no HAND2-AS1 miR-1275 yes

luciferase reporter assay
Lu et al. [146] RT-qPCR, western blot, cell viability assay no XIAP-AS1 no yes

and cell invasion assay
Gao et al. [3] cell transfection, RT-qPCR,OXA sensitivity assay, no CACS15 miR-145 yes

flow cytometric analysis, luciferase assay,
RNA pull-down assay, RIP and western blot

Ke et al. [147] RT-qPCR; cell invasion and migration assay no no miR-92a yes
Igarashi et al. [148] RT-qPCR no no miR-31-5p yes
Inoue et al [48] RT-qPCR, proliferation assay, no no miR-29b yes

flow cytometry and western blot
Wang et al. [47] serum RNA extraction and cDNA synthesis no no miR-135a-5p no
Zu et al. [149] RT-qPCR, cell viability assay, no no miR-506 no

colony formation assay, cell invasion and migrate assay
Ozawa et al [150] RT-qPCR no CCAT1, CCAT1-L no no

CCAT2, PVT1
and CASC19

Dou et al. [151] RT-qPC, proliferative assay, no HOTAIR no no
colony forming assay, cell migration assay,
cell invasion assay and western blot

Dou et al. [45] cytotoxicity assay, western blot, RT-qPCR, FBXW7 no miR-223 yes
miRNA transfection and EGFP reporter assay

Ma el al. [152] cell transfection, RT-qPCR assay, no BANCR miR-203 yes
western blot, luciferase assay, MTT assay,
cell apoptosis assay and matrigel invasion assay

Lee et al. [153] MTT assay, RT-qPCR, no snaR no yes
flow cytometric and lncRNA profiling

Yin et al. [154] cell transfection, RT-qPCR, no GAS5 no no
cell proliferation assays and tumor formation assay

Han et al. [155] RT-qPCR, MTT assay, no AFAP1-AS1 no yes
wound scratch assay and western blot

Results included the construction of, a ceRNA network based on lncRNA regulation,
and the identification of lncRNAs LINC00400 and LINC00355 as promising therapeutic
targets for CRC. Regarding the analysis criteria: (i) no output database was found; (ii)
no ncRNA feature could be used; and (iii) LINC00400 and LINC00355 were found as
novel lncRNAs associated with CRC.

Zhang et al. [8] aimed to investigate the clinical relevance and biological significance of
the lncRNA IQCJ-SCHIP1 in CRC. Data came from 86 paired CRC tissues and adjacent
tissues from patients of the Affiliated Hospital of Jiangnan University. In the biological
steps, the authors used: RT-qPCR; transfection; CCK8 assay and colony formation as-
say; cell cycle and apoptosis analysis; and RNA-seq assay. After the biological steps, the
authors used the clusterProfiler R package [161] to identify and visualize the Gene Ontol-
ogy (GO) and enriched KEGG pathways of differentially expressed genes (DEGs). Then,
they used the GSEA software to analyze DEGs [162]. Results identified IQCJ-SCHIP1
as a novel lncRNA that was down-regulated in CRC, indicative of a poor CRC prognosis.
Regarding the analysis criteria: (i) no output database was found; (ii) no ncRNA feature
could be used; and (iii) the lncRNA IQCJ-SCHIP1 was found as a potential therapeutic
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target and prognostic factor for CRC.
Falzone et al. [163] aimed to identify differentially expressed miRNAs in CRC. The au-

thors used datasets of microRNA profiling from the Gene Expression Omnibus DataSets
portal (GEO DataSets) publicly available at NCBI. They filtered the GEO datasets by
selecting only those containing: (i) information on both CRC patients and healthy pa-
tients as controls; and (ii) miRNA expression data of at least 30 samples. To perform the
differential analysis of miRNAs, Authors used GEO2R tool, then, with the output from
GEO2R, performed a statistical analysis to select the top 20 most significant up or down-
regulated miRNAs in CRC. With the list of the top 20 for each dataset, the researchers
used the bioinformatics tool Venn Diagrams, from the Bioinformatics and Evolutionary
Genomics (BEG) to compare the sets. They divided miRNAs according to their expres-
sion levels: "highly", "moderately", "lightly" and "poorly" up-regulated or down-regulated
then consulted the Catalogue of Somatic Mutation in Cancer (COSMIC) to identify the 10
most mutated genes that are known to be involved in CRC (APC, TP53, KRAS, FAT4,
TGFBR2, LRP1B, PIK3CA, KMT2C, ZFHX3, BRAF). Next, authors used the bioin-
formatics tool microRNA Data Integration Portal (mirDIP) to evaluate the interaction
between the miRNAs and the genes, then used DIANA-mirPath tool to identify the genes
and pathways targeted by specific miRNAs and the statistical significance of this interac-
tion. Results showed that hsa-miR-21-5p, miRNAs hsa-miR-195-5p and hsa-miR-497-5p
target the highest number of genes within the pathways reported in CRC and may have
an impact on CRC development. Regarding the analysis criteria: (i) A list of miRNAs
and genes related to CRC can be found; (ii) no ncRNA feature could be used; and (iii)
no ncRNAs were experimentally associated with CRC.

Bohme et al. [164] investigated the roles of miRNAs derived from cancer-associated
fibroblasts (CAF), which is a cell type within the tumor that can modulate tumor progres-
sion in CRC. Authors extracted data from tumor patients who participated in an ongoing
study developed at the UK National Institute of Health Research Clinical Research Net-
work. The researchers used methods and tools such as: extraction of primary fibroblasts;
isolation of exosomes; nanoString miRNA profiling; nanoString data analysis; RT-qPCR;
miRNA pathway analysis, using KEGG and Ingenuity Pathway Analysis microRNA Tar-
get Filter (QIAGEN), and predicted mRNA targets using a combination of TargetScan,
TarBase, miRecords, and the Ingenuity Knowledge Base; western blot; chemoresistance
assay; proliferation assay; and statistical analysis with Student’s t-test. Results exposed
novel miRNA signatures specific to CAFs and presented miR-21 as an important molecule
in CRC progression. Regarding the analysis criteria: (i) a list of miRNAs and genes re-
lated to CRC can be found; (ii) no ncRNA feature could be used; and (iii) the miRNA
miR-21 was experimentally confirmed as associated with CRC.
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Hu et al. [165] aimed to develop a lncRNA signature to improve CRC prediction.
Authors downloaded data from the publicly available GEO databases. Because they were
interested in the survival status of the patients, authors applied a filter to remove all
samples without survival status, and they used samples from 895 patients. To analyze
the expressions of lncRNAs, researchers used the GATExplorer tool and customized R
scripts. In terms of risk of cancer, they used the GSEA tool to determine if patients
of a given gene set were generally associated with risk score. To find whether or not
lncRNAs within amplified (or deleted) regions affected expression levels, the statistical
Mann-Whitney U (MWU) test was used. Next, the authors used cell viability assays
and tumor cell invasion assays. Results showed that the lncRNAs AK123657, BX649059
and BX648207 were significantly down-regulated in CRC tissues, compared to normal
colorectal tissues, suggesting a protective role in CRC biogenesis. Regarding the analysis
criteria: (i) no output database was found; (ii) no ncRNA feature could be used; and (iii)
the lncRNAs AK123657, BX649059 and BX648207 were associated with CRC.

Thorenor et al. [46] investigated the expression of disease-associated lncRNAs in CRC.
The authors used 119 tissues from CRC patients who underwent surgery at Masaryk
Memorial Cancer Institute and applied biological methods and tools such as: RT-qPCR;
northern blot17; cell viability assay; cell cycle analysis; and western blot. After using bio-
logical tools, the study identified ZFAS1 as significantly up-regulated, and then used four
bioinformatic algorithms: miRanda, miRWalk, RNA22, and Targetscan to predict miR-
NAs sponged by ZFAS1. Finally, authors performed a statistical analysis using R scripts
with packages of Bioconductor [166] and LIMMA approach, combined with hierarchical
clustering (HCL) to evaluate survival rate. Results demonstrated that ZFAS1 can act
as a sponge of miR-150-5p, influencing the metastatic potential and miR-590-3p, which
affects the CDK1 protein previously related to cell cycle and proliferation. Regarding
the analysis criteria: (i) no output database was found; (ii) no ncRNA feature could be
used; and (iii) the lncRNA ZFAS1 and the miRNAs miR-590-3p and miR-150-5p were
associated with CRC.

Qiu et al. [167] investigated the correlation between the expression of lncRNAs and
CRC. The study used data from published datasets in the gene expression omnibus
(GEO). The authors filtered the datasets based on the following conditions: (i) patients
with CRC; (ii) CRC tissue and normal tissue samples were available for comparison;
(iii) data were obtained from the same platform; and (iv) there were more than three
samples. In order to identify the differentially expressed probe sets, authors adopted a
workflow based on Yang et al. [168], then they reannotated the datasets by downloading

17The northern blot is a technique used to evaluate gene expression by detection of RNA (or isolated
mRNA) in a sample.
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the sequences of the probes from the official Affymetrix website and executed BLAST in
order to deepen their analysis. After reannotating and filtering the dataset, the authors
used the obtained lncRNAs as input for a Principal component analysis (PCA) using the
R Bioconductor package and performed a hierarchical clustering analysis (HCA) on the
differentially expressed lncRNAs. Combining HCA and PCA, the authors selected 25 dif-
ferentially expressed lncRNAs, which were chosen as markers. The results indicated that
CRC tissue could be discriminated from tumor-adjacent normal tissue with an accuracy
of 88.8% (71 out of 80 samples were correctly classified). Despite this accuracy of 88.8%,
the authors did not present the criteria used to establish the 25 lncRNAs as features.
Regarding the analysis criteria used to analyze this paper: (i) a list of lncRNAs that
may be related to CRC can be found; (ii) no ncRNA feature could be used; and (iii) no
ncRNAs were experimentally associated with CRC.

Gründner et al. [9] proposed the use of machine learning and of biological and clinical
features to predict chemotherapy use in patient treatment. The authors used data from
564 colon and rectal cancer patients from Erlangen University Hospital. First, they sep-
arated the data into two groups: patients who received chemotherapy and patients who
did not receive it. Second, they compiled a list of biological features (a list of 59 genes)
and clinical features: cancer localization; patient gender; whether the patient is a smoker;
patient weight; patient height; cancer type; and tumor stage. Third, with the selected
features, authors built ML models with: DT; RF; and deep neural networks. Finally,
their best model, which uses RF and combines all clinical and biological features showed
an accuracy of 71% as outcome. Regarding the analysis criteria: (i) no output database
was found; (ii) the list of biological features was not provided, but a list of clinical features
was provided; and (iii) no ncRNAs were experimentally associated with CRC.

Gupta et al. [11] described an approach using ML and clinical features to predict colon
cancer stages and the survival period of the patient. First, the authors extracted data from
4,021 patients from Chang Gung Memorial Hospital. Then, they selected the features:
body mass; family history of cancer; age; gender; smoking and alcohol consumption;
hemoglobin level; creatinine level; and white blood cells. With these features, the authors
devised a pipeline using: SVM, LR, Multilayer Perceptrons (MLP), KNN, and AB to
build the predictions model, which had an accuracy of approximately 84%. Regarding the
analysis criteria: (i) no output database was found; (ii) there were no biological features
were not provided, but a list of clinical features was provided; and (iii) no ncRNAs were
experimentally associated with CRC.

Achilonu et al. [10] also described a pipeline to predict recurrence and patient survival
using clinical features. First, the authors extracted data from 716 patients with CRC
from Johannesburg Hospitals. Then, they selected the features: pathology; race; recur-
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rence; chemotherapy; histology; and other clinical aspects. With the features, the authors
devised a pipeline using: LR, Naive Bayes (NB), C5.0, RF, SVM, and Artificial Neural
Network (ANN) to build the predictions model, which had an accuracy of approximately
87% at best. Regarding the analysis criteria: (i) no output database was found; (ii) there
were no biological features were not provided, but a list of clinical features was provided;
and (iii) no ncRNAs were experimentally associated with CRC.

Table 2.4 shows a summary of the computational methods found in the literature for
the study of CRC. Note that some of the projects do not present a protein, but rather
present interactions among lncRNAs, miRNAs, and/or proteins. This is because they
study the interaction with a protein that was confirmed to be related to CRC in previous
research.

Table 2.4 Computational methods summary
Paper Computational methods Proteins LncRNAs MiRNAs Interactions
Yuan et al. [156] miRTarBase, targetScan and R no LINC00400 and no yes

LINC00355
Zhang et al. [8] clusterProfiler no IQCJ-SCHIP1 no no
Falzone et al. [163] BEG list of genes no list of miRNAs yes
Bohme et al. [164] DIANA-mirPath and QIAGEN no no miR-21 no
Hu et al. [165] GATExplorer and R no AK123657, BX649059 no no

and BX648207
Thorenor et al. [46] Bioconductor, miRanda, no ZFAS1 miR-590-3p yes

miRWalk, RNA22 and Targetscan and miR-150-5p
Qiu et al. [167] Bioconductor, BLAST and HCA no list of lncRNAs no no
Gründner et al. [9] C50, RF and DT no no no no
Gupta et al. [11] SVM, LR, MLP, KNN and AB no no no no
Achilonu et al. [10] LR, NB, C5.0, RF, SVM and ANN no no no no
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Chapter 3

Competing endogenous RNAs in
CRC

In this chapter, we present a method to predict ceRNAs and biological markers that can
be used for CRC prognosis, which was published at Vieira et al [169]. In Section 3.1,
we propose a pipeline to identify potential biological markers that can be used for CRC
prognosis for the colon, rectum, and rectosigmoid junction. In Section 3.2, we present the
results obtained for each CRC anatomical site, together with the predicted ceRNAs and
biomarkers. In Section 3.3, we discuss the obtained results.

3.1 A method to predict biological markers

In this section, first, we describe the general pipeline developed to predict biological
markers used for CRC prognosis and the data used as input. We also detail how the
differential expression analysis is done and show how the ceRNA networks are constructed.
Finally, we discuss the methods used to perform the functional and survival analysis of
CRC.

3.1.1 General pipeline and input data

To identify biological markers used for CRC prognosis, we propose a pipeline (Figure 3.1)
with four steps: differential expression (DE) analysis; ceRNA network construction; func-
tional analysis; and survival analysis. This pipeline was defined for each of the three CRC
anatomical sites: colon, rectum, and rectosigmoid junction.

As the input for our pipeline, and given that CRC itself is so heterogeneous, to an-
alyze the patient markers prognosis with minimum variance from family, hereditary, or
other outlier cases, we initially use data only from patients with adenocarcinoma. The
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Figure 3.1 Pipeline to predict potential biomarkers related to CRC. Using both the
RNA expression raw count data and the clinical metadata from patients as input, first we
perform a DE analysis, then with the output we construct related ceRNA networks, and
afterward, we perform an enrichment and functional analysis with the molecules present
in the ceRNA networks.

needed biological and clinical information is extracted from The Cancer Genome Atlas
(TCGA), a database created as a joint effort between NCI and the National Human
Genome Research Institute, that characterized over 20,000 cancer samples of over 33
cancer types [59]. In specific, two projects from TCGA were used: TCGA rectal ade-
nocarcinoma (TCGA-COAD); and TCGA rectal adenocarcinoma (TCGA-READ). From
both projects, we collected RNA expression raw count data of 541 primary tumors and
48 non-tumor tissues from 539 patients, where 391 patients had cancer in the colon, 85
had cancer in the rectum and 69 had cancer in the rectosigmoid junction cancer. In the
sequence, we explain each step of the pipeline (Figure 3.1).

3.1.2 DE analysis and ceRNA network construction

Using the RNA expression raw count data obtained from TCGA as input, we created a
custom R script using the GDCRNATools v1.6 [170] package to perform a DE analysis for
each CRC anatomical site. First, we normalized the data using Voom normalization and
then used the limma [171] to compare primary tumor tissues against non-tumor tissues
to obtain a list of DE miRNAs, lncRNAs, and Protein Coding (PCs). We just considered
molecules with FDR ≤ 0.05 and |logFC| ≥ 2.

From the output of the DE molecules obtained, we also created a custom R script to
generate the ceRNA networks for each CRC anatomical site and to analyze the differences
and intersections among the networks. To generate the ceRNA networks, we also used
the method from GDCRNATools that as general criteria infer the competing endogenous
interactions between lncRNA and mRNA pairs if: the lncRNAs and mRNAs share a sig-
nificant number of miRNAs; the lncRNA and mRNA expression are positively correlated;
and the shared miRNAs play similar roles in regulating the lncRNA and mRNA expres-
sion. To check if the criteria are met, GDCRNATools use spongeScan [172] algorithm and
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the starBase v2.0 [173] database. The ceRNA network construction script provides as
output a list of nodes representing lncRNAs, miRNAs, and PC; and a list of interactions
among the nodes.

3.1.3 Functional and survival analysis

With the output from the ceRNA network molecules and the patient clinical metadata
merged, we created a R script to use this input to perform a survival and functional anal-
ysis. For the functional analysis, we performed an enrichment analysis from the input
data against three pathways databases: Gene Ontology (GO) [174]; Kyoto Encyclopedia
of Genes and Genomes (KEGG) [175] and Disease Ontology (DO) [176]. As a refer-
ence, the used annotation for humans was from the org.Hs.eg.db database v3.11.4. We
also considered only the results with p-value ≤ 0.05. For further analysis, we also in-
cluded some pathways presenting FDR > 0.05 as they can show good discussion points
for the CRC functional analysis. For the survival analysis, we used two methods: Cox
Proportional-Hazards (CoxPH) and the Kaplan Meier (KM). As an output of the anal-
ysis, the script gives a list of molecules that affect patient survival. As an output from
CoxPH, we also extract the molecule hazard ratio (HR) information, in which HR > 1
indicates risk factors, and HR < 1 indicates protective factors. After calculating the HR
we used the confidence intervals and removed the outliers by keeping only the molecules
with |higherLimit−HR| ≤ 6 and |lowerLimit−HR| ≤ 6 were considered. As an output
from KM we plotted the patient survival curves associated with each resulting molecule.
For both algorithms, we used p < 0.05 as the threshold for the results.

3.2 Results

This section presents the results from the pipeline described in the previous sections. We
show the results of the DE analysis for the colon, rectum, and rectosigmoid junction.
Then, we present the resulting ceRNAs network for the colon, rectum, and rectosigmoid
junction, highlighting their differences and intersections. After, we show the functional
analysis results for the colon, rectum, and rectosigmoid junction. And next, we show the
survival analysis results for all the anatomical sites.

3.2.1 DE molecules

As proposed in the pipeline, we performed a DE analysis for each CRC anatomical site.
For the colon, we obtained a total of 3,649 DE molecules (Figure 3.2), where from these
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we had: 1,179 up-regulated and 1,906 down-regulated PCs; 213 up-regulated and 136
down-regulated miRNAs; and 140 up-regulated and 75 down-regulated lncRNAs.

Figure 3.2 Volcano and bar plot with DE PCs, miRNAs, and lncRNAs from colon cancer
patients. The total count of 3,649 DE molecules, where 1,532 were up-regulated and 2,117
were down-regulated.

For the rectum, we obtained a total of 2,368 DE molecules (Figure 3.3), where from
these we had: 535 up-regulated and 1,532 down-regulated PCs; 119 up-regulated and 99
down-regulated miRNAs; and 46 up-regulated and 37 down-regulated lncRNAs.

Figure 3.3 Volcano and bar plot with DE PCs, miRNAs, and lncRNAs from rectum
cancer patients. The total count of 2,368 DE molecules, where 700 were up-regulated and
1,668 were down-regulated.

For the rectum, we obtained a total of 3,382 DE molecules (Figure 3.4), where from
these we had: 1,005 up-regulated and 1,880 down-regulated PCs; 181 up-regulated and
108 down-regulated miRNAs; and 149 up-regulated and 59 down-regulated lncRNAs.
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Figure 3.4 Volcano and bar plot with DE PCs, miRNAs, and lncRNAs from rectosigmoid
junction cancer patients. The total count of 3,382 DE molecules, where 1,335 were up-
regulated and 2,047 were down-regulated.

3.2.2 CeRNA Networks

After obtaining the DE molecules for the colon, rectum, and rectosigmoid junction, we
used the DE molecules to generate the ceRNA networks. The ceRNA network is repre-
sented by a graph, where its nodes are molecules present in the network, and the lines
connecting the nodes are the interactions of the molecules. In order to understand better
the ceRNA behavior for each anatomical site, we built one network for each site and also
explored their intersections.

For the colon, a ceRNA network consisting of 239 nodes and 506 interactions was
established (Figure 3.5). From these 239 molecules, we had: 161 PCs, 60 miRNAs, and
18 lncRNAs. We can notice that in this network we also have a sub-network containing
most of the interactions. This sub-network contains the lncRNA H19, which has been
reported to have a protagonist role regulating various cancer-related PCs in colon cancer
and in CRC in general [2, 7, 8].

For the rectum, a ceRNA network consisting of 82 nodes and 139 interactions was
established (Figure 3.6). From these 82 molecules, we had: 70 PCs, 8 miRNAs, and 4
lncRNAs. In this network, we can also notice a sub-network containing most of the inter-
actions. This sub-network contains the lncRNA MAGI2-AS3, which has been previously
pointed out as related to cell apoptosis and proliferation in CRC [177].

For rectosigmoid junction, a ceRNA network consisting of 133 nodes and 212 inter-
actions was established (Figure 3.7). From these 133 molecules, we had: 93 PCs, 26
miRNAs, and 14 lncRNAs. In this network, we can notice two subnetworks containing
most of the interactions. One of these subnetworks also contains the lncRNA MAGI2-
AS3, which is present in the biggest sub-network from the rectum and was pointed out
with a regulation role in CRC development. The second of these subnetworks contains
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Figure 3.5 Colon ceRNA network with 239 nodes and 506 interactions. We can note 7
subnetworks present, where one of them contains most of the molecule’s interactions.

the lncRNAs: SNHG1 and SNHG15, which were previously pointed as having an ac-
tive role in cell proliferation, apoptosis, and activation of the Wnt/β-catenin signal in
CRC [178, 179, 180, 181]

For the intersection between the colon and rectum ceRNA networks, we can notice a
uniqueness of 2 nodes and 2 interactions, which are the PCs: HMMR and HELLS. HMMR
was already pointed out a as potential regulation in CRC, but their specific roles need to
be further clarified [182, 183]. For the intersection between the colon and rectosigmoid
junction ceRNA networks, we can notice a uniqueness of 48 nodes and 77 interactions,
which can indicate that the colon and rectosigmoid junction share more similarities than
the colon and rectum. For the intersection between the rectum and rectosigmoid junction
ceRNA networks, we can notice a uniqueness of 12 nodes and 23 interactions, also showing
a possible indication that the rectum and rectosigmoid junction share more similarities
than colon and rectum, thus possibly highlighting the problem of misdiagnosing colon
and rectum cancer in the rectosigmoid junction, other than the anatomical proximity.
For the intersection among all anatomical sites, we can notice a uniqueness of 47 nodes
and 76 interactions, which can indicate the common mechanism in the regulation of
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Figure 3.6 Rectum ceRNA network with 82 nodes and 139 interactions. We can note 4
subnetworks present, where one of them contains most of the molecule’s interactions.

CRC at all anatomical sites. Finally, we also show the nodes and interactions unique to
each anatomical site, where: the colon presents 142 nodes and 351 unique interactions;
the rectum presents 18 nodes and 35 unique interactions; and the rectosigmoid junction
presents 24 nodes and 34 unique interactions, showing the possible specific underlying
mechanism to CRC development in each anatomical site. Figure 3.8 shows the described
networks.

Figure 3.9 better illustrates the common mechanism of CRC in all anatomical sites,
where we can notice four subnetworks, which of them contain most of the interactions.
This sub-network contains the lncRNA MAGI2-AS3 and affects a great number of PCs
by interacting with hsa-miR-374b-5p and hsa-miR-374a-5p.
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Figure 3.7 Rectosigmoid junction ceRNA network, with 133 nodes and 212 interactions.
We can note 10 subnetworks present, where two of them contain most of the molecule’s
interactions.
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Figure 3.8 Competing endogenous RNA (ceRNA) network in colon, rectum, and rec-
tosigmoid junction sites. The diamonds represent lncRNAs, the circles represent miR-
NAs, and the squares represent PCs. The molecules and interactions of each CRC site
can be identified by color. Published at Vieira et al [169].
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Figure 3.9 Competing endogenous RNA (ceRNA) network intersection for colon, rectum,
and rectosigmoid junction sites. Published at Vieira et al [169].
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3.2.3 Functional analysis

After obtaining molecules present in the ceRNA networks for the colon, rectum, and
rectosigmoid junction, we used these molecules with the patient’s clinical data to perform
the functional analysis. For colon (Figure 3.10), we can see a heterogeneous enrichment
for the different databases. The most interesting enrichment results come from KEGG,
which relates the input molecule with miRNAs in cancer and prostate cancer pathway,
and DO, which relates to central nervous system cancer pathways.

Figure 3.10 Functional enrichment analysis of molecules present in colon ceRNA net-
work. The top 5 enrichment results for GO biological processes, cellular component,
molecular function, DO and KEGG are shown in different colors. Asterisks (*) indicate
pathways presenting FDR > 0.05.

For the rectum, we can see that the enrichment shows many pathways related to signal-
ing (Figure 3.11). We can also notice the enrichment against KEEG shows a relationship
with insulin resistance, which is interesting given the connection between CRC and the
negative effect of diabetes on the patient overall survival.

For rectosigmoid junction, we can note that the enrichment shows many pathways
related to signal transduction (Figure 3.12). From the enrichment against KEGG, we can
also notice pathways related to the central carbon metabolism in cancer and small-cell
lung cancer.

To understand the possible specific mechanisms that differentiate CRC progression in
the different anatomical sites, we performed a functional analysis for the molecules that are
unique in the colon, rectum, and rectosigmoid junction (Figure 3.13). For colon specific
molecule enrichment, we can notice pathways related to nuclear division, endothelial cell
differentiation, and collagen regulation. In fact, collagen has already been reported as an
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Figure 3.11 Functional enrichment analysis of molecules present in rectum ceRNA net-
work. The top 5 enrichment results for GO biological processes, cellular component,
molecular function, DO and KEGG are shown in different colors. Asterisks (*) indicate
pathways presenting FDR > 0.05.

important factor in regulating cancer tumorgenesis in CRC [184, 185]. For rectum specific
molecule enrichment, we can notice pathways related to cell differentiation and signaling.
For rectosigmoid junction specific molecule enrichment, we notice a behavior similar to
the one of the complete network.

Finally, we performed an enrichment analysis for the molecules present in the com-
mon ceRNA network of CRC anatomical sites (Figure 3.14). Again, we can notice the
enrichment related to insulin resistance as noticed in the rectum enrichment. Also, we
can notice known pathways related to cancer development such as cell proliferation and
Wnt signaling.
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Figure 3.12 Functional enrichment analysis of molecules present in rectosigmoid junc-
tion ceRNA network. The top 5 enrichment results for GO biological processes, cellular
component, molecular function, DO and KEGG are shown in different colors. Asterisks
(*) indicate pathways presenting FDR > 0.05.

Figure 3.13 Functional enrichment analysis of molecules unique to the colon (i), rectum
(ii), and rectosigmoid junction (iii) ceRNA networks.

Figure 3.14 Functional enrichment analysis of molecules common to colon, rectum, and
rectosigmoid junctionceRNA networks.
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3.2.4 Survival analysis

Also using the molecules present in the ceRNA networks for the colon, rectum, and rec-
tosigmoid junction and the patient’s clinical metadata, we performed the survival analysis.
By using the CoxPH method to calculate the HR for each CRC site (Figure 3.15), we
identified 20 potential molecules that affect patient survival. Of these 20 molecules with
relevant HR: 14 were from the colon; 3 from the rectum; 3 were from the rectosigmoid
junction; and 1 was common in the rectum and rectosigmoid junction. DMD was the
gene with the highest HR for rectum and rectosigmoid junction, while AGAP3 was the
highest one for colon patients. It is important to notice that the colon displayed most of
the molecules with relevant HR, which may happen because the data has more patients
with CRC at the colon site.

Figure 3.15 Hazard ratio forest plot of survival associated RNAs in the ceRNA network
for colon, rectum, and rectosigmoid junction sites. The molecules with a hazard ratio
> 1 indicate risk factors, and those with a hazard ratio < 1 indicate protective factors.
Published at Vieira et al [169].

In order to further explore the patient’s survival, we used the KM method to plot their
survival curve. As the KM method also gives as output a list of molecules that affect the
patient survival, we divided our survival curve analysis in two: for the molecules predicted
by the KM method; and the molecules predicted by the KM and CoxPH methods.
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Figure 3.16 shows the top two molecules from the KM method with the lowest p-
value for the colon: RPS6KA5 and hsa-miR-1271-5p. We can note that in both cases the
survival probability over time is diminished and that for hsa-miR-1271-5p, the patient
probability of survival gets lower over time when the molecule is highly expressed.

Figure 3.16 Kaplan-Meier survival curves for the two best scored molecules for the colon.
Horizontal axis: overall survival time (in days), Vertical axis: survival probability.

Figure 3.17 shows the top two molecules from the KM method with the lowest p-value
for rectum: E2F8 and DMXL1. We can note that in both cases the survival probability
over time is diminished when the molecules are lowly expressed. Unfortunately, we can
also notice that for E2F8 an event happens around 1500 days and causes the end of
the survival curve, which among other reasons can be caused because the small amount
patients with CRC at the rectum to provide a better analysis.

Figure 3.17 Kaplan-Meier survival curves for the two best scored molecules for the rec-
tum. Horizontal axis: overall survival time (in days), Vertical axis: survival probability.

Figure 3.18 shows the top two molecules from the KM method with the lowest p-value
for rectosigmoid junction: hsa-miR-130b-3p and AGAP3. We can note that for AGAP3
the survival probability over time is diminished when the molecules are lowly expressed
and the other way around for hsa-miR-130b-3p.

After the analysis with KM, we found some PC that was not in the group of 20
molecules found with CoxPH (Figure 3.15), but that could also be relevant for overall
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Figure 3.18 Kaplan-Meier survival curves for the two best scored molecules for the rec-
tosigmoid junction. Horizontal axis: overall survival time (in days), Vertical axis: survival
probability.

patient survival, such as: RPS6KA5 for colon; DMXL1 for rectum; and AGAP3 for
the rectosigmoid junction. Finally, Figure 3.19 shows the survival curves for molecules
relevant both in KM and CoxPH methods. As an intersection of both methods, we have
eight molecules that could be considered potential biomarkers for CRC prognosis in each
anatomical site.

Figure 3.19 Kaplan-Meier survival curves for the best scored molecules with top HR
from CoxPH for colon (A), rectum (B), and rectosigmoid junction (C) sites. Published
at Vieira et al [169]
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3.3 Discussion

In this study, we built a pipeline that used different bioinformatics approaches to predict
potential biological markers that affect CRC prognosis. As said before, CRC is one of
the most common and lethal types of cancer in Brazil and worldwide. The focus of
this work was to analyze CRC occurrence in three anatomical sites: the colon, rectum,
and rectosigmoid junction. It is important to perform this analysis because the chosen
treatment therapy is directly related to the tumor location and the wrong diagnosis can
lead to over or under-treatment. Therefore, identifying molecular markers that could
help identify tumor sites and molecular characteristics is necessary. In this sense, the
construction of ceRNA networks allowed us to evaluate miRNA-lncRNA-PC interactions,
CRC control mechanisms, and the overall survival of patients.

Each of the steps of the pipeline gave as output potential biomarkers for CRC prog-
nosis, but by not only performing a DE analysis in lncRNAs, PCs, and miRNAs, but also
by building the ceRNA networks for each anatomical site and by performing a functional
and survival analysis we further assessed the relevance of each of these molecules and
their impact on patient prognosis. Also, we could further explore the unique and common
factors of the CRC mechanism in each anatomical site.

When analyzing the common factors of the ceRNA networks, we expected to identify
the lncRNA H19 as a protagonist, as previous studies [2, 7, 8] highlighted its protagonist
in regulating CRC. However, in our analysis, H19 was present only in the colon exclusive
ceRNA network. Although, in this network, H19 was pointed as a risk factor and acted
as ceRNA for SOX12, ANKRD6, STC1 and hsa-miR-130a-3p, all of which are present as
putative risk factors.

In the end, the common ceRNA network in colon, rectum, and rectosigmoid junction
ceRNA networks was composed of four subnetworks regulated by the lncRNAs: MAGI2-
AS3, HAGLR-AS3, SNHG1 and SNHG15, which may suggest that these molecules play a
role in CRC independent of the anatomical site (Figure 3.9). Further exploring these com-
mon networks, we can notice that the common mechanisms are related to the regulation
of Wnt signaling, cell morphogenesis, and proliferation (Figure 3.14), which are known to
be present in cancer. These molecules were also previously related to other known cancer
pathways: MAGI2-AS3 with cell apoptosis and proliferation in CRC [177]; HAGLR-AS3
with cell proliferation, invasion and apoptosis [186]; SNHG1 with cell growth and promo-
tion of CRC through the Wnt/β-catenin signaling pathway [180, 181]; and SNHG15 with
cell proliferation, apoptosis, and activation of the Wnt/β-catenin signal in CRC [178, 179].
Although these molecules were previously pointed out as related to cancer development,
our study was the first to relate all of them together as common factors in CRC underlying
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mechanisms and to indicate their joint use as potential biomarkers for colon, rectum, and
rectosigmoid junction cancer common behavior.

Within the MAGI2-AS3 network, we found the dystrophin gene (DMD). DMD plays
a special role in muscle fiber integrity [187] and it was the only gene identified as a po-
tentially significant risk factor in both rectum and rectosigmoid junction sites. Duchenne
muscular dystrophy is a disease known to be associated with DMD and our functional
analysis relates the biological disease’s pathways from DO to the rectum ceRNA (Fig-
ure 3.11). This gene is part of a network where it is regulated by miRNAs hsa-miR-374a-
5p and hsa-miR-374b-5p, and the lncRNA MAGI2-AS3. These three ncRNAs connected
to DMD are also ’sponged’ by the PC FOXO1, which is critical to tumor suppression and
apoptosis [188] and presented a putative protective role in colon CRC tumors. Although
Zhong et al [2] previously reported their interaction, the authors did not mention the
DMD and FOXO1 genes, nor did they evaluate their putative role as biomarkers or as
survival factors. Therefore, to the best of our knowledge, this is the first time that DMD
is reported as a potential biomarker for poor prognosis in CRC.

In the case of the rectosigmoid junction, we found DMD and hsa-miR-130b-3p to be
relevant to the patient prognosis. Some studies have reported the importance of hsa-miR-
130b-3p in poor prognosis of CRC [189, 190]. It is worth noting that hsa-miR-130b-3p,
which is relevant to the rectosigmoid junction is in the same ceRNA network as hsa-miR-
130a, which is relevant to colon prognosis. Both molecules are regulated by the lncRNA
MIR17HG, which may indicate that this ceRNA network is relevant to both the colon
and rectosigmoid junction. However, the miRNA responsible for poor patient prognosis
is different for each site.

The specific networks for the colon and rectum present distinct enriched biological
pathways, with more specific endothelial development in the colon and cell morphology
in the rectum. Due to the low number of samples for the rectosigmoid junction, we were
unable to find a statistically significant pathway for this network. However, the pathways
found are related to phosphorylation and signal transduction. These different biological
pathways highlight differences in CRC behavior between distinct anatomical sites, thus
reinforcing the importance of correctly identifying the tumor site.

E2F8 and RFWD3 presented putative protective roles for rectum CRC tumors. E2F8
encodes transcription factors that regulate development by the cell cycle [191] and RFWD3
is known to be essential in the process of repairing DNA interstrand cross-links [192]. Both
genes are connected with the lncRNA SNHG1 but are regulated by different miRNA. The
SNHG1 ceRNA network is common for all CRC sites, but only interacts with RFWD3
and E2F8 in the rectum, indicating a potential role for this network in rectum cancer.
The E2F8 gene has been reported relevant to CRC as well as in regulating cancer progres-
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sion [191, 193] and our survival analysis indicates better survival for high E2F8 expression
levels. Previous studies [191, 193], have identified E2F8 as a biomarker for colon cancer,
but they did not evaluate the potential role of SNHG1 -RFWD3 -E2F8 ceRNA network
interaction in rectum cancer.

The RPS6KA5 gene encodes for a tyrosine kinase and has been indicated as a biomarker
for colon cancer [194] through interaction with hsa-miR-130a [195]. In our colon specific
network, the lncRNA MIR17HG sponges hsa-miR-130a and interacts with RPS6KA5.
Hsa-miR-1271-5p, hsa-miR-130a, SOX12, ANKRD6, TMEM198, STC1, H19 and NRG1
all presented potential risk factors for colon cancer. Most of these molecules are present
in distinct regions of the ceRNA network, with the exception of miR-1275-5p and NRG1.
Both of these molecules are connected to the lncRNA MALAT1 and present opposing
putative roles. Some studies [2, 7, 8] have previously reported the effects of H19 ceRNA
on CRC, but both our network and survival analyses suggest its influence only in the
case of tumors located in the colon. No enrichment pathway of the rectosigmoid junction
presented an exclusive HR relevant molecule.

In further consideration of the overall survival evidence, we reaffirm the potential role
as prognosis biomarkers for: hsa-miR-1271-5p, NRG1, hsa-miR-130a-3p, SNHG16, and
hsa-miR-495-3p, in the colon; E2F8, in the rectum; and of DMD and hsa-miR-130b-3p,
in the rectosigmoid junction.

This study had some limitations. Initially, although several novel lncRNAs, PCs
and miRNAs with clinical significance for CRC were found, the study was performed
with TCGA data and no further experimental validation was carried out. Secondly, less
information was analyzed for the rectum and rectosigmoid junction tissues than for the
colon, which could influence site-specific results. Research on ceRNAs in CRC is still
in development and requires further experimental studies and a greater amount of data
from colon, rectum, and rectosigmoid cancer in order to improve our understanding of
the biomarkers found.

In conclusion, this study provided a pipeline to identify potential markers that affect
the patient’s overall survival and underlying mechanisms for colon, rectum, and rectosig-
moid junction cancer. As a byproduct of the pipeline, we construct ceRNA networks,
providing clinical significance and functional implications for cancer at each of these sites.
Finally, we highlighted several potential prognostic markers for CRC, and also ceRNAs
that can help to explain the differences between and common factors on prognosis for the
CRC sites.
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Chapter 4

A biological and clinical feature
analysis to predict recurrence and
patient survival for CRC

In this chapter, I present a method based on ML techniques to predict CRC recurrence and
patient survival. Section 4.1 contains a description of the method, along with an analysis
of the biological and clinical features relevant to the construction of the prediction model.
In Section 4.2 and Section 4.3 I discuss the results obtained.

4.1 A method to predict CRC recurrence and patient
survival

In this section, I present the method and the data used as input, then describe the
biological and clinical features extracted from the input data, and lastly, outline the
generic pipeline to predict patient survival and CRC recurrence.

4.1.1 Method description and input data

The model is designed to predict two CRC patient prognosis metrics: recurrence, which
indicates whether the CRC tumor grows back after treatment; and patient survival, which
indicates whether a patient survives after treatment until the last known medical appoint-
ment. The generic pipeline proposed to predict CRC recurrence and patient survival,
shown in Figure 4.1, is composed of two main phases: (i) data pre-processing, in which
the patient’s clinical and biological data is processed; and (ii) model construction, in
which the prediction model is constructed and evaluated. I implemented the pipeline in
Python using the scikit-learn [196] package for the ML algorithms implementation.
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Figure 4.1 A method to predict CRC recurrence and patient survival. The pipeline is
divided into two main phases: data pre-processing, in which the patient’s clinical and
biological data is processed; and model construction, in which the prediction model is
constructed and evaluated.

As input for the method, I extracted biological and clinical information from two
databases, TCGA rectal adenocarcinoma (TCGA-COAD)1; and TCGA rectal adenocar-
cinoma (TCGA-READ)2. I selected data exclusively from adenocarcinoma, as it is the
most common for CRC, and filtered data to minimize variance, by removing possible
outlier cases. Therefore, I collected RNA expression raw count data from both projects
from 541 primary tumor (TP) and 48 non-tumor tissues (NT) from 545 patients, where
391 patients had colon cancer, 85 had rectum cancer and 69 had rectosigmoid junction
cancer. Patient age ranged from 31 to 90 years old, with an average age of 66 years old.
Of these, 185 patients (34%) received chemotherapy, 105 (19%) had a relapse, and 108
patients (20%) died. See details of the data in the GitHub of this project3. Next, I detail
these pipeline phases.

4.1.2 Phase 1: data pre-processing

The data pre-processing phase (Figure 4.2) consists of three steps: (i) feature extraction,
in which the clinical and biological features are extracted from the input data; (ii) normal-
ization, in which the clinical and biological data are normalized to numerical values; and
(iii) missing features handler, consisting in the creation of cases to be analyzed, according
to the missing features in the data.

The feature extraction step uses the input data described in Section 4.1.1 and maps
the biological and clinical features for each patient. For biological features, as proposed
in Vieira et al. [169], I extracted the target biomarkers, in which: (i) the molecules are
differentially expressed (DE); (ii) the biomarkers are present in the CRC ceRNA networks;
and (iii) the biomarkers affect patient survival. These criteria guaranteed the selection
of molecules with a potential role in the CRC patient prognosis [169] and led to the
compilation of a list of nineteen molecules, as shown in Table 4.1.

In order to parameterize these molecules as biological features, I built customized R
and Python scripts, to extract two key items from the RNA raw expression count data:

1https://portal.gdc.cancer.gov/projects/TCGA-COAD
2https://portal.gdc.cancer.gov/projects/TCGA-READ
3https://github.com/lmacielvieira/crc_pipeline
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Figure 4.2 Data pre-processing phase of the method to predict CRC recurrence and
patient survival. This phase receives the patient’s clinical and biological data as input
and consists of three steps: feature extraction, in which clinical and biological features from
the input data; normalization, in which the clinical and biological data are normalized to
numerical values; and missing handler, consisting in the creation of cases to be analyzed,
according to the missing features in the data.

the molecule average expression; and the molecule expression level for each patient. To
obtain the average molecule expression, I performed a DE analysis, using GDCRNATools
v1.6 [170] and the Voom normalization and limma methods [171]. Then, with the average
expression of each molecule and the expression level for each patient, the script verifies if
each of these molecules was over-expressed in patients.

To extract the clinical features, first, I analyzed the raw clinical metadata available at
TCGA. These clinical features are divided into nine groups - clinical, demographic, diag-
nosis, exposure, family history, follow-up, molecular test, pathology detail, and treatment.
Professor João Batista de Sousa, an expert in CRC, assisted in the process of manually
choosing the most relevant characteristics from the available data. The following features
were chosen: age at initial pathological diagnosis; ethnicity; gender; race; vital status;
number of positive lymph nodes; number of lymph nodes; pathological stage; weight;
height; chemotherapy; new tumor event; and vital status.

To normalize and prepare the data to be used in the prediction models, in the normal-
ization step, the clinical and biological features were transformed into numerical values,
as shown in Table 4.2. These numerical values were later used in the charts that illustrate
the feature importance.
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Table 4.1 Candidate molecules to be used as biological features in the ML model to
predict CRC recurrence

Molecule Type Potential roles in CRC
AGAP3 PC cell proliferation [197]
ANKRD6 PC immune invasion [198]
DMD PC lymph node metastasis [199]
E2F8 PC cell proliferation [193]
FOXO1 PC chemoresistance [200]
NRG1 PC tumorigenesis [201]
SOX12 PC cell proliferation [202]
STC1 PC cell migration [203]
TMEM198 PC CRC prognosis [169]
UST PC CRC prognosis [169]
hsa-miR-1271-5p miRNA cell proliferation [204]
hsa-miR-130a-3p miRNA cell proliferation [205]
hsa-miR-130b-3p miRNA cell growth [206]
hsa-miR-495-3p miRNA cell proliferation [207]
KCNQ1OT1 lncRNA chemo resistence [208]
H19 lncRNA cell migration and invasion [209]
MYLK lncRNA cell migration [210]
SNHG16 lncRNA cell growth [211]
SNHG20 lncRNA cell apoptosis [212]

Finally, in the missing features handler step, the data points with any missing feature
were removed or associated with a value generated according to their distribution. In
Section 4.2.1 I explain the results of these distinct strategies.

4.1.3 Phase 2: model construction

The model construction phase (Figure 4.3) consists of five steps: (i) data split, which
divides the pre-processed data into train and test data; (ii) feature selection, in which
RFE combined with LASSO and RF combined with RF select the most relevant features;
(iii)parameter optimization, where grid search and cross-validation optimize the ML hy-
perparameters; and (iv) ML classifiers construction, in which ML models using different
ML algorithms are built; and (v) performance evaluation, in which the ML classifiers are
evaluated and compared.

First, in the data split step, I divided pre-processed data in a 80% and 20% ratio, to be
used for training and testing, respectively. The training data then undergoes the feature
selection step, using RFE, LASSO, and RF to select the most important features to
build the ML prediction models. To interpret the features and compare feature selection
behavior, I compared the RFE and LASSO combination to the RFE and RF combination.
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Table 4.2 List of numerical values used in the feature vector.
Feature Meaning Associated Values
Age Age of the patient numerical value = age of the patient
Chemotherapy If patient received chemotherapy 1 = received chemo;

0 = did not receive chemo
Ethnicity Ethnicity of the patient 1 = latino; 0 = non latino
Gender Gender of the patient 0 = female; 1 = male
Height Height of the patient numerical value = height of the patient
Race Race of the patient 1 = non white; 0 = white
Pathological stage CRC pathological stage stage IV = 3; stage III = 2;

stage II = 1; stage I = 0
Vital status Vital status of the patient 1 = dead; 0 = alive
Number of positive lymph nodes Number of positive lymph numerical value = number of

nodes in biopsy tissue lymph nodes
Number of lymph nodes Number of lymph nodes numerical value = number of

in biopsy tissue positive lymph nodes
Weight weight of the patient numerical value = weight of the patient
New tumor event CRC recurrence 1 = new tumor; 0 = no new tumor
AGAP3 AGAP3 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
ANKRD6 ANKRD6 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
DMD DMD overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
E2F8 E2F8 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
FOXO1 FOXO1 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
NRG1 NRG1 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
SOX12 SOX12 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
STC1 STC1 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
TMEM198 TMEM198 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
UST UST overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
hsa-miR-1271-5p hsa-miR-1271-5p overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
hsa-miR-130a-3p hsa-miR-130a-3p overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
hsa-miR-130b-3p hsa-miR-130b-3p overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
hsa-miR-495-3p hsa-miR-495-3p overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
KCNQ1OT1 KCNQ1OT1 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
H19 H19 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
MYLK MYLKoverexpressed in the patient 1 = overexpressed; 0 = not overexpressed
SNHG16 SNHG16 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed
SNHG20 SNHG20 overexpressed in the patient 1 = overexpressed; 0 = not overexpressed

Then, I used SHAP to visualize the impact of each of the selected features in CRC
recurrence and patient survival prediction (Figure 4.4).

In the ML classifiers construction step, I used six classifiers to predict CRC recurrence
and patient survival: Random Forest (RF), Logistic Regression (LR), Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT) and Adaptive Boosting
(AB). As described in Section 2.3 of Chapter 2, each classifier uses a different approach
to predict an outcome, and classifiers behave differently based on the pattern of the input
data. Therefore, the goal was to explore these classifiers in order to find the best option to
predict the expected outcome. Finally, in the performance evaluation step, I evaluated the
ML model’s performance with the test data as input and compared the models through
several metrics, such as accuracy, precision, and recall.
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Figure 4.3 Model construction phase of the method to predict CRC recurrence and
patient survival. This phase receives the pre-processed data from Phase 1 and consists
of five steps: data split, in which the pre-processed data is divided into 80% train and
20% test; feature selection, in which RFE combined with LASSO and RF combined with
RF select the most relevant features; parameter optimization, using grid search and cross-
validation to optimize the ML hyperparameters; ML classifiers construction, building
ML models using different ML algorithms; and performance evaluation, in which the ML
classifiers are evaluated and compared.
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Figure 4.4 The feature selection step, with the pre-processed data as input, compares
two different methods: RFE combined with LASSO, and RFE combined with RF. Both
methods’ output is a list of selected features, which are used as input to the SHAP
explainer to easily visualize their individual impact on the model prediction.
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4.2 Results

In this section, I present the results obtained from the proposed method, beginning with
Phase 1 results - data pre-processing, followed by Phase 2 results for each prediction
target - model construction.

4.2.1 Phase 1: data pre-processing

Initially, during the feature extraction step, I performed a DE analysis using GDCRNA-
Tools v1.6 [170] and then extracted the average expression count of each DE gene. Based
on the average expression, I verified whether the gene was expressed for each patient and
used this as a biological feature associated with the patient. For the clinical features, I
noticed that in many cases, information necessary to collect clinical metadata chosen by
the specialist was missing.

Of these features, the ones with the most missing values were race, ethnicity, weight,
and height. To address this problem, first, I divided the clinical features into two groups:
(1) age at initial pathological diagnosis, gender, number of lymph nodes, number of pos-
itive lymph nodes, chemotherapy, pathologic stage, vital status, and new tumor event;
and (2) race, ethnicity, weight, and height.

Then, considering these two groups of clinical features, I grouped data into three cases
in the missing features handler step:

1. Filtered data with missing biological or group (1) clinical features;

2. Filtered data with missing biological or group (1) or group (2) clinical features; and

3. all data, but replacing missing clinical features by using the most frequent value.
In this case, I chose the most frequent value because features like race are fixed
values, and other missing data replacement techniques, like mean and median, could
generate non-existing features.

After filtering and transforming the data for each case, as described, the number of
patients was: for case (1), 357 with colon cancer, 74 with rectum cancer, and 63 with
rectosigmoid junction cancer; for case (2), 177 with colon cancer, 27 with rectum cancer
and 33 with rectosigmoid junction cancer; and for case (3), 391 with colon cancer, 85 with
rectum cancer, and 69 with rectosigmoid junction cancer. With all the features set up, I
proceeded to construct the prediction models for cases (1), (2), and (3).
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4.2.2 Phase 2: model construction

Patient survival

In the first step of the model construction phase, after dividing data for training and
testing, I compared two approaches (RFE combined with LASSO, and RFE combined
with RF) in the feature selection step. Table 4.3 shows the features selected for cases (1),
(2), and (3) for the patient survival prediction.

Table 4.3 List of features selected to predict patient survival, according to each designed
case.

RFE + LASSO RFE + RF4

Feature Used in Used in Used in Used in Used in Used in
case (1) case (2) case (3) case (1) case (2) case (3)

Age Yes Yes Yes Yes Yes Yes
Positive lymph node count Yes Yes Yes Yes Yes Yes

Lymph node count Yes Yes Yes Yes Yes Yes
Pathological stage Yes Yes Yes Yes Yes Yes

Recurrence Yes Yes Yes Yes Yes Yes
Chemotherapy Yes Yes Yes Yes Yes Yes

hsa-miR-130b-3p Yes Yes Yes Yes Yes No
hsa-miR-495-3p Yes Yes Yes Yes Yes No

KCNQ1OT1 Yes Yes Yes Yes Yes No
SNHG16 Yes Yes No Yes Yes No
SNHG20 Yes Yes No Yes Yes No
SOX12 Yes Yes No Yes Yes No
STC1 Yes Yes No Yes Yes No

TMEM198 Yes Yes No Yes Yes No
Gender Yes Yes No Yes Yes No
Weight No Yes Yes No Yes Yes
Height No Yes Yes No Yes Yes
MYLK Yes Yes No No Yes No
NRG1 Yes Yes No No Yes No

AGAP3 Yes No No Yes Yes No
hsa-miR-130a-3p Yes Yes No No Yes No

Race No Yes Yes No Yes No
E2F8 Yes No No Yes Yes No

ANKRD6 Yes No No No Yes No
DMD Yes No No No Yes No

Ethnicity No Yes No No Yes No
FOXO1 Yes No No Yes No No

H19 No No No No Yes Yes
hsa-miR-1271-5p No No No No Yes No

UST No Yes No No No No

4Only those features selected to train the best ML models to predict patient survival are portrayed, in
contrast to the LASSO approach, the features selected by RF may change according to the constructed
ML model.
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Note, in Table 4.3, that according to the RFE approach using LASSO and RF, for all
three cases, clinical and biological features were relevant as input for the models. There
are many similarities in the features chosen using LASSO and RF. Specifically, for both
selection algorithms, six clinical features were selected for the cases: age; lymph node
count; positive lymph node count; pathological stage; recurrence; and chemotherapy. It is
also worth noting that LASSO seems to select more biological features than RF and that
for both LASSO and RF, we have some biological features that seem to be important for
cases (1) and (2): hsa-miR-130b-3p; hsa-miR-495-3p; KCNQ1OT1; SNHG16; SNHG20;
SOX12; STC1; TMEM198. Figure 4.5 shows the impact of each chosen feature on the
model prediction in detail, using the SHAP explainer for Case 1.

Figure 4.5 (i) shows that when using LASSO, many of the chosen features have an av-
erage impact near zero, and only seven features seem to have an overall impact in the final
prediction. Through the RF approach (Figure 4.5(ii)), the importance of selected features
is more distributed. Both approaches highlight the potential importance of the biological
marker E2F8, and the higher the pathological stage, age, and CRC recurrence, the lower
the chance of patient survival. Also, chemotherapy treatment seems to increase patient
survival. Figure 4.6 shows the impact of each chosen feature on the model prediction in
detail, using the SHAP explainer for Case 2.

Figure 4.6 (i) shows as in Case 1 for LASSO, many of the chosen features have an
average impact near zero, and that only seven features seem to have an overall impact in
the final prediction. Through the RF approach (Figure 4.6 (ii)), the importance of the
selected features is more distributed. Unlike Case 1, LASSO indicated less importance
of the biological marker E2F8 as compared to the newly added clinical features, weight
and height. The RF approach indicates greater importance to biological features than the
LASSO approach, and, as in Case 1, points out the importance of E2F8. The observations
on the pathological stage, age, CRC recurrence, and chemotherapy are also confirmed in
this case. Figure 4.7 shows the impact of each feature on the model prediction in detail,
using the SHAP explainer for Case 3.

Figure 4.7 (i) shows that, unlike Cases 1 and 2, in Case 3, which has more data and
uses all the features, the feature importance is more distributed for both approaches.
The weight and height are not indicated as important in comparison to Case 2. The
RF approach does not show biological features to have a relevant impact on the final
prediction, while the LASSO approach highlights the biomarkers KCNQ1OT1, has-miR-
495-3p, and hsa-miR-130b-3p. The observations related to pathological stage, age, CRC
recurrence, and chemotherapy are also confirmed in this case. Lastly, although Case 3
worked with some generated values (completing any missing clinical feature patient data
with the most frequent value), this approach reduced the number of chosen features and
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Figure 4.5 SHAP summary plot showing the importance of the features selected using
RFE with (i) LASSO and (ii) RF to predict patient survival for Case 1. A positive SHAP
value indicates a positive impact on prediction, leading the model to predict 1 (Patient
died) and a negative value indicates a negative impact, leading the model to predict 0
(Patient survived). The bar plots on the left show the average impact of the feature in
the model. The scatter plot, on the right side, is depicted such that each point on the
chart is one SHAP value for a prediction and a feature, red indicating the higher value
of a feature and blue indicating the lower value of a feature. The chart illustrates, for
example, for both (i) and (ii), that the higher the pathological stage value, the higher the
chance of patient fatality.

had a better distribution of feature impact in the prediction of patient survival.
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Figure 4.6 SHAP summary plot showing the importance of the features selected using
RFE with (i) LASSO and (ii) RF to predict patient survival for Case 2. A positive SHAP
value indicates a positive impact on prediction, leading the model to predict 1 (Patient
died) and a negative value means negative impact, leading the model to predict 0 (Patient
survived). The bar plots on the left show the average impact of each feature on the model.
The scatter plot, on the right, is depicted such that each point on the chart is one SHAP
value for a prediction and a feature, red indicating the higher value of a feature and blue
indicating the lower value of a feature. The chart illustrates, for example, for both (i) and
(ii), that the higher the pathological stage value, the higher the chance of patient fatality.
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Figure 4.7 SHAP summary plot showing the importance of the features selected using
RFE with (i) LASSO and (ii) RF to predict patient survival for Case 3. A positive SHAP
value indicates a positive impact on prediction, leading the model to predict 1 (Patient
died) and a negative value indicates negative impact, leading the model to predict 0
(Patient survived). The bar plots on the left show the average impact of the feature in
the model. The scatter plot, on the right side, is depicted such that each point on the
chart is one SHAP value for a prediction and a feature, red indicating the higher value
of a feature and blue indicating the lower value of a feature. The chart illustrates, for
example, for both (i) and (ii), that the higher the pathological stage value, the higher the
chance of patient fatality.
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After selecting features with RFE using RF and LASSO as described, I proceeded to
train the ML models. I obtained the ML models optimized parameters using grid search,
listed in the project repository5. Table 4.4 shows the performance evaluation of all the
models constructed for predicting patient survival for all cases, using the features selected
by each of the RFE approaches.

Table 4.4 Performance evaluation of the ML models, used to predict patient survival in
all cases, using the features selected by each of the RFE approaches.

RFE + LASSO RFE + RF
Model Accuracy for Accuracy for Accuracy for Accuracy for Accuracy for Accuracy for

Case (1) Case (2) Case (3) Case (1) Case (2) Case (3)
SVM 80% 73% 74% 79% 73% 75%
LR 85% 90% 79% 85% 90% 79%

KNN 73% 73% 69% 73% 73% 68%
DT 75% 81% 77% 74% 73% 80%
AB 78% 85% 82% 78% 85% 80%
RF 84% 81% 83% 81% 81% 83%

I obtained the following results in predicting patient survival. For the RFE combined
with LASSO approach, the LR model led to the best accuracy for Case (1), achieving an
accuracy of 85% on the test data with a 78% precision and 67% recall. The LR model led
to the best accuracy for Case (2), achieving an accuracy of 90% on the test data with 94%
precision and 72% recall. The RF model led to the best accuracy for Case (3), achieving
an accuracy of 83% on the test data with a precision of 75% and a recall of 62%. For the
RFE combined with the RF approach, the LR model led to the best accuracy for Case
(1), achieving an accuracy of 85% on the test data with 78% precision and 67% recall.
The LR model led to the best accuracy for Case (2), achieving an accuracy of 90% on
the test data with 94% precision and 72% recall. The RF model led to the best accuracy
for Case (3), achieving an accuracy of 83% on the test data with 74% precision and 64%
recall. As shown, the LR models displayed the best average performance in all cases,
followed by RF.

Recurrence

In the first step of the model construction phase, after dividing data between training
and testing, we proceeded to the feature selection step, comparing the approaches: RFE
combined with LASSO; and RFE combined with RF. Table 4.5 shows the features selected
for Cases (1), (2), and (3) for the prediction of CRC recurrence.

5https://github.com/lmacielvieira/crc_pipeline
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Table 4.5 List of features selected to predict CRC recurrence, according to each designed
case.

RFE + LASSO RFE + RF6

Feature Used in Used in Used in Used in Used in Used in
Case (1) Case (2) Case (3) Case (1) Case (2) Case (3)

Positive lymph node count Yes Yes Yes Yes Yes Yes
Lymph node count Yes Yes Yes Yes Yes Yes
Pathological stage Yes Yes Yes Yes Yes Yes

Chemotherapy Yes Yes Yes Yes Yes Yes
SNHG16 Yes Yes Yes Yes Yes Yes

Age Yes Yes No Yes Yes Yes
hsa-miR-130b-3p Yes Yes No Yes Yes Yes

Gender Yes Yes No Yes Yes Yes
hsa-miR-495-3p Yes Yes No Yes Yes No

SNHG20 Yes Yes No Yes Yes No
SOX12 Yes Yes No Yes Yes No
AGAP3 Yes Yes No Yes Yes No

KCNQ1OT1 No Yes No Yes Yes Yes
STC1 No Yes No Yes Yes No

TMEM198 No Yes No Yes Yes No
Weight No Yes No No Yes Yes
Height No Yes No No Yes Yes
Race No Yes No No Yes Yes
E2F8 No Yes No Yes Yes No
H19 No Yes No Yes Yes No

MYLK Yes Yes No No No No
NRG1 Yes Yes No No No No

hsa-miR-130a-3p No Yes No No Yes No
Ethnicity No Yes No No Yes No
ANKRD6 No Yes No No No No

DMD No Yes No No No No
hsa-miR-1271-5p No Yes No No No No

UST No Yes No No No No
FOXO1 No No No No No No

Table 4.5 illustrates that for all three cases the RFE approach using LASSO and RF
selected clinical and biological features as relevant to be used as input to the models.
There are many similarities in the features chosen using LASSO and RF. In particular,
both selection algorithms chose the following five features for all cases: lymph node count;
positive lymph node count; pathological stage; chemotherapy; and SNHG16. The LASSO
approach was more conservative for Case 3 and mapped few features as relevant. Fig-
ure 4.8 shows the impact of each feature on the model prediction in detail with the SHAP
explainer for Case 1.

Figure 4.8 highlights the potential importance of both biological and clinical markers
6Only those features selected to train the best ML models to predict CRC recurrence are portrayed,

in contrast to LASSO, the features selected by RF may change according to the constructed ML model.
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Figure 4.8 SHAP summary plot showing the importance of features selected using RFE
with (i) LASSO and (ii) RF, to predict CRC recurrence for Case 1. A positive SHAP value
indicates a positive impact on prediction, leading the model to predict 1 (New tumor) and
a negative value indicates negative impact, leading the model to predict 0 (No tumor).
The bar plots on the left show the average impact of the feature in the model. The scatter
plot, on the right side, is depicted such that each point on the chart is one SHAP value for
a prediction and a feature, red indicating the higher value of a feature and blue indicating
the lower value of a feature. The chart shows, for example, that for both (i) and (ii), the
higher the pathological stage value, the higher the chance of a new tumor event.

in the prediction of CRC recurrence. As in the analysis for patient survival, the higher
the pathological stage, the higher the risk of a new tumor event. The LASSO approach
indicates that male patients (gender = 1) have a higher chance of CRC recurrence. Fig-
ure 4.9 shows the impact of each feature on the model prediction in detail with the SHAP
explainer for Case 2.
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Figure 4.9 SHAP summary plot showing the importance of the features selected using
RFE with (i) LASSO and (ii) RF to predict CRC recurrence for Case 2. A positive SHAP
value indicates a positive impact on prediction, leading the model to predict 1 (New
tumor) and a negative value indicates negative impact, leading the model to predict 0
(No tumor). The bar plots on the left show the average impact of the feature in the
model. The scatter plot, on the right side, is depicted such that each point on the chart
is one SHAP value for a prediction and a feature, red indicating the higher value of a
feature and blue indicating the lower value of a feature. The chart shows, for example,
that for both (i) and (ii), the higher the pathological stage value, the higher the chance
of a new tumor event.

Figure 4.9 (i) shows that many of the features chosen through LASSO have an average
impact near zero, and that only six features seem to have a high overall impact on the final
prediction. Through the RF approach (Figure 4.6 (ii)) the importance of selected features
is more distributed. The RF approach gives more importance to biological features as
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compared to the LASSO approach. The observations related to the pathological stage are
again confirmed in this case. Figure 4.10 shows the impact of each feature on the model
prediction in detail with the SHAP explainer for Case 3.

Figure 4.10 SHAP summary plot showing the importance of the features selected using
RFE with (i) LASSO and (ii) RF to predict CRC recurrence for Case 3. A positive SHAP
value indicates a positive impact on prediction, leading the model to predict 1 (New
tumor) and a negative value indicates negative impact, leading the model to predict 0
(No tumor). The bar plots on the left show the average impact of the feature in the model.
The scatter plot, on the right side, is depicted such that each point on the chart is one
SHAP value for a prediction and a feature, red indicating the higher value of a feature
and blue indicating the lower value of a feature. The chart illustrates, for example, that
for both (i) and (ii) the higher the pathological stage value, the higher the chance of a
new tumor event.

Figure 4.10 (i) shows that unlike Case 2, in Case 3, which has more data and uses all
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the features, the LASSO approach leads to a greater distribution in feature importance. In
this case, the RF approach contains all the features selected by LASSO. It is worth noting
that the only biomarker in both cases is SNHG16. Although this approach works with
some generated values (replacing any missing clinical feature patient data with the most
frequent value), it also filters the number of features more and has a better distribution
of feature impact in predicting patient survival.

After selecting features with RFE using RF and LASSO as described, I proceeded to
train the ML model. I obtained the ML models optimized parameters using grid search
and are listed in the project repository7. Table 4.6 shows the performance evaluation of
all the models constructed for predicting CRC recurrence in all cases, using the features
selected by each RFE approach.

Table 4.6 Performance evaluation of the ML models, used to predict CRC recurrence in
all cases, using the features selected by each RFE approach.

RFE + LASSO RFE + RF
Model Accuracy for Accuracy for Accuracy for Accuracy for Accuracy for Accuracy for

Case (1) Case (2) Case (3) Case (1) Case (2) Case (3)
SVM 80% 75% 80% 79% 73% 80%
LR 80% 79% 81% 82% 77% 80%

KNN 77% 65% 82% 78% 62% 81%
DT 79% 75% 76% 80% 62% 80%
AB 78% 73% 78% 79% 73% 81%
RF 82% 75% 80% 81% 75% 82%

I obtained the following results for the prediction of CRC recurrence. For the ap-
proach combining RFE with LASSO, the RF model led to the best accuracy for Case (1),
achieving an accuracy of 82% on the test data with 91% precision and 54% recall. The
LR model led to the best accuracy for Case (2), achieving an accuracy of 79% on the
test data with 74% precision and 64% recall. The KNN model led to the best accuracy
for Case (3), achieving an accuracy of 82% on the test data with 70% precision and 60%
recall. For the approach combining RFE with RF, the LR model led to the best accuracy
for Case (1), achieving an accuracy of 82% on the test data with 91% precision and 53%
recall. The LR model led to the best accuracy for Case (2), achieving an accuracy of
77% on the test data with 69% precision and 62% recall. The RF model led to the best
accuracy for Case (3), achieving an accuracy of 82% on the test data with 71% precision
and 57% recall. Note that the LR models displayed the best average performance in all
cases, followed by RF.

7https://github.com/lmacielvieira/crc_pipeline
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4.3 Discussion

As described in Chapter 2, Section 2.3, feature selection and ML methods are broadly
used to better understanding of data as well as to generate information [120]. With the
significant growth of biological data on CRC and the amount of information that can be
extracted from this data for the study of CRC prognosis, the use of feature extraction
techniques seems to be of interest for improving ML methods.

In this chapter, I compared feature selection methods for identifying biological and
clinical features relevant to CRC recurrence and patient survival. I also proposed ML
models to predict CRC recurrence and patient survival, which can help specialists to better
understand key points in CRC prognosis. The proposed method combines biological and
clinical features to predict CRC recurrence and patient survival, using data from patients
from the United States, available in the TCGA database, as input. Using LR and RF
I achieved at best accuracy of 90% and 82% for patient survival and CRC recurrence,
respectively.

Previous studies [9, 10, 11] devised models to predict CRC-related outcomes through a
variety of ML techniques. Gründner et al. [9] proposed a method that combines biological
and clinical features to predict prognosis aspects for CRC patients from the Erlangen Uni-
versity Hospital. Their best model used DT to predict patient relapse (CRC recurrence)
and achieved an accuracy of 71%, 73% specificity, and of 63% sensitivity. Achilonu et
al. [10] created a pipeline using clinical features to predict CRC recurrence and survival
in South African patients. Specifically, their best model used an artificial neural network
(ANN) and achieved an accuracy of 87.0% and 82.0%, for CRC recurrence and patient
survival respectively. Gupta et al. [11] described a model using clinical features to pre-
dict colon cancer stages and DFS from Chang Gung Memorial Hospital patients. Their
best model used RF and achieved an AUC of 89.0% and 84.0%, for cancer stages and
DFS, respectively. Table 4.7 summarizes these methods with the features used and best
accuracies.

Table 4.7 Methods based on ML to predict CRC prognosis.
Method Demographics Biological features Clinical features Best accuracy
Gründner et al. [9] Germany list of 58 genes Localization, gender, smoker, weight, 71%

height, cancer type, and tumor stage
Achilonu et al. [10] South Africa None Race, histology, recurrence, 87%

radiological stage, language
prior CRC treatment, hospital,
and CRC related complication

Gupta et al. [11] Taiwan None Age, gender, hypertension, 89%
diabetes, smoker, alcohol,
family history, and body mass index

LR model USA hsa-miR-130b-3p, hsa-miR-495-3p, Age, weight, height, 90%
(this work) and KCNQ1OT1 chemotherapy, CRC recurrence,

pathological stage, race,
count and number of positive lymph nodes
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It is of note that the methods described in these studies, including the present study,
used different data and features as input, and present relatively good accuracy in predict-
ing specific patient prognosis factors. As shown in Table 4.7, ML methods use various
clinical features to predict CRC prognosis targets. Gründner et al. [9] and the present
study are the only ones to propose a method that combines biological and clinical fea-
tures, and this study achieves a higher best accuracy. Achilonu et al. [10] and Gupta et
al. [11] show that clinical features, such as age, gender, race, recurrence, chemotherapy,
smoking, and alcohol consumption, can also lead to good accuracy in predicting CRC
prognosis factors. This study identified some of the clinical features in the cited works as
relevant, such as age, gender, race, recurrence, and chemotherapy. Although smoking and
alcohol consumption have been shown to be relevant in the cited works [10, 11, 9]. These
clinical features were not included in this study, because their values were missing from
the available TCGA data for most patients. Finally, this study demonstrates that even
when some relevant clinical features, like smoking and alcohol consumption are excluded,
the combination with biological features seems to maintain prediction accuracy.

Other than the similarities among the chosen features and the fact that each study
indicated a different ML classifier as the best predictor, most studies reported good results
with RF and LR predictors, which was confirmed in the present study. Gründner et
al. [9] reported low sensitivity values of their prediction models, which was confirmed in
this thesis. The best algorithms and the performance evaluation patterns for sensitivity
suggest a possible pattern in prediction behavior with CRC data, even with data gathered
from different sources.

This study can also be used as support in planning patient treatment by providing more
information for CRC prognosis. Furthermore, this study demonstrates that biological
markers help to predict patient prognosis. The biological features with greatest average
impact in all cases: SNHG16, hsa-miR-130b-3p, hsa-miR-495-3p and KCNQ1OT1 were
also pointed out by other studies [169, 213, 214, 207, 189, 190, 215, 216] as important in the
development of CRC. The results of this thesis also show that age, ethnicity, pathological
stage, chemotherapy, and lymph node count, clinical features confirmed to be relevant
though previous studies [217, 218, 219, 220, 221], are important even when combined
with biological features. The systematic analysis comparing RFE combined with LASSO
and RFE combined with RF showed that both algorithms behave similarly since they
indicated similar features. The models built using the features selected by RFE combined
with LASSO performed slightly better. On the other hand, the SHAP explainer showed
that the features selected by RFE combined with RF had a more distributed impact on
the target prediction. SHAP indicated clinical features to be more relevant than the
biological ones but also showed that the combination of the two has a better impact on
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the prediction of patient survival and CRC recurrence.
This study had some limitations. Initially, although several novel lncRNAs, PCs and

miRNAs with clinical significance for CRC were found, the study was performed with
TCGA data and no further experimental validation was carried out. It is also important
to highlight that TCGA consists of data collected exclusively from patients in the United
States. The amount of available data was a limiting factor, as only open-source data was
used. CRC was treated as a single disease in our prediction, instead of dividing it into
its anatomical sites (colon, rectum, and rectosigmoid junction), in order to mitigate this
limiting factor. Finally, I believe that the development of this analysis with data collected
from patients of other countries, such as Brazil, could give physicians a regional-specific
view and better understanding of CRC-specific characteristics for each anatomical site as
potentially related to the region where patients live. Research on biological and clinical
features in CRC is still in development and requires further experimental studies, and a
greater amount of CRC data to improve understanding.
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Chapter 5

Conclusion

The elucidation of molecular mechanisms and factors that affect CRC can assist physicians
in treatment and patient prognosis for the disease. This study analyzed open data from
patients with CRC through bioinformatics and ML techniques to identify the biological
and clinical aspects that may affect patient prognosis. First, I performed a comprehen-
sive search to find clinical and biological information associated with patients with colon,
rectum, and rectosigmoid cancer. I collected information associated with 391 colon, 85
rectum, and 69 rectosigmoid cancer patients from the TCGA database, specifically, the
TGCA-COAD and TCGA-READ projects. I proposed two pipelines using the gathered
patient information as input: one to identify the biological markers related to CRC prog-
nosis, highlighting the differences between anatomical sites; and the other, to predict
CRC recurrence and patient survival and to interpret the impact of clinical and biological
aspects on CRC.

In the first pipeline that sought to discover CRC-related biological markers, I created
a workflow with four steps: differential expression analysis; ceRNA network construction;
functional analysis; and survival analysis. The result of which was the construction and
analysis of ceRNA networks for colon, rectum, and rectosigmoid cancer in order to provide
clinical significance and functional implications for each of these sites. Considering the
functional aspects, the molecules present in the ceRNA networks suggested potential
roles in known cancer pathways, such as: cell proliferation and Wnt signaling, as common
mechanisms among the CRC anatomical sites. Considering the clinical aspects, I assessed
the impact of these molecules on patient survival. In conclusion, this method allowed for
the identification of biomarkers with a potential role in CRC prognosis, namely, hsa-miR-
1271-5p, NRG1, hsa-miR-130a-3p, SNHG16, and hsa-miR-495-3p, in the colon; E2F8, in
the rectum; and of DMD and hsa-miR-130b-3p, in the rectosigmoid junction.

In the second pipeline, I created a workflow with two steps: data pre-processing; and
model construction to build a ML model to predict CRC recurrence and patient survival.
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The use of LR and RF resulted in the best accuracy of 90% and 83% for predicting patient
survival and CRC recurrence respectively. The use of the six proposed ML algorithms
also showed overall good performance, specifically, RF displayed good overall results,
which was also highlighted in other studies [9, 10, 11]. Furthermore, results of this thesis
suggest that the combination of biological and clinical features may help to predict patient
prognosis. The biological features with greatest average impact in all cases, namely,
SNHG16, hsa-miR-130b-3p, hsa-miR-495-3p and KCNQ1OT1 were also pointed out by
other studies [169, 213, 214, 207, 189, 190, 215, 216] as important in CRC development.
Results also showed that age, ethnicity, pathological stage, chemotherapy, and lymph node
count, clinical features confirmed as relevant by previous studies [217, 218, 219, 220, 221]
are important even when combined with biological features.

This study may confirm that which is common knowledge: Machine learning algo-
rithms in bioinformatics can be used for prediction, classification, and feature selection to
enhance interpretation of CRC characteristics. Following the proposed pipelines, physi-
cians can better understand the underlying mechanisms of CRC at its anatomical sites,
as well as use the proposed model to help predict patient prognosis. The findings of this
study are a starting point for further studies on CRC, using bioinformatic and ML tech-
niques. Also, although this study was applied to data from patients from the USA, it can
be generalized, and running these pipelines in Brazilian patient’s data could lead to an
improvement in CRC interpretation, especially in countries with diversity and inequality
in the demographic landscape, which can affect CRC prognosis.

5.1 Contributions

In this thesis, I proposed two computational methods, using bioinformatics tools and
ML techniques to deepen knowledge of the underlying mechanisms of CRC. The output
from the first method, generated through a pipeline, indicated several potential prognostic
markers for colon, rectum, and rectosigmoid junction cancer. I also created specific ceRNA
networks for each CRC anatomical site, highlighting their potential common mechanisms.
The method proposed to find the biomarkers was published by Vieira et al. [169]1. Also,
I developed a ML method that uses clinical features and the biological markers found
through my initial work to predict patient survival and CRC recurrence. The model
achieved good accuracy and indicated several potential clinical and biological features re-
lated to patient prognosis. Finally, I built a data repository containing proteins, miRNAs,
and lncRNAs related to CRC2.

1This article has been cited in Pan et al. [222], Bayrak et al. [223], Chen et al. [224] and Ding et
al. [225].

2https://github.com/lmacielvieira/crc_pipeline/tree/main/method1/supplementary_material
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5.2 Future work

The amount of available data, mainly for rectosigmoid junction cancer was a limiting
factor as the number of available patients with this type of cancer was low. The fact
that clinical features known to be relevant in CRC development, such as weight and
height, were missing for some patients, was also a limiting factor. Another important
aspect of the input data was that patient information was concentrated in one country,
and may vary for other countries. Thus, standardizing the collected data from patients,
as well as collecting data from other countries, could improve further analysis. Given
these limitations, I intend to gather more data from different databases, including data
collected in hospitals that contains the features used in our pipeline, in order to build a
more robust model to predict patient prognosis. I also intend to run the pipeline with
patient data from Brazil, or other countries, in order to analyze and apply the methods
using data for specific populations.
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Annex I

Software and Data Availability

Method 1: Competing endogenous RNAs in CRC

https://github.com/lmacielvieira/crc_pipeline/tree/main/method1

Method 2: A biological and clinical feature analysis to predict recurrence and
patient survival in CRC

https://github.com/lmacielvieira/crc_pipeline/tree/main/method2

Data Availability

The primary data derived from the model analysis are available for review, and replicabil-
ity. The results shown here are in whole or part based upon data generated by the TCGA
Research Network: https://www.cancer.gov/tcga, so if you use it, make sure to also cite
TCGA. The data is available at: https://github.com/lmacielvieira/crc_pipeline
or at following QR code:
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