
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Verifying the Computational Properties of a
First-Order Functional Model

(Verificação das Propriedades Computacionais de um
Modelo Funcional de Primeira-Ordem)

Thiago Mendonça Ferreira Ramos

Document submitted in partial fullfilment of
the requirements to Doctoral Degree in Informatics

Advisor
Dr. Mauricio Ayala-Rincón

Co-advisor
Dr. César Augusto Muñoz

Brasília
2023

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Verifying the Computational Properties of a
First-Order Functional Model

(Verificação das Propriedades Computacionais de um
Modelo Funcional de Primeira-Ordem)

Thiago Mendonça Ferreira Ramos

Document submitted in partial fullfilment of
the requirements to Doctoral Degree in Informatics

Dr. Mauricio Ayala-Rincón (Advisor)
CIC/UnB

Dr. César Augusto Muñoz (Co-advisor)
AWS Amazon

Dr. Natarajan Shankar Dr. Dominique Larchey-Wendling
SRI International Université de Lorraine

Dr. Vander Ramos Alves Dr.a Laura Titolo
CIC/UnB NIA/NASA LaRC Formal Methods

Prof. Dr. Ricardo Pezzuol Jacobi
Coordinator of Graduate Program in Informatics

Brasília, June 15, 2023

Dedicatória

Dedico essa tese a Nossa Senhora, soberana do meu coração. Dedico também a minha
mãe, Ana Lucia Mendonça Ferreira Ramos, ao meu pai, Edson Sergio Ferreira Ramos e
a minha irmã, Mariana Mendonça Ferreira Ramos. Por fim, dedico essa tese a minha
futura esposa, a quem eu não conheço, ou, quem sabe, eu já a conheça.

I dedicate this thesis to Our Lady, sovereign of my heart. I also dedicate it to my
mother, Ana Lucia Mendonça Ferreira Ramos, my father, Edson Sergio Ferreira Ramos,
and my sister, Mariana Mendonça Ferreira Ramos. Finally, I dedicate this thesis to my
future wife, whom I do not know, or, perhaps, I already know her.

iii

Agradecimentos

Agradeço à Santíssima Trindade pela oportunidade de terminar o doutorado. Agradeço
ao meu orientador Mauricio Ayala-Rincón e ao meu co-orientador, César Augusto Muñoz
pelas valiosas correções e sugestões. Agradeço a meu santo de devoção, São Padre Pio e ao
meu anjo da guarda pelas inspirações ao longo dessa jornada. Agradeço a Nosso Senhora
do Rosário de Fátima. Agradeço ao Beato Carlo Acutis, que se fosse vivo, teriamos
a mesma idade e que por seu talento em informática também foi fonte de inspirações.
Agradeço aos meus amigos: Ariane Alves Almeida, Gabriel Ferreira Silva, Santiago Miler
Quispe Mamani, Pavel Sejas Paz, Geovane Cardoso de Brito, Ana Cristina Valverde,
Daniel Saad Nunes, Lucas Ângelo da Silveira, Washington Ribeiro Segundo.

I thank the Holy Trinity for the opportunity to finish my PhD. I thank my advisor
Mauricio Ayala-Rincón and my co-supervisor, César Augusto Muñoz for their valuable
corrections and suggestions. I thank my saint of devotion, St. Padre Pio, and my guardian
angel for the inspiration throughout this journey. I thank Our Lady of the Rosary of
Fatima. I thank Blessed Carlo Acutis, who if he were alive, we would be the same age,
and who for his talent in computing was also a source of inspiration. I thank my friends:
Ariane Alves Almeida, Gabriel Ferreira Silva, Santiago Miler Quispe Mamani, Pavel Sejas
Paz, Geovane Cardoso de Brito, Ana Cristina Valverde, Daniel Saad Nunes, Lucas Ângelo
da Silveira, Washington Ribeiro Segundo.

iv

Resumo Expandido

Este trabalho descreve a mecanização de propriedades computacionais de um modelo
funcional que tem sido aplicado para automatizar o raciocínio sobre a terminação de
programas. A formalização foi desenvolvida no assistente de provas de lógica de ordem
superior, chamado Prototype Verification System (PVS). O modelo de linguagem foi proje-
tado para imitar o fragmento de primeira ordem de especificações funcionais e é chamado
PVS0. Foram considerados dois modelos computacionais: o primeiro modelo especifica
um programa funcional por meio de uma única função (modelo single-function PVS0, ou
SF-PVS0), e o segundo modelo permite a especificação simultânea de múltiplas funções
(modelo multiple-function PVS0, ou MF-PVS0). A semântica operacional da recursão na
especificação do modelo SF-PVS0suporta a recursão sobre o programa completo. Por
outro lado, em programas MF-PVS0, as chamadas funcionais são permitidas para todas as
funções especificadas no programa. Este trabalho tem como objetivo certificar matem-
aticamente a robustez dos modelos PVS0 como modelos computacionais universais. Para
isso, propriedades cruciais e teoremas foram formalizados, incluindo Turing Completude,
a indecidibilidade do Problema da Parada, o teorema da recursão, o teorema de Rice e
o teorema do Ponto Fixo. Além disso, o trabalho discute avanços na indecidibilidade
do Problema da Palavra e do Problema da Correspondência de Post. A indecidibilidade
do Problema da Parada foi formalizada considerando a avaliação semântica de progra-
mas PVS0 que foram aplicados na verificação da terminação de especificações em PVS.
A equivalência entre a avaliação funcional e predicativa de operadores foi fundamental
para esse objetivo. Além disso, a composicionalidade de programas MF-PVS0, habilitada
diretamente pela possibilidade de chamar diferentes funções, torna fácil a formalização da
Turing Completude. Portanto, enriquecer o modelo foi uma decisão de design importante
para simplificar a mecanização dessa propriedade e dos teoremas mencionados acima.

Palavras-chave: Turing Completude, Problema da Parada, Teorema de Rice, Teorema
do Ponto Fixo, Problema da Correspondencia de Post, Problema da Palavra, Indecidibil-
idade

v

Abstract

This work describes the mechanization of the computational properties of a functional-
language model that has been applied to reasoning about the automation of program
termination. The formalization was developed using the higher-order proof assistant Pro-
totype Verification System (PVS). The language model was designed to mimic the first-
order fragment of PVS functional specifications and is called PVS0. Two different com-
putational models are considered: the first model specifies functional programs through
a unique function (single-function PVS0 model, or SF-PVS0), and the second model al-
lows simultaneous specification of multiple functions (multiple-function PVS0 model, or
MF-PVS0). This work aims to mathematically certify the robustness of the PVS0 models
as universal computational models. For doing that, crucial properties and theorems were
formalized, including Turing Completeness, the undecidability of the Halting Problem,
the Recursion Theorem, Rice’s Theorem, and the Fixed Point Theorem. Furthermore,
the work discusses advances in the undecidability of the Word Problem and the Post
Correspondence Problem.

The undecidability of the Halting Problem was formalized considering properties of
the semantic evaluation of PVS0 programs that were applied in verifying the termination
of PVS specifications. The equivalence between predicative and functional evaluation
operators was vital to this aim. Furthermore, the compositionality of multiple-function
PVS0 programs, straightforwardly enabled by the possibility of calling different functions,
makes it easy to formalize of properties such as Turing Completeness. Therefore, enriching
the model was an important design decision to simplify the mechanization of this property
and the theorems mentioned above.

Keywords: Turing Completeness, Halting Problem, Rice’s Theorem, Fixed-Point Theo-
rem, Post Correspondence Problem, Word Problem, Undecidability

vi

Contents

1 Introduction 1

2 Single- and Multiple-Function PVS0 Computational Models 6
2.1 The proof assistant PVS . 6
2.2 Specification of the Single- and Multiple-function PVS0 model 10

3 Undecidability of the Halting Problem for Single- and Multiple-Function
PVS0 Programs 19
3.1 Computable and Recursive PVS0 Programs 19
3.2 Undecidability of the Halting Problem . 25

4 Formalization of the computational properties of the PVS0 Model -
Turing Completeness, and Recursion Theorem 31
4.1 Turing Completeness of MF-PVS0 Model . 31
4.2 Recursion Theorem . 38

5 Formalization of the computational properties of the PVS0 Model -
Rice’s Theorem, and Fixed Point Theorem 46
5.1 Rice’s Theorem . 46
5.2 Fixed Point Theorem . 57

6 Discussion on the formalization of the undecidability of other problems
- Word Problem and the Post Correspondence Problem 63

7 Related Work 75

8 Future Work and Conclusion 80

References 83

vii

Chapter 1

Introduction

This work aims to formalize the theory of models of computation developed to assist the
static analysis of source code. Such models have been mainly applied to check termination.
As it is known, termination is an undecidable problem. Despite this fact, it is possible
to design a program, that receives another program as input, and attempts to check if
it halts, does not halt, or that answers “do not know”. This possibility has given rise to
a variety of efforts to design tools to check and automate the analysis of termination in
computer science. Indeed, since 2004, there is a tournament called Annual International
Termination Competition in which the substantial progress of tools for this goal can be
verified.

Rust is an example of a language that contains mechanisms for “termination checking”
(Payet et al. [2022]). The Rust language provides several mechanisms for it, which help
prevent bugs and ensure code safety. One of these mechanisms is borrow checking, which
prevents a variable from being used after it has been moved to another variable. In ad-
dition, Rust also has lifetime checking rules that ensure references are not used after the
lifetime of the referenced object. Another important mechanism is the use of enums and
exhaustive pattern matching, which ensure that all possibilities are considered and han-
dled appropriately. These and other mechanisms make Rust a safe and reliable language
for software development.

There are several termination analysis techniques. Blanqui and Koprowski formalized
in Coq various terminating techniques used in modern automated provers, generating the
CoLoR library and building a program called Rainbow (Blanqui and Koprowski [2011])
a prover program. The prover takes as an input a term rewriting system and outputs a
proof tree file in an XML format. The Rainbow program transforms it into a Coq file to
certificate it by the CoLoR library. The termination notions used are dependency pairs,
dependency graphs, and reduction pairs.

CeTA is a Haskell program extracted from an Isabelle/HOL library called IsaFoR

1

https://termination-portal.org/wiki/Termination_Competition
https://termination-portal.org/wiki/Termination_Competition

(Thiemann and Sternagel [2009]). The input of CeTA is an Isabelle/HOL proof tree.
In addition to the termination criteria used by Rainbow, CeTA provides a combination
of proofs in the dependency pairs framework. Another criterion of termination is the
Calling Context Graphs, which were used in implementations of termination verification
automation in the ACL2 theorem prover Chamarthi et al. [2011], Manolios and Vroon
[2006] as well as in the Prototype Verification System (PVS) Muñoz et al. [2021, 2023].

The proof assistant PVS has been used to formalize the equivalence among different
criteria of termination. The considered criteria include the Size-Change termination prin-
ciple, and the Calling Context Graphs, Matrix Weighted Graphs, and Turing termination
approaches Alves Almeida [2021], Alves Almeida and Ayala-Rincón [2020], Avelar [2015],
Muñoz et al. [2021, 2023].

The model of computation specified in PVS for this task was designed to have the
operational semantics of the PVS specification language. This model is restricted to the
first-order fragment of the PVS specification language providing two advantages. First,
maintaining the structure of the PVS specification language, it simplifies the analysis of
the termination of PVS programs. Second, having simpler grammar simplifies the case
analysis required in all formalizations. Indeed, the restriction of the computational model
reduces the number of cases to be analyzed in formal proofs.

The model of computation is a recursive first-order language called single-function
PVS0, or SF-PVS0. Using this language, the below criteria of termination were proved
equivalent.

• For any input the program computes an output according to the operational seman-
tics of the model - Semantical termination.

• For any input, the program control flow tree, formed by the consecutive recursive
calls, is finite - Related to Turing termination.

• For any input, the arguments of any sequence of nested recursive calls can be mea-
sured through a well-founded order that decreases after each recursive call - Related
to Turing termination.

• Every possible infinite function call sequence (following the program control flow)
would cause an infinite descent in some data values - Size-Change Principle

(Lee et al. [2001]). It can be implemented as:

– Let G be a digraph such that the vertices represent the calling contexts, which
are the possible recursive calls together with the conditions to reach each re-
cursive call. In addition, the edges of G represent the possibility to execute
the recursive call labeling the head of the edge, consecutively after executing

2

the recursive call labeling the tail of the edge. If there exists a circuit in G

that can be executed forever, termination does not hold. Such a circuit corre-
sponds to an infinite function call sequence. To check termination, the calling
context graph criterion uses a family of measures over the parameters of the
calling contexts, and searches for a feasible combination of these measures that
strictly decreases over each possible circuit in the graph. - Calling Context
Graphs criterion (Manolios and Vroon [2006]).

– Let G be a calling context graph. The family of the measures can be organized
in matrices labeling the vertices whose particular operational algebra may in-
dicate decreases over each possible circuit in the graph. - Matrix Weighed
Graphs criterionAvelar [2015], Muñoz et al. [2021, 2023].

The above-mentioned formalizations are available in the libraries CCG and PVS0 of
the NASA PVS Library and were developed in cooperation between the members of the
“Grupo de Teoria da Computação da UnB” and the NASA Langley Formal Methods
Team W.

In addition to the formalization of the equivalence of termination criteria on SF-PVS0,
a question to be answered is what kind of properties this computational model holds. The
answer is useful to show the adequateness and limits of the SF-PVS0 computational model.
Indeed, PVS allows for the specification of non-necessarily partial recursive functions.
For example, it is possible to specify a PVS function that decides the halting problem,
but this function is not executable. However, constrained to the SF-PVS0 model, The
undecidability of the halting problem can be proven in PVS (Ferreira Ramos et al. [2018]).

When the model is used to formalize results as Rice’s Theorem, the SF-PVS0 model
does not provide an easy mechanism for the composition of functions. However, Rice’s
Theorem requires it. The grammar of the SF-PVS0 model contains only one recursive
function. Thus, the multiple-function PVS0, or MF-PVS0, was designed from the SF-PVS0
to support several recursive functions.

The MF-PVS0 also needed to be constrained to be equivalent to the class of partial
recursive functions. Indeed, SF-PVS0 and MF-PVS0 are built over basic operations called
built-in operators. If the built-in operators are successor, greater than, bijection from a
tuple of naturals into natural, and first and second projections composed to the bijection
inverse, is enough to formalize that the MF-PVS0 is Turing-Complete. The SF-PVS0 was
constrained to be in levels: the built-in operators are arbitrary at level zero but, at
level n+1 the built-in operators are the built-in operators from level n together with the
terminating PVS0 functions from level n.

Main contributions

3

https://github.com/nasa/pvslib/tree/master/PVS0

The main contributions of this work are listed below.

• Turing Completeness. The formalization proves that the class of partial recursive
MF-PVS0 programs, built from basic functions and predicates (projections, successor,
constants, greater-than), are closed under the operations of composition, minimiza-
tion, and primitive recursion. It follows the lines of proofs such as the one in (Turing
[1937b]) that shows λ-definability of partial recursive functions. For the formaliza-
tion of this result, some specialized constructions were necessary. For instance, for
composition and primitive recursion, since a MF-PVS0 program receives as argument
a natural that represents a tuple of naturals resulting from applications of several
MF-PVS0 programs, it was necessary to construct bijections from tuples of naturals
to naturals.

• Rice’s Theorem. It was formalized as a corollary of the Recursion Theorem used to
build a partial recursive MF-PVS0 program, which processes its Gödel number. If it
is the number of a program that satisfies any semantic property, then the program
behaves as if it does not satisfy the property; otherwise, it behaves as if it satisfies
it. This formalization follows the classical diagonalization argumentation as done
in (Sipser [2012]) for Turing Machines.

• Additional results such as the undecidability of the Halting Problem and the Fixed-
Point Theorem were also formalized. The Halting Problem was formalized either
for single or multiple-function. There are two versions of the Theorem of the unde-
cidability of the Halting Problem. One says that it is undecidable that a program
halts for a specific input (Halting Problem, formalized for SF-PVS0 and MF-PVS0).
Another one says that it is undecidable that a program halts for all inputs (Uni-
form Halting Problem, formalized only for MF-PVS0). The latter was proved just
as a corollary of Rice’s Theorem. The former was proved using diagonalization
and arbitrary Gödelizations of partial recursive MF-PVS0 programs, and a bijection
from tuples of naturals to naturals to encode MF-PVS0 programs and inputs. The
formalization follows the proof style in (Sipser [2012]) for Turing Machines. The
Fixed-Point Theorem was formalized as a consequence of the fact that it is possible
to build the universal MF-PVS0 program. Besides, it uses a diagonal program whose
semantics is receiving two arguments: the first one is a program that transforms
an input program into another one, and the second one is a value. The diagonal
program applies the first argument to itself and the second argument. This proof
is the only one in the development that uses the bijectivity of the Gödelization of
partial recursive MF-PVS0 programs. The construction follows the proof in (Floyd
and Beigel [1994]).

4

Organization of the document

• Chapter 2 contains a brief introduction to the proof assistant PVS, and the syn-
tax and semantics of the multiple (MF-PVS0) and single-function (SF-PVS0) PVS0
computation models.

• Chapter 3 describes the constraints for the SF-PVS0 and MF-PVS0 models. In partic-
ular, it discusses the specification of partial recursive PVS0 programs and discusses
the formalization of the undecidability of the Halting Problem.

• Chapters 4 and 5 discuss technicalities of the formalization of computational proper-
ties of the MF-PVS0 model. The former chapter discusses the formalization of Turing
Completeness of the constrained MF-PVS0 model. Additionally, it presents the for-
malization of the Recursion Theorem. The latter chapter discusses the formalization
of Rice’s Theorem, also presenting a series of corollaries of Rice’s Theorem and the
Fixed Point Theorem for the multiple-function model.

• Chapter 6 discusses the reduction from the Word Problem for Thue Systems to the
Post Correspondence Problem. Furthermore, the discussion highlights the increased
difficulty in formalizing the reduction from the Halting Problem for the current
model to these problems, compared to a reduction from the Halting Problem for
Turing Machines.

• Chapter 7 presents related work.

• Chapter 8 concludes and discusses possible future work.

5

Chapter 2

Single- and Multiple-Function PVS0
Computational Models

Section 2.1 shortly describes the proof assistant PVS. Section 2.2 discusses the semantics
of the single- and multiple-function PVS0 models.

2.1 The proof assistant PVS

The PVS (Prototype Verification System) (Owre et al. [1992]) is a proof assistant based
on higher-order logic. It supports the specification of functions and predicates on func-
tions and relations. PVS also supports the definition of recursive functions and inductive
predicates. The most careful and detailed description of the semantics of PVS is available
in (Owre and Shankar [1999]).

To ensure the correctness of recursive functions specified in PVS, it is necessary to
prove that they terminate. A fundamental part of correctness consists in providing ter-
mination proofs of such functions. The user should provide a measure over the arguments
of the function such that after all recursive calls this measure decreases following a well-
founded relation. After supplying the measure, by static analysis, PVS generates proof
obligations, presented as lemmas, about the correctness of the types of arguments used in
the specification of the operator. These lemmas are called Type Correctness Conditions
(TCCs). PVS tries to discharge automatically all TCCs, but if some TCC is not proved,
the user should prove it.

For example, the following recursive function multiplies the first i members of the
input list l:

mult_l(l : list[nat], i : below[length(l)]) : RECURSIVE posnat =
IF i = 0 THEN 1

6

ELSE car(l) * mult_l(cdr(l),i-1)
ENDIF

MEASURE length(l)

In this case, PVS generates a TCC related to termination using the provided measure
and the well-founded ordering over naturals:

mult_l_TCC3: OBLIGATION
FORALL (l: list[nat], i: below[length[nat](l)]):

NOT i = 0 IMPLIES length(cdr(l)) < length(l);

TCCs are conditions that must be satisfied to ensure that a function is correctly
defined.

One of the key features of PVS is its rich and expressive type system, which allows
developers to specify the types of variables, functions, and other constructs in a highly
precise and flexible manner. The type system in PVS is based on Church’s Simple Type
Theory extended with subtypes, dependent types and datatypes. The basic types are,
for example, bool, int, rational, and real. From the basic types, more complex types
can be built. For example, the type of functions from the domain T1 to the image T2 is
denoted by [T1 -> T2].

Subtyping is the feature of converting predicates into types. Subtyping allows PVS to
model complex relationships between types. This enables developers to write more flexible
and reusable code and reduces the risk of errors caused by type mismatches. Subtyping
works as follows: let Pred? be a predicate over the type T. To transform it into a type
for the variable or constant x it is enough to write x : (Pred?). PVS also allows for
renaming types, creating synonyms for more complex built-in PVS types. For example,
if the PVS user writes P : TYPE = (Pred?), the type P is the same as the type Pred?.
Subtyping predicates in PVS are well described in (Rushby et al. [1998]).

PVS makes use of the datatype mechanism to produce theories that introduce opera-
tions for constructing, recognizing, and accessing datatype expressions, define structural
recursion schemes over datatype expressions, and assert axioms such as those for exten-
sionality and induction.

For example, the datatype below is about the MF-PVS0 model.

mf_PVS0Expr[T:TYPE+] : DATATYPE
BEGIN

% constants
cnst(get_val:T) : cnst? : mf_PVS0Expr
% variable

7

vr : vr? : mf_PVS0Expr
% unary operators

op1(get_op:nat,get_arg:mf_PVS0Expr) : op1? : mf_PVS0Expr
% binary operators
op2(get_op:nat,get_arg1,get_arg2:mf_PVS0Expr) : op2? : mf_PVS0Expr

% recursive call
rec(get_from_list: nat, get_arg:mf_PVS0Expr) : rec? : mf_PVS0Expr
% if-then-else
ite(get_cond,get_if,get_else:mf_PVS0Expr) : ite? : mf_PVS0Expr

END mf_PVS0Expr

PVS includes a powerful type checker that automatically verifies that expressions are
well-typed, and can also infer sometimes the types of variables and other constructs based
on their context. However, type-checking inference in PVS is undecidable. It is undecid-
able because it is possible to specify the type P for a semantic predicate, but deciding a
semantic predicate is impossible by Rice’s Theorem. Therefore, the user sometimes must
supply proof about typing.

The PVS-proof engine works through Gentzen’s calculus. Gentzen’s calculus is a
calculus of sequents, in which logical consequences are represented by sequents, which
consist of an antecedent and a consequent, which are lists of formulas. The goal is to
prove that the conjunction of the formulas in the antecedent has as consequence the
disjunction of formulas in the consequent. The calculus works by applying rules of proof
in the sequent, transforming it into a simple equivalent sequent, or splitting it into two
or more sequents.

For example, using the command (case φ) PVS splits the current sequent into two
sequents. In one of them, the formula φ is into the antecedent and in the other sequent
it is added to the consequent. In the example below, Γ ` ∆ is a sequent, where Γ is the
antecedent and ∆ is the consequent.

φ,Γ ` ∆ Γ ` φ,∆ (case φ)Γ ` ∆
Note that in the right branch, the formula φ is in the consequent. It occurs because

the sequent Γ ` φ,∆ is equivalent to ¬φ,Γ ` ∆. This equivalence is called c-equivalence.
Another example of a PVS command is (inst fnum “a”) for instantiation. It re-

places the variable by “a” in a formula numbered as fnum quantified using FORALL in the
antecedent or by EXISTS in the consequent.

φ[x/a],Γ ` ∆ (inst -1 “a”)∀xφ,Γ ` ∆
Γ ` φ[x/a],∆ (inst 1 “a”)Γ ` ∃xφ,∆

8

The command (skolem) allows to skolemize universal quantifiers in the consequent and
existential quantifiers in the antecedent.

Γ ` φ[x/x1],∆ (skolem)Γ ` ∀xφ,∆
φ[x/x1],Γ ` ∆ (skolem)∃xφ,Γ ` ∆

The command (flatten) transforms the formulas of the form ¬φ or ψ ∧ φ in the an-
tecedent, and ψ ∨ φ, ψ → φ or ¬φ in the consequent as follows:

• if the formula ¬φ is in the antecedent (consequent), eliminates it and includes the
formula φ in the consequent (antecedent);

• if the formula ψ ∧ φ is in the antecedent, it is eliminated, and the formulas ψ and φ
included in the antecedent;

• if the formula ψ ∨ φ is in the consequent, it is eliminated, and the formulas ψ and
φ included in the consequent;

• if the formula ψ → φ is in the consequent, it is eliminated, and the formula ψ is
included in the antecedent, and φ is included in the consequent.

The command (split) takes the formulas of the form ψ∨φ or ψ → φ in the antecedent,
and ψ ∧ φ in the consequent splitting the sequent into simple sequents as follows:

• if the formula ψ ∨φ is in the antecedent, the sequent is split into two new sequents;
one of them includes ψ in the antecedent and the other includes φ in the antecedent;

• if the formula ψ → φ is in the antecedent, the sequent is split into two sequents;
one includes ψ in the consequent and the other includes φ in the antecedent;

• if the formula ψ ∧ φ is in the consequent, the sequent is split into two sequents; one
sequent includes ψ and the other φ in the consequent.

Induction is a powerful technique used in mathematical proofs to establish the truth
of a statement for all possible cases by proving it for a base case and then for an arbitrary
case assuming it is true for some smaller cases. In PVS, induction is a fundamental
concept used to prove properties of datatypes, functions, and other mathematical objects.
PVS provides a built-in tactic called “induction” that applies structural induction on a
specified term or formula. This tactic automatically generates subgoals for the base case
and the inductive steps accordingly to the datatype over which induction is applied.

For example, the auxiliary lemma below was formalized by induction on the datatype
of programming expressions ms_PVS0Expr, a MF-PVS0 expression structure. The recursive
function offset_rec adds an offset to the recursive call indexes of MF-PVS0 expressions.

9

The lemma states that the composition of the offset_rec by m and n is the same that
a unique application of this function by m+ n.

offset_composition : LEMMA
FORALL(expr : mf_PVS0Expr, m,n : nat):
(offset_rec(m) o offset_rec(n))(expr) = offset_rec(m+n)(expr)

As we will see immediately, MF-PVS0 expressions may be constants, variables, built-
in unary or binary operators, function calls, or branching instructions. PVS generates
an inductive schema that considers all cases involved in the datatype. For instance, it
generates the case below for branching instruction expressions of the form ite(expr1,
expr2, expr3). Such expressions are if-then-else instructions with its guard (expr1),
then expression (expr2) and else expression (expr3).

FORALL (expr1: mf_PVS0Expr[Val], expr2: mf_PVS0Expr[Val],
expr3: mf_PVS0Expr[Val]):

((FORALL (m, n: nat):
(offset_rec(m) o offset_rec(n))(expr1) =
offset_rec(m + n)(expr1))

AND
(FORALL (m, n: nat):

(offset_rec(m) o offset_rec(n))(expr2) =
offset_rec(m + n)(expr2))

AND
FORALL (m, n: nat):

(offset_rec(m) o offset_rec(n))(expr3) =
offset_rec(m + n)(expr3))

IMPLIES
FORALL (m, n: nat):

(offset_rec(m) o offset_rec(n))
(ite(expr1 , expr2 , expr3))

= offset_rec(m + n)(ite(expr1, expr2, expr3))

2.2 Specification of the Single- and Multiple-function
PVS0 model

The following grammar describes the first-order functional language called single-function
PVS0 (SF-PVS0). This is specified in PVS as the datatype PVS0Exp W

10

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/PVS0Expr.pvs#L1-L12

expr ::= cnst(T) | vr |
op1(N, expr) | op2(N, expr , expr) |

rec(expr) | ite(expr , expr , expr)

The following grammar describes the first-order functional language called multiple-
function PVS0 (MF-PVS0). It is specified in PVS as the datatype mf_PVS0Expr W.

expr ::= cnst(T) | vr |
op1(N, expr) | op2(N, expr , expr) |
rec(N, expr) | ite(expr , expr , expr)

The interpretation of the expressions given by the above grammars is over an unin-
terpreted type T . Thus, the evaluation (or interpretation) will consider the inputs and
outputs of type T . Constants of the type T are represented as cnst(T), and vr represents
a PVS0 variable. More precisely, in an expression under evaluation (expr) the symbol vr
is used to indicate where the argument of the function represented by the expression is
applied. Note that the variable is unique, i.e., the expressions represent functions that
contain only one argument. Expressions of the form op1(N, expr) represent the applica-
tion of unary operators, chosen from a list of unary operators according to the (natural)
index given as the first argument, on the result of the evaluation of the second argument,
expr . Expressions of the form op2(N, expr , expr) are similar, but for binary operators.

The grammars above differ only in the recursion case. Expressions of the form
rec(expr) and rec(N, expr) represent recursive calls. For the case of the evaluation of an
expression in the SF-PVS0 model, the evaluation of rec(expr) will interpret the result of
the evaluation of expr and recursively evaluate the main expression. For the case of the
MF-PVS0 model, as for unary and binary operators, the index argument in rec(N, expr)
references an expression in a list of expressions that are to be called in the evaluation.

Finally, expressions of the form ite(expr , expr , expr) represent branching if-then-else
instructions. For the evaluation of branching expressions, an element ⊥ from T is selected
and distinguished to represent False in the evaluation of ite guards. If the evaluation of
the first expression of ite, that is its guard, is different from ⊥, it is interpreted as True,
and the evaluation returns the evaluation of the second argument of the ite expression;
otherwise, it returns the evaluation of the third ite expression.

The evaluation of expressions requires a 4-tuple 〈O1, O2,⊥, Ef〉, where O1 and O2 are
lists of built-in unary and binary operators, ⊥ is the element of T selected to interpret
False, and Ef , the kernel, is a single expression for the case of the SF-PVS0 model, and
a non-empty list of expressions for the case of the MF-PVS0 model. Such 4-tuples are the
programs of the SF-PVS0 and MF-PVS0 model. In a MF-PVS0 program, 〈O1, O2,⊥, Ef〉,

11

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_PVS0Expr.pvs#L1-L12

the main function is the first expression in its kernel, Ef . Both SF-PVS0 and MF-PVS0
programs are specified in PVS with the same type name, respectively, PVS0 W and PVS0
W. PVS can distinguish them by context. However, in this document, the multiple and
single-function PVS0 programs and expressions are called MF-PVS0 and SF-PVS0, respec-
tively. The only difference between objects of these types appears in the expression part,
either a single function or a list of functions, respectively.

For distinguishing SF-PVS0 programs in this document from MF-PVS0, the kernel is
written in lower-case letters as 〈O1, O2,⊥, ef〉, where ef emphasizes the kernel is a unique
recursive function, and the kernel of a MF-PVS0 program is written as upper-case Ef in
〈O1, O2,⊥, Ef〉 and represents a non-empty list of MF-PVS0 expression.

PVS provides a suite of structures to specify a MF-PVS0 program: finite sequences,
sets, indexed functions, etc. However, using lists helps to better instance a concrete PVS0
program. Finite lists, of length n ∈ N, are represented as: [a0, · · · , an−1], As usual, for
a list L, the operators |L|, and L(i), respectively, gives the length of the list and selects
the ith element, for any i < |L|. The tail of a non-empty list L is denoted by cdr(L), and
the concatenation of the lists L1 and L2 by L1 :: L2. Mapping of lists by a function f is
denoted as map(f)(L).

To give semantics to the single and MF-PVS0 expressions, predicates and functions
were implemented. The semantic predicate ε was implemented as an inductive pred-
icate. It is specified in a polymorphic way as the predicates semantic_rel_expr W

and semantic_rel_expr W, for the single-function and multiple-function models, re-
spectively. Using inductive predicates does not require proving their termination. It is
a crucial design decision that supports the analysis of non-terminating PVS0 program
specifications, which correspond to (non-terminating) partial recursive functions.

Differently from the inductive predicates, implementing recursive functions in PVS
requires that the user provides a measure over the arguments such that each recursive
call decreases this measure according to a well-founded relation. Therefore, the semantic
evaluation function χ (specified in PVS for the single- and multiple-function model re-
spectively as eval_expr W and eval_expr W) has a counter as an argument. Whenever
the function χ evaluates a recursive call in an expression, the counter decreases. When
the counter reaches zero, the function χ returns a special value ♦, which means that the
evaluation of the PVS0 expression is not possible.

The evaluation predicates are shown in the tables 2.1 and 2.2 and the evaluation
functions are shown in table 2.3 and 2.4.

In the predicate ε, the variables vi and vo are the input and output of the evaluation of
the expression e respectively. In the evaluation, the expression e matches each case of the
grammar, executing an action of the interpretation. For example, in case the expression

12

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L9-L9
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L22-L22
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L22-L22
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L20-L38
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L33-L54
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L51-L81
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L67-L101

Table 2.1: SF-PVS0 program evaluation predicate - pvs0 = 〈O1, O2,⊥, ef〉
(semantic_rel_expr W)

ε(pvs0)(e, vi, vo) := CASES e OF
cnst(v) : vo = v;

vr : vo = vi;
op1(j, e1) : ∃ (v′ : T) :

ε(pvs0)(e1, vi, v
′)∧

IF j < |O1| THEN vo = O1(j)(v′)
ELSE vo = ⊥;

op2(j, e1, e2) : ∃ (v′, v′′ : T) :
ε(pvs0)(e1, vi, v

′) ∧
ε(pvs0)(e2, vi, v

′′) ∧
IF j < |O2| THEN vo = O2(j)(v′, v′′)
ELSE vo = ⊥;

rec(e1) : ∃ (v′ : T) : ε(pvs0)(e1, vi, v
′) ∧

ε(pvs0)(ef , v′, vo)
ite(e1, e2, e3) : ∃ (v′ : T) : ε(pvs0)(e1, vi, v

′) ∧
IF v′ 6= ⊥ THEN ε(pvs0)(e2, vi, vo)
ELSE ε(pvs0)(e3, vi, vo).

is a constant symbol (cnst(v)), the output must be the interpretation of this symbol.
If the expression is either an application of unary, binary function (op1 or op2) or the
multiple-function recursive call (rec), the interpretation verifies if the sub-expressions
have outputs, and in case they do, the interpretation must search using the index j the
operator or the expression in the list of operators or of expressions applying it to the
outputs.

In case the predicate ε evaluates a single-function recursive call (rec), it must consider
only ef as the recursive function.

The function χ (table 2.3) works similarly to the predicate ε. The output type of the
function χ is T ∪ {♦}. In PVS, it is implemented using the functor Maybe(T) where an
element from this type may be either none (represented by the ♦) or Some(t) (where t ∈
T). Having two manners of semantic evaluation gives more flexibility in the formalization.

The evaluation predicate and function are equivalent, i.e., whenever the evaluated
expression produces an output for a specific input, the results must be the same. It is
expressed by the following lemma.

∀(pvs0 , e, vi, vo) : ε(pvs0)(e, vi, vo)
⇔

∃(n) : χ(pvs0)(n, e, vi) = vo ∧ vo 6= ♦

13

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L20-L38

Table 2.2: MF-PVS0 program evaluation predicate - pvs0 = 〈O1, O2,⊥, Ef〉
(semantic_rel_expr W)

ε(pvs0)(e, vi, vo) := CASES e OF
cnst(v) : vo = v;

vr : vo = vi;
op1(j, e1) : ∃ (v′ : T) :

ε(pvs0)(e1, vi, v
′)∧

IF j < |O1| THEN vo = O1(j)(v′)
ELSE vo = ⊥;

op2(j, e1, e2) : ∃ (v′, v′′ : T) :
ε(pvs0)(e1, vi, v

′) ∧
ε(pvs0)(e2, vi, v

′′) ∧
IF j < |O2| THEN vo = O2(j)(v′, v′′)
ELSE vo = ⊥;

rec(j, e1) : ∃ (v′ : T) : ε(pvs0)(e1, vi, v
′) ∧

IF j < |Ef | THEN
ε(pvs0)(Ef (j), v′, vo)

ELSE vo = ⊥;
ite(e1, e2, e3) : ∃ (v′ : T) : ε(pvs0)(e1, vi, v

′) ∧
IF v′ 6= ⊥ THEN ε(pvs0)(e2, vi, vo)
ELSE ε(pvs0)(e3, vi, vo).

The necessity and sufficiency of the above property are formalized, both for the
SF-PVS0 and the MF-PVS0 model, respectively, as lemmas semantic_rel_eval_expr
W (SF-PVS0 model) and the semantic_rel_eval_expr W(MF-PVS0 model), and the
lemmas eval_expr_semantic_rel W (SF-PVS0 model) and eval_expr_semantic_rel
W(MF-PVS0 model).

In an evaluation of a MF-PVS0 program, the first expression to be evaluated is the
head of the kernel, which is expressed by the predicate γ. Let 〈O1, O2,⊥, Ef〉 be a PVS0
program which is abbreviated by 〈Ef〉. The predicate γ is defined as:

γ〈Ef〉(vi, vo) := ε〈Ef〉(Ef (0), vi, vo) (2.1)

The projection of n-tuple is given by:

〈A1, · · · , Ai, · · · , An〉′i := Ai (2.2)

An important property to be analyzed is termination. Termination of programs may
have two versions: the program outputs an answer for a specific input and the program
always outputs an answer for all inputs. Termination is expressed by the polymorphic
predicates Tε and Tχ.

14

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L33-L54
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L98-L103
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L98-L103
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L118-L123
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L125-L129
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L145-L149
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L145-L149

Table 2.3: SF-PVS0 program evaluation function - pvs0 = 〈O1, O2,⊥, ef〉 (eval_expr W)

χ(pvs0)(n, e, vi) :=
IF n = 0 THEN ♦ ELSE CASES e OF

cnst(v) : v;
vr : vi;

op1(j, e1) : IF j < |O1| THEN
LET v′ = χ(pvs0)(n, e1, vi) IN
IF v′ = ♦ THEN ♦ ELSE O1(j)(v′)

ELSE ⊥;
op2(j, e1, e2) : IF j < |O2|THEN

LET v′ = χ(pvs0)(n, e1, vi),
v′′ = χ(pvs0)(n, e2, vi) IN

IF v′ = ♦ ∨ v′′ = ♦ THEN ♦
ELSE O2(j)(v′, v′′)

ELSE ⊥;
rec(e1) : LET v′ = χ(pvs0)(n, e1, vi) IN

IF v′ = ♦ THEN ♦
ELSE χ(pvs0)(n− 1, ef , v′)

ite(e1, e2, e3) : LET v′ = χ(pvs0)(n, e1, vi) IN
IF v′ = ♦ THEN ♦
ELSE IF v′ 6= ⊥ THEN

χ(pvs0)(n, e2, vi)
ELSE χ(pvs0)(n, e3, vi).

Tε(〈ef〉, vi) := ∃ (vo : T) : γ〈ef〉(vi, vo) (2.3)

Tε〈ef〉 := ∀ (v : T) : Tε(〈ef〉, v) (2.4)

Tχ(〈ef〉, vi) := ∃ (n : N) : χ〈ef〉(n, ef , vi) 6= ♦ (2.5)

Tχ〈ef〉 := ∀ (v : T) : χ〈ef〉(n, ef , vi) 6= ♦ (2.6)

Tε(〈Ef〉, vi) := ∃ (vo : T) : γ〈Ef〉(vi, vo) (2.7)

Tε〈Ef〉 := ∀ (v : T) : Tε(〈Ef〉, v) (2.8)

Tχ(〈Ef〉, vi) := ∃ (n : N) : χ〈Ef〉(n,Ef (0), vi) 6= ♦ (2.9)

Tχ〈Ef〉 := ∀ (v : T) : χ〈Ef〉(n,Ef (0), vi) 6= ♦ (2.10)

The definitions for SF-PVS0 program termination 2.3, 2.4, 2.5 and 2.6 are specified as
determined? W, terminating? W, eval_expr_n? W, and eval_expr_termination

15

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L51-L81
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_lang.pvs#L16-L17
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_lang.pvs#L10-L11
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L105-L107
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135

Table 2.4: MF-PVS0 program evaluation function - pvs0 = 〈O1, O2,⊥, Ef〉 (eval_expr
W)

χ(pvs0)(n, e, vi) :=
IF n = 0 THEN ♦ ELSE CASES e OF

cnst(v) : v;
vr : vi;

op1(j, e1) : IF j < |O1| THEN
LET v′ = χ(pvs0)(n, e1, vi) IN
IF v′ = ♦ THEN ♦ ELSE O1(j)(v′)

ELSE ⊥;
op2(j, e1, e2) : IF j < |O2|THEN

LET v′ = χ(pvs0)(n, e1, vi),
v′′ = χ(pvs0)(n, e2, vi) IN

IF v′ = ♦ ∨ v′′ = ♦ THEN ♦
ELSE O2(j)(v′, v′′)

ELSE ⊥;
rec(j, e1) : LET v′ = χ(pvs0)(n, e1, vi) IN

IF v′ = ♦ THEN ♦
ELSE IF j < |Ef | THEN

χ(pvs0)(n− 1, Ef (j), v′)
ELSE ⊥;

ite(e1, e2, e3) : LET v′ = χ(pvs0)(n, e1, vi) IN
IF v′ = ♦ THEN ♦
ELSE IF v′ 6= ⊥ THEN

χ(pvs0)(n, e2, vi)
ELSE χ(pvs0)(n, e3, vi).

W, respectively.
The definitions for MF-PVS0 program termination 2.7, 2.8, 2.9 and 2.10 are specified

respectively as determined? W determined?, terminating? W, eval_expr_n? W,
and eval_expr_termination W.

The need for the composition of the PVS0 programs was required to prove Rice’s
Theorem, but it was not necessary for formalizing the Halting Problem.

The Halting Problem was formalized for the SF-PVS0 programs. In such a computa-
tional model, program composition is not straightforward. In the formalization of this
theorem for the single-function model, only terminating programs were composed (cf.
Ferreira Ramos et al. [2018]). Thus, upgrading the model to the multiple-function version
simplified the formalizations of Rice’s Theorem, the recursion theorem, and the fixed-point
theorem, among other properties.

Composing MF-PVS0 programs requires only that they share the same built-in functions
and the same interpretation of false. In addition, an adjustment of the indices of the

16

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L67-L101
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L67-L101
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_expr.pvs#L133-L135
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L16-L17
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L10-L11
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L125-L127
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_expr.pvs#L153-L155

recursive calls is also necessary. This adjustment is a simplification of the offset operation
used by assembly languages, where calls for pieces of code shift them and add an offset to
the labels of these pieces. This offset addition in MF-PVS0 programs is expressed by the
function _+_ (offset_rec(_)(_) W):

e+n := CASES e OF
cnst(v) : cnst(v);

vr : vr;
op1(j, e1) : op1(j, e+n

1);
op2(j, e1, e2) : op2(j, e+n

1 , e+n
2);

rec(j, e1) : rec(j + n, e+n
1);

ite(e1, e2, e3) : ite(e+n
1 , e+n

2 , e+n
3)

(2.11)

The function _+_ is also used in a polymorphic way to sum an offset to a list of
MF-PVS0 expressions, as it as below:

L+n := map(_+n)(L) (2.12)

Using the offset operator, the correctness of the composition of two MF-PVS0 pro-
grams 〈O1, O2,⊥, A〉 and 〈O1, O2,⊥, B〉, in short, written as 〈A〉 and 〈B〉, respectively,
is expressed by the property:

∀(vi, vo) : ∃(v) : γ〈B〉(vi, v) ∧ γ〈A〉(v, vo)⇔
γ〈[rec(1, rec(1 + |A|, vr))] ::A+1 ::B+(1+|A|)〉(vi, vo)

The code above applies B to the variable, and after that, applies A, resulting in a
composition.

An example of functions that can be composed in MF-PVS0 model but in SF-PVS0 is
not straightforward is the functions f and g.

succ(n) := n+ 1 greater(m,n) := IF m > n THEN 1 ELSE 0 (2.13)

O1 := [succ] O2 := [greater] (2.14)

F := [ite(op2(0, vr, cnst(0)), vr, rec(0, vr))] f := 〈O1, O2, 0, F 〉 (2.15)

G := [ite(op2(0, vr, cnst(0)), op1(0, vr), rec(0, vr))] g := 〈O1, O2, 0, G〉 (2.16)

The composition of the program f and g is given by:

17

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L104-L113

〈[rec(1, rec(1 + |A|, vr))] ::F+1 ::G+(1+|F |)〉 (2.17)

To prove Turing completeness and Rice’s Theorem, it is necessary to formalize some
lemmas about shift code. As previously, consider MF-PVS0 programs 〈O1, O2,⊥, A〉 and
〈O1, O2,⊥, B〉. The first lemma is:

Lemma 1 (Shift code - add_rec_list_aux W).

∀(〈A〉, 〈B〉, e, vi, n) : χ〈B〉(n, e, vi) = χ〈A :: B+|A|〉(n, e+|A|, vi)

This lemma means that in an evaluation of the expression e considering the MF-PVS0
program 〈B〉, it is possible to concatenate a list A in front of B without changing the
evaluation semantics, adjusting the indices accordingly in rec expressions contained by e
and B.

The definitions are about valid indices:

valid_index_rec(e, n) :=
∀(i, e1) :

subterm(rec(i, e1), e)⇒ i < n

(2.18)
valid_index(Ef) :=
∀(i < |Ef |) :

valid_index_rec(Ef (i), |Ef |)
(2.19)

The second lemma is:

Lemma 2 (Shift code - add_rec_list_aux2 W).

∀(〈B〉, vi, n) :
∀(〈A〉 | valid_index(A)) : ∀(e | valid_index_rec(e, |A|)) :

χ〈A〉(n, e, vi) = χ〈A :: B〉(n, e, vi)

This lemma is similar to Lemma 1. Still, the indices of the rec expressions in the
evaluated expression e and the list A of the MF-PVS0 program 〈A〉 must be valid references
to a MF-PVS0 expression in A. The list B of the MF-PVS0 program 〈B〉 is concatenated
in the end.

Both lemmas are proved by induction on the lexicographical order given by pairs
(n, e), built with the orders on natural and (sub)expressions. The type of pair (n, e) is
N× PVS0Expr, where PVS0Expr is the type of PVS0 expressions.

The following results are formalized over the MF-PVS0 programs model: Undecidability
of the Halting Problem, Fixed-Point Theorem, Turing Completeness, Recursion Theorem,
and Rice‘s Theorem.

18

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L125-L128
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_lang.pvs#L138-L142

Chapter 3

Undecidability of the Halting
Problem for Single- and
Multiple-Function PVS0 Programs

The undecidability of the Halting Problem was initially mechanized for the SF-PVS0
model (Ferreira Ramos et al. [2018]). Then, it was formalized for the MF-PVS0 compu-
tational model specified in mf_pvs0_halting_problem_undecidability W, as reported
in (Ramos et al. [2022]).

3.1 Computable and Recursive PVS0 Programs

The primary goal of the library PVS0 was the formalization of equivalence among termi-
nation criteria for the SF-PVS0 model. This work aims to prove that such a class of pro-
grams is a reasonable computational model. For this, initially, we proved that the SF-PVS0
model satisfies classical properties as the undecidability of the Halting Problem. Moreover,
proving fundamental properties as Turing completeness of SF-PVS0 programs presented
difficulties since this model does not naturally support the composition of programs, a
fundamental property of recursive functions. The undecidability of the Halting Problem
was formalized for the SF-PVS0 model using a construction of the composition possible
exclusively for terminating programs. Nevertheless, results such as Turing completeness,
recursion, fixed-point, and Rice’s theorems require the composition of non-terminating
programs. In contrast to single-function programs, multiple-function programs allow for
a natural construction of the composition of two programs, which resumes concatenat-
ing their lists of function expressions and adequately updating the indices used in the
recursive calls.

19

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_halting.pvs#L44-L46

There are two significant instances of the Halting Problem. One of them states that it
is impossible to program a halting verifier for any program and one input. The other states
that it is impossible to program such a verifier for any program with any input. The former
problem is known as the Halting problem, and the latter problem is known as the Uniform
Halting Problem. This chapter discusses the formalization of the Halting Problem. The
Uniform Halting Problem was mechanized as a corollary 1 of Rice’s Theorem and will be
discussed in section 5.1. Initially, we will provide the necessary preliminary definitions
and constraints on the types of the MF-PVS0 programs. Indeed, note that in the 4-tuple
that defines MF-PVS0 programs, the lists of unary and binary operators can contain any
operator. In particular, since PVS allows for the definition of non-computable functions,
this implies that building programs that decide termination, or another type of Oracle,
is possible. Because of this, MF-PVS0 programs must be constrained to behave as partial
recursive functions.

The input/output type is the natural numbers. Natural numbers are used to encode
SF-PVS0 and MF-PVS0 programs and their inputs through a Gödelization function.

The classes of partial recursive SF-PVS0 and MF-PVS0 programs were specified in the
theories pvs0_computable W and mf_pvs0_computable W. In both theories, the list of
unary and binary operators, O1 and O2, and the element to interpret as false, ⊥, are
parameters of the theories. Let O1 and O2 be arbitrary built-in operators that represent
the parameters of the theories.

Let the bijection from a tuple of naturals to naturals be given by κ2 (tuple2nat W):

κ2(m,n) := (m+ n+ 1)(m+ n)
2 + n (3.1)

The inverse function κ−1
2 is implemented recursively:

κ−1
2 (i) := IF i = 0 THEN (0, 0)

ELSE IF κ−1
2 (i− 1)′1 = 0 THEN (κ−1

2 (i− 1)′2 + 1, 0);
ELSE (κ−1

2 (i− 1)′1− 1, κ−1
2 (i− 1)′2 + 1)

(3.2)

The partial recursive single-function programs are constrained in levels. The level zero
contains single-function programs with basic built-in operators, and higher levels contain
single-function programs that use built-in operators built from a terminating program
from the previous level. The reason for this restriction, is that if unrestricted built-in
operator were allowed, it would be possible to specify a non-computable function that
decides the halting problem. The levels are specified as:

20

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_computable.pvs#L30-L31
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_computable.pvs#L23-L25
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/numbers/tuple2nat.pvs#L4

pvs0_level(n)〈O1, O2,⊥, ef〉 :=
IF n = 0 THEN O1 = O1 ∧O2 = O2

ELSE (∃p′ : pvs0_level(n− 1)(p′) ∧
LET 〈O′1, O′2,⊥, e′f〉 = p′, l′1 = |O1

′| IN
|O1| = l′1 + 1 ∧
(∀i ∈ N : i < l′1 ⇒ O1(i) = O1

′(i)) ∧
(∀v ∈ N : ε(p′)(ef ′, v, O1(l′1)(v)))) ∧

(∃p′ : pvs0_level(n− 1)(p′) ∧
LET 〈O′1, O′2,⊥′, e′f〉 = p′, l′2 = |O2

′| IN
|O2| = l′2 + 1 ∧
(∀i ∈ N : i < l′2 ⇒ O2(i) = O2

′(i)) ∧
(∀v1, v2 ∈ N : ε(p′)(ef ′, κ2(v1, v2), O2(l′2)(v1, v2)))),

(3.3)

The class of partial recursive SF-PVS0 programs is given by:

partial_recursive := {pvs0 | ∃n : pvs0_level(n)(pvs0)} (3.4)

Note that a partial_recursive SF-PVS0 program in level n becomes an operator in
level n + 1 if it is terminating; in this manner, the composition of terminating programs
is made by getting operators from the previous level.

The necessary Gödelization for the formalization of the halting problem is expressed
by the following lemma and theorem:

Lemma 3. For all level n, there exists a PVS function κT from N to SF-PVS0 programs
of level n that is surjective.

The formalization is done by induction in the level of the programs. The induction basis,
for level zero programs, uses a bijective function to give this enumeration of expressions:

κe0(e) := CASES e OF
vr : 0;

cnst(n) : n× 5 + 1;
rec(e1) : κe0(e1)× 5 + 2;

op1(i, e1) : κ2(i, κe0(e1))× 5 + 3;
op2(i, e1, e2) : κ2(i, κ2(κe0(e1), κe0(e2)))× 5 + 4;

ite(e1, e2, e3) : κ2(κe0(e1), κ2(κe0(e2), κe0(e3)))× 5 + 5

(3.5)

The inverse function κ−1
e0 is defined as:

21

κ−1
e0 (n) :=

IF n = 0 THEN vr
ELSE IF 5|(n− 1) THEN cnst(n−1

5)
ELSE IF 5|(n− 2) THEN rec(κ−1

e0 (n−2
5))

ELSE IF 5|(n− 3) THEN op1(κ−1
2 (n−3

5)′1, κ−1
e0 (κ−1

2 (n−3
5)′2))

ELSE IF 5|(n− 4) THEN op2(κ−1
2 (n−4

5)′1,
κ−1
e0 (κ−1

2 (κ−1
2 (n−4

5)′2))′1,
κ−1
e0 (κ−1

2 (κ−1
2 (n−4

5)′2)′2))
ELSE 5|(n− 5) ite(κ−1

e0 (κ−1
2 (n−5

5)′1),
κ−1
e0 (κ−1

2 (κ−1
2 (n−5

5)′2))′1,
κ−1
e0 (κ−1

2 (κ−1
2 (n−5

5)′2)′2))

(3.6)

Then, the SF-PVS0 programs from level zero are enumerated by:

κP0(m) := 〈O1,O2,⊥, κ−1
e0 (m)〉

For the induction step, for programs whose level, n, is greater than zero, assume the
function κPn−1 exists; thus, the function κTn−1 exists such that is a surjective function
from naturals to terminating programs of the level n − 1. To obtain the function, an
oracle function is used because the class of the teminating functions is not enumerable.
Then, the following function is also surjective, where the function choose chooses an
element from a non-empty set:

κPn(m) := LET
p1 = κ−1

2 (κ−1
2 (m)′1)′1,

p2 = κ−1
2 (κ−1

2 (m)′1)′2,
p3 = κ−1

2 (m)′2,
f(x) = choose({r | γ(κTn−1(p1))(x, r)}),
g(x, y) = choose({r | γ(κTn−1(p2))(κ2(x, y), r)}) IN

〈κTn−1(p1)′1 :: [f], κTn−1(p2)′2 :: [g],⊥, κ−1
e0 (p3)〉

Theorem 1. There exists a PVS function κP from N to partial_recursive that is
surjective.

The surjective function is:
κP (n) := choose({f : N→ (pvs0_level(κ−1

2 (n)′1)) | surjective?(f)})(κ−1
2 (n)′2)

Above a surjective function is chosen from a set of surjective functions from naturals to
SF-PVS0 programs of the level κ−1

2 (n)′1 and it is applied to κ−1
2 (n)′2. The lemma 3 proves

22

that the set of surjective functions is not empty.

The terminating partial_recursive SF-PVS0 programs give rise to the subtype of
computable PVS0 programs.

computable := {pvs0 : partial_recursive | Tε(pvs0)} (3.7)

One important question is about how to build the universal SF-PVS0 program. building
them requires the following functions and list of operators:

succ(n) := n+ 1
greater(m,n) := IF m > n THEN 1 ELSE 0
π1(n) := ((λ(m,n : N) : m) ◦ κ−1

2)(n)
π2(n) := ((λ(m,n : N) : n) ◦ κ−1

2)(n)
g1(n) := κPπ1(n)(π1(π2(n)))′1(π2(π2(n))
g2(n) := κPπ1(n)(π1(π2(n)))′2(π2(π2(n)))
O1 := [succ, π1, π2, g1, g2]
O2 := [greater, κ2]
⊥ := 0

(3.8)

The following abbreviations are used:

succS(e) := op1(0, e); πS1 (e) := op1(1, e); πS2 (e) := op1(2, e);
greaterS(e1, e2) := op2(0, e1, e2); κS2 (e1, e2) := op2(1, e1, e2)
gS1 (e) := op1(3, e); gS2 (e) := op1(4, e)

To implement a universal program, is necessary to implement a cut-off subtraction,
the remainder from, and integer division by five. The cut-off subtraction of a pair of
naturals encoded as a unique natural can be specified as sub:

sub′4 :=
LET i = πS1 (vr), j = πS2 (vr) IN
[ite(greaterS(i, j),
succS(rec(κS2 (i, succS(j)))),
cnst(0))]

The program sub is terminating, thus, programs from level 1 can call it a built-in
operator.

Let sub be the correspondent function. The lists of built-in operators from level 1 are:

23

sub(m,n) := IF m > n THEN m− n ELSE 0
subπ(m) := sub(π1(m), π2(m))
O1 := [succ, π1, π2, g1, g2, subπ]
O2 := [greater, κ2, sub]

(3.9)

Abbreviating subS(e1, e2) := op2(2, e1, e2), the remainder by five is implemented as:

rem′54 :=
[ite(greaterS(vr, cnst(5)),
rec(subS(vr, cnst(5))),
vr)]

The correspondent function rem5 can be called by a program of level 2. The built-in
operators are:

rem5(n) := n%5
rem5κ2(m,n) := κ2(m,n)%5
O1 := [succ, π1, π2, g1, g2, subπ, rem5]
O2 := [greater, κ2, sub, rem5κ2]

(3.10)

The integer division by five is given by the following program:

div′54 :=
[ite(greaterS(vr, cnst(5)),
succS(rec(subS(vr, cnst(5)))),
cnst(0))]

The universal SF-PVS0 program is from level 3 and it has the built-in operators:

div5(n) := bn5 c
div5κ2(m,n) := bκ2(m,n)

5 c
O1 := [succ, π1, π2, g1, g2, subπ, rem5, div5]
O2 := [greater, κ2, sub, rem5κ2 , div5κ2]

(3.11)

The kernel of the universal program is:

24

U′4 :=
LET n = πS1 (vr), ef = πS1 (πS2 (vr)), e = πS1 (πS2 (πS2 (vr))), remS

5 (o) = op1(6, o)
subS(o1, o2) = op2(2, o1, o2), divS5 (o) = op1(7, o)
vi = πS2 (πS2 (πS2 (vr))), k4(x, y, z, w) = κS2 (x, κS2 (y, κS2 (z, w)))
kp1(m, i, o) = op1(3, κS2 (nm, κS2 (i, o))). kp2(m, i, o) = op1(4, κS2 (m,κS2 (i, o))) IN

[ite(e,
ite(remS

5 (subS(e, cnst(1))),
ite(remS

5 (subS(e, cnst(2))),
ite(remS

5 (subS(e, cnst(3))),
ite(remS

5 (subS(e, cnst(4))),
, kp1(n, πS1 (divS5 (subS(e, cnst(4)))),

rec(k4(n, ef , π2(divS5 (subS(e, cnst(4)))), vi))),
ite(rec(k4(n, ef , π1(divS5 (subS(n, cnst(5))), vi))),

rec(k4(n, ef , π2(π1(divS5 (subS(n, cnst(5)))), vi))),
rec(k4(n, ef , π2(π2(divS5 (subS(n, cnst(5)))), vi))))),

ite(rec(k4(n, ef , π2(divS5 (subS(e, cnst(3)))), vi)),
, kp1(n, πS1 (divS5 (subS(e, cnst(3)))),

rec(k4(n, ef , π2(divS5 (subS(e, cnst(3)))), vi)))
kp1(n, πS1 (divS5 (subS(e, cnst(3)))),

rec(k4(n, ef , π2(divS5 (subS(e, cnst(3)))), vi))))),
rec(k4(n, ef , ef , rec(k4(n, ef , divS5 (subS(e, cnst(2))), vi))))),

divS5 (sub5(n, cnst(1)))),
vi)]

For the universal program, the following property holds:

Lemma 4. γ(U)(κ2(n, κ2(κp(n)′3, κ2(κp(n)′3, vi))), vo)⇐⇒ γ(κp(n))(vi, vo)

3.2 Undecidability of the Halting Problem

Using the type computable, the undecidability of the halting problem is stated in the
theorem below.

Theorem 2 (Undecidability of the Halting Problem for SF-PVS0 W). There is no pro-
gram oracle = 〈O1, O2,⊥, eo〉 of type computable such that for all pvs0 = 〈O′1, O′2,⊥, ef〉

25

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/pvs0_halting.pvs#L36-L38

of type partial_recursive and for all n ∈ N,

Tε(pvs0 , n) if and only if ¬ε(oracle)(eo, κ2(κP (pvs0), n),⊥).

The proof proceeds by assuming the existence of an oracle to derive a contradiction.
Suppose there exists a program oracle = 〈O1, O2,⊥, eo〉 of type computable such as the
one presented in the statement of the theorem. Then, a program pvs0 = 〈O′1, O′2,⊥, ef〉
can be defined, where O′1(k) = O1(k), for k < |O1|, O′2(k) = O2(k), for k < |O2|, and

• O1
′(|O1|)(i) = choose({a : N | ε(oracle)(eo, i, a)}),

• O2
′(|O2|)(i, j) = choose({a : N | ε(oracle)(eo, κ2(i, j), a)}), and

• ef = ite(op2(|O2|, vr, vr), rec(vr), vr),

The PVS function choose returns an arbitrary element from a non-empty set. The sets
used in the definitions of O′1 and O′2 are non-empty since oracle is computable and,
therefore, terminating. The program pvs0 is built in such a way that it belongs to the
next level from the level of oracle.
Let n be the natural number κP (pvs0). The rest of the proof proceeds by case analysis.

• Case1 : ε(oracle)(eo, κ2(n, n),⊥). This case holds if and only if ¬Tε(pvs0 , n).

Expanding Tε one obtains

¬∃(v : N) : ∃(vo : N) : ε(pvs0)(op2(|O2|, vr, vr), n, vo) ∧
IF vo 6= ⊥
THEN ε(pvs0)(rec(vr), n, v)
ELSE ε(pvs0)(vr, n, v).

(3.12)

Expanding ε in ε(pvs0)(op2(|O2|, vr, vr), n, vo) yields

choose({a : N | ε(oracle)(eo, κ2(n, n), a)}) = vo.

Since ε(oracle)(eo, κ2(n, n),⊥) holds, ⊥ = vo. Therefore, Formula (3.12) is equiva-
lent to

¬∃(v : N) : ε(pvs0)(vr, n, v). (3.13)

The predicate ε(pvs0)(vr, n, v) holds if and only if n = v. Hence, Formula (3.13)
states that ¬∃(v : N) : n = v, where n is a natural number. This is a contradiction.

26

• Case2 : ¬ε(oracle)(eo, κ2(n, n),⊥). This case holds if and only if Tε(pvs0 , n). From the
equivalence between Tχ and Tε, Tχ(pvs0 , n) holds. If the proof starts directly from
Tε(pvs0 , n), after expanding and simplifying it, Tε(pvs0 , n) is obtained once again,
which implies that there is not such an n, giving a contradiction. However, since
PVS does not accept the definition of a function that enters into such an infinite
loop, the solution is to apply the equivalence between Tχ and Tε. Expanding the
definition of Tχ yields

∃m ∈ N : χ(pvs0)(m, ite(op2(|O2|, vr, vr), rec(vr), vr), n) 6= ♦.

If there exists such m, it can be chosen as the minimal natural that makes the above
proposition hold. Expanding the definition of χ yields

IF χ(pvs0)(m, op2(|O2|, vr, vr), n) 6= ♦ THEN
IF χ(pvs0)(m, op2(|O2|, vr, vr), n) 6= ⊥ THEN
χ(pvs0)(m, rec(vr), n)
ELSE χ(pvs0)(m, vr, n)

ELSE ♦

6= ♦. (3.14)

If the condition of the first if-then-else were false, then Formula (3.14) reduces to
♦ 6= ♦, which is a contradiction. Therefore, this condition must be true. After
expanding and simplifying χ, χ(pvs0)(m, op2(|O2|, vr, vr), n) reduces to

choose({a : N | ε(oracle)(eo, κ2(n, n), a)}).

Let v = choose({a : N | ε(oracle)(eo, κ2(n, n), a)}). If v = ⊥, then
ε(oracle)(eo, κ2(n, n),⊥).

This is a contradiction since n = κP (pvs0).

Thus, χ(pvs0)(m, op2(|O2|, vr, vr), n) 6= ⊥. Then, Formula (3.14) can be simplified
to

χ(pvs0)(m, rec(vr), n) 6= ♦.

Finally, expanding χ results in χ(pvs0)(m − 1, ef , n) 6= ♦. This contradicts the
minimality of m, completing the proof.

As in the former theorem, the formalization of the halting problem for partial recur-
sive MF-PVS0 programs uses Cantor’s diagonalization. The class is restricted to MF-PVS0
programs in which all indices of the expressions in their kernels, Ef , are valid; i.e., the

27

indices are smaller than the length of the kernel. Let subterm be sub-expression relation.
Valid indices are specified as below.

valid_index_rec(e, n) :=
∀(i, e1) :

subterm(rec(i, e1), e)⇒ i < n

(3.15)
valid_index(Ef) :=
∀(i < |Ef |) :

valid_index_rec(Ef (i), |Ef |)
(3.16)

The predicate below defines a partial recursive MF-PVS0 program pvs0 .

partial_recursive?(pvs0) := pvs0
′1 = O1 ∧ pvs0

′2 = O2 ∧
pvs0

′3 = ⊥ ∧ valid_index(pvs0
′4)

(3.17)

An important feature of PVS is to use predicates as sub-types. Thus, the predicate
partial_recursive? is converted to a sub-type of the MF-PVS0 programs type. This sub-
type is called partial_recursive. From the predicate partial_recursive?, the predicate
computable? expresses the classes of partial recursive MF-PVS0 programs but that is ter-
minating.

computable?(pvs0) := partial_recursive?(pvs0) ∧ Tε(pvs0) (3.18)

This predicate above is converted into a type computable. partial_recursive and
computable are polymorphic types, i.e., their definitions depend if they are about SF-PVS0
or MF-PVS0 programs.

From a partial_recursive SF-PVS0 program, there exists a partial_recursive
MF-PVS0 program that behaves the same. Such a partial recursive program is built em-
bedding the operators accumulated in the SF-PVS0 levels, transforming them into an
expression in the kernel of a MF-PVS0 program. Thus, the MF-PVS0 model simulates the
SF-PVS0 model. It is not formalized, but it is interesting for future work. The converse
simulation, i.e., simulating MF-PVS0 programs using SF-PVS0, requires that the SF-PVS0
program receives a natural number that represents a pair with the Gödel number of the
MF-PVS0 program and its input. Then, the SF-PVS0 program interprets the Gödel number
as a program.

Another option is to show that it is possible to define (the Godelization of) a trace
for the computation of a partial recursive function in SF-PVS0 model and then show
that a partial recursive function can be computed by searching for a valid trace of the
computation of the function for the given input.

The Gödelization of encoding of MF-PVS0 programs together to its input uses the
bijection from a tuple of naturals to natural, κ2. The Gödelization of MF-PVS0 programs
is given by the injective function κp. This function (p_recursive2nat) is a parameter

28

of the theory mf_pvs0_halting W. The oracle program that decides termination is non-
computable is defined using the function κ−1

2 :

O1 := [λ(i)(LET (p, n) = κ−1
2 (i)IF Tε(κp(p), n)THEN >ELSE ⊥]

O2 := []
Ef := [op1(0, vr)]

(3.19)

oracle := 〈O1, O2,⊥, Ef〉 (3.20)

Using this MF-PVS0 program the following theorem is formalized W:

∀(pvs0 , n) :
(¬γ〈Ef〉(κ2(κp(pvs0), n),⊥)) if and only if Tε(pvs0 , n)

(3.21)

The undecidability of the Halting Problem for the MF-PVS0 model is specified as the
theorem below.

Theorem 3 (Undecidability of the Halting Problem for MF-PVS0 W). For all O1, O2,
⊥, and κp, there is no program oracle of type computable such that for all pvs0 =
〈O1, O2,⊥, Ef〉 of type partial_recursive and for all n ∈ N,

Tε(pvs0 , n) if and only if ¬γ(oracle)(κ2(κp(pvs0), n),⊥).

The classical formalization of the undecidability of the halting problem starts by assuming
the existence of an oracle capable of deciding whether a program halts for an input. A
Gödelization function transforms the tuple of the program and input into a single input
to the oracle. After that, using the oracle, another program is created such that if the
encoded program halts it enters into an infinite loop. Otherwise, it produces an answer
and halts. Passing this program as an input to itself results in the expected contradiction.
In the proof of undecidability, any representation as a natural number of a specific MF-PVS0
program is built using the supposed oracle. This is the reason for using a general Gödeliza-
tion function.
The formalization needs the assumption that the function κ2 belongs to the list of binary
operators:

∃(k < |O2|) : O2(k) = κ2

The main difference between theorems 2 and 3 is that in the latter, the lists of unary and
binary operators and the false element are fixed, and the PVS0 program pvs0 must be
the program below. This will give rise to a contradiction.

29

https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_halting.pvs#L7-L8
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_halting.pvs#L39-L41
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/PVS0/mf_pvs0_halting.pvs#L44-L46

〈O1,O2,⊥, [ite(rec(1, op2(k, vr, vr)), rec(0, vr), cnst(>))] :: map(β(1))(oracle′4)〉
Where i is the index in the list of binary operators to the codification of a tuple of naturals
to naturals.
Considering the case γ(oracle)(κ2(κL(pvs0), n),⊥), ¬Tε(pvs0 , n) is simplified to
¬∃(v : N) : ε(pvs0)(cnst(>), n, v). which reduces to as a contradiction.
Considering the case ¬γ(oracle)(κ2(κL(pvs0), n),⊥) , let n = κL(pvs0). The supposi-
tion ¬γ(oracle)(κ2(n, n),⊥) is equivalent to Tε(pvs0 , n). Expanding it and applying the
equivalence with Tχ:
∃m ∈ N : χ(pvs0)(m, ite(rec(1, op2(k, vr, vr)), rec(0, vr), cnst(>)), n) 6= ♦.

If exists a natural m that makes the previous formula hold, suppose that is the minimal.
Expanding χ, yields:

IF χ(pvs0)(m, rec(1, op2(k, vr, vr)), n) 6= ♦ THEN
IF χ(pvs0)(m, rec(1, op2(k, vr, vr)), n) 6= ⊥ THEN
χ(pvs0)(m, rec(0, vr), n)
ELSE χ(pvs0)(m, vr, n)

ELSE ♦

6= ♦. (3.22)

If χ(pvs0)(m, rec(1, op2(k, vr, vr)), n) 6= ♦ does not hold, the previous if-then-else state-
ment reduce to ♦, that is a contradiction.
Expanding χ(pvs0)(m, rec(1, op2(k, vr, vr)), n) 6= ⊥, it reduces to:

χ(pvs0)(m− 1, oracle(0), κ2(n, n)) 6= ⊥ (3.23)
That is equivalent to ¬γ(oracle)(κ2(κL(pvs0), n),⊥).
Thus, the formula 3.22 is simplified to χ(pvs0)(m, rec(0, vr), n) 6= ♦. Expanding it:

χ(pvs0)(m− 1, ite(rec(1, op2(k, vr, vr)), rec(0, vr), cnst(>)), n) 6= ♦.

That contradicts the minimality of m.

Note that both formalizations require the application of the equivalence between the
termination predicates Tε and Tχ when the case ¬γ(oracle)(κ2(κL(pvs0), n),⊥) holds is
analyzed. This equivalence is necessary because if only Tε is applied, it will generate an
infinite expansion of the predicate trying to find witnesses of the existential quantification
used in the specification of Tε.

30

Chapter 4

Formalization of the computational
properties of the PVS0 Model -
Turing Completeness, and Recursion
Theorem

This and the next chapters present the technicalities of the formalization in PVS of com-
putational properties of the MF-PVS0 model in detail. Section 4.1 describes the constraints
necessary to formalize that the MF-PVS0 model is closed for composition, minimization,
and primitive recurrence. Additionally, the constant, successor, and projection can be
implemented using the model, concluding that it is Turing Complete. In the second part
of the chapter, Section 4.2 discusses the formalization of the Recursion Theorem.

4.1 Turing Completeness of MF-PVS0 Model

Turing Completeness of the MF-PVS0 model depends on the built-in operators used. For
example, if the lists of the built-in operators are empty, and the domain and range are
natural numbers, the model is not Turing Complete. One criterion to be Turing Complete
is to simulate the Partial Recursive Function working: the constant, successor, and pro-
jection must be implemented, and the model must be closed under primitive recurrence,
minimization, and composition.

First of all, the built-in operators, the lists of unary and binary operators, and the
element (⊥) that plays the role of “false” are given in Equation 4.1

31

succ(n) := n+ 1
greater(m,n) := IF m > n THEN 1 ELSE 0
π1(n) := ((λ(m,n : N) : m) ◦ κ−1

2)(n)
π2(n) := ((λ(m,n : N) : n) ◦ κ−1

2)(n)
O1 := [succ, π1, π2]
O2 := [greater, κ2]
⊥ := 0

(4.1)

In short, MF-PVS0 programs of the form 〈O1,O2,⊥, Ef〉 will be written simply as 〈Ef〉.
These fixed built-in operators are the same used in the formalization of the Recursion
Theorem (see Section 4.2). The main idea in the formalization of Turing Completeness
is to build MF-PVS0 programs that process their Gödel Number. Furthermore, using
these built-in operators the Turing Completeness of the model is guaranteed. We will use
the predicate below (that does not belong to the specification) for the class of MF-PVS0
programs having O1,O2 and 0 as parameters W.

partial_recursive?(pvs0) := pvs0
′1 = O1 ∧ pvs0

′2 = O2 ∧
pvs0

′3 = ⊥ ∧ valid_index(pvs0
′4)

Any MF-PVS0 program pvs0 that belongs to the above predicate is said to be of
type partial_recursive (PVS polymorphism enables using the same name as for the
SF-PVS0 model). This type is obtained as an instantiation of the parameters of the type
partial_recursive. In the specification, to define the type partial_recursive it is
enough to pass the above parameters to the theory mf_pvs0_computable W.

In order to show Turing completeness of the class of MF-PVS0 programs of such type,
it is only necessary to prove that there are implementations of the constant, successor,
and projection functions and that the class is closed under composition, minimization,
and primitive recurrence. The interesting cases in this formalization are those related to
the projection implementation and the proofs of closure under composition, minimization,
and primitive recurrence.

The n-tuples in PVS are specified as lists of naturals but encoded in the formalization
as a unique natural. The function nat2list W transforms uniquely a natural m into a list
of naturals of length n. See below.

nat2list(n,m) :=
IF n = 0 THEN []
ELSE IF n = 1 THEN [m]
ELSE [κ−1

2 (m)′1] :: nat2list(n− 1, κ−1
2 (m)′2)

32

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_basic_programs.pvs#L26
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L11
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L49-L54

The following abbreviations are used:

succS(e) := op1(0, e); πS1 (e) := op1(1, e); πS2 (e) := op1(2, e);
greaterS(e1, e2) := op2(0, e1, e2); κS2 (e1, e2) := op2(1, e1, e2).

For a MF-PVS0 program pvs0 of type partial_recursive, the focus would be on the
list of expressions, i.e., on pvs0

′4. The MF-PVS0 partial_recursive program equal W,
specified below, verifies if the pair of naturals encoded as a unique natural are equal.

equal ′4 :=
LET i = πS1 (vr), j = πS2 (vr) IN
[ite(greaterS(i, j),

cnst(0),
ite(greaterS(j, i), cnst(0), cnst(1)))]

Some technical MF-PVS0 partial_recursive programs were specified to deal with
projections of naturals’ tuples encoded as naturals.

The MF-PVS0 partial_recursive program proj_aux W, specified below, receives as
input a natural that codifies a quadruple of naturals (i, j, k, l), and outputs the (j − i)-th
projection of l. When k = j, the input is interpreted as a (j − i)-tuple, otherwise, it is
interpreted as a tuple of length greater than (j − i). In this specification, the function k4

is used to encode a quadruple of naturals as a natural used in the recursive calls, allowing
in this manner the increment of the first element of the quadruple (i, succS(i), . . .) and
advancing by the second projection of the fourth element (l, πS2 (l), . . .).

proj_aux ′4 :=
LET i = πS1 (vr), j = πS1 (πS2 (vr)), k = πS1 (πS2 (πS2 (vr))),

l = πS2 (πS2 (πS2 (vr))), k4(x, y, z, w) = κS2 (x, κS2 (y, κS2 (z, w))) IN
[ite(greaterS(j, i),

rec(0, k4(succS(i), j, k, πS2 (l))),
ite(rec(1, κS2 (j, k)), l, πS1 (l)))] :: equal ′4+1

The MF-PVS0 partial_recursive program proj W uses proj_aux to receive as input
a natural that codifies a triple of naturals (i, j, k), and outputs the i-th projection of k
(where k is interpreted as a j+1-tuple).

proj ′4 :=
LET i = πS1 (vr), j = πS1 (πS2 (vr)), k = πS2 (πS2 (vr)),

k4(x, y, z, w) = κS2 (x, κS2 (y, κS2 (z, w))) IN

[rec(1, k4(cnst(0), i, j, k))] :: proj_aux ′4+1

33

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_basic_programs.pvs#L29-L37
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L78-L93
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L103-L108

The correctness of the MF-PVS0 partial_recursive program for projection, proj, is
formalized as Lemma 5 using γ as given in the formula (2.1). The lemma shows that proj
projects correctly the i-th element of any tuple encoded as the natural m (seen as an n+1
tuple).

Lemma 5 (Correctness of Projection - proj_correctness W).

∀(i,m) : ∀(n | i ≤ n) : γ(proj)(κ2(i, κ2(n,m)), nat2list(n+ 1,m)(i))

The analysis of composition requires the functions exprComp and chainOffset below.
In these functions, l is a non-empty list of say m list of expressions that are the kernel of
MF-PVS0 programs. The idea is to simulate the composition of an m-ary function with m
functions. As can be observed in Chapter 2.2, the composition of two MF-PVS0 programs
of the same class of partial recursive functions is straightforward. Nevertheless, to show
Turing completeness, the composition must be specified between a MF-PVS0 program and
an m-tuple of MF-PVS0 programs. To specify an n-tuple of an arbitrary length, non-empty
lists are used.

exprComp(n, l) :=
IF |l| = 1 THEN rec(n, vr);
ELSE κS2 (rec(n, vr), exprComp(n+ |l(0)|, cdr(l)))

chainOffset(n, l) :=
IF |l| = 1 THEN l(0)+n;
ELSE l(0)+n :: chainOffset(n+ |l(0)|, cdr(l));

Let F be a MF-PVS0 program, L a non-empty list of MF-PVS0 programs, and l :=
map(λ(x, y, z, w) : w)(L). To specify composition, a new list of MF-PVS0 expressions is
created, where the head of this new list is a recursive expression that calls the expression
F ′4, and the expressions in the tail are given by l. In addition, the function chainOffset
(chain_offset W) adjusts the indices of the MF-PVS0 expressions of F and L in the
composition. When evaluating this new list of expressions, i.e., the new MF-PVS0 program,
the function exprComp (expr_comp W) generates a MF-PVS0 expression whose evaluation
codifies a list of naturals (which are the results of the application of the MF-PVS0 programs
in L to the input) into a natural. This natural is then passed as an input parameter to
evaluate F (comp W).

comp(F ′4, l)′4 := [rec(1, κS2 (cnst(|l|),
exprComp(1 + |F ′4|, l)))] ::
chainOffset(1, [F ′4] :: l))

34

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L116-L118
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L126-L131
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L120-L124
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L145-L146

Finally, the composition lemma also requires a way to represent n-tuples of naturals
(formalized as non-empty list of naturals) into naturals (list2nat W):

list2nat(ln) :=
IF |ln| = 1 THEN ln(0);
ELSE κ2(ln(0), list2nat(cdr(ln)));

Now, it is possible to establish the correctness of the composition lemma for a MF-PVS0
kernel F ′ and a list of kernels l as follows.

Lemma 6 (Correctness of Composition - comp_is_composition W).

∀(F, l | |l| > 0) : ∀(vi, vo) :
γ(comp(F ′4, l))(vi, vo)⇔
∃(ln | |ln| = |l|) :
∀(i | i < |ln|) : γ〈l(i)〉(vi, ln(i)) ∧
γ(F)(κ2(|ln|, list2nat(ln)), vo)

The formalization of the correctness of composition (Lemma 6) is by induction on the
length of l. The proof requires some technical lemmas, such as showing that the indices
of function calls used by rec, generated by the functions exprComp and chainOffset, are
valid. This guarantees that comp generates a MF-PVS0 partial_recursive program.

The lemma on the correctness of minimization of partial_recursive MF-PVS0 pro-
grams uses the function min_aux W specified below. This function receives as input the
list of expressions of a MF-PVS0 program F and gives as output a MF-PVS0 program that
for a given natural that encodes a pair of naturals (i, j) outputs a natural k such that
i ≤ k, and F applied to κ2(k, j) computes zero, and for all naturals such that i ≤ m < k,
F applied to κ2(m, j) is defined and greater than zero. It is necessary to pass as a pa-
rameter a natural encoding of a pair (m, j) because the minimization deals with n-ary
functions, being one of the arguments m, and the remaining n− 1 arguments encoded by
j.

min_aux(F ′4)′4 :=
[ite(rec(1, vr),

rec(0, κS2 (succS(πS1 (vr)), πS2 (vr))),
πS1 (vr))] :: F ′4+1

Using min_aux, the (list of expressions of the) minimization of F is specified below
(min W).

min(F ′4)′4 := [rec(1, κS2 (cnst(0), vr))] :: min_aux(F ′4)′4+1

35

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L148-L152
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L174-L179
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L205-L206
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L233-L234

The following lemma states that min is indeed the desired minimization.

Lemma 7 (Correctness of Minimization - min_correctness W).

∀(F, j, k) :
γ(min(F ′4))(j, k)⇔
(γ(F)(κ2(k, j), 0)∧
∀(m | m < k) : ∃(vo | vo > 0) : γ(F)(κ2(m, j), vo))

To show the correctness of primitive recurrence, the cut-off subtraction of a pair of
naturals encoded as a unique natural is specified as (sub W):

sub′4 :=
LET i = πS1 (vr), j = πS2 (vr) IN
[ite(greaterS(i, j),
succS(rec(0, κS2 (i, succS(j)))),
cnst(0))]

Using sub, the cut-off subtraction by 1 is specified (sub1 W):

sub1′4 :=
[rec(1, κS2 (vr, cnst(1)))] :: sub′4+1

The primitive recurrence, prim_recur W, is given by the MF-PVS0 program:

prim_recur(recur′4, final′4)′4 :=
LET i = πS1 (vr),

j = πS2 (vr),
less1(x) = rec(1 + |recur′4|+ |final′4|, x),
recur_fun(x, y, z) = rec(1, κS2 (x, κS2 (y, z))),
final_fun(x) = rec(1 + |recur′4|, x),
recur_call(x, y) = rec(0, κS2 (x, y))

IN
[ite(i,

recur_fun(recur_call(less1(i), j), less1(i), j),
final_fun(j))] ::

recur′4+1 :: final+1+|recur′4| ::
sub1′41+|recur′4|+|final′4|

The function prim_recur receives two kernels of partial_recursive programs, re-
cur ′4 and final ′4, and returns another partial_recursive program that implements

36

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L237-L241
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_basic_programs.pvs#L44-L49
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_basic_programs.pvs#L54-L55
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L253-L263

primitive recurrence for the respective associated functions r and f as below, where ρ is
primitive recurrence operator.

ρ(r, f)(0, j1, · · · , jm) := f(j1, · · · , jm)
ρ(r, f)(i+ 1, j1, · · · , jm) := r(ρ(r, f)(i, j1, · · · , jm), i, j1, · · · , jm)

The lemma below, states that prim_recur is indeed primitive recurrence.

Lemma 8 (Primitive Recurrence Correctness - prim_recur_correctness W).

∀(recur, final) : ∀(i, j, vo) :
γ(prim_recur(recur′4, final′4))(κ2(i, j), vo) ⇔
∃(ln | i+ 1 = |ln|) : vo = ln(|ln| − 1)∧
γ(final)(j, ln(0))∧
∀(k | k < |ln| − 1) :
γ(recur)(κ2(ln(k), κ2(k, j)), ln(k + 1))

As with the correctness of composition (Lemma 6), the formalization of the correctness
of minimization and primitive recursion (Lemmas 7 and 8) requires additional technical
elements such as the inductive predicates below that avoid expansions of the predicate γ
resulting in expansions of the evaluation predicate ε.

min_relation(i, j, F, vo) :=
IF γ(F)(κ2(i, j), 0) THEN vo = i

ELSE IF ∃(k) : γ(F)(κ2(i, j), k)
THEN min_relation(i+ 1, j, F, vo)

ELSE False.

prim_recur_relation(recur, final)(i, j)(vo) :=
IF i 6= 0 THEN ∃(z) :
γ(recur)(κ2(z, κ2(i− 1, j)), vo)∧
prim_recur_relation(recur, final)(i− 1, j)(z)

ELSE γ(final)(j, vo).

Using these predicates, one avoids exhaustive expansions of the ε predicate and thus
the generation of existential goals that would require concrete instantiations. In contrast,
using the inductive predicates min_relation and prim_recur_relation, above, PVS will
generate inductive schemes, in which no expansion of γ would be required, simplifying in
this manner the formalization.

The sufficiency of the correctness of minimization is formalized using the inductive
schema given by the predicate min_relation. The necessity is formalized using the equiv-

37

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs#L281-L289

alence between the evaluation function χ and the predicate ε. As discussed in Chapter
2.2, the function χ provides the measure to be applied in inductive proofs like the one
performed for formalizing the necessity. Similarly, the sufficiency of the correctness of
the primitive recurrence is formalized using the predicate prim_recur_relation, while a
straightforward induction on i proves necessity.

4.2 Recursion Theorem

The Recursion Theorem states that for any MF-PVS0 list of expressions Ef , there exists a
partial recursive MF-PVS0 program such that they both can be used to build another partial
recursive program that outputs its Gödel number. This means that there are MF-PVS0
programs that can calculate their own Gödel numbers and process them according to
implementations provided by the programmer. Notice that the Recursion Theorem holds
for any list of expressions Ef without requiring that valid_index(Ef) holds. In Turing
complete models, it is possible to design entities that print themselves. From this property,
depending on the chosen lists of unary and binary operators, if it is possible to create a
partial recursive MF-PVS0 program from a list of MF-PVS0 expressions such that its output
for any evaluation is itself, then the Rice’s Theorem holds.

The formalization uses the technique of building a virus program as explained in
(Sipser [2012]). Instead of replicating itself, the MF-PVS0 program processes its Gödel
number. The formalization uses the same basic operators for the successor, projection,
greater-than, and the bijection κ2 operators applied to formalize Turing Completeness
for the MF-PVS0 model. We dispose of constructions obtained in the proof of Turing
Completeness such as composition, minimization, and primitive recurrence. However, in
the formalization, we opt for building the required constructions implementing MF-PVS0
programs directly. These programs are designed using simultaneously several MF-PVS0
programs simplifying in this manner the constructions. The result is specified as theorem
4.

The Gödel number is calculated according to the following function.

38

κe(len)(e) := CASES e OF
vr : 0;

cnst(v) : v × 5 + 1;
rec(j, e1) : (j + κe(len)(e1)× (len + 1))× 5 + 2;
op1(j, e1) : κ2(j, κe(len)(e1))× 5 + 3;

op2(j, e1, e2) : κ2(j, κ2(κe(len)(e1), κe(len)(e2)))× 5 + 4;
ite(e1, e2, e3) : κ2(κe(len)(e1), κ2(κe(len)(e2), κe(len)(e3)))× 5 + 5

(4.2)

In the function κe above (PVS02nat_limit W), for all subexpression rec(i, e′) of the
argument expression e, and i is less or equal than len (the length of the kernel). The
reason for this is that the goal is to Gödelize partial_recursive programs and that
each index in the rec subexpression in an expression in the kernel of the programs must
be valid, i. e., be limited by the length of the kernel.

A bijection from lists of naturals to naturals called α was implemented as below.

rdc(l) := reverse(cdr(reverse(l)))

αaux(l) := IF |l| = 1 THEN l(0)
ELSE κ2(αaux(rdc(l)), l(|l| − 1))

α(l) := IF |l| = 0 THEN 0
ELSE κ2(|l| − 1, αaux(l)) + 1

(4.3)

Above, l is a list of naturals, reverse reverses lists and rdc deletes the last element of a
non-empty list. Notice that α (listnat2nat W), through applications of αaux (cons2nat
W), transforms recursively the prefix of the input list without the last element into a
natural and applies the bijection κ2 to this natural and the last element of the list. In the
Gödelization, the function αaux receives a non-empty list of naturals, each representing an
expression in a list of MF-PVS0 expressions. This construction structure becomes similar
to the ones previously used and eases the proof of the Recursion Theorem. In particular,
it will be helpful when α is used in inductive proofs in which MF-PVS0 programs are built,
adding to the kernel a constant that represents a number associated with the Gödelization
of a list of expressions.

The Gödelization from the class of partial recursive functions to naturals, that uses
α, is given as below.

κp(pvs0) := α(map(κe(|pvs0
′4| − 1))(pvs0

′4))− 1 (4.4)

39

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L57-L67
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L88-L91
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L82-L86

The function κp (p_recursive2nat W) Gödelizes the partial_recursive MF-PVS0
programs.

To prove bijectivity of κp, it was necessary to build the inverses of κ2, κe, αaux, and α
given respectively as κ−1

2 (nat2tuple), κ−1
e (nat2PVS0_limit W), α−1

aux (nat2listnat_aux
W), and α−1 (nat2listnat W). But bijectivity is only required for the Fixed-Point The-
orem. The formalizations of Rice’s and Recursion Theorems as well as the undecidability
of the Halting Problem use also κp, but they do not use its bijectivity; any Gödelization
function can be used.

The function κ−1
e is defined as below.

κ−1
e (lim)(n) :=

IF n = 0 THEN vr
ELSE IF 5|(n− 1) THEN cnst(n−1

5)
ELSE IF 5|(n− 2) THEN rec(n−2

5 %(lim+ 1), κ−1
e (lim)(b n−2

5×(lim+1)c))
ELSE IF 5|(n− 3) THEN op1(κ−1

2 (n−3
5)′1, κ−1

e (lim)(κ−1
2 (n−3

5)′2))
ELSE IF 5|(n− 4) THEN op2(κ−1

2 (n−4
5)′1,

κ−1
e (lim)(κ−1

2 (κ−1
2 (n−4

5)′2))′1,
κ−1
e (lim)(κ−1

2 (κ−1
2 (n−4

5)′2)′1))
ELSE 5|(n− 5) ite(κ−1

e (lim)(κ−1
2 (n−4

5)′1),
κ−1
e (lim)(κ−1

2 (κ−1
2 (n−4

5)′2))′1,
κ−1
e (lim)(κ−1

2 (κ−1
2 (n−4

5)′2)′1))

(4.5)

Above, a|b means a divides b, a%b is the remainder of the division of a by b and ba
b
c

is the floor of the division of a and b.
Below, the inverse functions α−1

aux and α−1 are implemented.

α−1
aux(len, n) := IF len = 0 THEN [n];

ELSE α−1
aux(len− 1, κ−1

2 (n)′1) :: [κ−1
2 (n)′2]

α−1(n) := IF n = 0 THEN [];
ELSE α−1

aux(κ−1
2 (n− 1)′1, κ−1

2 (n− 1)′2)

(4.6)

The specification of two inverses require two arguments: α−1
aux(len, n) and κ−1

e (len)(n).
In the function α−1

aux, len is a natural that defines the length (len−1) of the list of naturals
encoded by n. In the function κ−1

e , the argument len is the length of the indices of the
rec expressions, and n encodes a MF-PVS0 expression.

The function κ−1
e (nat2PVS0_limit W) uses subtype predicates that are an interest-

ing feature of PVS used in the specification of a recursive function. The type of the

40

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Recursion_Theorem.pvs#L19
https://github.com/nasa/pvslib/blob/52ed5989747e517cd29f2e20dbdc55d314e2ec5e/numbers/tuple2nat.pvs#L16-L21
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L37-L55
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L93-L97
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L99-L102
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L37-L55

image of the function κ−1
e is specified as the type of MF-PVS0 expressions whose recursive

subexpressions have indices less than or equal to len. PVS generates a Type Correctness
Condition (TCC) that is a proof obligation stating that this is indeed the type of output
computed by the specified function. Having this property as a proved TCC simplifies
further formalizations of properties of κ−1

e because typing conditions of the outputs of
κ−1
e guarantee Gödelizations of MF-PVS0 expressions that have recursive calls with valid

indices.
The inverse of κp is specified below.

κ−1
p (n) := 〈map(κ−1

e (|α−1(n+ 1)| − 1))(α−1(n+ 1))〉

Lemma 9 (Invertibility of the functions κe and αaux - PVS02nat_nat2PVS0_limit W,
nat2PVS0_PVS02nat_limit W, nat2listnat_aux_cons2nat W and conversion lemma
cons2nat_nat2listnat_aux W). Left and right invertibility of the operators κe and αaux
is formalized as:

1. ∀n, len : κe(len)(κ−1
e (len)(n)) = n;

2. ∀e, len : κ−1
e (len)(κe(len)(e)) = e;

3. ∀l : α−1
aux(|l| − 1, αaux(l)) = l;

4. ∀ len, n : αaux(α−1
aux(len, n)) = n.

The Gödelization function allows specifying the Recursion Theorem (Kleene’s second
Recursion Theorem).

Theorem 4. [Recursion Theorem - Recursion_Theorem W]

∀(Ef) : ∃(print : partial_recursive) :
LET self = 〈Ef :: print ′4+|Ef |〉 IN

partial_recursive?(self) ∧
∀(i) : ε(self)(print ′4(0)+|Ef |, i, κp(self))

To build print, the same idea of programming computing viruses is followed. A list of
expressions to calculate the Gödel number of self is added to Ef . In this manner, one guar-
antees the desired behavior of self that is to be able to calculate its own Gödel number, as
a quine does, but also to process it accordingly to the programmers desire. Thus, the ker-
nel of self can be split in three parts: Ef , a second part A, and [cnst(αaux(map(κe(|Ef ::
A|))(Ef :: A)))], such that self ′4 = Ef :: A :: [cnst(αaux(map(κe(|Ef :: A|))(Ef :: A)))].

41

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L78-L80
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L74-L76
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L108-L110
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs#L112-L114
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Recursion_Theorem.pvs#L64-L70

The last expression in the kernel of self contains a constant number associated with the
Gödel number of Ef :: A. The part A calls this last expression and uses this result
to calculate the Gödel number of self . Finally, part Ef uses the Gödel number of self
accordingly to the programmer’s desire.
The function αaux was recursively specified from the back to the front to be adapted to
self ′4 (in which a natural, related to the first element, is calculated before another natural,
related to the last element, is calculated). This decision reduces the effort necessary in
the formalization since it allows for avoiding the elaborated analysis that a recursive
specification from the front to the back would imply. In such an alternative version of
self ′4 the last element should represent a stack of naturals associated with each element
in Ef :: A by the function κe. In such a case, to calculate the Gödel number of the
alternative version of self it would be necessary to add the number associated with its
last element to the bottom of the stack.
The second part of self , A, is defined as below, where δ is the greatest index of rec found
in the list Ef , using the function printA:

A := printA(δ, |Ef |)+|Ef |

The function printA is specified below.

printA(len, len2) :=
[κS2 (cnst(1 + len + len2 + |mult|), κS2 (rec(|mult|+ len + 1, vr),
succS(rec(1, κS2 (cnst(5), rec(|mult|+ len + 1, vr))))))] ::
mult+1 :: [vr]len

Above [vr]len is a list with len repetitions of vr. The list for mult is specified to receive
a natural number as input, apply the bijective function κ−1

2 to obtain a pair of naturals
and multiplying them, as below.

mult :=
[ite(πS1 (vr),

rec(1, κS2 (πS2 (vr), rec(0, κS2 (rec(1 + |sum|, πS1 (vr)), πS2 (vr))))),
cnst(0))]

:: sum+1 :: sub1′4+1+|sum|

Since in the specification of A above the arguments of printA are δ and |Ef |, it is warranted
that the indices of rec in self are always valid. Thus, self is partial_recursive because
the restriction on basic operator is maintained by construction.
The list mult, used in the specification of printA, multiplies using sum that adds pairs of
naturals encoded as a unique natural by the function κ2 as below.

42

sum := [ite(πS1 (vr),
succ(rec(0, κS2 (rec(1, πS1 (vr)), πS2 (vr)))),
πS2 (vr))]

:: sub1′4+1

Although sum and mult are simple, their codifications as MF-PVS0 programs require also
verifying their correctness. This is achieved by proving that these functions are function-
ally equivalent to the PVS functions specified as below.

sumf (x, y) = IF x 6= 0 THEN 1 + sumf (x− 1, y) ELSE y

multf (x, y) = IF x 6= 0 THEN y + multf (x− 1, y) ELSE 0
Formalizing the correctness of mult and sum directly is possible but hard to execute
because the semantic evaluation generates a large chain of existential quantifiers. To avoid
this difficulty, the formalization of the equivalence between the MF-PVS0 specifications of
mult and sum and their associated PVS functions, multf and sumf were obtained. Also,
the correctness of the associated PVS functions was shown. Thus, the correctness of mult
and sum are given as corollaries.
The next lemma shows the correctness of printA.

Lemma 10 (Correctness of printA - print_correctness W).
∀(i, len, len2, h) :
γ〈printA(len, len2) :: [cnst(h)]〉

(i, κ2(1 + len + len2 + |mult|, κ2(h, 5× h+ 1)))

To use this lemma, δ, |Ef | and αaux(map(κe(|Ef :: A|))(Ef :: A)) are used to instantiate
the variables len, len2 and h, respectively. In addition, self ′4 := Ef :: A :: [cnst(h)]. This
gives:

∀(i) :
γ〈printA(δ, |Ef |) :: [cnst(h)]〉

(i, κ2(|self ′4| − 1, κ2(h, κe(|self ′4| − 1)(cnst(h)))))
because

1 + δ + |Ef |+ |mult| = |self ′4| − 1
5× h+ 1 = κe(|self ′4| − 1)(cnst(h))

The expression κ2(h, κe(|self ′4| − 1)(cnst(h))) can be replaced by αaux(map(κe(|self ′4| −
1))(self ′4)) because expanding the definition of map, αaux, and self , one has:

43

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Recursion_Theorem.pvs#L52-L54

αaux(map(κe(|self ′4| − 1))(self ′4)) =
αaux(map(κe(|self ′4| − 1))(Ef :: A :: [cnst(h)])) =
αaux(map(κe(|self ′4| − 1))(Ef :: A) :: κe(|self ′4| − 1)(cnst(h))) =
κ2(αaux(map(κe(|self ′4| − 1))(Ef :: A)), κe(|self ′4| − 1)(cnst(h))) =
κ2(h, κe(|self ′4| − 1)(cnst(h)))

The result of this replacement is:
∀(i) :
γ〈printA(δ, |Ef |) :: [cnst(h)]〉

(i, κ2(|self ′4| − 1, αaux(map(κe(|self ′4| − 1))(self ′4))))
Then, αaux(map(κe(|self ′4|−1))(self ′4))) can be replaced by κp(self) because by definition
of κp and α the equalities below hold.

κp(self) =
α(map(κe(|self ′4| − 1))(self ′4))− 1 =
κ2(|self ′4| − 1, αaux(map(κe(|self ′4| − 1))(self ′4)))

Thus, it can be concluded that:

∀(i) :
γ(〈printA(δ, |Ef |) :: [cnst(h)]〉)(i, κp(self))

And finally, by application of the shift code lemmas (Lemmas 1 and 2), expanding γ and
adding Ef in front of printA(δ, |Ef |) :: [cnst(h)], one concludes the proof of the theorem.

As discussed before Theorem 4, instead of using composition, minimization, and prim-
itive recurrence operators implemented for the proof of Turing Completeness in the previ-
ous Section, the formalization approach is based on the direct implementation of MF-PVS0
programs. This decision allows for the analysis of computational properties directly over
the MF-PVS0 model, avoiding using the theory of partial recursive functions. Of course,
the composition, minimization and primitive recurrence operators may be applied for
constructing MF-PVS0 programs such as sum, mult and others (used in the formalization
of Recursion Theorem in Section 4.2). Notice that this kind of construction makes the
semantics of the programs difficult to understand. For instance, an alternative imple-
mentation of the program sum given in Section 4.2, can be done using composition and
primitive recurrence as below.

sum := prim_recur(comp([succ(vr)], [[comp(proj ′4, κS2 (0, κS2 (2, vr)))′4]])′4,
comp(proj ′4, [[κS2 (0, κS2 (0, vr))]])′4)

44

The construction of the specialized Gödelization functions required to build self is the
most difficult part of this formalization. One challenge in the implementation of κp was
to build it in such a manner that it facilitates further steps of the formalization. An
appropriate function αaux was enough to reach this aim. Specifically for the Recursion
Theorem, κp need not to be bijective. However, it was done in this way in order to
make it useful for the formalization of other theorems such as the Fixed-Point Theorem.
Ensuring that κp is bijective was technically difficult since it requires that all necessary
auxiliary functions were also bijective. For some auxiliary components, the formalization
was straightforward. However, for other ones, PVS infers some types such that applying
some lemmas about lists (of MF-PVS0 expressions, i.e., a kernel of MF-PVS0 programs, and
naturals) do not work. Such types appear when specific kernels of MF-PVS0 programs were
considered, such as those that included only valid recursive call indices. An example of
such properties on lists is |A :: B| = |A| + |B|. There is an appropriate lemma for this
property, but it requires that A, B, and A::B all have the same type. Nevertheless, if the
type of A and B, say S, is a subtype of the type of A :: B, say T , being all the inputs
of the function length (|_| : T → N]), the lemma needs to be specialized and proved
separately. The general solution, non-provided in PVS, is to prove that if S is a subtype
of T , and A : S, then |A|[T] = |A|[S]. Indeed, in PVS proofs, the concatenation of
lists of naturals is interpreted as lists of numbers. Similar type inference problems were
encountered when formalizing the Recursion Theorem

45

Chapter 5

Formalization of the computational
properties of the PVS0 Model - Rice’s
Theorem, and Fixed Point Theorem

This Chapter continues the discussion on the technicalities of the PVS formalizations
of computational properties of the PVS0 model, which started in the previous chapter.
Section 5.1 describes the formalization of Rice’s Theorem obtained as a corollary of the
Recursion Theorem. Furthermore, it discusses other corollaries derived from Rice’s Theo-
rem. Finally, Section 5.2 describes the formalization of the Fixed Point Theorem. For the
last formalization, it was necessary to transform the Gödel number on the correspondent
program and another program in a Gödel number to formalize it.

5.1 Rice’s Theorem

Rice’s Theorem is a consequence of the Recursion Theorem. It is proved that if using the
basic built-in operators, the Recursion Theorem holds then Rice’s Theorem for this theory
also holds. Notice the basic operators used in theory mf_pvs0_Recursion_Theorem to
guarantee this theorem, and those used in theory mf_pvs0_Turing_Completeness to en-
sure Turing Completeness are the same. The formalization in this section proves that for
all Gödelizations for which the Recursion Theorem holds, and Rice’s Theorem also holds.
Similarly to standard demonstrations of the undecidability of the Halting Problem and
the uncountability of real numbers, the formalization is based on Cantor’s diagonal argu-
ment. An alternative formalization approach is based on the construction of a universal
program for the MF-PVS0 model. However, this approach would increase the complexity
of the formalization. Using such a proof strategy, the formalization would require the con-
struction of an elaborated reduction of the Halting Problem to the problem of separability

46

of extensional properties of MF-PVS0 programs. Thus, the current formalization does not
use (undecidability of) the Halting Problem and depends only on the above-mentioned
Theorem 4.

Formalizing Rice’s Theorem also requires a definition of extensional property of pro-
grams.

The notion of an extensional property over MF-PVS0 programs is specified as:

is_semantic_predicate?(P) := ∀(pvs0 1, pvs0 2) :
(∀(vi, vo) : γ(pvs0 1)(vi, vo)⇔ γ(pvs0 2)(vi, vo))⇒

(P (pvs0 1)⇔ P (pvs0 2))

(5.1)

If is_semantic_predicate? W holds for the predicate P , it is said that P is an exten-
sional property. Extensional property means that it must hold for programs that perform
the same and it must not hold for programs that do not perform the same. For example,
performing a greater common divisor is an extensional property. However, verifying if a
program has less than ten lines of code is not an extensional property.

Rice’s theorem states that any extensional property can be decided if and only if it is
the set of all MF-PVS0 programs or the empty set, and is specified as below.

Theorem 5 (Rice’s Theorem - Rice_theorem_for_Turing_complete_pvs0 W).

∀(P : is_semantic_predicate) :
∃(decider : computable) :
∀(pvs0 : partial_recursive) :

(¬γ(decider)(κp(pvs0), 0))⇔ P (pvs0)

 ⇔ (P = fullset ∨ P = ∅)

Necessity: Suppose that P = fullset. Let > be an element different from 0. The MF-PVS0
program decider = 〈[cnst(>)]〉, decides fullset. Now, suppose that P = ∅. The MF-PVS0
program decider = 〈[cnst(0)]〉 decides ∅.
Sufficiency: by contraposition, let assume that (P 6= fullset ∧P 6= ∅). This implies that
there exist MF-PVS0 programs, say p and np, such that P (p) and ¬P (np).
For reaching a contradiction, suppose that there exists decider : computable such that:

∀(pvs0 : partial_recursive) : ¬γ(decider)(κp(pvs0), 0)⇔ P (pvs0)

47

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem.pvs#L19-L22
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem.pvs#L49-L53

And, consider the program opp with the kernel:
opp = [ite(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),

rec(1 + |decider ′4|, vr),
rec(1 + |decider ′4|+ |np′4|, vr))] ::
decider ′4+1 ::
np′4+1+|decider ′4| ::
p′4+1+|decider ′4|+|np′4|

Using the Recursion Theorem (Theorem 4) that there are programs in the model that
can print their own Gödel number, making Ef = opp:

∃(print : partial_recursive) :
LET self = 〈opp :: print′4+|opp|〉 IN

partial_recursive?(self) ∧
∀(i) : ε(self)(print′4(0)+|opp|, i, κp(self))

To understand how the operators opp and self work, suppose that for each MF-PVS0
program partial_recursive there is a function with the same name that executes the
same as these. For example, for the MF-PVS0 program denoted as “decider”, there is the
corresponding function from naturals to naturals, also represented as “decider”. The same
happens to the p and np MF-PVS0 programs. The idea of the proof is to show a MF-PVS0
program self that performs the same as the function:

self (n) := IF decider(κp(self)) 6= 0 THEN np(n); ELSE p(n);
The proof uses Cantor’s diagonal argument. If decider(κp(self)) 6= 0, then P (self), but
self behaves as np and thus ¬P (self) holds, which is a contradiction. Otherwise, if
decider(κp(self)) = 0, then ¬P (self), but self behaves as p and thus P (self) that is
a contradiction too. This is the main idea behind the rest of the explanation of the
formalization.
The Recursion Theorem 4 implies that there exists an element of the partial recursive
class, say print, such that:

LET self = 〈opp :: print′4+|opp|〉 IN

partial_recursive?(self) ∧
∀(i) : ε(self)(print′4(0)+|opp|, i, κp(self))

Making pvs0 = self it can be concluded that

¬γ(decider)(κp(self), 0)⇔ P (self)
The proof splits into two sub-cases.
Sub-case 1: P (self). In this case, ¬γ(decider)(κp(self), 0) holds. Therefore, the pro-
gram self, by definition, performs as np. But P is an extensional property, which means

48

that if two programs perform the same, then P holds for both or does not. Thus, P (self)
and P (np) must hold, that is a contradiction, because ¬P (np).
Since P is an extensional property, one has:

∀(pvs0 1, pvs0 2) :
(∀(i, o) : γ(pvs0 1)(i, o)⇔ γ(pvs0 2)(i, o))⇒

(P (pvs0 1)⇔ P (pvs0 2))
Thus, choosing pvs0 1 as self and pvs0 2 as np, it gives:

(∀(i, o) : γ(self)(i, o)⇔ γ(np)(i, o))⇒ (P (self)⇔ P (np))
Assuming ∀(i, o) : γ(self)(i, o) ⇔ γ(np)(i, o), by P (self), P (np) also holds, which is a
contradiction since ¬P (np).
Consequently, ¬∀(i, o) : γ(self)(i, o)⇔ γ(np)(i, o) should hold.
But this is not possible because self performs the same as np as shown below.
Starting by γ(self)(i, o) and expanding γ, and from ε(self)(self ′4(0), i, o) replacing self
by its definition, one obtains:

ε(self)((opp :: print‘4+|opp|)(0), i, o)
By properties of lists and definition of opp gives ε(self)(opp(0), i, o). Therefore:

ε(self)(ite(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
rec(1 + |decider ′4|, vr),
rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Then, by the definition of ε and operational semantics of ite, one has:

∃ (v′) :
ε(self)(rec(1,

rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
i,

v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Further, by adequate expansions of predicate ε and application of equalities self ′4(1) =
decider ′4(0)+1, and self ′4(1 + |decider ′4|+ |np′4|+ |p′4|) = print′4(0)+|opp|, one has:

49

∃ (v′) : ∃ (v′′) : ∃ (v′′′) : i = v′′′ ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

And then, by Skolemization of the existentially quantified variables, one has:

i = v′′′ ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o);
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o);

By the second part of the aforementioned Recursion Theorem, (Theorem 4, in previ-
ous chapter), i.e., ∀(i) : ε(self)(print′4(0)+|opp|, i, κp(self)), and instantiating i = v′′′ one
obtains:

ε(self)(print′4(0)+|opp|, v′′′, κp(self)) ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Since the relation ε (is formalized to be) functional, one has that v′′ = κp(self). Thus,

ε(self)(decider ′4(0)+1, κp(self), v′)∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Then, by using the shift code lemma (Lemma 1) one obtains the equivalence below.

ε(self)(decider ′4(0)+1, κp(self), v′)⇔ ε(decider)(decider ′4(0), κp(self), v′)
Thus, one obtains,

ε(decider)(decider ′4(0), κp(self), v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o)

Furthermore, by the hypothesis of this case, one has ¬γ(decider)(κp(self), 0) that means
that v′ 6= 0. Consequently one obtains,

ε(self)(rec(1 + |decider ′4|, vr), i, o)

50

By adequate expansions of predicate ε, Skolemization of the obtained existentially quan-
tified variable as v′1 and replacing the necessary variables, one obtains:

ε(self)(np′4(0), i, o)
Applying the shift code lemma (Lemma 2):

ε(np)(np′4(0), i, o)
which is equivalent to γ(np)(i, o). Thus one has that ¬∀(i, o) : γ(self)(i, o)⇔ γ(np)(i, o)
does not hold, which is a contradiction.
Sub-case 2: ¬P (self). It follows analogously to sub-case 1, except that self performs
as p. Thus, ¬P (self) and ¬P (p) hold. It gives a contradiction because P (p) holds. Thus,
there exists no MF-PVS0 program that decides any extensional property different from the
total or empty one.
Next, details of the formalization are included.
First, notice that the formula below holds:

¬γ(decider)(κp(self), 0)⇔ P (self)
In this case, γ(decider)(κp(self), 0) is concluded.
P is an extensional property:

∀(pvs0 1, pvs0 2) : (∀(i, o1, o2) : γ(pvs0 1)(i, o1) ∧ γ(pvs0 2)(i, o2)⇒ o1 = o2)
⇒ (P (pvs0 1)⇔ P (pvs0 2))

Choosing pvs0 1 as self and pvs0 2 as p:

(∀(i, o1, o2) : γ(self)(i, o1) ∧ γ(p)(i, o2)⇒ o1 = o2)⇒ (P (self)⇔ P (p))
Supposing the premise of this implication, one has that P (self)⇔ P (p), but in this case
¬P (self), and therefore ¬P (p), which is a contradiction since P (p).
Thus, ¬∀(i, o1, o2) : γ(self)(i, o1) ∧ γ(p)(i, o2) ⇒ o1 = o2 holds, which is equivalent to
∃(i, o1, o2) : γ(self)(i, o1) ∧ γ(p)(i, o2) ∧ o1 6= o2.
By Skolemization of i, o1 and o2, using the same variable names, and expanding γ defini-
tion:

ε(self)(self ′4(0), i, o1) ∧ ε(p)(p′4(0), i, o2) ∧ o1 6= o2

From ε(self)(self ′4(0), i, o1), by replacing the second occurrence of self by its definition
and simplifying one obtains:

ε(self)((opp :: print′4|opp|)(0), i, o1)
By properties of lists:

ε(self)(opp(0), i, o1)

51

Expanding opp definition and simplifying the access of the first element of the list one
obtains:

ε(self)(ite(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)),
rec(1 + |decider ′4|, vr),
rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

By the definition of ε and the operational semantics of ite:

∃ v′ : ε(self)(rec(1, rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr)), i, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

Expanding the first occurrence of ε:

∃ v′ : ∃ v′′ : ε(self)(rec(1 + |decider ′4|+ |np′4|+ |p′4|, vr), i, v′′) ∧
ε(self)(self ′4(1), v′′, v′)∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

Expanding the first occurrence of ε again:

∃ (v′) : ∃ (v′′) : ∃ (v′′′)ε(self)(vr, i, v′′′) ∧
ε(self)(self ′4(1 + |decider ′4|+ |np′4|+ |p′4|), v′′′, v′′) ∧
ε(self)(self ′4(1), v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

Expanding the first occurrence of ε again:

∃ (v′) : ∃ (v′′) : ∃ (v′′′) : i = v′′′ ∧
ε(self)(self ′4(1 + |decider ′4|+ |np′4|+ |p′4|), v′′′, v′′) ∧
ε(self)(self ′4(1), v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

Applying the equalities self ′4(1) = decider ′4(0)+1, self ′4(1 + |decider ′4|+ |np′4|+ |p′4|) =
print′4(0)+|opp|:

∃ (v′) : ∃ (v′′) : ∃ (v′′′) : i = v′′′ ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

52

By Skolemization of the existentially quantified variable:

i = v′′′ ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

By the assumption, ∀ : i ε(self)(print′4(0)+|opp|, i, κp(self)) holds and instantiating
i = v′′′:

ε(self)(print′4(0)+|opp|, v′′′, κp(self)) ∧
ε(self)(print′4(0)+|opp|, v′′′, v′′) ∧
ε(self)(decider ′4(0)+1, v′′, v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

The relation ε is functional. It means that, v′′ = κp(self).

ε(self)(decider ′4(0)+1, κp(self), v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

Using the lemmas of code shift,
ε(self)(decider ′4(0)+1, κp(self), v′)⇔ ε(decider)(decider ′4(0), κp(self), v′).
Thus,

ε(decider)(decider ′4(0), κp(self), v′) ∧
IF v′ 6= ⊥ THEN ε(self)(rec(1 + |decider ′4|, vr), i, o1)
ELSE ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)

By the hypothesis of this case, γ(decider)(κp(self), 0), that means that v′ = 0. Thus,

ε(self)(rec(1 + |decider ′4|+ |np′4|, vr), i, o1)
Expanding ε:

∃ (v′) : ε(self)(vr, i, v′) ∧ ε(self)(self ′4(1 + |decider ′4|+ |np′4|), v′, o1)
Then, expanding the first occurrence of ε:

∃ (v′) : i = v′ ∧ ε(self)(self ′4(1 + |decider ′4|+ |np′4|), v′, o1)
By Skolemizing and Replacing v′ by i:

ε(self)(self ′4(1 + |decider ′4|+ |np′4|), i, o1)

53

Replacing self ′4(1 + |decider ′4|+ |np′4|) by p′4(0)

ε(self)(p′4(0), i, o1)
Applying lemmas of code shift:

ε(np)(p′4(0), i, o1)
From the first formula at the beginning of this sub-case, ε(p)(p′4(0), i, o2) ∧ o1 6= o2:

ε(p)(p′4(0), i, o1) ∧ ε(p)(p′4(0), i, o2) ∧ o1 6= o2

Since ε is a functional relation, o1 = o2 holds, which gives a contradiction.
Thus, there exists no MF-PVS0 program decide that decides an extensional property dif-
ferent from the total or empty one. �

The generality of Rice’s Theorem allows for simple formalizations of significant unde-
cidability results in computability theory. In particular, since our proof does not depend
on the undecidability of the Halting Problem, we obtain it as a direct consequence.

Corollary 1 (Undecidability of the Uniform Halting Problem -
uniform_halting_problem_undecidability_Turing_complete W).

¬∃(decider : computable) :
∀(pvs0 : partial_recursive) :

(¬γ(decider)(κp(pvs0), 0)⇔ Tε(pvs0))

The formalization uses Rice’s Theorem instantiating the extensional property as Tε. The
predicate Tε is an extensional property because if two MF-PVS0 programs perform the same,
both are either terminating or not. Since the set Tε is neither equal to the empty set nor
the whole set partial_recursive, there exists no computable decider for this set. To
prove this, it is shown that the partial_recursive constant program 〈[cnst(0)]〉 belongs
to Tε, while a simple loop partial_recursive program specified as 〈[rec(0, vr)]〉 does
not.
For the loop above, notice that the input of the recursive call does not change. Therefore,
the execution of the program will repeat the recursive call infinitely.

The PVS theory complementing this thesis includes both the formalization of the
corollary above and a direct formalization of the undecidability of the (Specific) Halting

54

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L23-L25

Problem for the multiple-function MF-PVS0 model in the spirit of (Ferreira Ramos et al.
[2018]).

Corollary 2 (Undecidability of Existence of Fixed Points -
fixed_point_existence_undecidability_Turing_complete W).

¬∃(decider : computable) :
∀(pvs0 : partial_recursive) :

(¬γ(decider)(κp(pvs0), 0)⇔ ∃(p) : γ(pvs0)(p, p))

The formalization instantiates Rice’s Theorem using the extensional property

λ(pvs0 : partial_recursive) : ∃(p) : γ(pvs0)(p, p)
It is an extensional property because if two MF-PVS0 programs perform the same either
both contain a fixed point or neither do. The predicate is then shown to be different
from the empty set and from the whole set partial_recursive. Indeed, on one side,
the predicate holds for the program 〈[cnst(0)]〉, showing that it is different from the
empty set. On the other side, it does not hold for the program 〈[op2(i, vr, cnst(1))]〉 that
performs the same as λ(n : N) : κ2(n, 1), concluding that the predicate is not equal to
partial_recursive.

Corollary 3 (Undecidability of Self Replication -
self_replication_ undecidability_Turing_complete W).

¬∃(decider : computable) :
∀(pvs0 : partial_recursive) :

(¬γ(decider)(κp(pvs0), 0)⇔
∃(p : partial_recursive) :
∀(i) : γ(p)(vi, κp(p)) ∧ γ(pvs0)(vi, κp(p)))

To formalize it, it is necessary to instantiate the predicate in Rice’s theorem as

λ(pvs0 : partial_recursive) :
∃(p : partial_recursive) :
∀(i) : γ(p)(i, κp(p)) ∧ γ(pvs0)(i, κp(p))

The predicate above is an extensional property because if two MF-PVS0 programs behave
in the same way, either both return a Gödel number of a program that self-replicates or
neither do.

55

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L27-L30
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L32-L36

The next step consists in showing that the predicate is neither the empty set nor the
full partial_recursive set. Using the assumption of the Recursion Theorem and in-
stantiating it with [rec(1, vr)], one shows that the predicate is not empty. On the
other side, the program 〈[op2(i, cnst(1), vr)]〉 shows that the predicate is not the whole
partial_recursive set.

Corollary 4 (Undecidability of Functional Equivalence -
pvs0_program_ equivalence_undecidability_Turing_complete W).

¬∃(decider : computable) :
∀(pvs0 0, pvs0 1 : partial_recursive) :

(¬γ(decider)(κ2(κp(pvs0 0), κp(pvs0 1)), 0)⇔
(∀(vi, vo) : γ(pvs0 0)(vi, vo)⇔ γ(pvs0 1)(vi, vo)))

Suppose that there exists a computable program decider that decides the above equiva-
lence between MF-PVS0 partial_recursive programs. Then, instantiate pvs0 0 above as
the constant zero program, 〈[cnst(0)]〉 simplifying in this manner the problem to decide
whether a program performs the same as the constant zero program. The next step is
instantiating Rice’s Theorem (Theorem 5) with the predicate below.

λ(pvs0 : partial_recursive) :
∀(vi, vo) :
γ〈[cnst(0)]〉(vi, vo)⇔ γ(pvs0)(vi, vo)

Indeed, the predicate above is an extensional property because either two MF-PVS0 pro-
grams always return zero or not.
To prove that the predicate neither is empty nor the full partial_recursive set, it is
enough to show that the constant zero and one programs respectively belong and do not
to the predicate. After that, one uses the assumed program decider to build another
program for deciding the equivalence to the constant zero program; this program is built
as 〈[rec(1, op2(i, κp〈[cnst(0)]〉), vr))] :: decider ‘4〉, where i is the index of the κ2 function.
Indeed, by using the shifting code lemmas, this program can be adapted to decide the
equivalence with the constant zero program.
This formalization requires proving that the program built above is, in fact, computable.
This is a consequence of decider being assumed as a computable program and then
being terminating too. The proof concludes by applying the shifting code lemmas and by
showing that the program built above is also terminating.

56

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L38-L41

Corollary 5 (Undecidability of Natural Predicate - natural_predicate_undecidability
W).

¬∀(P : N→ Boolean) : ∃(decider : computable) :
∀(i : N) :

(¬γ(decider)(i, 0))⇔ P (i)

Suppose that all predicates of the natural numbers have a decider that decides if this
predicate holds for a number. Instantiate the predicate as:

P (i) = ∃(p) : γ(κ−1
p (i))(p, p))

This is a contradiction because decider is deciding the existence of the fixed point in a
program represented by the Gödel number i.

5.2 Fixed Point Theorem

The Fixed Point Theorem (Rogers’ Fixed Point Theorem) and the undecidability of fixed
point existence are distinct properties. The undecidability principle states that determin-
ing whether a program has a fixed point result is impossible. On the other hand, the
Fixed Point Theorem asserts that for any program f , a program p exists such that the
execution of f(p) produces the same outcome as executing p.

In addition, Rogers’ Fixed Point Theorem can be applied when designing algorithms
for computing optimal solutions. It provides insight into approaching these problems
mathematically so they may be solved computationally efficiently. For instance, this
theorem allows us to determine if a given algorithm will converge towards a solution
quickly enough without having too much associated computational cost during execution
time; this helps ensure efficient use of resources while still achieving desired results in
reasonable amounts of time (Istratescu [1981]).

Rogers’ Fixed Point Theorem has been used extensively within computational logic
and artificial intelligence because it provides insights into how complex systems inter-
act. In particular, this theorem has been employed to develop intelligent agents capa-
ble of learning from the environment around them via reinforcement techniques such as
Q-learning and SARSA algorithms (Mnih et al. [2015]). As such, Rogers’ Fixed Point
Theorem is a valuable tool in helping computer scientists design better systems more
effectively and solve real-world problems efficiently through the computation power avail-
able in today’s technology landscape.

In the case of partial recursive MF-PVS0 programs, the program f receives the Gödel

57

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs#L43-L45

number of p and returns another Gödel number. The PVS theory for the Fixed Point
Theorem has as arguments basic built-in operators such that, for the formalization, it
must be possible to implement the universal partial recursive MF-PVS0 program. Using
these operators it also must be possible to build a MF-PVS0 program such that it receives
a natural as an argument, and split it into another two arguments, a and b. The natural a
is a Gödel number of a MF-PVS0 program applied to the own a, resulting in another Gödel
number of another program applied to b. This last MF-PVS0 program is called diagonal.

The formalization consists in building the MF-PVS0 program p in the following way:
the Gödel number of p is a result of the program diagonal applied to the Gödel number of
the program f composed with diagonal. Notice that in this formalization, transformations
of Gödel numbers into programs and programs into Gödel numbers are required. This
implies that the Gödelization function must have right and left inverses, i.e., it must be
bijective.

Thus, to formalize the Fixed Point Theorem, it is required three assumptions, over
arbitrary built-in operators, that are parameters of the theory W.

The first assumption says that there is a universal MF-PVS0 program.

∃(universal : computable) : ∀(m,n, o) :
γ(universal)(κ2(m,n), o)⇔ γ(κ−1

p (m))(n, o)

The second assumption says that one of the binary operators is the codification of a
tuple of naturals in naturals.

∃(k < |O2|) : O2(k) = κ2

The third assumption is:

∀(j < |O2|, u) : ∃(diagonal : computable) : ∀(i) :
LET m = 〈O1, O2,⊥, [rec(1, op2(j, rec(1, op2(j, cnst(i), cnst(i)), vr)))] :: u+1〉IN
partial_recursive(m) ∧ γ(diagonal)(i, κp(m))

The idea under this last assumption is replacing j with the index of the operator κ2

given by the second assumption and replacing u with the fourth element of the universal
MF-PVS0 program (a list of the MF-PVS0 expressions) given by the first assumption to
extract the diagonal MF-PVS0 program. This program models the lambda term λa, e·(aa)e.

It is also necessary to define a function that applies for a computable MF-PVS0 pro-
gram in a partial_recursive MF-PVS0 program. Remark that the MF-PVS0 programs
here have as input and output the naturals. Thus to make this application is necessary,
firstly, Gödelizing the partial_recursive MF-PVS0 program input, transforming it in a

58

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Fixedpoint.pvs#L17

natural, secondly, applying the computable MF-PVS0 program to the natural and, finally,
taking the output to degödelizing it, transforming the natural number result in another
partial_recursive program. The function is defined below.

∆(comp)(part) := κ−1
p (choose{o : N | γ(comp)(κp(part), o)})

Theorem 6. Fixed-Point Theorem for MF-PVS0 - fixed_point W

∀(f : computable) : ∃(p : partial_recursive) :
∀(i, o1, o2) : γ(p)(i, o1) ∧ γ(∆(f)(p))(i, o2)⇒ o1 = o2

The idea of the proof follows the same lines as the demonstration of the Fixed Point
theorem for Turing machines presented in (Floyd and Beigel [1994]). The approach is
adapted for lambda calculus as below.

∀(F) : ∃(P) : FP =βη P

Let F be any lambda term. Let D := λa, e · (aa)e. Let P = D(λz · (F (Dz))).

P =
D(λz · (F (Dz))) =β

(λa, e · (aa)e)(λz · (F (Dz))) =β

(λe · ((λz · (F (Dz)))(λz · (F (Dz))))e) =β

(λe · ((F (D(λz · (F (Dz))))))e) =
(λe · ((FP))e) =η

FP
The formalization starts considering universal as the universal program getting from the
first assumption, k as the index of the binary operator such that it returns the the function
κ2 according to the second assumption and diagonal as the program such that according
to the third assumption choosing j as k and u as universal′4.
Let f be any computable program. Let comp := 〈O1, O2,⊥, [rec(1, rec(1 + |f ′4|))] ::
f ′4+1 :: diagonal′4+1+|f ′4|〉. In this case, comp is the composition of f and the diagonal.
Taking p := ∆(diagonal)(comp).
Expanding γ in γ(p)(i, o1), after expanding ε, applying the shifting code lemmas, it is
possible to note that p produces the same output of ∆(f)(p) for the same input.
Starting with the hypothesis :

γ(p)(i, o1)
Replacing p with this definition:

59

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Fixedpoint.pvs#L52-L56

γ(∆(diagonal)(comp))(i, o1)
Expanding ∆ :

γ(κ−1
p (choose{o : N | γ(diagonal)(κp(comp), o)}))(i, o1) (5.2)

Let h = choose({o : N | γ(diagonal)(κp(comp), o)})
Thus, it holds:

γ(diagonal)(κp(comp), h)
By the third assumption and γ being deterministic:

κ−1
p (h) = m = 〈O1, O2,⊥, [

rec(1, op2(k, rec(1, op2(k, cnst(κp(comp)), cnst(κp(comp)))), vr))] ::
universal′4+1〉

Replacing it in the proposition 5.2:

γ(m)(i, o1)
Expanding γ:

ε(m)(rec(1, op2(k, rec(1, op2(k, cnst(κp(comp)), cnst(κp(comp)))), vr)), i, o1)
Expanding ε:

∃ v1 :
ε(m)(op2(k, rec(1, op2(k, cnst(κp(comp)), cnst(κp(comp)))), vr), i, v1)∧
ε(m)(universal′4(0)+1, v1, o1)

Skolemizing v1 and expanding the first ε :

∃ v2 :
v1 = κ2(v2, i)∧
ε(m)(rec(1, op2(k, cnst(κp(comp)), cnst(κp(comp)))), i, v2)∧
ε(m)(universal′4(0)+1, v1, o1)

Skolemizing v2, replacing v1 = κ2(v2, i) and expanding the first ε :

∃ v3 :
ε(m)(op2(k, cnst(κp(comp)), cnst(κp(comp))), i, v3)∧
ε(m)(universal′4(0)+1, v3, v2) ∧ ε(m)(universal′4(0)+1, κ2(v2, i), o1)

Skolemizing v3 and expanding the first ε :

60

v3 = κ2(κp(comp), κp(comp))
ε(m)(universal′4(0)+1, v3, v2) ∧ ε(m)(universal′4(0)+1, κ2(v2, i), o1)

Replacing v3 = κ2(κp(comp), κp(comp)):

ε(m)(universal′4(0)+1, κ2(κp(comp), κp(comp)), v2)∧
ε(m)(universal′4(0)+1, κ2(v2, i), o1)

Applying shifting code lemmas:

ε(universal)(universal′4(0), κ2(κp(comp), κp(comp)), v2)∧
ε(universal)(universal′4(0), κ2(v2, i), o1)

Applying the first assumption:

ε(comp)(comp′4(0), κp(comp), v2) ∧ ε(κ−1
p (v2))(κ−1

p (v2)′4(0), i, o1)
The program comp is the composition of f and the diagonal. This result comes expanding
exhaustively the first ε and applying the shifting code lemmas:

∃ v4 : ε(f)(f ′4(0), v4, v2)∧
ε(diagonal)(diagonal′4(0), κp(comp), v4)∧
ε(κ−1

p (v2))(κ−1
p
′4(v2)(0), i, o1)

Replacing ε by the γ definition and skolemizing v4

γ(f)(v4, v2) ∧ γ(diagonal)(κp(comp), v4) ∧ γ(κ−1
p (v2))(i, o1)

By γ being deterministic, v4 is a unique result of the second γ. Thus,

γ(f)(v4, v2)∧
v4 = choose(o : N | γ(diagonal)(κp(comp), o))∧
γ(κ−1

p (v2))(i, o1)
Applying κ−1

p in both sides of the equality:

γ(f)(v4, v2)∧
κ−1
p (v4) = κ−1

p (choose(o : N | γ(diagonal)(κp(comp), o)))∧
γ(κ−1

p (v2))(i, o1)
Applying the ∆ definition:

γ(f)(v4, v2) ∧ κ−1
p (v4) = ∆(diagonal)(comp) ∧ γ(κ−1

p (v2))(i, o1)
Replacing p = ∆(diagonal)(comp):

γ(f)(v4, v2) ∧ κ−1
p (v4) = p ∧ γ(κ−1

p (v2))(i, o1)
The functions κp and κ−1

p are inverse. In this point of the formalization it was realized

61

that the function to Gödelize must be bijective, which is different from the formalizations
of the undecidability of the Halting Problem and Rice’s Theorem where it s only necessary
to be injective:

γ(f)(κp(κ−1
p (v4)), v2) ∧ κ−1

p (v4) = p ∧ γ(κ−1
p (v2))(i, o1)

Replacing κ−1
p (v4) = p

γ(f)(κp(p), v2) ∧ γ(κ−1
p (v2))(i, o1)

By γ being deterministic, v2 is unique:

v2 = choose({o : N | γ(f)(κp(p), o)}) ∧ γ(κ−1
p (v2))(i, o1)

Replacing v2 = choose({o : N | γ(f)(κp(p), o)})

γ(κ−1
p (choose({o : N | γ(f)(κp(p), o))}))(i, o1)

Applying the definition of ∆:

γ(∆(f)(p))(i, o1)
Now, suppose for any o2:

γ(∆(f)(p))(i, o2)
By the determinism of γ, o1 = o2 holds.
Thus, for all f MF-PVS0 program, exists a fixed point p.

62

Chapter 6

Discussion on the formalization of
the undecidability of other problems
- Word Problem and the Post
Correspondence Problem

After formalizing theorems about the PVS0 model, the next step is to prove theorems
about other kinds of problems as consequences of the computational properties of the
PVS0 model.

We selected two well-known problems: the undecidability of the Word Problem for
Thue systems (WP) and the undecidability of the Post Correspondence Problem (PCP).
In his seminal paper, Emil Post proved the undecidability of the Word Problem as a
corollary of the undecidability of the Halting Problem for Turing Machines (Post [1947]).

The undecidability of the Halting Problem was first stated in a 1958 book (Davis
[1958]) by Davis but it is attributed to Turing’s paper (Turing [1937a]) according to
(Lucas [2021])

Here, our objective is to discuss how to prove the undecidability of the WP as a
consequence of the undecidability of the Halting Problem for the MF-PVS0 model. This
requires elaborated additional work since transactions in Turing Machines are atomic
operations that can be straightforwardly simulated as transactions on words over Thue
systems. But the operations in the MF-PVS0 functional model are not atomic, which makes
the simulation of the evaluation of MF-PVS0 programs through Thue systems harder than
the simulation of transactions over Turing Machines. In particular, the simulation of
recursion is not trivial, because each recursive call has different input to be represented
by a word, and that must be linked to the variable symbol using rewriting rules of the
Thue system. Since each recursive call potentially applies to an infinite number of different

63

inputs, the main issue is to capture a set of infinite rules through a finite set of rules and
symbols.

After obtaining the undecidability of WP, other problems can be proved undecidable
by reductions from WP. In particular, we discuss how the undecidability of PCP can be
proved as a consequence of the undecidability of WP as done in (Davis et al. [1994]).
Also, it can be proved straightforward due to the Undecidability of the Halting Problem
for Turing Machines (cf. Hopcroft et al. [2006]). The current formalization follows the
reduction from WP to PCP approach. There is a myriad of undecidability results that
can be derived from the undecidability of WP and PCP without referencing the MF-PVS0
model, for instance, modified PCP (if an instance of PCP has a solution starting with a
specific domino), the ambiguity of context-free grammars, if two context-free grammars
do not have common words, among others (Sipser [2012]). Indeed, derivations of the
undecidability of PCP formalized as part of the Coq library on undecidability problems
include Binary PCP, Binary Stack Machine Termination Problem, Minsky Machines Ter-
mination Problem, Intuitionistic Linear Logic Provability, finding a general solution for a
Diophantine equation (Hilbert’s 10th Problem), undecidability of Higher-Order Unifica-
tion Problem Larchey-Wendling and Forster [2022], Spies and Forster [2020].

Formalizing the properties related to WP and PCP requires some preliminary defi-
nitions given below. The proved results include the context-closedness of Thue Systems
(lemma 11), the equivalence between congruence and parallel congruence in Thue Systems
(lemma 12), lemmas about domino piece selection (lemmas 13, 14, and 15). Also, it is
proved that having a congruence in a Thue system implies the existence of a related solu-
tion in the domino set obtained by translating the Thue system (lemma 16). In addition,
it is proved that if a domino set is solvable, a minimal solution exists (lemma 17), and
converse properties regarding the existence of congruences related to domino solutions
(lemmas 16, and 18).

The lemma of reduction from the Halting Problem of partial_recursive to WP
(lemma 19), and the theorem of Undecidability of WP (theorem 7) are discussed and
specified but not fully formalized.

Let Σ be an alphabet. A list E = [si ≈ ti|si, ti ∈ Σ∗], for i < n ∈ N, of rewrite
rules is a Thue system. The empty word is denoted as �. If two words u and v can be
rewritten using equations from E, they are said to be congruent modulo E; this is denoted
as u ≈?

E v. Formally, u →E v := ∃si, ti, w, z : u = wsiz ∧ v = wtiz ∧ si ≈ ti ∈ E. The
converse of the relation →E is denoted as ←E or →◦E. As usual, the transitive reflexive
closure of a relation on words R is denoted as R∗. Then, (←E ∪ →E)∗ is the reflexive
transitive and symmetric closure of the relation →E, which, for short, is denoted as ≈E.
The relation→E is called a reduction relation (from E). The following lemma states that

64

Thue systems are context closed.

Lemma 11 (Context closedness of Thue Systems W).

∀(s, t, w1, w2) : s ≈E t =⇒ w1sw2 ≈E w1tw2

The proof is by induction on the number of steps in the reflexive-transitive closure in
∀(i, s, t, w1, w2) : s(←E ∪ →E)it =⇒ w1sw2(←E ∪ →E)iw1tw2

Induction basis The induction basis is for i = 0. In this case, s = t. Thus, w1sw2 =
w1tw2, which implies w1sw2 ≈E w1tw2.
Inductive step. Assume the theorem holds for i = k, and suppose s(←E ∪ →E)k+1t.
This implies that there exists a word u such that s(←E ∪ →E)ku and u(←E ∪ →E)t. By
induction hypothesis, w1sw2(←E ∪ →E)kw1uw2 holds. Also, w1uw2(←E ∪ →E)w1tw2

holds by the definition of reduction. Thus, by transitivity, w1sw2(←E ∪ →E)k+1w1tw2

holds.

Given a list of equations, E, the parallel reduction relation was also specified:

s→||E t := ∃m1 · · ·mn+1
n∧
i=1
∃si ≈ ti ∈ E :

s = m1s1 · · ·mnsnmn+1 ∧ t = m1t1 · · ·mntnmn+1

The specification uses lists to represent words as lists of symbols, sets of dominoes,
and sequences of indices of dominoes that correspond to possible solutions. Thus, some
basic operators on lists, available in the PVS prelude theory (or not), are applied. For
instance, the recursive function that searches the position of an element e in a list l, for
instance, a list of equations, is defined as:

search(e, l) := CASES l OF
[] : 0;
[h] :: t : IF h = e THEN 0

ELSE 1 + search(e, t)

In order to build a set of dominoes corresponding to a Thue system, several auxiliary
functions are required. First, the alphabet of the Thue system, Σ, will be extended with
symbols a for each a ∈ Σ, and some other symbols that will be used to separate words
and for determining which are the first and last played dominoes in a possible solution.
Additionally, dominoes will be built for all rules, alphabet symbols, etc.

The first and second projections select the left-hand and right-hand sides of equations,
respectively. For instance, (s ≈ t)′1 := s, (s ≈ t)′2 := t.

65

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/string_rewriting.pvs#L181-L184

Reflexivity rules for the symbols of the alphabet are built by mapping the lambda
function below over the list of alphabet symbols.

α := map(λa · (a ≈ a))(Σ)

Also, The converse of E is built by mapping the function below over the list of equa-
tions. Notice that the relation →◦E=→E◦ .

E◦ := map(λe · (e′2 ≈ e′1))(E)

The lists of left and right-hand sides of a list of indices l of the set of equations E are
concatenated using the functions S1 and S2, respectively, below.

S1(E, l) := CASES l OF
[] : []
[h] :: t : E(h)′1 :: S1(E, t)

S2(E, l) := CASES l OF
[] : []
[h] :: t : E(h)′2 :: S2(E, t)

The function Π below built the list of indices of the first occurrences in the list l2 of
the elements in the list l1.

Π(l1, l2) := CASES l1 OF
[] : []
[h] :: t : [search(h, l2)] :: Π(t, l2)

Finally, the parallel reduction relation, →||E, is specified below. The functions S1 and
S2 concatenate the left- and right-hand sides of the same equations in E :: E◦ :: α given
by the list of indices l.

s→||E t := ∃l : s = S1(E :: E◦ :: α, l) ∧ t = S2(E :: E◦ :: α, l)

The parallel congruence is defined as ≈||E:=→∗||E.
The congruence and the parallel congruence are the same relations. This is formalized

as the Lemma 12.

Lemma 12 (Congruence versus parallel congruence W).

(≈E) = (≈||E)

Proving (≈E) ⊆ (≈||E): It is enough to prove →E⊆→||E.

Let s and t be strings such that s→E t.

66

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/string_rewriting.pvs#L207-L208

This means that there exists s1, t1, w, u such that s = ws′u, t = wt′u and s′ ≈ t′ ∈ E.

This implies the existence of a list of indices l such that s = S1(E :: E◦ :: α, l)
and t = S2(E :: E◦ :: α, l), where the list of indices l is built by selecting from α

the indices of symbols to form the word w (adding twice the length of E); this list
is concatenated with the index of the rule s′ ≈ t′ in E; and finally, the result is
obtained concatenating the list of indices in α (adding twice the length of E) to
form the word u.

To select from the list of equations α over the alphabet symbols in Σ the list of indices
to form the words w and u, it is necessary to formalize some simple properties such
as ∀w ∈ Σ∗ : S1(α,Π(w,Σ)) = S2(α,Π(w,Σ)), where w and Σ are the list of symbols
in w, and the list of alphabet symbols.

To conclude, since →E⊆→||E, closing both sides of the inclusion by reflexivity,
symmetry, and transitivity, one obtains (≈E) ⊆ (≈||E).

Proving (≈||E) ⊆ (≈E): It is necessary to prove (→||E) ⊆ (≈E).

It implies to ∀(s, t, l) : (s = S1(E :: E◦ :: α, l) ∧ t = S2(E :: E◦ :: α, l)) =⇒ s ≈E t.

The proof is made by induction for the length of the list l. Case l is an empty list, the
lists s and t are also empty lists, and the assertive holds. Suppose, by the induction
hypothesis, that the assertive holds for the list l := l′. Selecting a congruence from
E :: E◦ :: α through the index i, congruence can be selected from E, E◦ or α.
Selecting from E, E◦, or α, it results in: (s1 = w1S1(E :: E◦ :: α, l′)∧ t1 = w2S2(E ::
E◦ :: α, l′)) =⇒ s1 ≈E t1 where (E :: E◦ :: α)(i) = (w1 ≈ w2). Applying the
induction hypothesis, w1a ≈E w2b must hold, because the relation ≈E is closed by
context. Thus, (→||E) ⊆ (≈E) holds. Applying the reflexive-transitive closure in
both sides of ⊆, (≈||E) ⊆ (≈E) holds.

The parallel reduction is used in the proof of the reduction from WP to PCP. The
proof involves a simulation of the reduction through an instance of a solution of the PCP.
But a solution in PCP can simulate parallel reduction, that implies that the reductions
must be in parallel.

Let Σ be an alphabet. A domino or a piece has a form u

w
where u,w ∈ Σ∗.

A list of dominoes D =
[
u1

w1
, · · · , un

wn

]
and a list of indices I = [i1, · · · , im] of D.

The function A is defined as:

A(D, I) := ui1
wi1
•, · · · , • uim

wim

67

where uj
wj
• uk
wk

= ujuk
wjwk

.

A recursive definition of A is;

A(d, l) := CASES l OF

[] : �
�

;

[h] :: t : d(h) • A(d, t)

The projections of a domino is defined as u

w

B

:= u and u

w B

:= w.

A domino list D has a solution if exists a non-empty list of valid indices I such that
A(D, I)B = A(D, I)B.

Formally, Sol(D) := ∃I : (∀i < |I| : I(i) < |D|) ∧ A(D, I)B = A(D, I)B.
Let Σ be an alphabet for a congruence of a Thue system. An extended alphabet Σ′ is

defined as:

Σ′ := {a, a|a ∈ Σ} ∪ {[,],#,#}

Let s ≈?
E t be a congruence over Σ. The transformations follow from this congruence,

and is given through the following transformation rules.

︷︸︸︷
s := [s#

[

t︸︷︷︸ :=]
#t]

toDomino1(w ≈ u) := w

u

toDomino2(w ≈ u) := w

u

toDomino3(w ≈ u) := u

w

toDomino4(w ≈ u) := u

w

SThue2Dominoes(E) := map(toDomino1)(E) :: map(toDomino2)(E) ::
map(toDomino3)(E) :: map(toDomino4)(E)

68

alphadom1 :=
[
c

c
| c ∈ Σ

]

alphadom2 :=
[
c

c
| c ∈ Σ

]

(s ≈?
E t)

d

d :=
︷︸︸︷
s , t︸︷︷︸, #

,
#
#

 :: SThue2Dominoes(E) ::

alphadom1 :: alphadom2

Additionally, the lengths below are defined.

length1 := |
︷︸︸︷
s , t︸︷︷︸, #

,
#
#

 :: SThue2Dominoes(E)|

length2 := |
︷︸︸︷
s , t︸︷︷︸, #

,
#
#

 :: SThue2Dominoes(E) :: alphadom1|

L+k := map(λi · i+ k)(L)
Then, the following lemmas are formalized.

Lemma 13 (W). ∀(D1, D2, I|∀(i < |I|) : I(i) < |D1|) : A(D1 :: D2, I) = A(D1, I)

Lemma 14 (W). ∀(D1, D2, I|∀(i < |I|) : I(i) < |D2|) : A(D1 :: D2,map(+|D1|)(I)) =
A(D2, I)

Both lemmas were formalized using induction in the length of I.

Lemma 15 (W). ∀(D, I1, I2) : A(D, I1 :: I2) = A(D, I1) • A(D, I2)

This lemma was formalized using induction in the length of I1

The lemma below was formalized and it is part of the reduction of WP to PCP.

Lemma 16 (Congruence Implies in Dominoes Solution W). Let s ≈?
E t be a congruence

where s, t and for all i < |E|, E(i) are formed by non-empty words. Thus, s ≈?
E t =⇒

Sol((s ≈?
E t)

d

d) .

Starting an induction on the number of steps of s ≈?
E t. But the induction can not be

applied straightforwardly in the lemma. If a domino has a solution, there are infinite
additional solutions that are not included in the book based on the formalization(Davis
et al. [1994]). Depending on the kind of solution, it can disrupt the inductive step. The
inductive step involves removing the first piece of the solution in the induction base and
adding pieces to form a solution for the induction thesis. But if the first piece is also in

69

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp.pvs#L41-L48
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp.pvs#L50-L59
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp.pvs#L63-L71
https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp_string_rewriting.pvs#L293-L298

the middle of the solution list, it is necessary to replace each of these pieces in the middle
with pieces of the solution of the induction thesis. To solve it, it is enough to formalize

s ≈?
E t =⇒ (Sol((s ≈?

E t)

d

d) ∧
︷︸︸︷
s 6∈ cdr((s ≈?

E t)

d

d) ∧
︷︸︸︷
s = car((s ≈?

E t)

d

d)). The
assertive of the lemma is a corollary of it. This situation also occurs similarly in a proof

of Sol((s ≈?
E t)

d

d) =⇒ s ≈?
E t, but the solution is not simple as this lemma. To prove

it is necessary to show that if a congruence transformed into a domino set has a solution,
it has a minimal solution, i. e. a solution without repetition of the first piece.
Starting an induction, the basis is: ≈?

E= (←E ∪ →E)0. In this case, s = t.
The solution is select by the list of indices [0] :: Π(s,Σ)+length2 :: [1], or using pieces:

[s#
[• s

s
•]

#s] = [s#s]
[s#s]

Suppose that s(←E ∪ →E)k+1t. It is the same as stating that exists a word u such
that s(←E ∪ →E)u and u(←E ∪ →E)kt. From s(←E ∪ →E)u, it can be inferred that
exists the words w1, w2, u1 and u2 such that s = w1u1w2, u = w1u2w2, and (u1 ≈
u2 ∈ E ∨ u2 ≈ u1 ∈ E). Without loss of generality, suppose that u1 ≈ u2 ∈ E, that
means that exists an index i such that E(i) = (u1 ≈ u2) By the induction hypothesis,

(Sol((u ≈?
E u)

d

d)∧
︷︸︸︷
u 6∈ cdr((u ≈?

E t)

d

d)∧
︷︸︸︷
u = car((u ≈?

E t)

d

d)) Let I be the list of

indices that select pieces to a solution in (u ≈?
E t)

d

d . The list of the indices of the pieces

for the solution (u ≈?
E t)

d

d could be selected by the list of indices [0] :: Π(s,Σ)+length1 ::
[2] :: Π(w1,Σ)+length1 :: [2 × |E| + i] :: Π(w2,Σ)+length1 :: [3] :: cdr(I). This list selects the
pieces:

[w1u1w2#
[• w1u1w2

w1u1w2
• #

• w1

w1
• u1

u2
• w2

w2
• #

#
• w1u2w2# · · · t]

· · · t]
=

[w1u1w2#w1u1w2#w1u1w2#w1u2w2# · · · t]
[w1u1w2#w1u1w2#w1u1w2#w1u2w2# · · · t]

Above the piece w1u2w2# · · · b]
· · · b]

is selected by the list of indices cdr(I).

70

The lemma below states that if a domino set has a solution it has a minimal solution.

Lemma 17 (Solution versus a Minimal Solution). Sol((s ≈?
E t)

d

d) =⇒ (Sol((s ≈?
E

t)

d

d) ∧
︷︸︸︷
s 6∈ cdr((s ≈?

E t)

d

d) ∧
︷︸︸︷
s = car((s ≈?

E t)

d

d))

Suppose Sol((s ≈?
E t)

d

d). Does it mean that exists a list of indices I of the domino set

(s ≈?
E t)

d

d such that A((s ≈?
E t)

d

d , I)B = A((s ≈?
E t)

d

d , I)B.
Let s @ t be the word s is the suffix of the word t.
The following property holds for all I1 and I2:

(A((s ≈?
E t)

d

d , I1 :: [0] :: I2)B @ A((s ≈?
E t)

d

d , I1 :: [0] :: I2)B

∨A((s ≈?
E t)

d

d , I1 :: [0] :: I2)B @ A((s ≈?
E t)

d

d , I1 :: [0] :: I2)B)

=⇒ A((s ≈?
E t)

d

d , [0] :: I2)B = A((s ≈?
E t)

d

d , [0] :: I2)B
. Induction in the length of I1 proves this property above.
The list of indices I can be split-ed into I = I1 :: [0] :: I2 such that 0 6∈ I2

It implies that [0] :: I2 selects a minimal solution in (s ≈?
E t)

d

d

The following properties are not formalized but here the complete proofs of the re-
duction from the undecidability of the Halting Problem to WP and WP to PCP were
disscussed.

Lemma 18 (Dominoes Solution Implies in Congruence). Let s ≈?
E t be a congruence

where s, t and for all i < |E|, E(i) are formed by non-empty words. Thus,

Sol((s ≈?
E t)

d

d) =⇒ s ≈?
E t

The proof starts by induction on a number of pieces of the solution in Sol((s ≈?
E t)

d

d).

71

Actually, it does not work applying it straightforward in the assertion Sol((s ≈?
E t)

d

d) =⇒

s ≈?
E t. But the induction works applied in the equivalent formula (Sol((s ≈?

E t)

d

d) ∧

︷︸︸︷
s 6∈ cdr((s ≈?

E t)

d

d) ∧
︷︸︸︷
s = car((s ≈?

E t)

d

d)) =⇒ s ≈?
||E t. Suppose Sol((s ≈?

E

t)

d

d) ∧
︷︸︸︷
s 6∈ cdr((s ≈?

E t)

d

d) ∧
︷︸︸︷
s = car((s ≈?

E t)

d

d). A possible solution is:

[s#
[• t

s
•]

#t] = [s#t]
[s#t]

.
This is the induction base and means that s→||E t.
If a solution does not have a form of the induction basis, it has a form:

[s#
[• u

s
• #

• v

u
• #

#
• · · · t]
v# · · · t] = [a#u#v# · · · t]

[s#u#v# · · · t]

Taking out the first pieces, and add the piece [v#
[, the solution below is a solution of

Sol((v ≈?
E t)

d

d):

[v#
[• · · · t]

v# · · · t] = [v# · · · t]
[v# · · · t]

By induction hypothesis, v ≈?
||E t holds. The assertions s →||E u and u →||E v also hold

because the instances u

s
and v

u
can be built. This property that if the instances s

t

and s

t
can be built implies that s→||E t is proved by induction in the number of pieces

uses to build them and only works in a parallel reduction relation. Thus, s ≈?
||E t.

Corollary 6 (WP reduces to PCP). Let s ≈?
E t be a congruence where s, t and for all

i < |E|, E(i) are formed by non-empty words. Thus, s ≈?
E t⇔ Sol((s ≈?

E t)

d

d) .

This is a corollary of the lemmas 16 and 18.
In the proof in the textbook (Davis et al. [1994]) the authors use a computable function

to reduce from Turing machines to a question of congruence over a Thue system. It works
well in proof assistance Coq (Forster et al. [2018]) (Heiter [2017]) because by the Calcu-

72

lus of the Inductive Constructions, that Coq is based on, only allows total computable
functions Larchey-Wendling [2017].

In PVS, which allows non-computable functions, it is possible to build a non-computable
reduction function that proves the undecidability of the WP. For example, the next lemma
states that there exists a function to reduce the Halting problem to WP.

Lemma 19 (Halting Problem reduces to WP W). There exists a reduction function ω

from partial_recursive to a triple 〈ET × Σ∗ × Σ∗〉, where ET is the type of the re-
duction rules, such that: ∀(pvs0 : partial_recursive) : Tε(pvs0) ⇔ ω(pvs0)′2 ≈ω(pvs0)′1

ω(pvs0)′3

Building the reduction function as below and analyzing each case in the if-then-else state-

ment is enough to prove it: ω(pvs0) :=
〈

[], aκp(pvs0),

IF Tε(pvs0) THEN aκp(pvs0)

ELSE IF κp(pvs0) > 0 THEN �
ELSE a

〉

Above aκp(pvs0) is the word of the symbol a repeated κp(pvs0) times.

The reduction function ω is not a partial recursive function. But the proof of the
undecidability of the WP requires that the reduction function belongs to the class of the
terminating partial recursive functions. There is no easy way to solve this situation. PVS
supports the execution of computable functions through a feature called PVSio. Maybe,
PVS must be improved to support separating types of computable and non-computable
functions. For example, the function f specified below must be of the non-computable
type because it is deciding if the value n belongs to the intersection of the sets s1 and s2
or if it belongs to s1 or s2 exclusively, and according to the corollary 5, deciding if an
element belongs to a set of naturals is undecidable.

f(n: nat, s1 : set[nat], s2 : set[nat]
| union(s1,s2) = fullset[nat]) : below[3] =

IF s1(n) AND s2(n) THEN 2
ELSEIF s1(n) THEN 1
ELSE 0 ENDIF

The separation of the computable and non-computable functions is useful for the
specification of the following theorem.

Theorem 7 (Undecidability of the WP). For all PVS computable bijective function β

from 〈Σ∗ × Σ∗ × ET 〉 to a natural number, there no exists a computable program oracle

73

https://github.com/thiagomendoncaferreiraramos/pvslib/blob/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/string_rewriting.pvs#L223-L230

such that:
(¬γ(oracle)(β(s, t, E),⊥))⇔ s ≈?

E t

.

The formalization of the correspondence between WP and PCP may be applied in
cryptography. Both problems are used to create one-way functions when applied to repre-
sent Turing Machines with their inputs (Kozhevnikov and Nikolenko [2009]); for instance,
WP can be used to implement an authentication protocol in which agents show that they
know a solution to a problem without showing it. Such an authentication protocol is
described through the steps below.

1. The agent A generates a list E of rewrite rules over a binary alphabet, words u1

and u2 such that u1 ≈||E u2.

2. The agent B knows that only the agent A knows the solution of u1 ≈||E u2. Then,
by the insecure channel, B asks A to prove if she/he knows the solution (without
showing the solution).

3. Finally, A generates a list of twenty words congruent modulo E to u1 and sends
them to B. Then, B asks for a solution for each word in the list, according to the
answer given by A, B verifies each of them and decides to answer if either it is a
solution for u1 or for u2.

Only those who know the solution of u1 ≈||E u2 can answer it correctly and, supposing
that for each word in a list, the chance to know it is 1

2 , the chance to know all the solutions
for the elements of the list is less than one in one million because (1

2)20 = 1
1048576 .

A non-possibility of an algorithm to solve WP avoids the secret solution of the protocol
being found by an attacker.

74

Chapter 7

Related Work

Nowadays, mechanical proofs concerning computability properties serve as a formalization
exercise and hold significant importance in offering formal feedback to practical compu-
tational models. Therefore, the primary objective of the PVS0 models, both single and
multiple-function, as stated in the introduction, is to create automation mechanisms for
verifying the termination of PVS programs through the application of different criteria
Alves Almeida [2021], Alves Almeida and Ayala-Rincón [2020], Muñoz et al. [2021].

The publication (Ferreira Ramos et al. [2018]) highlights that SF-PVS0 programs have
restrictions on inductive levels. For example, level zero enables specifications using only
basic functions such as successor, greater-than, and projections. In contrast, subsequent
levels allow the specification of other computable functions that can be called operators.
Developing the composition of such SF-PVS0 programs was challenging, which hindered
the formalization of concepts like Turing completeness and Rice’s Theorem. However,
Chapter 2 demonstrates that composing programs specified in the MF-PVS0 language is
uncomplicated, as it involves using the offset operator _+_.

When it comes to the SF-PVS0 language, creating a third program for composing two
programs (not necessarily terminating) is not feasible in a general sense due to its reliance
on the combinatorial structure of the input programs. The issue was resolved swiftly dur-
ing the proof of the undecidability of the Halting Problem, as only particular composition
constructions (assuming termination of functions) were necessary (Ferreira Ramos et al.
[2018]). However, the current work overcomes such difficulties by employing a language
that supports programs consisting of several functions capable of recursive calls, both to
themselves and each other.

In addition, in (Ferreira Ramos et al. [2018]), the SF-PVS0 model was analyzed, and the
formalization of the equivalencies between semantical termination criteria was achieved.
Although the equivalencies between termination criteria have been formalized for the
SF-PVS0 model as discussed in (Ferreira Ramos et al. [2018]) and (Muñoz et al. [2021]),

75

the MF-PVS0 model lacks such formalization. All the termination criteria mentioned
in the introduction (Turing or TCC termination (Turing [1949]); size-change principle
(Lee et al. [2001]); calling context graphs (Manolios and Vroon [2006]); matrix weighted
graphs (Avelar [2015]); dependency pairs (Arts and Giesl [2000]), (Alves Almeida [2021]),
(Alves Almeida and Ayala-Rincón [2019])) apply to both models (Muñoz et al. [2021]).
However, some termination criteria mentioned above require modifications to accommo-
date static analysis of multiple-function programs that allow mutual recursion (which is
avoided in the PVS functional specification language).

One way to verify termination properties in MF-PVS0 programs is by converting them
into SF-PVS0 programs. A possible area for future improvement is enhancing PVS and
developing an automated translation from PVS recursive functions to SF-PVS0 programs.
This task would incorporate the functions invoked by a recursive PVS function speci-
fication into the built-in operators’ lists within the SF-PVS0 model. This approach is
consistent with the PVS specification discipline, which necessitates verifying the well-
definedness of all elements within a PVS function before verifying the function itself.

Formalizing computability properties has been a common practice since the incep-
tion of theorem provers and proof assistants. Examples of such formalizations include
the mechanical proof of the undecidability of the Halting Problem in (Boyer and Moore
[1984]), where the model of computation is the LISP language. Another instance is the
formalization of the same undecidability outcome in Agda, as reported in (Johannisson
[2000]), where the model of computation is based on axioms defined over the elements of
an abstract type called Prog.

Recent work in formalizing computability result over computational models related to
lambda calculus, and programming languages are the focus here. For example, Forster and
Smolka (Forster and Smolka [2017]) used call-by-value lambda calculus as the model of
computation, which is Turing complete and has beta-reduction applicable only to a beta-
redex that is not below an abstraction with an argument being an abstraction. Forster
and Smolka formalized various computational properties, including Rice’s Theorem, which
states that semantic predicates containing both elements and their complements are non-
recognizable. Norrish (Norrish [2011]) also formalized Rice’s Theorem and other prop-
erties, such as the existence of universal machines and a version of the s-m-n Theorem,
using HOL4 for the lambda calculus model. In Lean, Carneiro (Carneiro [2019]) for-
malized Rice’s Theorem using partial recursive functions as the model of computation,
with the Fixed-Point Theorem used to derive it as a corollary. The work also yielded the
undecidability of the Uniform Halting Problem as a corollary.

The current work differs from Carneiro’s (Carneiro [2019]), Norrish’s (Norrish [2011]),
and Forster and Smolka’s (Forster and Smolka [2017]) works in terms of the model of

76

computation. For example, lambda calculus enables a straightforward formalization of
Rice’s Theorem due to the simplicity of implementing necessary operators to simplify the
proof, such as a fixed-point operator. In contrast, the Recursion Theorem plays the fixed
point construction role in the formalization of Rice’s Theorem for the MF-PVS0 model,
which requires the Gödelization technique. Furthermore, using partial recursive functions
or a concrete functional language model like MF-PVS0 programs enables the formalization
of functional program properties, such as those related to their complexity and termination
criteria. The latter objective motivated the specification of the PVS0 language.

As previously mentioned, the choice of the computation model affects the selection of
problems used for reductions and the complexity of formalizations. For instance, when
formalizing the undecidability of the Word Problem over monoids, using Turing Machines
as in Post’s classical approach (Post [1947]) seems natural. This approach constructs
a reduction from the Halting Problem (over Turing Machines) to the Word Problem.
Several authors have reported similar formalization approaches for other word problems,
such as PCP (e.g., (Forster et al. [2018]), (Heiter [2017])).

Post’s approach represents configurations of Turing Machines as words and the tran-
sition function as reductions by a Thue system. The atomicity of Turing Machine tran-
sitions allows each transition to be represented as a rewriting rule. However, proving
the Word Problem over the MF-PVS0 model is much more complex since reducing the
Halting Problem of MF-PVS0 programs to the Word Problem is not straightforward. The
non-atomicity of the evaluation steps of MF-PVS0 programs makes constructing such a
reduction challenging.

For example, different evaluations of κS2 (cnst(4), cnst(7)) using the built-in operators
from section 4.1 would require a representation of the constants and the symbol κS2 as a
word (over some alphabet). Additionally, it requires a Thue system that simulates the
evaluation of κ2, which involves evaluating other operators such as addition, multiplica-
tion, and division by two. The complexity of proofs of undecidability properties generally
depends on the chosen computational model.

Ongoing efforts are being made to formalize the undecidability of the Post Corre-
spondence Problem (PCP), which is not directly linked to the properties of a specific
computational model. In (Hopcroft et al. [2006]) (Chapter 12), it is explained how a
function can be employed to reduce the Word Problem (WP) for Thue systems to PCP.
This approach is followed in the formalization discussed in Chapter 6. The reduction
function converts a congruence question into a question about a “domino set” by dupli-
cating the alphabet, adding two separator letters, and generating domino pieces for each
rewriting rule, the word in the congruence question, and the letter in the new alphabet.
The PVS specification captures this function, ensuring that a congruence question on the

77

Word Problem implies its formalization as a PCP question through this transformation.
However, it should be stressed that the fact that an instance of PCP gives a WP congru-
ence question (lemma 18) and the undecidability of WP were not formalized. To formalize
the undecidability of WP, it is possible to specify a PVS function that reduces from the
Halting Problem of MF-PVS0 programs to WP, i.e., that transforms a MF-PVS0 program
into a WP instance such that this WP instance simulates the execution of the MF-PVS0
program. Then, supposing that WP is decidable, a contradiction arises because it implies
the decidability of the Halting Problem.

The unique choice of our formalization is the reduction from the Recursion to Rice’s
Theorem. Although there are well-known properties used in textbook proofs, such as
the existence of a universal machine or the undecidability of the universal language (e.g.,
(Sipser [2012]), (Hopcroft et al. [2006])), complete formalizations of computational prop-
erties do not follow from such constructions to the best of our knowledge. Instead, other
strategies are followed, such as reductions from the Fixed-Point Theorem in (Carneiro
[2019]), Rice’s Lemma in (Forster and Smolka [2017]), and the Recursion Theorem in the
current work.

To prove the undecidability of the Halting Problem, Fixed-Point, Recursion, and Rice’s
Theorem, the effort required to formalize them directly over the MF-PVS0 computational
model is similar to that needed for other models. If we were to translate these proofs to
another computational model, we would need to formalize the properties and then put
in additional effort to prove the conservativeness of the translation. When it comes to
properties not directly related to the computational model, such as the undecidability
of PCP and the Word Problem discussed earlier, selecting an appropriate computational
model is essential. In addition, it may be worthwhile to specify other models and develop
verified conservative translations between them for such cases.

The Recursion Theorem, using the built-in operators like κ2, successor, and projec-
tions composed to κ−1

2 and greater-than, provides the most straightforward approach to
formalize Rice’s Theorem for the MF-PVS0 model. It is important to note that for a Turing
complete model like MF-PVS0, the Fixed-Point and recursion Theorems are interchange-
able, as one can be proven from the other.

Other interesting computability results have been formalized using linguistic compu-
tational models. For example, Forster, Kirsk, and Smolka (Forster et al. [2019]) utilized
Coq’s constructive type theory to synthesize a method for formalizing the undecidability of
first-order formulas’ validity, satisfiability, and provability. Forster and Larchey-Wendling
employed Coq to formalize a reduction from the Post Correspondence Problem (PCP) to
the provability of intuitionistic linear logic, utilizing binary stack machines and Minsky
machines in the process (Forster and Larchey-Wendling [2019]). The authors accom-

78

plished this through a chain of reductions that began with the PCP, moved on to binary
PCP, binary PCP with indices, binary stack machines, Minsky machines, and finally, intu-
itionistic linear logic provability. Finally, in Larchey-Wendling [2017], Larchey-Wendling
utilized Coq to formalize that the type Nk → N encompasses all k-ary recursive functions
that can be proven total in Coq, including the set of primitive recursive functions.

Representing the class of partial recursive functions in Coq using the type Nk →
option N would not be feasible. In PVS, the operator Maybe, which adds ♦ to the working
type, is used instead of the functor option. Attempting to use the type Nk → option N
to represent partial recursive functions in Coq fails because the decidability of totality
contradicts the undecidability of the Halting Problem. Therefore, a similar approach to
the one used by the semantic evaluation function χ of MF-PVS0 programs can be taken in
Coq to deal with this issue. That is, partial recursive functions can be represented by a
predicate of type Nk → N→ Prop.

Functional types in PVS enable the specification of non-recursive functions, such as
the PVS function non_comp(n) with the type N→ N, defined below:

non_comp(n) := max(vo : N; |; γ(κ−1
e (κ−1

2 (n)′1))(κ−1
2 (n)′2, vo) ∪ −1) + 1.

This function takes a natural number n that represents a MF-PVS0 program and an
input (respectively, κ−1

e (κ−1
2 (n)′1)) and κ−1

2 (n)′2), and is well-defined in PVS. This hap-
pens because the maximum of finite sets is well-defined, and by the determinism of γ,
the set vo : N; |; γ(κ−1

e (κ−1
2 (n)′1))(κ−1

2 (n)′2, vo) is either empty or singleton. To ensure the
model is not trivially Turing Complete, the built-in operators of the MF-PVS0 model must
be fixed adequately. This restriction allows the specification of non-computable functions
while avoiding a model over a set of non-recursive operators.

Recently, Larchey-Wendling and Forster presented a formalization of the undecidabil-
ity of Hilbert’s Tenth Problem (Larchey-Wendling and Forster [2022]). The authors ac-
complished this by utilizing a series of problem reductions, including the Halting Problem
for Turing Machines, the Post Correspondence Problem, a specialized Halting Problem for
Minsky Machines, the termination of FRACTAN (a language model dealing with register
machines), and finally, solvability of Diophantine logic and Diophantine equations.

Finally, Spies and Forster (Spies and Forster [2020]) and Kirst and Larchey-Wendling
(Kirst and Larchey-Wendling [2022]) made significant contributions to the Coq library of
synthetic undecidability proofs by mechanizing two interesting results. The first result
pertains to the undecidability of higher-order unification, while the second deals with the
undecidability of first-order satisfiability by finite models (FSAT). Goldfarb’s proof of the
undecidability of second-order unification is formalized in Coq, and from this proof, the
undecidability of higher-order unification follows as a corollary. This work is discussed in
(Goldfarb [1981]).

79

Chapter 8

Future Work and Conclusion

This thesis formally investigates the functional-language computational models using two
models, SF-PVS0 and MF-PVS0 with the support of the proof assistant PVS. Formal
proofs of computational properties are formalized in PVS. A formalization of Turing
Completeness of MF-PVS0 is established for a subset of partial recursive MF-PVS0 programs,
built using fundamental operators for successor, projection, greater-than functions, and
bijective operators to encode tuples from naturals and vice versa. The mechanization in
PVS involves verifying the correctness of MF-PVS0 implementations of these functions and
operators for composition, primitive recurrence, and minimization.

In addition, Rice’s Theorem for the MF-PVS0 model is formalized. The proof of Rice’s
Theorem uses the Recursion Theorem and a Gödelization of MF-PVS0 programs. Further-
more, it relies on Cantor’s diagonal argument to derive a contradiction from a MF-PVS0
program that can decide semantic predicates about other MF-PVS0 programs. To prove
Rice’s Theorem using the Recursion Theorem, selecting any Gödelization is possible when-
ever it is the same for both the Recursion Theorem and Rice’s Theorem. Several corollaries
of Rice’s Theorem are also formalized, including the undecidability of the uniform Halt-
ing Problem, the functional equivalence problem, the existence of fixed points problem,
self-replication, and the subset problem for natural numbers. Finally, the development
includes formalizations of the undecidability of the Halting Problem and the Fixed-Point
Theorem for MF-PVS0, as well as part of the reduction from the Word Problem to the
Post Correspondence Problem.

Formalizing the undecidability of the Halting Problem for both the SF-PVS0 and
MF-PVS0 models necessitates the ability to compute the bijective function κ2 from tuples
of naturals to naturals (defined in the equation 3.1). However, the specific Gödelization
function utilized may vary between different functions mapping MF-PVS0 programs to
natural numbers.

This portion of the PVS0 project contributed 369 proven lemmas, of which 230 are

80

Type Correctness Conditions (TCCs), proof obligations generated automatically by PVS
but not necessarily proved automatically. Table 8.1 provides quantitative information on
the proof files. The data from auxiliary theories that did not require significant work is
not included in the totals given in the table.

Table 8.1: Relevant quantitative data

PVS theory Lines of Code (loc) Proved Proved
of proof files formulas TCCs

and Size of proof files
mf_pvs0_Rices_Theorem W 5206 loc - 594K 2 2
mf_pvs0_Recursion_Theorem W 6754 loc - 572K 7 14
mf_pvs0_Turing_Completeness W 17677 loc - 1,5M 27 35
mf_pvs0_Fixedpoint W 4712 loc - 68K 1 4
mf_pvs0_halting W 1704 loc - 149K 2 3
mf_pvs0_Rices_Theorem_Corollaries W 1786 loc - 100K 5 0
mf_pvs0_basic_programs W 4879 loc - 319K 9 10
mf_pvs0_computable W 6586 loc - 310K 9 50
mf_pvs0_lang W 2817 loc - 122K 20 13
mf_pvs0_expr W 3418 loc - 166K 7 47
pcp_string_rewriting W 102175 loc - 1,8M 10 34
pcp W 1799 loc - 76K 4 8
string_rewriting W 6223 loc - 367K 26 6
pvs0_halting W 605 loc - 32K 2 3

The formalization of Turing Completeness may result in more extensive proofs than
the Recursion Theorem, but its formalization is simpler overall. The auxiliarly lemmas
(and proofs) required for Turing Completeness deal with technical and straightforward
issues that require semantic evaluation, such as expansions of the predicate ε and simple
instantiations of existentially quantified premises. Additionally, some auxiliary theories
necessitate a significant number of lemmas, including mf_pvs0_expr and mf_pvs0_lang,
which contain proofs related to the operational semantics of the MF-PVS0 language, and
mf_pvs0_computable, which includes results concerning Gödelizations.

Several other theorems would be valuable to formalize for the PVS0 language models,
including the s-m-n theorem, Post’s Theorem, the existence of a universal machine, the
linear speedup theorem, the tape compression theorem, the time hierarchy theorem, the
space hierarchy theorem. However, the primary challenge and intriguing aspect of such
formal developments in the PVS0 models is that the traditional proofs of these theorems
rely on specificities of machine models, such as Turing machines and register machines,
and abstract language models, such as the Lambda calculus. Moreover, it would be even
more fascinating to formalize other undecidability results that go beyond the context of

81

https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Recursion_Theorem.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Turing_Completeness.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Fixedpoint.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_halting.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_Rices_Theorem_Corollaries.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_basic_programs.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_computable.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_lang.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/mf_pvs0_expr.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp_string_rewriting.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pcp.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/string_rewriting.pvs
https://github.com/thiagomendoncaferreiraramos/pvslib/tree/2e038396cf0026bffede013d8d419e511b8d2105/PVS0/pvs0_halting.pvs

properties of computational models, such as the Word Problem for algebraic structures
(Post [1947]), PCP, and Hilbert’s Tenth Problem (Larchey-Wendling and Forster [2022]).

Two recent developments worth mentioning are the formalizations of Post’s theorem
for weak call-by-value lambda calculus and the undecidability of the PCP through the
reduction of the Halting Problem for Turing machines, both achieved using Coq Forster
and Smolka [2017], Forster et al. [2018]. While the functional model PVS0, lambda calcu-
lus, and Turing machines have certain similarities that make them helpful in formalizing
such theorems for PVS0 programs, significant challenges are still involved. The formaliza-
tions are closely tied to their respective computational models, and creating the necessary
translations is not straightforward.

The undecidability of WP and PCP was addressed because connecting the computabil-
ity properties of the PVS0 models to properties not directly related to computability is
relevant. Some of the necessary lemmas to complete the WP and PCP formalizations were
formalized. For example, the equivalence between the congruence and parallel congruence
relations in WP, the existence of minimal solutions for solvable domino sets, and trans-
formations of congruence solutions into domino set solutions. However, the formalization
of the undecidability of WP and PCP is an ongoing work that requires, in addition to
fulfilling the proof of the lemma of the reduction from WP to PCP, establishing a reduc-
tion of PVS0 programs related to WP instances. Such a reduction should take a MF-PVS0
program and transform the question of its termination into a Thue system whose rules
simulate the execution of the MF-PVS0 program.

82

References

Ariane Alves Almeida. On Termination by Dependency Pairs and Termination of
First-Order Functional Specifications in PVS. PhD thesis, Universidade de Brasília,
Graduate Program in Informatics, Brasília, Distrito Federal, Brazil, 2021. URL
https://repositorio.unb.br/handle/10482/42296. 2, 75, 76

Ariane Alves Almeida and Mauricio Ayala-Rincón. Formalizing the dependency pair
criterion for innermost termination. CoRR, abs/1911.00406, 2019. URL http://arxiv.
org/abs/1911.00406. 76

Ariane Alves Almeida and Mauricio Ayala-Rincón. Formalizing the dependency pair
criterion for innermost termination. Sci. Comput. Program., 195:102474, 2020. URL
https://doi.org/10.1016/j.scico.2020.102474. 2, 75

Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.
Theor. Comput. Sci., 236(1-2):133–178, 2000. URL http://dx.doi.org/10.1016/
S0304-3975(99)00207-8. 76

Andréia B. Avelar. Formalização da automação da terminação através de grafos com ma-
trizes de medida. PhD thesis, Universidade de Brasília, Departamento de Matemática,
Brasília, Distrito Federal, Brazil, 2015. URL https://repositorio.unb.br/handle/
10482/18069. In Portuguese. 2, 3, 76

Frédéric Blanqui and Adam Koprowski. CoLoR: a Coq library on well-founded rewrite
relations and its application to the automated verification of termination certificates.
Math. Struct. Comput. Sci., 21(4):827–859, 2011. URL https://doi.org/10.1017/
S0960129511000120. 1

Robert Stephen Boyer and J Strother Moore. A Mechanical Proof of the Unsolvability
of the Halting Problem. Journal of the Association for Computing Machinery, 31(3):
441–458, 1984. URL https://doi.org/10.1145/828.1882. 76

Mario Carneiro. Formalizing Computability Theory via Partial Recursive Functions. In
10th International Conference on Interactive Theorem Proving ITP, volume 141 of
LIPIcs, pages 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
URL https://doi.org/10.4230/LIPIcs.ITP.2019.12. 76, 78

Harsh Raju Chamarthi, Peter C. Dillinger, Panagiotis Manolios, and Daron Vroon. The
ACL2 Sedan Theorem Proving System. In Parosh Aziz Abdulla and K. Rustan M.
Leino, editors, Tools and Algorithms for the Construction and Analysis of Systems - 17th

83

https://repositorio.unb.br/handle/10482/42296
http://arxiv.org/abs/1911.00406
http://arxiv.org/abs/1911.00406
https://doi.org/10.1016/j.scico.2020.102474
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
http://dx.doi.org/10.1016/S0304-3975(99)00207-8
https://repositorio.unb.br/handle/10482/18069
https://repositorio.unb.br/handle/10482/18069
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1017/S0960129511000120
https://doi.org/10.1145/828.1882
https://doi.org/10.4230/LIPIcs.ITP.2019.12

International Conference, TACAS 2011, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings, volume 6605 of Lecture Notes in Computer Science, pages
291–295. Springer, 2011. URL https://doi.org/10.1007/978-3-642-19835-9_27. 2

M. Davis, R. Sigal, and E.J. Weyuker. Computability, Complexity, and Languages: Funda-
mentals of Theoretical Computer Science. Computer Science and Scientific Computing.
Elsevier Science, 1994. ISBN 9780122063824. URL https://books.google.com.br/
books?id=6G_arEqHtysC. 64, 69, 72

Martin D. Davis. Computability and Unsolvability. McGraw-Hill Series in Information
Processing and Computers. McGraw-Hill, 1958. 63

Thiago Mendonça Ferreira Ramos, César Augusto Muñoz, Mauricio Ayala-Rincón, Mar-
iano Miguel Moscato, Aaron Dutle, and Anthony Narkawicz. Formalization of the
Undecidability of the Halting Problem for a Functional Language. In 25th Interna-
tional Workshop on Logic, Language, Information, and Computation WoLLIC, volume
10944 of Lecture Notes in Computer Science, pages 196–209. Springer, 2018. URL
https://doi.org/10.1007/978-3-662-57669-4_11. 3, 16, 19, 55, 75

Robert W. Floyd and Richard Beigel. The Language of Machines: An Introduction to
Computability and Formal Languages. W H Freeman & Co, 1994. URL https://doi.
org/10.2307/2275690. 4, 59

Yannick Forster and Dominique Larchey-Wendling. Certified Undecidability of Intuition-
istic Linear Logic via Binary Stack Machines and Minsky Machines. In 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs CPP, pages 104–117.
ACM, 2019. URL https://doi.org/10.1145/3293880.3294096. 78

Yannick Forster and Gert Smolka. Weak Call-by-Value Lambda Calculus as a Model of
Computation in Coq. In 8th International Conference on Interactive Theorem Proving
ITP, volume 10499 of Lecture Notes in Computer Science, pages 189–206. Springer,
2017. URL https://doi.org/10.1007/978-3-319-66107-0_13. 76, 78, 82

Yannick Forster, Edith Heiter, and Gert Smolka. Verification of PCP-Related Compu-
tational Reductions in Coq. In 9th International Conference on Interactive Theorem
Proving ITP, volume 10895 of Lecture Notes in Computer Science, pages 253–269.
Springer, 2018. URL https://doi.org/10.1007/978-3-319-94821-8_15. 72, 77, 82

Yannick Forster, Dominik Kirst, and Gert Smolka. On Synthetic Undecidability in Coq,
with an Application to the Entscheidungsproblem. In 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs CPP, pages 38–51. ACM, 2019. URL
https://doi.org/10.1145/3293880.3294091. 78

Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13:225–230, 1981. URL https://doi.org/10.1016/
0304-3975(81)90040-2. 79

84

https://doi.org/10.1007/978-3-642-19835-9_27
https://books.google.com.br/books?id=6G_arEqHtysC
https://books.google.com.br/books?id=6G_arEqHtysC
https://doi.org/10.1007/978-3-662-57669-4_11
https://doi.org/10.2307/2275690
https://doi.org/10.2307/2275690
https://doi.org/10.1145/3293880.3294096
https://doi.org/10.1007/978-3-319-66107-0_13
https://doi.org/10.1007/978-3-319-94821-8_15
https://doi.org/10.1145/3293880.3294091
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1016/0304-3975(81)90040-2

Edith Heiter. Undecidability of the Post Correspondence Problem. Master’s thesis, Fac-
ulty of Mathematics and Computer Science, Saarland University, 2017. URL https:
//www.ps.uni-saarland.de/~heiter/downloads/PCP_Undecidability.pdf. 72, 77

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Pearson, 3rd edition, 2006. ISBN 0321455363.
64, 77, 78

Vasile I Istratescu. Fixed point theory: an introduction. Springer, 1981. 57

Kristofer Johannisson. Formalizing the Halting Problem in a Constructive Type Theory.
In International Workshop on Types for Proofs and Programs TYPES, volume 2277
of Lecture Notes in Computer Science, pages 145–159. Springer, 2000. URL https:
//doi.org/10.1007/3-540-45842-5_10. 76

Dominik Kirst and Dominique Larchey-Wendling. Trakhtenbrot’s Theorem in Coq: Finite
Model Theory through the Constructive Lens. Log. Methods Comput. Sci., 18(2), 2022.
URL https://doi.org/10.46298/lmcs-18(2:17)2022. 79

A. A. Kozhevnikov and Sergey I. Nikolenko. On complete one-way functions. Probl. Inf.
Transm., 45(2):168–183, 2009. URL https://doi.org/10.1134/S0032946009020082.
74

Dominique Larchey-Wendling. Typing Total Recursive Functions in Coq. In 8th In-
ternational Conference on Interactive Theorem Proving ITP, volume 10499 of Lecture
Notes in Computer Science, pages 371–388. Springer, 2017. URL https://doi.org/
10.1007/978-3-319-66107-0_24. 73, 79

Dominique Larchey-Wendling and Yannick Forster. Hilbert’s tenth problem in coq (ex-
tended version). Log. Methods Comput. Sci., 18(1), 2022. URL https://doi.org/10.
46298/lmcs-18(1:35)2022. 64, 79, 82

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 81–92, 2001. 2,
76

Salvador Lucas. The origins of the halting problem. J. Log. Algebraic Methods Program.,
121:100687, 2021. URL https://doi.org/10.1016/j.jlamp.2021.100687. 63

Panagiotis Manolios and Daron Vroon. Termination Analysis with Calling Context
Graphs. In Computer Aided Verification, 18th International Conference, CAV, vol-
ume 4144 of Lecture Notes in Computer Science, pages 401–414. Springer, 2006. URL
https://doi.org/10.1007/11817963_36. 2, 3, 76

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,
et al. Human-Level Control Through Deep Reinforcement Learning. Nature, 518(7540):
529–533, 2015. 57

85

https://www.ps.uni-saarland.de/~heiter/downloads/PCP_Undecidability.pdf
https://www.ps.uni-saarland.de/~heiter/downloads/PCP_Undecidability.pdf
https://doi.org/10.1007/3-540-45842-5_10
https://doi.org/10.1007/3-540-45842-5_10
https://doi.org/10.46298/lmcs-18(2:17)2022
https://doi.org/10.1134/S0032946009020082
https://doi.org/10.1007/978-3-319-66107-0_24
https://doi.org/10.1007/978-3-319-66107-0_24
https://doi.org/10.46298/lmcs-18(1:35)2022
https://doi.org/10.46298/lmcs-18(1:35)2022
https://doi.org/10.1016/j.jlamp.2021.100687
https://doi.org/10.1007/11817963_36

César A. Muñoz, Mauricio Ayala-Rincón, Mariano M. Moscato, Aaron Dutle, Anthony J.
Narkawicz, Ariane Alves Almeida, Andréia B. Avelar, and Thiago Mendonça Ferreira
Ramos. Formal Verification of Termination Criteria for First-Order Recursive Func-
tions. In 12th International Conference on Interactive Theorem Proving, ITP 2021,
June 29 to July 1, 2021, Rome, Italy (Virtual Conference), volume 193 of LIPIcs,
pages 27:1–27:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL
https://doi.org/10.4230/LIPIcs.ITP.2021.27. 2, 3, 75, 76

César A. Muñoz, Mauricio Ayala-Rincón, Mariano M. Moscato, Aaron Dutle, Anthony J.
Narkawicz, Ariane Alves Almeida, Andréia B. Avelar, and Thiago Mendonça Ferreira
Ramos. Formal Verification of Termination Criteria for First-Order Recursive Functions
- Journal Version. J. Autom. Reason., 2023. In press. Accepted in the JAR Special
Issue of ITP 2021, May 2023. 2, 3

Michael Norrish. Mechanised Computability Theory. In Second International Confer-
ence on Interactive Theorem Proving ITP, volume 6898 of Lecture Notes in Com-
puter Science, pages 297–311. Springer, 2011. URL https://doi.org/10.1007/
978-3-642-22863-6_22. 76

Sam Owre and Natarajan Shankar. The formal semantics of PVS. TR SRI CSL-97-2,
SRI International, Menlo Park, March 1999. URL http://www.csl.sri.com/papers/
csl-97-2/. 6

Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype verification
system. In Deepak Kapur, editor, Automated Deduction - CADE-11, 11th International
Conference on Automated Deduction, Saratoga Springs, NY, USA, June 15-18, 1992,
Proceedings, volume 607 of Lecture Notes in Computer Science, pages 748–752. Springer,
1992. URL https://doi.org/10.1007/3-540-55602-8_217. 6

Étienne Payet, David J. Pearce, and Fausto Spoto. On the termination of borrow check-
ing in featherweight rust. In Jyotirmoy V. Deshmukh, Klaus Havelund, and Ivan
Perez, editors, NASA Formal Methods - 14th International Symposium, NFM 2022,
Pasadena, CA, USA, May 24-27, 2022, Proceedings, volume 13260 of Lecture Notes in
Computer Science, pages 411–430. Springer, 2022. URL https://doi.org/10.1007/
978-3-031-06773-0_22. 1

Emil L. Post. Recursive unsolvability of a problem of Thue. The Journal of Symbolic
Logic, 12(1):1–11, 1947. URL https://doi.org/10.2307/2267170. 63, 77, 82

Thiago Mendonça Ferreira Ramos, Ariane Alves Almeida, and Mauricio Ayala-Rincón.
Formalization of the Computational Theory of a Turing Complete Functional Language
Model. J. Autom. Reason., 66(4):1031–1063, 2022. URL https://doi.org/10.1007/
s10817-021-09615-x. 19

J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: predicate subtyping in
pvs. IEEE Transactions on Software Engineering, 24(9):709–720, 1998. doi: 10.1109/
32.713327. 7

Michael Sipser. Introduction to the Theory of Computation. Cengage Learning, third
edition, 2012. URL https://doi.org/10.1145/230514.571645. 4, 38, 64, 78

86

https://doi.org/10.4230/LIPIcs.ITP.2021.27
https://doi.org/10.1007/978-3-642-22863-6_22
https://doi.org/10.1007/978-3-642-22863-6_22
http://www.csl.sri.com/papers/csl-97-2/
http://www.csl.sri.com/papers/csl-97-2/
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1007/978-3-031-06773-0_22
https://doi.org/10.1007/978-3-031-06773-0_22
https://doi.org/10.2307/2267170
https://doi.org/10.1007/s10817-021-09615-x
https://doi.org/10.1007/s10817-021-09615-x
https://doi.org/10.1145/230514.571645

Simon Spies and Yannick Forster. Undecidability of higher-order unification formalised
in coq. In Jasmin Blanchette and Catalin Hritcu, editors, Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, LA, USA, January 20-21, 2020, pages 143–157. ACM, 2020. URL https:
//doi.org/10.1145/3372885.3373832. 64, 79

René Thiemann and Christian Sternagel. Certification of Termination Proofs Using CeTA.
In Proc. 22nd International Conference on Theorem Proving in Higher Order Logics
TPHOL, volume 5674 of Lecture Notes in Computer Science, pages 452–468. Springer,
2009. doi: 10.1007/978-3-642-03359-9_31. 2

Alan M. Turing. On computable numbers, with an application to the entscheidungsprob-
lem. Proc. London Math. Soc., s2-42(1):230–265, 1937a. URL https://doi.org/10.
1112/plms/s2-42.1.230. 63

Alan Mathison Turing. Computability and λ-definability. The Journal of Symbolic Logic,
2(4):153–163, 1937b. URL https://doi.org/10.2307/2268280. 4

Alan Mathison Turing. Checking a large routine. In Report of a Conference High Speed
Automatic Calculating-Machines, pages 67–69. University Mathematical Laboratory,
1949. 76

87

https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1145/3372885.3373832
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.1112/plms/s2-42.1.230
https://doi.org/10.2307/2268280

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Single- and Multiple-Function PVS0 Computational Models
	The proof assistant PVS
	Specification of the Single- and Multiple-function PVS0 model

	Undecidability of the Halting Problem for Single- and Multiple-Function PVS0 Programs
	Computable and Recursive PVS0 Programs
	Undecidability of the Halting Problem

	Formalization of the computational properties of the PVS0 Model - Turing Completeness, and Recursion Theorem
	Turing Completeness of MF-PVS0 Model
	Recursion Theorem

	Formalization of the computational properties of the PVS0 Model - Rice's Theorem, and Fixed Point Theorem
	Rice's Theorem
	Fixed Point Theorem

	Discussion on the formalization of the undecidability of other problems - Word Problem and the Post Correspondence Problem
	Related Work
	Future Work and Conclusion
	References

