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Abstract

Since the mid 20th century the use of digital formats for visual content allowed a great

evolution on how the society communicates. The Internet and digital broadcast systems

introduced in the decade of 90 to the wider public allowed an incredible expansion of mul-

timedia consumption by the people, while the telecommunication networks and providers

were pushed to their limits to address the growing multimedia content demand.

Older electronic imaging systems, notably TV broadcasting systems, were designed

after long subjective quality analysis for the definition of parameters like number of lines

of the video. But recent digital visual content services need faster and affordable ways of

evaluating the human perceived quality of the always evolving multimedia systems.

To address the need of automatic quality assessment, in the past decades many visual

quality models based on algorithms which run on digital computers have been proposed.

Different types of metrics to access the quality of still images and video were developed

and provide good correlation to the perception of quality by humans. While the current

metrics are very advanced for 2D digital imagery, a new set of immersive media is dawning,

with different data structures, to which the 2D methods are not applicable, and need new

quality assessment metrics.

The new visual immersive media formats provide a 3D visual representation of real

objects and scenes. In this new visual format, objects can be captured, compressed,

transmitted and visualized in real-time not anymore as a flat 2D image, but as 3D content,

allowing free view point selection by a consumer of such media. One of the most popular

formats for immersive media is Point Cloud (PC), which is composed by points with

3 geometry coordinates plus color information, and sometimes, other information like

reflectance and transparency.

In this work it is presented a research about quality assessment of 3D Point Clouds

based on novel color and geometric texture statistics. Considering that distortions to both

color and geometry attributes of 3D visual content affect the perceived visual quality, it

is proposed in this work to use both color-based and geometry-based texture descriptors

for PC to obtain the visual degradation through their statistics.

The proposed model for quality evaluation is a full-reference method, which means
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it uses information from the reference PC and degraded version of the PC to obtain

a quality estimation. This work introduces 4 novel PC texture descriptors, 3 of them

color-based, while 1 is geometry based. Also, a new voxelization method is proposed,

which converts points to voxels (volume elements), and improves the performance of the

color-based texture descriptors. The performance of the proposed PC quality assessment

method is among the best of the state-of-the-art PC quality assessment methods, while

being flexible and extensible to adapt to different types of distortions.

Keywords: Point Cloud Quality Assessment, RBG-D, volumetric video, point cloud,

mesh, virtual reality, mixed reality

vii



Resumo

Desde meados do século 20 o uso de formatos digitais para conteúdo visual permitiu

uma grande evolução sobre como a sociedade se comunica. A Internet e os sistemas de

transmissão digital introduzidos na década de 90 para o público em geral permitiu uma

expansão incrível do consumo de conteúdo multimídia pela população, ao mesmo tempo

que as redes de telecomunicações e os provedores foram levados ao limite para lidar com

a crescente demanda de conteúdo multimídia.

Sistemas de imagem eletrônicos mais antigos, principalmente sistemas de transmissão

de TV, foram projetados após uma longa análise subjetiva de qualidade para a definição

de parâmetros como número de linhas do vídeo. No entanto serviços com conteúdo visual

digital mais recentes precisam de maneiras rápidas e acessíveis de avaliar a qualidade

percebida por seres humanos dos sistemas multimídia em constante evolução.

Para atender à necessidade de avaliação automática da qualidade, nas últimas décadas,

muitos modelos de qualidade visual baseados em algoritmos que funcionam em computa-

dores digitais foram propostos. Tipos diferentes de métricas para acessar a qualidade de

imagens estáticas e vídeo foram desenvolvidas e fornecem boa correlação com a percep-

ção de qualidade por humanos. Enquanto as métricas atuais são muito avançadas para

imagens digitais 2D, um novo conjunto de mídias imersivas está surgindo, com diferentes

estruturas de dados, para as quais os métodos 2D não são aplicáveis e precisam de novas

métricas de avaliação de qualidade.

Os novos formatos de mídia visual imersiva fornecem uma representação visual 3D de

objetos e cenas reais. Neste novo formato visual, objetos podem ser capturados, compri-

midos, transmitidos e visualizados em tempo real, não mais como uma imagem 2D, mas

como conteúdo visual 3D, permitindo a livre seleção do ponto de vista por um consumidor

de tal mídia. Um dos formatos mais populares para mídia imersiva é o Point Cloud (PC),

que é composto por pontos com 3 coordenadas geométricas e informações de cores e, às

vezes, outras informações como refletância e transparência.

Neste trabalho é apresentada uma pesquisa sobre avaliação da qualidade de Point

Clouds 3D com base em estatísticas de texturas de cor e geometria inovadoras. Consi-

derando que distorções em ambos os atributos de cor e geometria do conteúdo visual 3D
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afetam a qualidade visual percebida, é proposto neste trabalho usar ambos descritores de

textura baseados em cor e geometria para PC para se obter a degradação visual através

de suas estatísticas.

O modelo proposto para avaliação da qualidade é um método de referência completa,

o que significa que usa informações do PC de referência e da versão degradada do PC

para obter uma estimativa de qualidade. Este trabalho apresenta 4 novos descritores

de texturas para PC, 3 deles baseados em cores, enquanto 1 é baseado em geometria.

Um novo método de voxelização é também proposto, que converte pontos em voxels

(elementos de volume) e melhora o desempenho dos descritores de textura baseados em

cores. O desempenho da proposta de avaliação da qualidade de PC está entre os melhores

métodos do estado da arte para avaliação da qualidade de PC, sendo flexível e extensível

para se adaptar a diferentes tipos de distorções.

Palavras-chave: Point Cloud Quality Assessment, RBG-D, volumetric video, point cloud,

mesh, virtual reality, mixed reality
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Chapter 1

Introduction

In recent years, 3D imaging technologies have advanced at a fast pace, allowing more

faithful visual representations of the real world, paving the way to a new visual media,

not anymore a window to the world, but where a real object and its volumetric virtual

image are almost indistinguishable. What was previously available for a glimpse only

in science fiction movies and futuristic predictions, now with the ongoing research on

volumetric capturing, coding and presentation, realistic mixed reality experiences are

becoming a reality.

Advances on devices which capture and present 3D imagery content boosted the re-

search and development of algorithms and techniques to capture, compress, transmit,

present and assess the quality of volumetric content. These devices represent the visual

data using an approximation of the plenoptic illumination function, which can describe

visible objects in any position and point-of-view of the 3D space. Among the data repre-

sentations for 3D imaging are holograms, light fields and point clouds (PCs).

Point clouds are the most popular volumetric media, being composed by elements

with 3D geometric coordinates, color information, and sometimes other attributes like

reflectance coefficient. Nevertheless, PCs require a large number of points to accurately

represent a 3D scene, and hence an impractical bitrate. So, new codecs for PCs were

developed and in 2021, ISO/MPEG published the first international standard for visual

immersive media [5] coding, which comprises all compressing and decompressing steps of

a 3D point cloud. Figure 1.1 shows a point cloud rendered in a way the points can be

clearly seen.

This thesis is focused on the quality assessment of 3D point cloud content, more

specifically the objective quality assessment of volumetric content, which predicts the

average human quality perception through an automatic way, with the use of algorithms.

The rest of this introduction contains the description of the problem, a summary of the

contributions, and finally the overall organization of this thesis.
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Figure 1.1: Visualization example point-cloud.

1.1 Problem Description

The last decade experienced a many fold increase of the consumption and production of

digital multimedia content. In just one year, with the COVID-19 pandemic, the use of

tele-presence systems more than doubled in a short period of time. According to Cisco [6],

an average of 4.7 times more workers are working from home. It is expected, considering

the current context, that 3D imaging systems will receive widespread adoption, and as

3D visual content need even more bandwidth than previous generation visual systems,

tools that can optimize the bitrate while keeping the best possible quality of experience

(QoE) is extremely relevant.

Users will typically consume 3D PC content with displays very close the eyes, through

head-mounted displays, so PC visual impairments can easily degrade user’s experience.

While most of past visual quality assessment metrics were tailored for quality assessment

of 2D and 3D stereoscopic visual medias (i.e. 2D still image or video), with the recent

advances of 3D visual systems, also known as visual immersive media or volumetric media,

new metrics adapted to this type of content need to be developed.

This thesis addresses the problem of the PC quality assessment, through the develop-

ment of a method that provides an objective full-reference (FR) PC quality assessment

method with a good performance to any kind of content distortion. An objective metric

should predict the quality of a given content in an automatic manner, without human

intervention, while being a full-reference metric means the proposed metric considers the
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information of the original content and the distorted content to predict the quality, as

close as possible to the human visual system perception.

1.2 Proposed Method

This work started with an initial research how 3D content is captured and displayed. The

common techniques used by the emerging 3D systems were evaluated and real tests were

performed, including capture and playback of point clouds.

After the initial research phase, two approaches were used to develop a new method

for 3D point clouds quality assessment. First, we used ideas from metrics already existent

for 2D images and adapted for 3D point clouds. This is the case of the Local Binary Pat-

terns, which already presented a solid performance for 2D image quality assessement [4]

and was adapted in this research to work with 3D point clouds. The second approach

was the creation of completely new texture descriptors, which were developed to extract

both color-based texture information and geometry-based texture information. Also, an

innovative voxelization technique was developed, in order to emulate how the rendering

system works, and improve the color-based texture descriptors quality assessment perfor-

mance. The general idea of the proposed quality assessment method based on texture

descriptors is presented in Figure 1.2. The diagram represents, from the left to right,

the input reference and test contents, the pre-processing step (ie. voxelization), the tex-

ture descriptor application, the texture descriptor histograms distance calculation and the

mathematical regression of the distances, which outputs the final quality score of the test

content.

Figure 1.2: Diagram of the proposed PC quality assessment method based on texture
descriptors.

After the development of the texture descriptors, a larger quality assessment frame-

work was established. Statistical methods for the calculation of the distances between

texture descriptor histograms were compared and discussed. Also, regression methods

were compared and used in the proposed PC quality assessment framework. Finally, the

proposed quality assessment method is compared to state-of-the-art metrics.
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1.3 Summary Of Contributions

In the beginning of this research some methods for point cloud capture using just a single

RGB-D camera were proposed [3]. The main goal of this initial development was simple

setups for volumetric video capture which rely on a single off-the-shelf RGB-D capture

device. The proposed method first captures the model of a human head, and then a live

RGB-D feed from the same head gets reconstructed by the registration of the pre-captured

model to each live RGB-D frame. Graphical results of this work are shown in Figures

2.13, 2.10, 2.10, 2.11 and 2.12. Chapter 2 exposes the outcome of this initial work, plus

a comprehensive overview of visual immersive media.

Nevertheless the main contributions of this thesis are the development of a quality

assessment framework for point clouds with any type of distortions. Chapter 3 contains

all the research carried out, which was in part already published in important conferences

and journals [3, 7, 8, 9, 10, 11], while the not published parts are in final stage of acceptance

by journals. The contributions of this thesis are listed below:

• Parameterized voxelization method;

• 4 novel PC texture descriptors based on local PC neighborhoods;

• Statistical analysis of the proposed texture descriptors on different data-sets;

• A model for PC quality assessment based on texture descriptors.

Among the contributions is the proposed voxelization procedure, described in Chap-

ter 3.1.1. The proposed voxelization method establishes the voxel size of point cloud

points (initially with no volume information) based on the average distance of the near-

est neighbors of each PC point. The proposed voxelization technique was discussed and

published also in the articles [9] and [10]. The main contribution of this work are the

proposal of 4 novel PC texture descriptors. One of the proposed texture descriptors is

based on the Local Binary Patterns (LBP), which was initially conceived for 2D images.

The LBP texture descriptor adapted to point clouds is presented in Chapter 3.1.2, and

also presented article [7]. The other proposed texture descriptors are totally novel. The

Local Luminance Patterns (LLP) introduces an innovative way to define the PC texture,

based on the luminance of local neighborhoods, being described in Chapter 3.1.3, while

an article discussing it was also published [9]. The Local CIEDE2000 Patterns (LCP) is

another texture descriptor proposal, based of the CIELab CIEDE2000 distances between

each PC point and a local neighborhood. The LCP is discussed in the Chapter 3.1.4,

[11] and [10]. The last proposed descriptor is the geometry-based texture descriptor,

presented in Chapter 3.1.5 and [10].
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Another contribution of this research is the overall quality assessment framework,

which includes, apart of the definition of the texture descriptors, the distance metrics to

be used to evaluate the texture descriptor statistics (Chapter 3.2) and the final quality

prediction modeling, discussed in Chapter 3.3. At last, our final contribution is the joint

use of color-based texture descriptor and geometry-based texture descriptor to obtain a

final quality assessment prediction for degraded PCs, presented in Chapter 4, and also

discussed in the IEEE SPL published article [10]. The performance of the joint use of

color-based and a geometry-based texture descriptor proposed by this research presents

better correlation than other state-of-the-art PC quality assessment metrics.

1.4 Organization Of This Thesis

This thesis is organized in 5 chapters: this introduction; an overview of immersive media;

the proposed PC quality assessment method; simulation results and comparisons; and

conclusions. Chapter 2 contains an overview of the immersive media ecosystem and its

quality assessment methods. Chapter 3 describes the 3D quality assessment contributions

of this thesis, containing all the proposed texture descriptors and PC quality assessment

methods. Chapter 4 contains the experimental setup, simulation results and compar-

isons of the proposed PC quality assessment methods and other state-of-the-art methods.

Chapter 5 contains the conclusions of this work.
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Chapter 2

Overview

Recent technology advancements have driven the production of devices that capture and

display visual contents in a much more realistic way than 2D images. Among these

technologies are the light-fields, holography and point-clouds. These new media differ

from 2D image and video, and need new methods not only to capture and display, but

also for compressing and to assess the quality of these compressed immersive formats. This

chapter contains an overview of visual immersive media, with a more detailed discussion

about subjective and objective quality assessment methods of 3D point clouds, the main

topic of this thesis.

2.1 Visual Immersive Media

Recently, immersive image and video was the nomenclature adopted for the new genera-

tion of imaging formats. Devices and technologies supporting this new generation media

represent the visual information using more dimensions of the plenoptic illumination func-

tion than previous formats. The plenoptic function describes every possible view, from

every position, at every moment, and at every wavelenght [1]. Figure 2.1 exemplifies how

light rays reach the observer’s eyes. The 7D plenoptic function, P (x, y, z, θ, φ, t, λ), repre-

sents the light observed from every position and direction in 3-dimensional space, where

x, y, z represents any viewpoint, θ, φ represents any angular viewing direction, over time

t and for each wavelenght λ, as illustrated by Figure 2.2.

Because of the high dimensionality of the plenoptic function, practical visual repre-

sentations use an approximation of it. Examples of this approximation are holograms,

light fields, or point clouds (PC) imaging formats. 2D image representations are also

approximation of the plenoptic function, but at a reduced dimensionality when compared

to the mentioned visual immersive formats.
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Figure 2.1: Light ray pattern towards the observer’s eyes, by Adelson and Bergen [1].

Figure 2.2: Plenoptic function measures the intensity of light seen in all possible positions,
viewing angles, over time and for each wavelength [1].

The hologram was introduced by Gabor [12] in 1947 and consists of a method for

recording a light field, rather than an image formed by lens. Holograms encode the light

field as an interference pattern of variations in the opacity, density, or surface profile of

the photographic medium. To display, the hologram’s interference pattern diffracts the

light into an accurate reproduction of the original light field. In recent decades, with the

advent of digital holography [13], the photographic physical medium was substituted by

digital sensor arrays and the image rendering is now performed from digitized interfero-

grams. Many methods for recording and processing digital holograms exist, but several

challenges exists related to the optical capture and display of holograms, as seem in recent

publications [14, 15, 16]. An example of a setup for holography capture and reconstruction

is shown in Figure 2.3.

Light field [17] is an imaging technology which describes the distribution of light rays

in empty space. Real world light-field implementations typically measure the distribution

of light rays as a function of position and angle. In these light-fields, also called 4D light-

fields, the light rays are defined in a coordinate system denoted by two planes, (u, v) for

the first plane and (s, t) for the second plane, and can be represented as L(u, v, s, t). An

oriented light ray defined in the system first intersects the uv plane at coordinate (u, v)
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Figure 2.3: Recording and reconstruction of an object light wave through a hologram.

and, then, intersects the st plane at coordinate (s, t). In typical setups, the st plane is

the camera array, and the uv plane the camera’s focal plane. A 4D light-field can be

represented by a 2D array of 2D images, as shown Figure 2.4.

Figure 2.4: Light-field capture setup with an array of cameras which can capture light
rays from different angles, provided by Instituto Superior Técnico of Lisbon (IST).

Finally, point-clouds, one of the visual representations which gained more acceptance

recently for volumetric visual representation [18], consists of elements with 3D coordinates

plus color channels and, in some cases, other attributes are also present like surface

normal vector, reflectance and opacity. Point-clouds are typically captured using one

or more cameras with a photographic sensor plus a depth sensor, also called RGB-D

cameras. These cameras allow the capture of a 2D image frame plus an aligned 2D depth

map, which contains the distance between the camera and an object for each pixel or

group of them in the 2D image. This RGB-D data allows the creation of point-clouds,
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by transforming the RGB-D camera-coordinate elements to point-cloud world-coordinate

elements. When more than one camera is available for capturing, the many point-cloud

patches produced by each camera are fused to create one point-cloud. Examples of a

multi-camera setup for point cloud capture and an illustration of rendering differences

between 2D and 3D imaging are shown in Figures 2.6 and 2.5 respectively.

Figure 2.5: 2D image with picture elements (pixels) on the left, and 3D point-cloud with
volume elements (voxels) on the right, provided by IST Lisbon.

Figure 2.6: Point-cloud capture illustration with 4 cameras capture setup, by IST Lisbon.

Another common 3D representation are the meshes. 3D polygon meshes are being

used for decades since the inception of the 3D Computer Graphics to represent 3D ob-

jects. Meshes are composed by vertices, edges and faces. Each face is typically triangle,

but can have any shape, and the resulting representation is a polyhedral 3D shape, which

is commonly used to represent solid objects. However, point-clouds are simpler to ob-

tain than 3D polygon meshes, as surface reconstruction does not need be computed,
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considering RGB-D capture setups provide no edge connectivity or surface properties.

So point-clouds have a more compact and direct representation of the captured 3D vi-

sual content, so they are more computationally efficient - a relevant aspect for real-time

immersive media systems.

While meshes can be displayed in a canonical way, the point-cloud elements have no

intrinsic volume size, needing more semantics to be rendered for visualization. A pro-

cess called voxelization converts infinitesimal point-cloud elements to volume elements,

by attributing each point a volumetric dimension which optimally produces an output

which can be rendered without holes. Indeed, voxelized point-clouds are being used by

codecs being developed for volumetric video [19]. A voxelized point-cloud is a point-cloud

where its 3D points are converted to voxels, which are typically small 3D cubes. A cor-

rectly voxelized point-cloud can be used to represent solid objects [20], but an incorrectly

voxelized point-cloud might present empty voxels (holes) between each occupied voxel,

allowing an user to see through an object, thus reducing the quality of experience. A

mesh representation, obviously, does not suffer from this problem.

One common attribute of all the mentioned visual immersive media are the support

for 6 degrees of freedom by the observer. Degrees of Freedom (DoF) in this context refer

to the types of movement of a rigid body inside a 3D space, being in total 3 translations

and 3 rotations. The 3 translations are typically named forward/backward, up/down and

left/right, while the 3 rotations are named yaw, pitch and roll. Figure 2.7 illustrates the

Degrees of Freedom from an observer point of view.

Figure 2.7: Previous 3 Degrees of Freedom and immersive 6 Degrees of Freedom illustra-
tion plus the names of the 6 types of movements on the right, by IST Lisbon.

Support for 6 DoF is a pre-requisite for visual immersive experiences. The visual

immersive media can be assessed by a person in any Milgram’s reality-virtuality con-

tinuum [2] context, apart of the full reality extreme. The reality-virtuality continuum

contains in one end the real environment, and in the other end, the virtual environment.
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Common names for different ranges of the reality-virtuality continuum, excluding the

full reality, are the augmented reality (AR), virtual reality (VR) or mixed reality (MR)

variations, also collectively called extended reality (XR), as shown in Figure 2.8.

Figure 2.8: Reality-virtuality continuum by Milgram et al [2].

While point-clouds can accurately describe a 3D scene for immersive experiences, they

require a large number of points and increased computation complexity, which limits their

use in real applications [21]. As a consequence, new technologies and international stan-

dards were developed for compression of point-clouds. The MPEG Immersive Media

standard (MPEG-I) series will contain at least two standards for immersive visual media

coding. One of them, the already published MPEG ISO/IEC 23090-5 [5], relies on a

2D video codec plus volumetric mapping information for encoding 3D point clouds. A

volumetric content is first split in patches, projected to a 2D frame, and side information

is added with occupancy maps and the geometric information for later volumetric recon-

struction by the decoder. Other standard for immersive media which is in late stages

prior publication is the MPEG ISO/IEC 23090-9 [22], which is the geometry-based point

cloud codec. The geometry-based point cloud codec encodes the point cloud’s geome-

try and color information as voxels, meaning that geometry also becomes a first class

data entity [19] to be later reconstructed by the decoder. While one of the standards

is already published, the other is in the last stage of development. The 2D video-based

codec is more appropriate for low bitrate coding of small scene and objects, like humans

with background, while the geometry-based point-cloud coding is more appropriate for

large scale point-clouds, like 3D cities scans and cultural heritage capture with very fine

geometric precision. Reference implementation of these codecs exist and are widely used

in academic research, as seem later in this chapter. Commercial volumetric video tech-

nologies are also available (eg. Interdigital 1), and Brazil is considering the adoption of

the ISO/IEC 23090-5 as national standard for the terrestrial DTV volumetric video de-

1Interdigital Immersive Lab: https://www.interdigital.com/immersive-lab
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livery. The Brazilian SBTVD Forum evaluation about the Brazilian 3.0 TV technologies

is occurring in 2021 (See SBTVD Forum TV 3.0 2).

A popular data structure to represent a point-cloud is the octree [23] [24]. Octree

partitioning keep dividing a volume in small sub-volumes, while there is one or more points

inside the volume, as presented in Figure 2.9. Other data structures exist, like spanning

trees [25], binary trees [26] or based on a graph representation [27]. In MPEG geometry-

based encoding, octrees are used together with a triangle soup rendering method [28].

Figure 2.9: Two variations of octree, in the left a traditional octree partitioning where
cubes with points are divided until a target layer is reach, and in the right an octree
approach where partitioning a cube is based on split decisions, for example, based on
RDO (Rate-Distortion Optimization).

2.1.1 Capture

As mentioned earlier, capturing the world in 3D is not an easy task. Most of the cur-

rently available work suggest the use of at least 3 RGB-D sensors for a fair volumetric

reconstruction [29]. The difficulty in assembling and calibrating such an array of RGB-D

sensors limits their popularity in more mainstream communication applications. Previ-

ous to the availability of affordable RGB-D sensors, multi-view stereo based volumetric

reconstruction was typically used. Stereo based volumetric image reconstruction relies on

captured views at difference angles to extract the volumetric shape from an object [30].

This area is a pretty mature field of research, but has its limitations due to inherent

absence of real captured depth data.

Volumetric image reconstruction received substantial attention recently, but the recon-

struction of 3D objects from RGB-D frames still faces many challenges, like for example,

noisy and missing data acquired from the sensors [31] and lighting differences between

sensors. The reconstruction methods available to obtain of a volumetric content from

multiple RGB-D capture devices is examined in depth by Berger [31], which first classifies

reconstruction methods in relation to point-cloud artefacts, like missing data, misalign-

ment and non-uniform sampling, and input requirements, like presence or not of surface

normals. The mentioned techniques of surface reconstruction, as pointed by Berger, has

2Brazilian TV 3.0 project page: forumsbtvd.org.br/tv3_0/.
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grown from methods that handle limited defects in point-clouds reconstructions, to meth-

ods that handle substantial artefacts, while he also discusses about a growing development

of data-driven reconstruction algorithms, which use large point-cloud database and allows

for a method to identify classes and properties of objects. As discussed, reconstruction

can use the color and geometry information from sensors, but also use prior information.

Firman et at. [32], for example, proposes a structure prediction of unobserved voxels from

single depth view by employing classes of 3D mesh models used as reference for the recon-

struction. Alexiadis et al. [33] also proposes a reconstruction method specific for human

body reconstruction, while Boldi et al. [34] proposes a method specific for face reconstruc-

tion. On the specific case of 3D volumetric face reconstruction, other approaches uses just

2D color images as input, like in [35] and [36].

Concerning deep learning approaches for 3D shape generation and completion, 3D

ShapeNets [37] uses deep learning to train a 3D convolutional network from a shape

database and complete or repair shapes, including broken meshes [38]. Other works

which use deep learning for object shape reconstruction include Rock et at. [39] and

Song et al. [40], all with a similar approach, using deep learning knowledge acquired with

volumetric objects datasets.

While multi-camera setups are desirable, it is possible to do a 3D scan using a single

consumer grade RGB-D. Among these, are that work of Hernandez et al. that implements

a 3D face scan using a single RGB-D device [41]. Also, Kinect Fusion work [42] and others,

provide tools for performing a good quality 3D scanning using just one RGB-D sensor.

Kinect Fusion’s technique consists of rotating the camera or the object in order to capture

all its faces. Farias and I proposed and implemented a 3D volumetric video capture system

which reconstructs the human head from a single RGB-D capture device [3]. The head

model of the user is first captured by registering multiple RGB-D frames captured from

many angles, and then, the model is used for reconstructing the whole head for each live

captured frame from the RGB-D camera. Examples of a head model, a live captured

point-cloud created from a single RGB-D source, and the reconstructed head are shown

in Figures 2.10, 2.11 and 2.12. As seen in the examples, some challenges do exist for

RGB-D single camera capture, for example, caused by different illumination conditions

between model capture and live frame capture and also different focus, exposure time and

other intrinsic camera parameters which are automatically adjusted in low-end devices.

Current RGB-D camera devices provide at least two separate streams: color and depth,

and sometimes also the captured infra-red (IR) frame is available. These color and depth

streams come from different types of sensors inside the device. Naturally, each sensor

has different accuracy and noise levels and, typically, there is no pixel alignment between

the two streams. Concerning the depth sensor, two types are more commonly available:
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Figure 2.10: Views of my captured head model using a single RGB-D capture device.

Figure 2.11: Views of a point-cloud created from a single RGB-D device.

Figure 2.12: Views of my reconstructed head using a system I developed [3].

structured light [43] and time-of-flight (ToF) based [44]. The Kinect 1 RGB-D camera,

for example, is structured light based, while the sensor of the Kinect 2 is time-of-flight

based. Figure 2.13 shows two models of Kinect cameras on a tripod.

It is worth mentioning that the Kinect for Xbox 360 (Kinect 1) was the first widely

available RGB-D sensor. The Kinect 1 hardware, shown in Figure 2.14, comes with a

RGB camera, an Infrared (IR) projector and an IR camera. The depth sensor is based

on the structured light principle and is composed of an IR projector combined with an

IR camera. The IR projector projects a known pattern of IR dots to a scene and the IR

camera captures this projected pattern. By comparing the projected with the captured

IR pattern, the sensor can obtain the depth information [45]. The output of the sensor is
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Figure 2.13: Kinect 2 (left) and Kinect 1 (right) assembled on a tripod, in the configuration
used for capture experiments.

transmitted over the USB 2 interface and is composed of a bayer-pattern chroma subsam-

pled 8 bit/pixel RGB stream and a 11 bit/pixel depth stream. In the typical operating

mode, both streams have 640x480 pixels at 30fps.

Figure 2.14: Kinect 1 hardware, with it’s Infrared projector, RGB camera and Infrared
camera.

Kinect for Xbox One, or just Kinect 2, is a time-of-flight (ToF) based device greatly

used in the past decade for RGB-D capture. Kinect 2, shown in Figure 2.15, has a

1920x1080 HD RGB camera and uses a different depth sensing technology when compared

to the Kinect 1. Kinect 2 has an IR light source which emits a modulated square wave,
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and an IR receiver which captures the reflected wave. Through the phase analysis of the

received signal the sensor can compute the depth. Kinect 2’s time-of-flight depth sensor

outputs a 512x424 depth frame, which together with the RGB information, is transmitted

over the USB 3 bus to a host computer. The Kinect 2 depth sensor has better accuracy

and less noisy output than the structured light based Kinect 1 [46].

Figure 2.15: Kinect 2 hardware, with it’s IR emitters, depth sensor and RGB camera.

Recent launches include the Azure Kinect, which evolves the Kinect 2 ToF camera

with an improved ToF sensor [47] which can capture depth frames up to 1024x1024 of

resolution, paired with a 3840x2160 “4k” RGB camera. The Azure Kinect has a working

depth range of 0.25 m up to 5.46 m, selectable field-of-view of 75◦ by 65◦ (HxV) or 120◦

by 120◦, and exposure ranging from 12.8 ms up to 20.3 ms, depending on the operating

mode, with standard error deviation equal or less than 17 mm in the operating range.

Since 2019 all major smartphone manufacturers started to include ToF camera in their

high-end phone and tablet models [48]. Figure 2.16 shows a partial view of a Huawei P40

Pro+ phone, which contains a ToF camera and five photographic cameras with different

type of lenses and light spectrum capture ranges, manufactured by German company

Leica Camera AG.

2.1.2 Display

With the availability of light field displays and head-mounted displays with ultra-high def-

inition near-eye display [49], the presentation of visual immersive media became possible.

Volumetric visual content can be experienced in head-mounted displays (HMD), 3D flat

screens or through holographic projectors. While holographic and light-field displays do

exist, they are much more expensive than HDMs, which are the most used apparatus for

visual immersive experiences in current days. Typically, HMDs are classified in two types
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Figure 2.16: Huawei phone with a ToF depth sensor and other photographic sensors
developed by Leica Camera AG.

depending on the experience provided: Virtual Reality (VR) or Mixed Reality (MR). The

VR type presents the volumetric graphics in a screen inside an opaque device, in which

there is no blending of real and virtual images. The MR type, also named Augmented

Reality (AR) in some contexts, allow the users to visualize both real world and computer

generated content, as shown in Figure 2.18.

Figure 2.17: User with a Oculus Rift VR glass interacting with another user, while being
captured by a setup of three (one hidden) RGB-D Microsoft Kinect sensors. A synthesized
scene with the two users is shown in the TV in the back.

In order to create a mixed reality experience, interactivity is paramount, and a HMD

needs to provide 6 degrees of freedom to the user. This requires additional sensors to

track the head position and the eyes of the user. Also, it is necessary to have sensors

to map the external world, which allows the HMD device to know where to project a
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Figure 2.18: Demonstration by Microsoft of a user viewing a remote located kid through
a MR device. Top left shows the real scene and bottom left the way the scene is viewed
in the Microsoft’s MR HMD, called HoloLens.

volumetric element in the field of view of a user, and in a sane real-world location. To

present a smooth and realistic blend between real and virtual worlds, mixed reality HMD

devices must account on user’s localization, eyes and head tracking, and external world

mapping, allowing a user to have infinite ways to visualize a scene, given that 6 degrees of

freedom are allowed. An example of HMD with such features is illustrated in Figure 2.19

Figure 2.19: Magic Leap One mixed reality head-mounted device. In the image it’s
possible to see some of the many sensors the device has, including depth sensor.
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Immersive video, also called volumetric video, has many use cases, for example a

live multi-party volumetric video conference, where each person in the conference has its

own volumetric video captured and transmitted, while receiving volumetric streams from

other participants (eg. Microsoft’s Holoportation [50]). It is worth pointing out that

volumetric imagery allows a more accurate representation of the world, being extremely

useful for industrial, medical, educational, gaming and recreational applications, among

other purposes.

2.2 Point Cloud Quality Assessment Overview

Considering the increased popularity of the use of point clouds for immersive media and

the development of high-compression encoders, the need to evaluate the quality of com-

pressed point-clouds to a human viewer is important. The quality assessment methods

are very important to guarantee a good quality of experience (QoE) of point-clouds and

the acceptable levels of degradation imposed by the recently developed and future PC

coding tools.

Metrics which assess the quality of a media can be divided in two main types: subjec-

tive or objective. Subjective metrics are the ones based on humans evaluating a content

and giving scores based on the subjective quality perception. Subjective metrics are typi-

cally used when precise results are desired, for example, for decision making on the quality

of lossy encoders. Also, subjective metrics provide a ground truth for the development

and comparison of the other type of metric - the objective metric. Objective metrics are

the ones which evaluate the quality of content in an automatic way, based on algorithms

which optimally have the higher possible correlation with the subjective ground truth.

This section is split in two, one for the subjective PC quality assessment overview, and

another for the objective PC quality assessment methods overview.

2.2.1 Subjective Quality Assessment

The subjective PC quality assessment methods re-use many protocols used to 2D image

and video quality analysis, as described in the ITU-R BT.500-14 [51]. Currently there is

no specific standard or recommendation for PC subjective quality evaluation [52], so ques-

tions related to interactive PC visualization (active or passive) and different PC rendering

methods available prior display still cause uncertainties for PC subjective quality assess-

ment. Nevertheless, available publications in the literature provide sufficient subjective

data to provide a better understanding of the human perception of PC color and geome-

try visual impairments. Point cloud quality assessment (PCQA) methods proposed up to

date use standardized methodologies for subjective quality assessment, for example, the
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Absolute Category Rating (ACR) and Double Stimulus Impairment Scale (DSIS) [53, 54].

In the ACR the subjects rate the quality of each content independently, being classified

as a single-stimulus method. In DSIS, a double-stimulus method, the viewer sees the

reference visual content and the impaired content, and then attributes a score to the

impaired content. The scores of the viewers are typically mapped to the Mean Opinion

Score (MOS) scale, ranging from 1 (very bad) to 5 (very good).

Several subjective quality assessment experiments were carried up to date. Zhang at

al. [55] carried subjective quality tests with PCs using different levels of degradation of

both color and geometry. The types of degradation applied were geometry down-sampling

and uniform noise added independently for color and geometry. The work suggests that

human perception is less tolerant to geometry degradation than color degradation in

PCs. Also Torlig [56] performed subjective tests of PCs with color and geometry, with

degradation to the color texture generated by an JPEG encoder and geometry affected

by reducing the octree resolution.

Mekuria et al. [57] conducted PC subjective quality assessment experiments with real-

world captured content and computer graphics generated content. The work evaluated

two types of degradation, octree pruning for geometry, and JPEG for color, with the users

were asked to evaluate the interactive immersive experience, including different quality

analysis aspects, like realism, immersiveness and color quality.

Javaheri et al. [58] carried subjective and objective PC quality experiments with im-

pulse noise and Gaussian noise at different intensities to geometry-only PCs, while also

testing different techniques of denoising and surface reconstruction for rendering to 2D

displays. In other work [59], Javaheri et al. performed another subjective and objective

quality evaluation experiments with octree and graph-based PC codecs to create the test

dataset. In both work, observers assessed the quality through 2D displays and the exper-

iment used the Double-Stimulus Impairment Scale (DSIS) subjective quality assessment.

Alexiou et al. performed many studies. In [60], subjective quality analysis is carried

with two types of degradation, octree pruning and Gaussian noise, applied to the geometry.

Augmented reality googles were used by the subjects and just the geometry degradations

were evaluated, with PCs without their original color texture. The traditional point-based

objective metrics evaluated performed well for Gaussian noise but under performed for

octree pruning compression artifacts. In other works [54, 61], Alexiou et al. used the same

content of previous experiments, but with the observers experiencing the content through

2D display, also without color texture but without any interactivity. Also both Absolute

Category Rating (ACR) and DSIS subjective methodologies were evaluated, with the DSIS

methodology found to be better with lower confidence intervals. In [62], Alexiou continues

to improve the subjective experiments by testing different reconstruction algorithms to
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obtain a mesh representation prior to render.

In [63, 62], subjective tests were carried for comparing the perception of quality

over different types of display, including 2D display, stereoscopic 3D displays and an

AR headset. Only geometry artifacts were considered in the study, and it was found a

high correlation between the human perception of distortions across different visualization

devices. It was also noted that the rendering method of a PC may influence the subjective

evaluation results. Finally, in [64], Alexiou et al. carried a quality assessment analysis

in which the distortions were obtained using both MPEG codecs [5, 22] adjusted with

different parameters.

Christaki at al. [65] performed subjective experiments in which observers used virtual

reality head-mounted display to assess the content. 3D meshes degraded with different

codecs for mesh compression were evaluated. He concludes that available objective mesh

metrics have a low correlation to the subjective scores, while also pointing that the surface

reconstruction type used influence the performance of the tested objective metrics. Dumic

et al. [52] presented an evaluation of the PC subjective quality evaluation methods and

the available PC objective metrics. Recently, Perry et al [66] presented a research with

a new dataset which contains a comprehensive analysis of the distortions caused by the

MPEG volumetric media encoders to the human visual system.

Yang et al. [67] created one of the most complete dataset of PCs and subjective data in

terms of different types of distortions, including different impairments and combinations

of them: octree-based compression, color noise, downscaling, downscaling plus color noise,

downscaling plus geometry gaussian noise, geometry gaussian noise and color noise plus

geometry gaussian noise. Yang also evaluated in the same article some objective PCQA

metrics.

Clearly the work on PC subjective quality assessment available is enough for the

development and improvement of PC objective quality analysis, while some questions on

the rendering of the PC before presentation still remain as an uncertainty variable in the

subjective PC quality analysis and the scores obtained though them.

Important datasets with associated subjective scores are summarized bellow:

• D1: Torlig 2018 [56]: This database has 6 reference PCs, which include 3 human

bodies: RedAndBlack, Loot and LongDress and 3 inanimate objects: Amphoriskos,

Biplane and RomanOilLamp. It includes 54 test PCs, impaired at 9 distortion

levels. Distortions were produced using an octree-based codec, with color attributes

encoded using the JPEG encoder at different quantizer levels. Subjective scores were

obtained from experiments carried in two different universities (UnB & EPFL).

• D2: Alexiou 2019 [64]: This database has 8 references and 232 test PCs and its

contents contain the objects Amphoriskos, Biplane and RomanOilLamp, the full-
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bodies LongDress, Loot, Soldier and The20sMaria, and also a PC with just a hu-

man head. The distortions included in this database were generated by the MPEG

codecs, namely the video-based point cloud codec (V-PCC) and four variants of

the geometry-based point cloud codec (G-PCC). The variants of G-PCC include

the Region-Adaptive Hierarchical Transform with Trisoup (RAHT-Trisoup), RAHT

with Octree (RAHT-Octree), Wavelet/Lifting-based with Trisoup (Lifting-Trisoup),

and Wavelet/Lifting-based with octree (Lifting-octree). Subjective experiments

were carried in two universities (UnB & EPFL).

• D3: Stuart 2020 [66]: This dataset contains 6 PC references and 107 test PCs,

namely human full-bodies LongDress, Loot, RedAndBlack and Soldier, and partial

single-view captured PC upper bodies, Ricardo and Sarah. Tests use the MPEG

encoders, in the variants V-PCC and G-PCC in both Octree and Trisoup variants.

Subjective quality analysis was performed by 4 Universities, namely UBI, UC, UNIN

and UTS.

• D4: Yang 2020 [67]: This dataset contains 9 PC references and 378 test PCs:

human full-bodies - Hhi, LongDress, Loot, RedAndBlack and Soldier, also notable

objects - RomanOilLamp, Shiva and Statue, and finally a small scene with many

objects in a table, including a toy unicorn, named UBL_unicorn. The distortions

are of 7 different classes, and are applied in 6 levels each. The distortion classes

are: Octree-based compression, Color Noise, Downscaling, Downscaling plus Color

noise, Downscaling plus Geometry Gaussian noise, Geometry Gaussian noise and

finally Color noise plus Geometry Gaussian noise.

To illustrate the content in each dataset, Figure 2.20 shows PCs 2D projections of all

the 4 datasets.

2.2.2 Objective Quality Assessment

Objective PC Quality Assessment (PCQA) methods provide a way to predict the human

perception of a PC in an automatic way, without human intervention. Three types of

objective quality assessment metrics exist with relation to the required reference informa-

tion: full-reference (FR), reduced reference (RR) and no-reference (NR). The full-reference

methods use the whole content reference in order to estimate the quality. Reduced-

reference methods use only partial information from the reference, while no-reference

methods asses the quality of the visual stimuli without any reference information. Fig-

ure 2.21 shows the different types of objective metrics with regards to reference data.

Since PCs are a new immersive media format, most of the proposed PCQA methods up

to this time are full-reference (FR), as having all the data from reference and test content
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Figure 2.20: 2D captures of the datasets D1, D2, D3 and D4, two of each, from left to
right, top to bottom, respectively.

Figure 2.21: Objective quality assessment methods: full-reference, reduced-reference and
no reference as shown by Freitas [4].

allows algorithms to work without prior content knowledge. The foundations of this new

class of quality assessment methods were established by Tian et al. [68] and Mekuria

et al. [69], with the introduction of the so-called point-based metrics. Their proposal

included two types of point-based metrics, which could be point-to-point (P2Po) [69]

and point-to-plane (P2Pl) [68]. Alexiou et al. [70] proposed a metric which evaluates

just the geometry of PCs, without color attributes being considered. Alexiou’s proposal

introduced the plane-to-plane (Pl2pl) [70] variation of the point-based metrics, which uses

the angular distance between tangent planes of each pair of points of a reference and test

PCs to estimate the perceptual distortion.

Point-based methods establish a relation between each point in a reference PC and

its nearest neighbor in the degraded PC and, then, some distance measure is used to

estimate the error in the degraded content. The distances used are typically Euclidean or
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Hausdorff. The accumulated error of all PC points is used to obtain a global error measure

given a pair of reference and test PC. The distances are calculated in a symmetric way,

meaning the nearest neighbor algorithm is used once to find correspondent points of the

reference PC in the test PC, and then the other way around, with the distances calculated

in both cases, with the maximum error used as final result.

Three types of error calculation were proposed between the points: point-to-point

(P2po), point-to-plane (P2pl) and plane-to-plane (Pl2pl). These metrics can be used

to estimate geometry or color impairments of PCs. In all cases, first a point-to-point

correspondence is established between each point in a reference point cloud R and a

degraded point cloud D. The point correspondence of one point k in R to D is found

using a nearest neighbor search in D considering the coordinates of k. The geometry

error in the point-to-point methods is based on the distance of each point k in D and its

correspondent i in R, as expressed as:

d(k,i) =
√

(k − i)2
. (2.1)

After the point-to-point, point-to-plane or plane-to-plane distances calculation, the

global error is calculated though mean squared error (MSE) or peak signal-to-noise error

(PSNR), as shown in:

P2po-MSE ·
N

∑

k=1

(d(k, i))2 (2.2)

and:

P2po-PSNR = 10 · log10
3p2

P2po-MSE.
(2.3)

In Equation 2.2 N is the number of points in point cloud R, k is a point in R and i

the correspondent point in D. In Equation 2.3, p is the peak distance, and is typically

obtained by 2pr − 1, where pr is the dynamic range of the PC coordinates, in bits [53].

The final score of the metric is the maximum error between the calculation of R to D,

and vice versa.

P2po-based metrics are also used for color error estimation, and uses the same steps

of the geometry variant for point-to-point correspondence, but it uses color distances

between correspondent points to estimate the error. The color information of the PC

points is first converted YCbCr color-space, typically using the ITU-R Rec. BT.709

colorimetry equations, and then, for each of the three color channel components, the

MSE and PSNR measures are computed, as presented in:

P2po-color-MSE =
1

N
·

N
∑

k=1

(C(k) − C(i)))2 (2.4)
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and:

P2po-color-PSNR = 10 · log10
p2

P2po-color-MSE,
(2.5)

in which C(k) represents a color channel of point k, for example, Y, Cb or Cr (or R,G,B),

while p in Equation is the peak signal level, which is 255 in 8 bit per component systems

or more in higher definition range image systems.

A common method for obtaining a single value for color error measurement was pro-

posed by Ohm et al. [71], and shown below:

EY CbCr =
6 · Ey + ECb + ECr

8
, (2.6)

in which E can be the MSE or PSNR errors as presented in Equation 2.4 and 2.2.2.

The other type of point-based metrics are the ones which use plane information. P2pl

or Pl2pl metrics are based on the fact that a PC represents surfaces given a set of points.

P2pl method relies on the same P2po distances, but the distances are multiplied by the

projection of a correspondent point i in a degraded PC to the plane perpendicular to

the normal of the point k in the reference PC, while the Pl2pl uses the differences of the

angular similarity between the tangent planes of point k in R and the tangent plane of its

correspondent i in D. In order to obtain the local planes information, a pre-processing

of the PCs needs to be done in order to calculate the normal vectors of each point,

considering a local neighborhood [68]. The normal vector of each point represents a local

surface plane - points on the degraded PC closer to the reference local surface will lead

to smaller errors even if far from the reference point. Equation 2.7

P2pl-MSE =
1

N
·

N
∑

k=1

(d(k, i) · ng)2 (2.7)

shows the MSE error formula, similar to Equation 2.4, but with the geometric divergence

ng multiplying the point-to-point distance.

Javaheri et al. [58] and Perry et al. [66] conducted subjective quality experiences

that tested their datasets and subjective data with the available point-based metrics,

concluding that the objective PCQA point-to-plane metrics using the MSE distance is

the one that better represents human vision quality perception. Distances other than

PSNR and MSE were also proposed, for example, Javaheri [72] proposes the use of the

Hausdorff distances.

Nowadays, metrics based on P2Po, P2Pl and Pl2Pl methods, are widely used by MPEG

[73], and still considered the state-of-the-art by Javaheri [53]. However, these metrics have

several drawbacks and inefficiencies mainly because it is difficult to establish accurate

correspondences between the two PCs due to their unstructured nature and the different
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types of coding errors, which are not properly sensed by the available metrics. These

metrics also lack a unified metric which considers both color and geometry distortions.

Nevertheless, most present-day objective PC quality assessment research compare new

methods with the point-based metrics, not only because of the good performance of the

metrics for some types of distortions, but also because the C++ source code of these

metrics are freely available and are easy and run and adapt 3. Another approach was

adopted by Torlig et al. [56], which proposes the use full-reference 2D images metrics to

assess PC 2D projections to the 6 faces of cube containing a 3D object. 2D image metrics

tested include PSNR (and variations), SSIM, MSSIM and VIFP metrics. The metrics

with best performance were MSSIM and VIFP.

Recently, metrics which consider both color and geometry were introduced, and they

often surpasses the performance of point-to-point based metrics. Viola et al. [74] proposes

to use distances of histograms with both color and geometry statistics for PC quality

estimation. Results compared the MPEG PCQA metrics [75] with the proposed method

just with one dataset [64], which contains test PCs generated exclusively with MPEG PC

encoder, showing equal or better performance than point-based metrics.

Javaheri et al [76, 72] propose two new geometry PCQA metrics. In [76] the use of

the Mahalanobis distance between histograms of test and reference PC is proposed. The

histograms are created from the frequency of angular differences among tangent planes of

each point of a PC and some neighbours. In [72] it is proposed the use of the generalized

Hausdorf distance to improve over prior work. Only one dataset and subjective results

were used to compared both propoals with other metrics, and small improvements are

shown compared to other geometry PCQA methods.

Meynet et al. [77] proposes a geometry PCQA metric based on a geometry quality

assessment metric for mesh. Local distortions are calculated based on normal surface dif-

ferences of an spherical neighborhood of each point. Authors claim superior performance

of the proposed metric when compared with MPEG metrics, but just one dataset [54]

and associated subjective data is used, limiting the confidence of the results. Yang et

al. [78] proposes one of the first graph-based PCQA metrics which use graph-based re-

lations among points in the PC to estimate quality, providing promising results, while

requiring extensive and complex graph operations.

More recently, Alexiou et al. [79] proposed a PCQA based on local features extraction,

called PointSSIM. The metric tries to emulate the behavior of the 2D metric called SSIM,

and presents promising results when compared to other metrics in the 2 datasets selected

for evaluation. Contemporary to Alexiou, Meynet et al. proposed a metric that also takes

into consideration geometry- and color-based features, using logistic regression to combine

3dmetric v0.13.5: http://mpegx.int-evry.fr/software/MPEG/PCC/mpeg-pcc-dmetric.git
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these features and produce a quality estimate called PCQM [80]. PointSSIM and PCQM

are considered to be the state-of-the-art, by analyzing their published results.

While most of the work on PCQA are full-reference proposals, Bello et al.[81] provided

a review on the recent use of deep learning in 3D vision tasks, including classification,

segmentation, and detection, pointing out that local point relationships are more effective

for modeling a PC data-driven approach. Liu et al. [82] proposed the first no-reference

method (NR) for PCQA method which uses a data-driven approach and applies a convo-

lutional neural network (CNN).

Apart of the state-of-the-art taxonomy which classifies the metrics in the point-to-

plane or point-to-point framework, another important classification is based on the in-

formation each algorithm uses. Considering this concept, three types of PCQA methods

exist: color only, geometry only, or joint color and geometry methods. Most of the avail-

able metrics evaluate only the geometry or color information of PCs separately, with just

a few publications jointly considering the color and geometry information. Examples in-

clude the works by Viola et al. [74], Meynet [80] and this present work, as discussed in

later chapters of this thesis.
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Chapter 3

Color And Geometry Textures For

Point Cloud Quality Assessment

The contributions to the state-of-the-art of point-clouds objective quality assessment are

presented in this chapter. The first section contains all the innovative PC texture de-

scriptors proposed, including the pre-processing voxelization technique to increase the

quality assessment performance of the proposed color-based texture descriptors. Also, a

novel geometry-based texture descriptor is proposed, which does not use the voxelization

technique to obtain good performace. The second section contains the distance measures

used to compare the statistics of the proposed texture descriptors applied to reference and

degraded point-clouds. The third section of this work describes the quality assessment

model used for the proposed point-cloud quality assessment (PCQA) metrics, based on

the presented texture descriptors.

3.1 PC Texture Descriptors

In this section, we present innovative texture descriptors for PCs, which use local and

global statistics that can be used to describe local and global characteristics of PCs. For

the purpose of this work, these new texture descriptors are used for quality estimation.

This section is split in subsections: one describing the voxelization pre-processing tech-

nique, followed by three color-based texture descriptors, and one geometry-based texture

descriptor.

3.1.1 Voxelization

Point-clouds are data structures composed by a list of points containing color components

(e.g. RGB, YCbCr, L*a*b*) and three geometric coordinates, typically named X, Y and
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Z when using the 3D Euclidean space [83]. Sometimes other components are present, such

as reflectance coefficients and normal vectors of the reconstructed tangent surface at each

point. To visualize a PC, its points need to have a visual volumetric representation to be

properly rendered. One option is to convert a PC to a mesh representation, in which the

PC points become nodes of 2D polyhedral surfaces in a 3D space. While meshes provide

a good option for PC rendering, they require complex and computationally expensive

tasks for connecting the PC points to provide optimal surfaces, since point connectivity

information is not captured by capturing sensors. Another option is to convert each PC

point to a discrete volumetric unit. Just like 2D images typically use square-shaped pixels,

in PCs the volumetric elements (voxels) typically adopt a cube shape. The voxels can be

considered as discrete elements in a discrete 3D grid, but while in 2D images the discrete

2D space is dense, in PCs the 3D space is sparsely filled with voxels, which that (typically)

represent just the surface of objects.

So, prior to visualization, the voxelization method is typically applied to give shape

and volume to the PC points. A voxel with a cube shape is a regular hexahedron,

containing 6 faces, 8 vertices, and 12 equal-sized edges. An important parameter for the

voxelization is the size of each voxel. If the size is small, the neighboring voxels may not

touch each other, leaving visual “holes” between PC elements. On the other hand, if the

size is too big, voxels create a swollen visual effect. Figure 3.1 shows examples of a PC

with 3 different voxel sizes for each of the three PC rendering examples. Important to

note that, when the voxelization is applied for given a voxel size, more than one PC point

might be present inside a single voxel. In this case, typically, the color corresponding to

these points are averaged to provide the final color value for the voxel.

As a relatively new research area, there is no standardized process to obtain the voxel

size given a PC. Voxel’s size can be defined either by using a point-by-point analysis or

using one voxel size for all points in the PC. Optimally, each voxel needs a volume big

enough to touch the neighboring voxels. So, a different size for each voxel could provide

an optimal (better) voxelization, but it would also increase the computation complexity

cost. Therefore, a voxel size is generally chosen for all points of a PC. In this work, it

is adopted this approach. Also, the voxelization is used as a step before applying the

PC color-based texture descriptor, which is part of the proposed full-reference PC quality

assessment method. In a full-reference method, reference and test PCs are compared, so

instead of using a single voxel size for each PC, a single voxel size could be used for both

reference and test content. Both options were considered in this work, but in order to

improve generalization and to better emulate how PC visualization systems works (the

rendering is optimized for the PC to be displayed), one voxel size per PC was adopted.

In order to obtain the desired voxel’s edge size (ES), in this work it is proposed an
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Figure 3.1: Voxelization effects, from left to right, with a too small voxel size, with a
proper voxel size, and with an oversized voxel.

heuristic based on the average distance among nearest neighbors PC points, which is

computed as follows:

ES =
k

S
·

S
∑

n=1





1

knn

·
knn
∑

i=1

d (Ni(Pn), Pn)



 , (3.1)

where, S is the number of points of the PC, k is a constant obtained experimentally, Pn is

the n-th point of the PC, Ni(Pn) are the coordinates of the i-th nearest point to Pn, and

knn is the number of nearest neighbors. The function d (Pa, Pb) computes the Euclidean

distance between points Pa and Pb. The voxel’s volume is obtained computing the edge

size cube (ES3).

The proposed heuristic to obtain the voxel size is based on the average distance of

nearest neighbors. The heuristic assumes that correctly sized voxels provide a visual ex-

perience without major artifacts (eg. holes), in which the voxels need to approximately

touch each other. The number of nearest neighbors is typically 8, considering that an ap-

proximation of a 3D surface is a 2D image, in which every element has 8 connected nearest

neighbors. The k in Eq. 3.1 is a multiplier adjusted to provide the appropriate voxel size

for an optimal visual quality perception of the PC rendering or improve the performance

of a texture descriptor. The properly definition of k is needed as PCs are captured using

different methods, which produce PCs with distinct intrinsic characteristics, including

different types of point dispersion.
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3.1.2 Local Binary Patterns for PC

This section contains an adaptation of the Local Binary Pattern (LBP) to work on point-

clouds contents. The LBP descriptor is a texture descriptor originally proposed by Ojala

et al. [84] to improve the accuracy of texture recognition tasks in 2D images. This de-

scriptor is an effective feature extractor for texture-based problems, including for quality

assessment purposes [85, 86, 87]. The original LBP descriptor associates a binary code to

each pixel of a given image, considering the image luminance pattern of the surrounding

pixels in a defined neighborhood. The types of the considered neighbor vary and are typ-

ically defined in terms of a radius R between a target point and its neighbors, as shown

in Figure 3.2. The label attribution by the LBP descriptor uses the relation of each pixel

and its neighborhood, as shown in Figure 3.3, containing a 3x3 2D image.

Figure 3.2: Some neighborhood types of the LBP descriptor extracted at a distance R, in
different variations.

The value of each bit in the LBP label is computed by thresholding the differences

between a target (central) pixel and its neighboring pixels. The default LBP descriptor

for 2D images takes the following form:

LBPN
R (Pc) =

N−1
∑

n=0

θ(Pn − Pc) · 2n, (3.2)

where

θ(u) =











1 if u ≥ 0

0 otherwise.
(3.3)
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Figure 3.3: LBP label calculation for a Some neighborhood types of the LBP descriptor
extrated at a distance R.

In these equations, Pc = P (x, y) is an arbitrary central pixel at the position (x, y) and

Pn = P (xn, yn) is a neighboring pixel surrounding Pc, where

xn = x + R cos
(

2πn

N

)

and yn = y + R sin
(

2πn

N

)

,

and N is the total number of neighboring pixels Pn, sampled with a distance R from Pc.

Finally, after the calculation of the LBP labels, a histogram is calculated, as shown in

Figure 3.4, which is then used as input to a image quality assessment model.

Figure 3.4: LBP application to image in (a), the corresponding LBP labels map, and the
histogram of the labels in (c).

The LBP descriptor defined in Eq. 3.2 is designed for 2D images and operates consid-

ering the target pixel and a set of neighboring pixels, which are determined by a distance
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R. In 2D images, these neighbors can be sampled according to a geometric distribution

in a 2D plane (e.g., circular, elliptical, etc). This sampling approach works because pixels

in 2D images are equally distributed in a dense 2D grid. However, in PCs, the points are

sparsely distributed in the 3D space, which makes the problem of determining the neigh-

borhood for a LBP descriptor more complex. The challenge of dealing with point sparsity

of PCs is dealt with the voxelization procedure, which optimally creates a neighborhood

of discrete elements which are close enough to provide visually solid objects. Another

challenge is the selection of the traversal order of neighbors, as the 2D equations for de-

termining the traversal order do not apply in 3D domain. To solve this last challenge,

a different approach is adopted, in which the distances between each neighbor and the

central element is used to determine the traversal order, for example, closest to farthest.

Figure 3.5: Diagram the LBP adaptation for PCs, containing, from the left to right,
conversion from RGB to gray-scale, voxelization and the selection of one voxel and its
8-neighborhood.

Fig. 3.5 depicts the application of the LBP for a target voxel P (n) in the 3D space,

showing the sampling of the nearest voxels to create the LBP neighborhood. The neigh-

borhood is visited from closer to farther points, which results in a performance that is

slightly better than the reverse order (as shown later in the text). This figure illustrates

the case where the neighborhood of the target voxel has 8 voxels. Figure 3.6 illustrates

how the LBP label is obtained for a given PC element, considering example luminance

values for the target element and neighbors. The resulting LBP labels of the PC compose

the PC “Feature Map” (FM). In other words, each label L(n) in this FM corresponds to

the local texture associated with the voxel P (n). The labels (FM) of the voxels have the

size in bits equal to the selected number of neighbors, for example, 8 bits, which means

8 neighbors is used. After the extraction of the FM of a PC, a histogram is calculated

to allow the evaluation of a PC visual quality in terms of their texture statistics. The

histogram of the labels of the texture descriptor (the FM), is obtained by the following
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Figure 3.6: Diagram of the LBP label computation with the sorted voxels from closer to
farther.

expression:

h = {h[l0], h[l1], h[l2], h[l3], · · · }, (3.4)

where h represents the histogram and h[lj] is the frequency of the label lj. This label

frequency is computed using the following equation:

h[lj] =
S

∑

n=1

δ(L(n), lj), (3.5)

where

δ(v, u) =











1, v = u

0, otherwise,
(3.6)

and S is the number of voxels of a PC.

The histogram of the FM obtained for a PC with the application of the proposed LBP

can then be used in a PCQA methods, as described later in the text. Also the performance

of the LBP for PCs is present in the chapter with the results.

3.1.3 Local Luminance Patterns

The Local Luminance Patterns (LLP) descriptor is a contribution to the state-of-the-art

in PC texture descriptor and is used to extract statistics of a PC that are sensitive to

color-based texture degradation. The idea behind this descriptor is to obtain luminance

patterns that are representative of intrinsic PC texture characteristics and that can be
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useful for quality estimation. A previously, the statistics of the patterns are compared

between reference and test PCs. Just like as other color-based PC descriptors we propose,

the voxelization is applied prior the descriptor in order to better emulate the rendering

process and provide better performance when used in PCQA metric, as demonstrated in

the chapter with the results.

The LLP application first obtains the luminance (Y) of each PC point color by con-

verting RGB (typically) to gray using the ITU-R BT.709 colorimetry formula. Then, for

each voxel, a neighborhood is defined. Figure 3.7 shows an example, for the given target

voxel (shown in red in the third image), where a set of associated neighboring voxels are

selected. The only difference between LLP and LBP in the neighborhood data usage, is

that instead of the neighborhood being ordered by the spatial location of the neighbors,

the LLP does not need consider the spatial topology to traverse the neighborhood voxels.

Each of the voxels has a Y value ranging from 0 to 2b − 1, where b is the number of bits

used to represent the luminance PC voxel, typically 8 bits. In the example in Figure 3.7

the target voxel (in red) and its neighbors have luminance values equal to 35, 27, 118, 59,

114, 113, 137 and 71.

Figure 3.7: Diagram of the LLP label computation with a set of neighbor voxels.

The LLP descriptor maps the luminance values of N neighboring voxels, for each

voxel, into a label of B bits. Each luminance interval is represented by a single bit in the

label and the resulting bits are combined to form a label of B-bits. In other words, the

LLP descriptor associates a label L of B bits, initially set as zero, to each target voxel

P (n). Then, for each Y [i] luminance value of the i-th neighbor, it is applied iteratively
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the following equation:

L =











L ∨ (1 ≪ ⌊Y [i]−15
15

⌋), if 15 ≤ Y [i] < 240;

L ∨ (1 ≪ 15), if 240 ≤ Y [i] ≥ 255.
(3.7)

or

L =











L ∨ (1 ≪ ⌊Y [i]−20
20

⌋), if 20 ≤ Y [i] < 240;

L ∨ (1 ≪ 11), if 240 ≤ Y [i] ≥ 255.
(3.8)

.

The symbol ∨ is a bitwise OR and ≪ is a bitwise left shift. The darker the neigh-

bor, a smaller label value (a less significant bit) is added to the label, and vice-versa.

Equation 3.7 contains the case for when the label size B is 16 bits. The 12 bit version is

described in Equation 3.8.

Considering there is no dependency on the scale and position among each set of neigh-

boring voxels for the LLP calculation, this descriptor is scale and rotation invariant. The

LLP texture descriptor was tested with varying parameters, including different neighbor-

hood sizes, voxelization parameter k (as in Eq. 3.1) and label sizes. As an example of

the LLP label extration, Table 3.1 provides the label calculation for the voxel luminance

values in Figure 3.7, containing a set of 8 neighbors related a target voxel. Equation 3.7

is used iteratively to calculate the label, with each iteration represented by each line of

Table 3.1. The final label L is shown in the rightmost bottom cell of the table, in bold.

Table 3.1: Example of LLP label calculation with the luminance values from Figure 3.7.
Neighbor (i) Y[i] Bit Set Label (accumulated)

0 35 1 00000000 00000010
1 27 0 00000000 00000011
2 118 6 00000000 01000011
3 59 2 00000000 01000111
4 114 6 00000000 01000111
5 113 6 00000000 01000111
6 137 8 00000001 01000111
7 71 3 00000001 01001111

Notice that, for each neighbor luminance value, a corresponding bit is set. Luminances

smaller than 15 has no interval associated, and thus do not alter the label, but indeed also

represent a different symbol, the ‘0’. If no voxel values correspond to a specific interval,

the interval bit is set to ‘0’. If one or more voxel values correspond to a given interval,

the interval bit is set to ‘1’. The label value L in the considered example and shown in

Table 3.1 is 0000000101001111, or 14F in hexadecimal. The resulting label L describes

the an intrinsic relation among a set of neighboring voxels.
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3.1.4 Local CIEDE2000 Patterns

The Local CIEDE2000 Pattern (LCP) is an innovative color texture descriptor based on

perceptual color difference patterns among voxels and its neighbors. To calculate the

color differences, the CIEDE2000 (CIELab ∆E 2000) [88] color distance metric is used.

The CIEDE 2000 is more advanced than its predecessor color-difference metrics CIELAB

∆E*ab and CIE944, providing perceptually uniform color distances. The CIEDE2000

distance uses the CIELab color space, which has 3 channels: L∗ for lightness, a∗ for

green-red opponent colors, and b∗ for blue-yellow opponent colors, while for the color

distance calculation some adjustments are made to compensate perceptual nonlinearities

of the CIELab color space (which was the reason in first place for an updated color

difference formula, the CIEDE2000).

Color distances in RGB or YCbCr color spaces do not have a linear correlation to the

perception of color differences by the human vision. The LCP texture descriptor addresses

this problem by creating patterns based on color differences provided by CIEDE2000,

which are linearly related to the color differences as perceived by the human eyes.

In the LCP, for each voxel Pn, the CIEDE2000 distances are computed between the

voxel and each of its N -nearest neighbors voxels Pi. Then, based on these distances, we

compute a label of B bits for each PC voxel. The label L for each voxel is calculated by

computing, for all N neighbors, the CIEDE2000 distances C[i] corresponding to each i-th

neighbor. First, we set L equal to zero. Then, for each of the N neighbors, the following

equations are applied iteratively, for the case where B is 8 bits or 12 bits respectively:

L =











L ∨ (1 ≪ ⌊C[i]−2.5
2.5

⌋), if 2.5 ≤ C[i] < 20.0;

L ∨ (1 ≪ 7), if C[i] ≥ 20,
(3.9)

or

L =











L ∨ (1 ≪ ⌊C[i]−1.5
1.5

⌋), if 1.5 ≤ C[i] < 18.0;

L ∨ (1 ≪ 11), if C[i] ≥ 18,
(3.10)

where the symbol ∨ is a bitwise OR and ≪ is a bitwise left shift.

After all neighbors are analyzed, a final B-bits label L is obtained with the bits

corresponding to the distances C[i] to these neighbors being set. Important to note that

CIEDE2000 C distances smaller than 2.5 (for the 8 bits version) or 1.5 (for the 12 bits

version), which are values close to Just Noticeable Difference (JND) threshold [88], do not

set any bit in the label, meaning that a neighbor has approximately the same perception

of color of the target voxel. CIEDE2000 distances greater than 20.0 or 18.0 (8 bits and

12 bits version respectively) represent very different color perception between two colors,

and set the most significant bit in the LCP label. Another way of visualizing the LCP
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execution is through the C-language code shown in Listing 3.1 (8 bits version).

Listing 3.1: C code for the LCP label extraction for each voxel.

// pre−c a l c u l a t i o n o f d i s t a n c e s C [ ] f o r a l l N ne i ghbor s

L = 0 ;

for ( i = 0 ; i < N; i++)

{

i f (C[ i ] >= 2 .5 && C[ i ] < 20 . 0 )

L |= 1 << f l o o r ( (C[ i ] − 2 . 5 ) / 2 . 5 ) ;

i f (C[ i ] >= 20 . 0 )

L |= 1 << 7 ;

}

This process generates binary frequency values for the color distance intervals, which

indicate if there is at least one neighboring voxel at this interval distance. If the label L

corresponding to a particular voxel is a small number, this means most neighboring voxels

are similar (in color) to the central voxel. On the other hand, if L is a large number there

are neighboring voxels that are dissimilar (in color) from this central voxel. Figure 3.8

shows an example of the LCP label calculation for a target point that corresponds to the

10000-th point of the “Soldier” PC sample [67]. From the left to the right, the figure

shows a selection of a PC point (exemplified in red), the calculation of the CIEDE2000

distances for each of the 12 neighbors, and, finally, the label extraction. In the example,

N is equal to 12. Although the voxelization step is not shown, it is used, just like in the

others color-based pattern descriptors proposed in this work.

Figure 3.8: Diagram of the LCP label computation with an example of neighboring voxels.

The algorithm of the LCP is similar to the one of the LLP, but instead of using the

luminance of neighbors as input, the perceptual color distance between a voxel and each
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neighbor is computed. Consequently, also the intervals associated to each bit in the label

has a different physical meaning.

3.1.5 Geometry-based Texture Descriptor

The PC texture descriptors proposed in this work are color-based textures descriptors:

LBP, LLP and LCP. After testing these descriptors, it became clear that the geometric

information of a PC also plays a role in the perceived PC quality, as already evaluated

by Alexiou et al. [61]. While the proposed color-based descriptors can, to some extent,

identify some geometric distortions, the color-based descriptors miss to represent most

geometric distortions.

The proposed geometry-based texture descriptor considers the geometric information

of the surface tangent to each PC point and its neighbors. In order to establish a re-

lation between each point and its neighborhood, the normal vector information is used.

The normal vector of a PC point is the vector orthogonal to the point’s local surface.

Since typical PC capture devices do not capture normal vectors, only depth-plus-color

information being generally available, the normal vectors need to be computed prior the

descriptor application.

The normal vectors are computed through the eigenvectors from the covariance matrix

of the local neighborhood 3D coordinates. For each PC point, this local neighborhood

can have at most 16 points, which are located inside a maximum radius of 6 times the

average distance of the 8 nearest neighbors. To overcome the fact that each PC point

has 2 normal vectors that correctly represent the tangent plane, we orient the normals to

an arbitrary direction, in order to remove ambiguities. In our case, we oriented all PC

normals to the direction (0, 0, 1) and normalized the magnitude normal values to 1.

A diagram of the geometry-based descriptor is shown in Figure 3.9. For each point Pt

in a PC, we define the distance between Pt’s normal and each of the N -nearest neighbors

Pi’s normals, as the distance between two 3D normal vectors:

G =

√

√

√

√

3
∑

d=1

(ntd
− nid

)2,

where ntd is the normalized normal vector of point Pt, nid is the normal vector of a neighbor

Pi, and d represents each of the 3 dimensions (x, y, z) of a normal vector. Considering

that the normalized normals range from 0 to 1, the maximum possible distance between

normals is 2.

After the normal distances are computed, a label of B bits for each point is created.

In the example in Figure 3.9, B = 16 bits and N = 6. For a given point Pt, its label L is
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Figure 3.9: Diagram of the geometric texture label computation, with the normal vectors
represented as black lines.

computed through the iteration of the distances G[i] of each i − th nearest neighbors of

Pt as follows:

L =



































































L ∨ 1, 0.05 ≤ G[i] < 0.10;

L ∨ 1 ≪ 1, 0.1 ≤ G[i] < 0.175;

L ∨ 1 ≪ 2, 0.175 ≤ G[i] < 0.275;

L ∨ 1 ≪ ⌊G[i]−0.275
0.125

+ 3⌋, 0.275 ≤ G[i] < 1.65;

L ∨ 1 ≪ 14, 1.65 ≤ G[i] < 1.80;

L ∨ 1 ≪ 15, 1.65 ≤ G[i] ≤ 2.0,

(3.11)

where the symbol ∨ is a bitwise OR and ≪ is a bitwise left shift.

The geometry-based descriptor works in a similar way than the LLP and the LCP for

label bits attribution, but with different ranges and texture information. The smaller the

error G among a neighbor, the less significant the bit to be set in L, while larger G will

set higher a significant bit in L, what means that a small geometry distortion will create

smaller values in L, and vice-versa. Very small G (smaller than 0.05) do not change the

bits in label L. The ranges were established considering that the maximum distances

between two vectors with maximum magnitude of 1, is 2. The intermediate ranges when

B = 16 are set to 0.125 wide, while for smaller G, the ranges are a bit smaller, in order to

address the fact that most of the distances G are expected to be small. For higher G, the

ranges are a bit bigger (and less likely to happen, as seem experimentally), as shown in

Eq. 3.11 and also in table 3.2 as an alternative way to describe the algorithm, for B equal

to 16 bits. Table 3.2 contains all the G ranges and the corresponding bit mask which is

used to create the final label by the use of the logical OR bitwise operation applied to all

bit masks.
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Distance G Operation Label Bit

G < 0.050 no bit is set 0000000000000000
[0.050, 0.100) bit 0 is set 0000000000000001
[0.100, 0.175) bit 1 is set 0000000000000010
[0.175, 0.275) bit 2 is set 0000000000000100
[0.275, 0.400) bit 3 is set 0000000000001000
[0.400, 0.525) bit 4 is set 0000000000010000
[0.525, 0.650) bit 5 is set 0000000000100000
[0.650, 0.775) bit 6 is set 0000000001000000
[0.775, 0.900) bit 7 is set 0000000010000000
[0.900, 1.025) bit 8 is set 0000000100000000
[1.025, 1.150) bit 9 is set 0000001000000000
[1.150, 1.275) bit 10 is set 0000010000000000
[1.275, 1.400) bit 11 is set 0000100000000000
[1.400, 1.525) bit 12 is set 0001000000000000
[1.525, 1.650) bit 13 is set 0010000000000000
[1.650, 1.800) bit 14 is set 0100000000000000
[1.800, 2.000) bit 15 is set 1000000000000000

Table 3.2: Label computation for the geometry-based descriptor, with B of 16 bits, con-
sidering the different G intervals.

The proposed geometry-based texture descriptor complement the color-based descrip-

tors in describing intrinsic features of PC, which can be used for PC Quality Assessment.

The geometry-based texture descriptor has similarities to the color-based LLP and LCP

descriptors, especially for the label construction, as all of them use an iterative algorithm

which set bits in a label according to each neighbor, but independent of any order among

the neighbors, providing rotation invariant descriptors. The main difference is that in the

geometry-based descriptor, the voxelization step does not improve its performance, as it

compromises and alters the geometry properties of a PC. The different behavior between

color-based and geometry-based texture descriptors is expected and shows it is capturing

different characteristics of a PC.

3.2 PC Texture Histogram Distances

A full-reference PCQA metric compares reference and degraded PC characteristics. In

the case of the PCQA method proposed in this thesis, the metric is based on a distance

between histograms of the labels extracted from reference and test PC by the applica-

tion of the proposed texture descriptors. The distance measures between histograms are

used to estimate the degradation of a compressed PC compared to a reference PC. A

representation of a histogram is given by the following expression:
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H = {h[l0], h[l1], h[l2], h[l3], · · · }, (3.12)

where H represents the histogram and h[lk] corresponds to the frequency of the label lk,

where k ranges from 0 to 2B − 1, with B the defined size of the descriptor label, in bits.

Each label frequency is computed as shown:

h[lj] =
1

S
·

S−1
∑

a=0

δ(L(Pa), lj), (3.13)

where L(Pt) is the texture descriptor label of the point t of a PC, S is the number of PC

points, and δ is an impulse function, as shown by the following equation:

δ(v, u) =











1, v = u

0, otherwise.
(3.14)

After computing the histograms of the reference point cloud Hr and of the test point

cloud Ht, these histograms are compared using a distance metric D = D(Hr, Hi). To

compare histograms, several distance metrics can be used, such as Bray-Curtis, Canberra

[89], Cityblock [90], Chebyshev, Cosine, Euclidean, Jensen-Shannon [91], Wasserstein [92],

and Energy. Arguably the most relevant distance to modern math is the Euclidean

distance, defined in the fifth postulate of Euclid’s Elements around 300 B.C. [83]. In

modern math syntax, the Euclidean distance formula applied to the histogram elements,

computed as follows:

d = d(hu, hv) =
√

(hu − hv)2, (3.15)

which returns the Euclidean distance between histogram frequencies hu and hv, related

to the labels lu and lv. Considering all the labels of the histogram of a PC, the Euclidean

histogram distance between two PC histograms can be defined as follows:

d = D(Hr, Ht) =
2B

−1
∑

j=0

√

(hrj − htj)2, (3.16)

where D is the final distance, Hr is the histogram of the reference PC, Ht is the histogram

of the test PC, B is the size of the label (in bits) and hrj and htj are the j-th element of

the histograms Hr and Ht, respectively.

Another very important distance for quality assessment is the Jensen-Shannon diver-

gence [91]. The Jensen-Shannon divergence is expressed in terms of the Shannon entropy,

given by the following equation:
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Djs(P||Q) = S

(

P + Q

2

)

−
1

2
[S(P ) + S(Q)] , (3.17)

where P and Q are two ordered sequences, and S is the Shannon entropy, as defined by:

S(P) =
M
∑

i=1

Pi log2 Pi, (3.18)

where Pi is the i-th element of a sequence and M is the size of the sequence.

The distance measure between PC histograms created by the proposed texture de-

scriptors provide the value which is used to estimate the quality of a degraded PC. As

exposed later in this text, the Jensen-Shannon divergence provides the best distance for

the proposed metric framework.

3.3 PC Quality Prediction Modeling

In order to predict the quality of a given visual content, it is typical to use a regression

model to estimate the perceived quality. In quality assessment methodologies, the regres-

sion model is often used to adjust the subjective quality scores provided by the different

quality datasets. In the case of the PCQA methodologies proposed in this thesis, the coef-

ficients of the regression function obtained with data from subjective experiments are used

to map the distances of the PC texture descriptor histograms (described in section 3.2).

The mapping can also be applied to a combination of two or more histogram distances,

providing a way to jointly use different PC texture descriptors for quality estimation. The

most relevant combination of color and a geometry texture descriptors are addressed in

the results.

The regression algorithm takes as input the distance D of the histograms and maps

it into an objective (predicted) quality score, using the available subjective Mean Opin-

ion Score (MOS) values as ground-truth values. Different regression models exist to

map the distances D into objective quality scores. Some examples include the Random

Forest Regressor, Extra Trees Regressor, Gradient Boosting Regressor, Bayesian Ridge,

ARD Regression, Lars, Elastic Net, Elastic NetCV, Lasso, RANSAC Regressor, KNeigh-

bors Regressor, MLP Regressor and the Logistic function, which is recommended by an

International Telecommunications Union (ITU) tutorial about objective quality assess-

ment [93]. Regression models how the human visual system perceives the different levels

and types of distortions and, therefore, how the distance metrics are mapped into pre-

dicted quality scores. As discussed in the following results’ section (section 4), it is shown

that the Logistic function provides a good correlation with subjective scores (these results

43



are also published in paper [9], and discussed in section 4.1). The Logistic function is

given by:

Y w
i = wi





β1 − β2

1 + e
−

Xi−β3

|β4|

+ β2



 + εw
i , (3.19)

where Yi is the i-th MOS value, σ is the standard deviation of scores and εw
i is the i-th

residual value. The initial estimates for the parameters in Eq. 3.19 are β1 = max(Yi),

β2 = min(Yi), β3 = X̃, β4 = 1, wi = σ−1, and Y w
i = wi · Y w

i .

Considering that degradation to a PC can occur in both color and geometry com-

ponents, the best performance by the metric is obtained when a color-based texture

descriptor is used together with a geometry-based texture descriptor. One possible setup

of the proposed full-reference PCQA method can be summarized in Figure 3.10, in which

the LCP and the geometry-based texture descriptor are used together to estimate the

quality of a PC. The output distances of the LCP and the geometry-based descriptors are

simply averaged in the example.

Figure 3.10: Diagram of the proposed PC quality assessment metric framework.

In the Figure 3.10, the color-based descriptor path is outlined in the bottom part of

the figure, which shows first the voxelization procedure (C-PCr,d), the color-based feature

map extraction (C-FMr,d) is the next step, and then the color-based feature histogram

creation (CHr,d). The geometry path is in the top of the figure, in which the first step

is the normals calculation (G-PCr,d), followed by the geometry-based feature extraction

(G-FMr,d), then the geometry feature histogram is created (GHr,d). For both color and

geometry paths, the histograms distance of the reference and degraded PCs (referenced by

small r and d, respectively) are calculated. In the example, the Jensen-Shannon distance

is used, next, both distances (GD and CD) are averaged (D) and used in the prediction

model, which applies a regression method to provide the final quality prediction score.
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Chapter 4

Results And Comparison To

State-Of-The-Art Metrics

This chapter presents the experimental setup of the proposed quality assessment method,

its simulation results, the performance comparison between the proposed quality assess-

ment method to other state-of-the-art PCQA metrics, and finally some conclusions.

4.1 Experimental Setup

The implementation of the texture descriptors was done in a multi-threaded C and C++

code. The implemented code uses the Open3D[94] library, which provides the structures

for point cloud memory storage and an optimized nearest neighbor search algorithm. The

statistical analysis and regressions code was developed using the Scikit-Learn library [95].

The proposals were tested in both a high-end computer and a notebook computer. The

high-end computer is a dual eight-core Intel Xeon E5-2620, with 80GB of RAM mem-

ory, while the notebook setup is Lenovo ThinkPad T430 with a quad-core Intel Core

i7-3632QM with 16GB of RAM. While the runtime complexity of the metric was not

evaluated, by comparing the implementation done for this thesis and the other metrics

implementations tested, the proposed PCQA metric is faster than the others.

The proposed PC quality assessment methods presented in this thesis are tested with

a variety of PC datasets and compared to other state-of-the-art PC quality assessment

metrics, which were presented Chapter 2. The selected datasets and associated subjective

scores represent the most up-to-date and diverse datasets available in the literature [56,

64, 66, 67], presented with more detail in Section 2.2.1. Also in Section 2.2.1, it was

named D1 the dataset by Torlig et al. [56], D2 the dataset by Alexiou et al. [64], D3 the

dataset by Stuart el at. [66], and D4 the dataset by Yang et al. [67]. Important to note
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that D2 and D3 contain only MPEG codec compression distortions, while D1 and D4

have a more diverse set of distortions.

In order to justify the choices for the regression model and for the distance calculation

of the texture descriptor histograms, in this section it is shown a regression model analysis,

a distance metrics analysis, the texture descriptors analysis, and, then, the comparison

with other state-of-the-art metrics. Figure 4.1 shows the block diagram containing the his-

togram distance calculation and the regression model used in the proposed quality metric

workflow, considering the case of a single descriptor being used for quality estimation.

Figure 4.1: Block diagram of the quality assessment workflow illustrating the histogram
distance calculation and the regression model in the quality assessment workflow..

In this chapter all the evaluations that compare the predicted quality scores with the

subjective scores provided in the benchmark databases use all or some of the following

correlation metrics: the Spearman rank-order correlation coefficient (SROCC), the Pear-

son linear correlation coefficient (PCC), and the the root mean square error (RMSE),

shown below:

PCC(mi, pi) =

∑

i
(mi − ma)(pi − pa)

√

∑

i
(mi − ma)2

√

∑

i
(pi − pa)2

, (4.1)

where mi is the subjective MOS score, pi is the predicted score, and ma and pa are their

average.

SROCC(mi, pi) = 1 −
6

L
∑

i=1
(mi − ri)

2

L(L2 − 1)
, (4.2)

where mi is the subjective MOS score, pi is the predicted score, ri is the rank order of pi

and L is the number of test content PCs.
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RMSE(mi, pi) =

√

√

√

√

√

L
∑

i=1
(mi − pi)

L
, (4.3)

where the variables have the same meaning as in equation 4.2 and 4.1.

The use of these measures are in accordance to ITU recommendations for visual quality

assessment [93]. Greater PCC and SROCC is better, meaning higher correlation to the

subjective ground truth, while the RMSE represents the residual error, and so, the less

the better.

With regards to the regression model, Extra Trees, Gradient Boosting, Random Forest

and the Logistic function regressors were evaluated. The Extra Trees regressor is a meta

estimator that fits a number of randomized decision trees (extra-trees) on various sub-

samples of the dataset. It uses averaging to improve the predictive accuracy and control

over-fitting. The Random Forrest Regressor is a meta estimator that fits a number of

classifying decision trees on various sub-samples of the dataset. It also uses averaging to

improve the predictive accuracy and control over-fitting. Finally the Gradient Boosting

regressor builds an additive model in a forward stage-wise manner, optimizing arbitrary

differentiable loss functions. In the case of this work, the loss function tested was the

Huber loss. In each stage a regression tree is fit on the negative gradient of the given loss

function [96]. The Extra Trees, Gradient Boosting, Random Forest regressors were used

as implemented in Scikit-learn software [95]. Additionally to these regressors, the logistic

function as described by ITU [93] was also used as regressor, and its equation is shown in

equation 3.19.

The evaluation of the regressor models are present in Figures 4.2, 4.3 and 4.4, in which

the SROCC, PCC and RMSE values are shown for dataset D1. The LCP descriptor

(Section 3.1.4) was adopted for the regressors evaluation. The LCP with 8-bit label and

12 neighbors was used, while different histogram distances were applied (see Section 3.2).

The k parameter of the voxelization (equation 3.1) was tested with values of 0.7, 1.0, 1.3,

1.6, 2.0, 3.0, 4.5, 6.0, 7.5 and the case without the application of the voxelization (“novox”

in the figures).
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(a) Extra Trees (b) Gradient Boosting

(c) Random Forest (d) Logistic

Figure 4.2: Evaluation of the SROCC correlation of the Extra Trees, Gradient Boosting,
Random Forest regressors, with different histogram distances and varying voxelization k

parameter.
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(a) Extra Trees (b) Gradient Boosting

(c) Random Forest (d) Logistic

Figure 4.3: Evaluation of the PCC correlation of the Extra Trees, Gradient Boosting,
Random Forest regressors, with different histogram distances and varying voxelization k

parameter.
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(a) Extra Trees (b) Gradient Boosting

(c) Random Forest (d) Logistic

Figure 4.4: Evaluation of the RMSE of the Extra Trees, Gradient Boosting, Random
Forest regressors, with different histogram distances and varying voxelization k parameter.

While the present analysis on the available state-of-the-art regressors applied to this

PC quality assessment proposal is not extensive, the comparison uses high performance

regressors, and provide the basis for the adoption of the Logistic regressor throughout in

this work. The Logistic regression performs best, and in terms of PCC (0.874), SROCC

(0.888), and RMSE (0.567). It is worth mentioning that the Logistic regression is already

recommended as a regression method for 2D image quality assessment [93]. This analysis

just confirms that the Logistic regression is also good for 3D PCs and this is the reason

why it is adopted it in this work.

4.2 Simulation Results

In this section, the results of simulations are presented along with an analysis of the

proposed PC texture descriptors and the associated distance metrics used to calculate
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the distance between the texture descriptor histograms.

Figures 4.5 to 4.28 show the analysis of the following PC texture descriptors pro-

posed in this work: LBP, LLP with 16 bits and 12 bits labels, LCP with 12 bits and

8 bits labels, and the geometry-based texture descriptor with 16 bits label. The results

were obtained through the application of the texture descriptors to all 4 datasets listed

before, with neighborhood size of 6, 8, 10 and 12 (one neighborhood size per line, respec-

tively), and voxelization k parameter with values of 0.7, 1.0, 1.3, 1.6, 2.0, 3.0, 4.5, 6.0,

7.5, and “novox” (no voxelization). The distance calculation between reference and test

histograms obtained by the application of the texture descriptors evaluated were: Bray-

Curtis, Canberra [89], Cityblock [90], Chebyshev, Cosine, Euclidean, Jensen-Shannon [91]

Wasserstein [92], and Energy, as implemented in the Scipy library [97]. Important to note

that the regression applied to one dataset independently to other datasets, what means

the histogram distances are fit to the subjective data of the dataset in evaluation. While

fitting the histogram distances of one dataset to the subjective ground truth of the same

dataset is an over-fitting procedure, this is justifiable as there are still very few PC datasets

with associated subjective data, and as so, this procedure is accepted in the PCQA meth-

ods up to date, while most the literature up to now compare the state-of-the-art metrics

using such over-fitting method.
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PCC SROCC RMSE

Figure 4.5: D1 LBP descriptor performance with different histogram distances evaluated,
with each row representing the LBP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.6: D1 LLP 16 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.7: D1 LLP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.8: D1 LCP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.9: D1 LCP 8 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.10: D1 geometry-based descriptor performance with different histogram distances
evaluated, with each row representing the geometry-based descriptor with 6, 8, 10 and 12
neighbors, respectively.
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PCC SROCC RMSE

Figure 4.11: D2 LBP descriptor performance with different histogram distances evaluated,
with each row representing the LBP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.12: D2 LLP 16 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.13: D2 LLP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.14: D2 LCP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.15: D2 LCP 8 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.16: D2 geometry-based descriptor performance with different histogram distances
evaluated, with each row representing the geometry-based descriptor with 6, 8, 10 and 12
neighbors, respectively.
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PCC SROCC RMSE

Figure 4.17: D3 LBP descriptor performance with different histogram distances evaluated,
with each row representing the LBP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.18: D3 LLP 16 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.19: D3 LLP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.20: D3 LCP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.21: D3 LCP 8 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.22: D3 geometry-based descriptor performance with different histogram distances
evaluated, with each row representing the geometry-based descriptor with 6, 8, 10 and 12
neighbors, respectively.
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PCC SROCC RMSE

Figure 4.23: D4 LBP descriptor performance with different histogram distances evaluated,
with each row representing the LBP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.24: D4 LLP 16 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.25: D4 LLP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LLP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.26: D4 LCP 12 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.27: D4 LCP 8 bits descriptor performance with different histogram distances
evaluated, with each row representing the LCP with 6, 8, 10 and 12 neighbors, respectively.
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PCC SROCC RMSE

Figure 4.28: D4 geometry-based descriptor performance with different histogram distances
evaluated, with each row representing the geometry-based descriptor with 6, 8, 10 and 12
neighbors, respectively.
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The simulation results presented by the graphics of this section contain variations of

all the descriptors, with varying size of neighborhood, voxel size and distance metrics. The

simulation results show how the descriptors behave with the variation in the neighborhood

size, the voxel size k parameter, and the different histogram distances.

In the case of the LBP color-based PC texture descriptor descriptor, which has a

label size equal to the neighborhood size, in bits, the label is composed by the closer

neighbor setting (or not) the most significant bit, while the farthest the neighbor, the

less significant bit is enabled or not, as detailed in Section 3.1.2. As seen if Figures 4.5,

4.11, 4.17, 4.23, with the results obtained with datasets D1, D2, D3 and D4 respectively,

the most prominent analysis is that the LBP performance is highly influenced by the

voxelization, in all the datasets. While without the use of the voxelization the performance

is poor, with k voxelization parameter between 2 and 6 the higher correlations are attained,

specially with the histogram distances Canberra and Jensen-Shannon, which are the best

performing distances for the LBP, according to the results. While for D1, D2 and D3

there is almost no different of the performance among different neighborhood sizes, for

D4 the variation with 6 neighbors perform a bit better. LBP PCC performance peaks

at 0.877, 0.878 and 0.907 in D1, D2 and D3 respectively, while in D4, a more complex

dataset with wider variety of distortion, LBP PCC peaks at 0.724. The SROCC tendency

is the same of the PCC, while the RMSE values mostly follows the inverse tendency of

the correlation values.

Two variations of the LLP color-based PC texture descriptor were presented, a 16 bits

version, and a 12 bits one. The 16 bits version results are presented in Figures 4.6, 4.12,

4.18 and 4.24, while the 12 bits version results are presented in Figure 4.7, 4.13, 4.19 and

4.25, for D1 to D4 datasets respectively. The LLP performance is less homogeneous among

the datasets, with the histogram distance measures diverging considerably between each

other. The Euclidean distance is the best distance for the 16 bits variant, while for 12 bit

variant, there is no clear best, with the the Euclidean, Jensen-Shannon and Chebyshev

alternating best performance depending on the dataset. The best voxelization parameter

is between 4.5 and 7.5 for the 16 bits version, while for the 12 bits there is no clear best.

The performance difference among the evaluated neighborhood sizes is not noticeable in

both LLP variations. The LLP in its 16 bits variation has a PCC with peaks of 0.880,

0.839, 0.870 and 0.728, while the 12 bits version peaked at 0.834, 0.820, 0.884 and 0.762.

The SROCC followed the same pattern of the PCC values, while the RMSE values havethe

inverse pattern, as expected, with the exception of the Canberra RMSE for the LLP 16

bits, that is huge. The LLP 16 bits presented a more homogeneous behavior with respect

to the best histogram distance measure and the voxelization operating range.

Also, two variations of the LCP color-based PC texture descriptor were presented in

76



the results, a 12 bits and a 8 bits variation. The 12 bits version results are presented

in Figures 4.8, 4.14, 4.20, 4.26, while the 8 bits version results are shown in Figures 4.9,

4.15, 4.21 and 4.27, for D1 to D4 datasets respectively. The LCP 12 bits variant results

presented no clear best version with respect to the histogram distance metric. While the

Jensen-Shannon distance is best for D1, D2 and D3, the Energy is best for D4. In the case

of the LCP 8 bits, the Jensen-Shannon is best for D1, D2 and D3, while the performance

difference between Jensen-Shannon is much smaller to Energy in D4 than in the LCP

12 bits case. The voxelization improves the performance with most of the histogram

distances tested, while not in the same intensity across different datasets. The LCP 12

bits had PCC peak values of 0.802, 0.780, 0.881 and 0.660, while the LCP 8 bits PCC

peaked at 0.880, 0.775, 0.912 and 0.660, for D1 to D4 datasets respectively. The results

show the performance of the LCP 8 bits slightly better than the 12 bits version, while

the results with 12 neighbors present also a slightly better performance to both variants

when compared to other neighborhood sizes. LCP SROCC correlation followed the same

PCC values pattern, while the RMSE followed a inverse trend, as expected, with some

exceptions to the Canberra distance, which presented at times very high RMSE peaks.

Finally, the geometry-based PC texture descriptor results are presented in Figures

4.10, 4.16, 4.22, 4.28, obtained with the application of the descriptor to datasets D1, D2,

D3 and D4. The first divergence with concern to the other color-based descriptors is that

the voxelization strongly degrades the performance of the geometry-based descriptor in

datasets D2 and D3, for all histogram distances evaluated. In case of dataset D1, the

voxelization improved very little the performance, and for dataset D4 the performance is

a bit improved with the voxelization, but just for some histogram distance measures, no-

tably Jensen-Shannon, Bray-Curtis and Cityblock. The results regarding the voxelization

show that the voxelization is not suitable for the proposed geometry-based PC texture de-

scriptor. Considering all the datasets, the best histogram distance is the Jensen-Shannon.

The geometry-based descriptor PCC peaked at 0.777, 0.731, 0.814 and 0.713 for datasets

D1 to D4 respectively, while the SROCC followed the same PCC curve trend, and RMSE

the opposite trend, while again Canberra distance provided some very high RMSE peaks.

While the results show some good correlations, independently evaluating the color

texture or the geometry texture is not an optimal solution for PC quality assessment, as

this approach (only color or only geometry analysis) has no sufficient data to identify all

possible color and geometry distortions. Towards a more complete quality assessment,

which is the final proposal of this thesis, it is presented the joint performance results

of one color-based texture and the geometry-based texture descriptors to provide the

quality prediction. The procedure to combine two (or more) descriptors is done by the

averaging of the distances of the histogram distance calculation. After the combination
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of the histogram distances of the descriptor distances, the logistic regression calculation

is done as already explained.

The methods proposed in this work were evaluated with varying parameters, with

the goal of understanding the behavior of the descriptors for different datasets. After

the evaluation of the texture descriptors, it was possible to fix the parameters so that

they could be compared with state-of-the-art metrics. I adopted a fixed combination of

one color-based texture descriptor and one geometry-based texture descriptor, in order to

compare the proposed methods to the best available PCQA metrics.

One combination was done using the LCP with 8 bits label (correlation results shown

in Figures 4.9, 4.15, 4.21 and 4.27), voxelization k parameter set to 6.0, neighborhood

size of 12, together with the geometry-based descriptor (Figures 4.10, 4.16, 4.22, 4.28), no

voxelization applied, and neighborhood size of 6. In both descriptor the Jensen-Shannon

distance was used for histogram distances calculation. The second combination was done

using the LBP, with voxelization k parameter set to 1.6, neighborhood size of 8, also with

the same geometry-based descriptor, and using the Jensen-Shannon distance. The third

experiment includes the LLP with 12 bits label, 8 neighbors, and k equal to 2.0, while

the distance used to measure the LLP histograms was the Euclidean. The LLP with the

aforementioned settings was combined with the geometry-based texture descriptor with

the same parameters of the other combinations.

Table 4.1 shows the performance comparison of the LCP combined with the geometry-

based descriptor (LCP + GEO in the table), LBP combined with the geometry-based

descriptor (LCP + GEO), and LLP combined with the geometry-based descriptor (LLP +

GEO). The conditions the other metrics were evaluated were exactly the same which were

applied to the proposed methods, including exactly the same PC source content, same

normal vectors (for the metrics which need normals), and the logistic regressor. Some

MPEG metrics evaluate color channels independently, so in order to obtain a unique

result (represented as YCbCr in the table) it is used the Eq. 2.6 to combine the color

components. The point-to-point based metrics are the first 12 metrics, which are based

on the MPEG released metrics. Then, there are also two recently released metrics that

are considered in the comparison as state-of-the-art: the PCQM metric [80] and two

modes of the PointSSIM metric [79]. Best values in the table are shown in bold, while

second best are shown in italic. The last column of Table 4.1 shows the average values,

which shows clearly that “LCP + GEO” metric has arguable the best performance, with

averaged PCC of 0.840, an average SROCC of 0.845, and average RMSE of 1.462. The

other best performing metrics, PCQM and PointSSIM-Color, have average PCC of 0.603

and 0.824, respectively, average SROCC of 0.873 and 0.822, respectively, and average

RMSE of 3.616 and 3.160. While the PCQM has the best average SROCC by a small
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Data Sets

Metrics D1 D2 D3 D4 AVG

PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

po2point_MSE 0.270 0.250 1.122 0.808 0.835 1.095 0.941 0.920 0.534 0.418 0.350 3.857 0.609 0.589 1.652

PSNR-po2point_MSE 0.518 0.484 0.953 0.494 0.430 1.352 0.538 0.549 1.025 0.470 0.376 3.832 0.505 0.460 1.791

po2point_Haus 0.270 0.215 1.122 0.627 0.421 1.282 0.496 0.446 1.024 0.261 0.224 3.900 0.414 0.327 1.832

PSNR-po2point_Haus 0.512 0.469 0.968 0.454 0.396 1.379 0.549 0.527 1.008 0.481 0.455 3.833 0.500 0.462 1.797

Color-YCbCr_MSE 0.383 0.367 1.039 0.553 0.571 1.333 0.755 0.682 0.921 0.500 0.512 3.822 0.548 0.533 1.779

PSNR-Color-YCbCr_MSE 0.368 0.337 1.097 0.536 0.565 1.351 0.793 0.801 0.797 0.504 0.503 3.805 0.550 0.552 1.763

Color-YCbCr_Haus 0.147 0.172 1.131 0.413 0.375 1.380 0.377 0.306 1.122 0.191 0.095 3.955 0.282 0.237 1.897

PSNR-Color-YCbCr_Haus 0.386 0.320 1.059 0.435 0.391 1.417 0.445 0.449 1.100 0.344 0.270 3.875 0.403 0.358 1.863

po2plane_MSE 0.270 0.275 1.122 0.845 0.858 1.031 0.958 0.945 0.492 0.432 0.370 3.859 0.626 0.612 1.626

PSNR-po2plane_MSE 0.484 0.421 0.984 0.499 0.495 1.361 0.542 0.579 1.021 0.380 0.390 3.893 0.476 0.471 1.815

po2plane_Hausdorff 0.270 0.247 1.122 0.604 0.427 1.267 0.586 0.418 0.981 0.223 0.188 3.990 0.421 0.320 1.840

PSNR-po2plane_Haus 0.440 0.408 1.016 0.428 0.367 1.394 0.497 0.463 1.034 0.464 0.451 3.836 0.457 0.422 1.820

PCQM 0.797 0.898 2.656 0.607 0.915 2.899 0.738 0.970 3.123 0.271 0.708 5.786 0.603 0.873 3.616

PointSSIM-Color 0.842 0.823 2.234 0.910 0.918 2.436 0.869 0.865 2.697 0.676 0.682 5.354 0.824 0.822 3.180

PointSSIM-Geometry 0.804 0.820 2.102 0.784 0.834 2.321 0.849 0.905 2.534 0.527 0.560 5.323 0.741 0.780 3.070

LCP + GEO 0.876 0.896 0.572 0.819 0.839 1.068 0.936 0.932 0.544 0.730 0.714 3.663 0.840 0.845 1.462

LBP + GEO 0.845 0.837 0.620 0.845 0.850 1.037 0.863 0.869 0.672 0.579 0.543 3.764 0.783 0.775 1.523

LLP + GEO 0.790 0.795 0.702 0.812 0.822 1.077 0.873 0.877 0.651 0.672 0.660 3.705 0.787 0.789 1.534

Table 4.1: Performance of joint analysis of two proposed descriptors compared with other
state-of-the-art metrics applied.

margin, its PCC is 0.603, which is much lower than the “LCP+GEO” proposed method.

Also the RMSE of the proposed method is by far the smallest.
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Chapter 5

Conclusions

In this chapter we present the conclusions taken from the work, and further work to be

done. While none of the descriptors alone can capture all types of distortions, when two

descriptors are used together, the performance of the propose metric is up to par with the

state-of-art, if not better. The contributions of this work include the voxelization process,

the four proposed texture descriptors, and the analysis of the texture histogram distances

and of the quality prediction model based.

The results show the relevance of the voxelization process, which is the process that

provides a volume to each PC point, so that these points can be rendered and be visu-

alized. But, for the purpose of quality assessment, voxelization is used to emulate the

rendering process and improve the texture descriptor performance. The voxelization pro-

cess contains a certain amount of uncertainty, as the subjective scores used as the basis

for the comparisons are obtained through different types of rendering techniques, which

can affect negatively the design of PC objective metrics. On the other hand, this lead

me to develop a heuristic study to define the voxel size, as discussed in Section 3.1.1.

While the voxelization applied to color-based texture descriptors improves the correlation

of the proposed metric with the perceived quality, the voxelization does not improve the

performace of the geometry-based texture descriptor,

Concerning the proposed texture descriptors, all of them have a fair performance

when analyzed independently, when compared to the MPEG proposed metrics. While

independently the color-based texture descriptors perform better than the geometry-based

texture descriptor, none of them outperforms the combined LCP and the geometry-based

texture descriptors together.

The LBP has a label size defined by the size of the neighborhood, while the other

proposed descriptors have a label size independent than the neighborhood size. The LCP

needs less bits to represent the color texture than the LLP descriptor, as the ranges

associated to the bits in the label are based on the perceptual comparison using the
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CIEDE2000 distance, while allows a higher compression of the texture information. The

totally new texture descriptors are a relevant contribution to the state-of-the-art, while the

LCP and the geometry-based proposals provide the best performance when used together.

Also, as a side-effect of the way the proposed texture descriptors extract the labels, is that

the descriptors are scale and rotational invariant, as they are based on a neighborhood

defined by relative distances.

Future works include the optimization of the performance of the proposed method.

The proposed optimization method will be based on a profound statistical analysis of the

available PC datasets. The adoption of a fixed k voxelization parameter for the purpose

of establishing PCQA metrics is not optimal, as the rendering process is not standardized

across different datasets. The simulation results show that the optimal k which leads to

higher correlation results vary between datasets, so a method for automatic setting the

voxelization parameter k will be developed. Also a more adapted ranges associated to

each descriptor label bits will be proposed, based on the more profound statistics analysis.

Also, a no-reference PCQA method will be proposed. The NR metric will be based on

machine learning techniques, which use the texture descriptor histograms as input, as

opposed to using the histogram distance between reference and test PCs.

Clearly this work provides results that are good with different types of datasets and

distortions, while providing a powerful framework for PC quality assessment, in the spite

of the state-of-the-art PC quality assessment metrics. This proposal is among the best

state-of-the-art PCQA metrics, which I plan to present to standardization bodies as a

metric to be used for objective quality measures of PCs. The ultimate goal of this work

was to contribute for a wider adoption of visual volumetric media, which will allow for a

much more realistic representation of the world.
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