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Execução Eficiente de Análise de Imagens de Microscopia 
em Máquinas Híbridas de Memória Distribuída 

 
 
 
 

 

Resumo 

 
A análise de imagens de whole slide tissue image (WSIs) é uma tarefa computacional- 

mente cara, impactando negativamente no uso de dados de patologia em imagens em 

larga escala para pesquisa. Diversas soluções paralelas para otimizar tais aplicações já 

foram propostas, mirando no uso de dispositivos e ambientes, como CPUs, GPUs e/ou sis- 

temas distribuídos. Porém, a execução eficiente de código paralelo em máquinas híbridas 

e/ou distribuídas permanece um problema em aberto para histopatologia digital. Desen- 

volvedores de aplicações podem precisar implementar múltiplas versões de código para 

diferentes dispositivos de hardware. Desenvolvedores também precisam lidar com os de- 

safios de distribuição eficiente de carga para nós computacionais de máquinas de memória 

distribuída, assim como para os dispositivos de execução de cada nó. Essa tarefa pode ser 

particularmente difícil para análises de imagens de alta resolução com custo computacional 

dependente de conteúdo. Esta tese tem como objetivo propor uma solução para a simpli- 

ficação do desenvolvimento de aplicações de análise de WSI, assegurando o uso eficiente 

de recursos distribuídos híbridos (CPU-GPU). Para esse fim foi proposto um modelo de 

execução de alto nível de abstração, em conjunto com um método de particionamento au- 

tomático de carga. A fim de validar os métodos e algoritmos propostos, uma linguagem de 

processamento de imagem de alto nível de abstração (Halide) foi utilizada como solução 

de paralelismo local (CPU/GPU), junto com o Region Templates (RT), um sistema de 

gestão de coordenação de dados e tarefas entre nós distribuídos. Também foi desenvolvida 

uma nova estratégia cost-aware de particionamento de dados (CADP) que considera a ir- 

regularidade de custo de tarefas a fim de minimizar o desbalanceamento de carga. Para 

tal, dois algoritmos de particionamento foram propostos, o Expected Cost Bisection e o 

Background Removal Bisection. Resultados experimentais mostram melhorias significa- 

tivas na performance de execução com recursos híbridos CPU-GPU, comparada com o 

uso de recursos homogêneos (CPU ou GPU apenas). Os algoritmos de particionamento 

foram comparados com uma abordagem baseline hierárquica usando KD-Trees (KDT), 
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em ambientes multi-GPU, multi-GPU híbrido e distribuído de larga escala. Os resultados 

mostraram ganhos de até 2.72× para o ECB e de 4.52× para o BRB, ambos em com- 

paração ao KDT. Em adição ao modelo simplificado de desenvolvimento de workflows por 
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experts de domínio, a performance vista em ambos ambientes híbridos e de larga escala 

demonstra a eficácia do sistema proposto para uso em estudos WSI de larga escala. Am- 

bas melhorias na performance dos algoritmos do CADP como no modelo de estimação de 

custo de execução são esperadas como trabalhos futuros para o sistema aqui proposto. 

Palavras-chave: HPC, Histopatologia, Halide, Region Templates Framework, Computação 

Heterogênea, Computação Distribuida, Processamento de Imagens, Particionamento Ir- 

regular de Dados 
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Resumo Expandido 

 
A análise de imagens de whole slide tissue image (WSIs) é uma tarefa computacional- 

mente cara, impactando negativamente no uso de dados de patologia em imagens em 

larga escala para pesquisa. Diversas soluções paralelas para otimizar tais aplicações já 

foram propostas, mirando no uso de dispositivos e ambientes, como CPUs, GPUs e/ou sis- 

temas distribuídos. Porém, a execução eficiente de código paralelo em máquinas híbridas 

e/ou distribuídas permanece um problema em aberto para histopatologia digital. Desen- 

volvedores de aplicações podem precisar implementar múltiplas versões de código para 

diferentes dispositivos de hardware. Desenvolvedores também precisam lidar com os de- 

safios de distribuição eficiente de carga para nós computacionais de máquinas de memória 

distribuída, assim como para os dispositivos de execução de cada nó. Essa tarefa pode 

ser particularmente difícil para análises de imagens de alta resolução com custo computa- 

cional dependente de conteúdo. Esta tese tem como objetivo propor uma solução para 

a simplificação do desenvolvimento de aplicações de análise de WSI, assegurando o uso 

eficiente de recursos distribuídos híbridos (CPU-GPU). 

Uma aplicação WSI clássica foi escolhida como objeto de estudo para otimização e 

execução distribuída neste trabalho. Esta aplicação tem como objetivo permitir análises 

correlativas e de sobrevivência de pacientes, assim como a identificação de expressões 

genéticas por meio de características de patologias em imagens. De forma mais específica,  

esse trabalho tem como motivação acelerar ferramentas de a extração de características 

morfológicas a partir de estruturas em tecido, como núcleos celulares, gerando caracterís- 

ticas que tem boa correlação com progressões de doenças e dados clínicos. Essa aplicação 

é composta por quatro etapas: (i) normalização de cores, (ii) segmentação, (iii) com- 

putação de características e (iv) análise correlativa de dados. Todas essas etapas, com 

foco na segmentação que é a de maior custo computacional, são compostas por tarefas 

menores. Essas são definidas como de custo regular ou irregular. Tarefas de custo regular 

tem seu tempo de execução dependente apenas do tamanho da sua entrada, enquanto 

tarefas de custo irregular também dependem do conteúdo da entrada. 

Tendo em vista o domínio motivacional de tarefas de processamento de imagens, foi 

utilizada uma ferramenta para facilitar a implementação de aplicações neste domínio. O 
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Halide é uma Domain Specific Language (DSL) para processamento de imagens, que tem 

como objetivo ser uma ferramenta de fácil uso para implementar aplicações de processa- 

mento de imagens de forma eficiente em diversos tipos de hardware (e.g., CPUs e GPUs).  

Para alcançar esse objetivo o Halide possui uma arquitetura que separa a implementação 

da aplicação de seu escalonamento. Isso significa que primeiramente o usuário deverá 

apenas implementar a sua aplicação, sem considerações de performance, apenas de vali- 

dade semântica. Em seguida, é possível ordenar o acesso de dados e escolher que níveis de 

acesso podem ser paralelizáveis, isso sem impactar os resultados. Porém, o Halide possuí 

certas limitações. Halide não suporta aplicações cíclicas onde não é conhecido o cam- 

inho completo de execução. Por exemplo, é sabível à priori todas as operações/instruções 

que uma aplicação de filtro de imagem precisa executar, porém no caso de algoritmos de 

propagação em onda o número de iterações executadas depende do conteúdo da imagem, 

e assim só é sabível em tempo de execução. O Halide foi implementado para ser executado 

em ambientes de memória unificada. Por exemplo, é possível executar suas aplicações em 

GPU, usando sua memória interna, ou em CPU usando a memória do sistema. Porém, 

não é possível realizar execução cooperativa em CPU-GPU já que assim temos dois es- 

paços de memória. Embora seja possível realizar o particionamento da entrada e executar 

essas partições em ambos ambientes de CPU e GPU simultaneamente, essa não é uma 

tarefa trivial. Por fim, o Halide permite apenas o uso de espaços de iteração regulares 

(e.g., retângulos para imagens). 

Outra ferramenta interessante para os objetivos deste trabalho é o Region Templates 

(RT), que é um sistema de execução de aplicações de análise de imagens em ambientes 

distribuídos de larga escala. O RT permite que um workflow de tarefas seja submetido e 

executado, respeitando suas dependências e realizando eventuais movimentações de dados 

quando necessário. Seu sistema de execução é baseado no modelo gerente-trabalhador, 

onde vários processos trabalhador pedem novas tarefas ao gerente. Esse gerente é re- 

sponsável pelo escalonamento de tarefas, levando em consideração o tipo de recurso a ser  

usado (CPU ou GPU) e os dados presentes em cada nó a fim de maximizar a localidade 

de dados, assim reduzindo transferências de dados entre trabalhadores. 

Para alcançar os objetivos propostos neste trabalho foi implementado um sistema 

de execução de workflows de WSIs em ambientes distribuídos híbridos de larga escala. 

Usando o RT como base, o sistema proposto também se aproveita do modelo gerente- 

trabalhador, recebendo unidades de execução, ou tarefas. Para facilitar seu uso por ex- 

perts de domínio, a DSL Halide foi usada como linguagem de modelação dessas tarefas.  

Para tal, foram implementados objetos de interface RT-Halide. Ambas ferramentas usam 

imagens OpenCV como unidades de armazenamento de dados locais, porém, cada uma 

possui uma interface específica. Esses novos objetos de interface permitiram o uso normal 
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de buffers Halide, aproveitando o sistema de armazenamento do RT, sem a necessidade 

de cópias desnecessárias de dados entre eles. Para execução híbrida, o Halide também 

foi extendido internamente, a fim de ter suporte a execução com múltiplas GPUs em um 

mesmo nó de computação. 

A fim de permitir a execução de workflows simples com grandes volumes de dados 

são necessários algoritmos de particionamento de dados. Tendo em vista que as entradas 

para a aplicação motivacional deste trabalho são imagens, os algoritmos de particiona- 

mento deverão ser focados neste meio. Também considerando a irregularidade no custo 

de execução da aplicação de motivação, as abordagens propostas tiveram como objetivo 

reduzir o desbalanceamento de carga. Uma solução trivial para o problema de desbal- 

anceamento de carga é gerar um maior número de partições. No domínio em questão tal  

solução seria ineficiente já que existem overheads de submissão de tarefas assim como de 

bordas, oughost zones que são geradas. Outra característica dos algoritmos propostos é 

que esses são estáticos, sendo realizada a partição completa da entrada antes da execução 

de qualquer tarefa, e tais partições não podem ser alteradas em tempo de execução. 

O modelo de particionamento, chamado Cost-Aware Data Partitioning (CADP) con- 

siste em duas partes, (i) separação/remoção de background e (ii) particionamento de 

regiões densas. Para aplicações de WSI é comum que uma parte significativa da área 

da imagem seja background. Ou seja, não possui tecido, e assim não tem informação a 

ser analisada. Uma estratégia comumente empregada nessas aplicações é de remover esse 

background antes da analise da imagem, a fim de reduzir o custo computacional total sem 

impactar a qualidade do resultado. O CADP usa um algoritmo de geração de bounding 

boxes ao redor de regiões densas de tecido (podem haver 1 ou mais em uma imagem), 

resolvendo ocasionais sobreposições e gerando as partições esparsas (ou de background) 

com um algoritmo de scanline. 

A primeira versão do particionador denso, Expected Cost Bisection (ECB), se baseia 

na geração de partições a partir do custo esperado de cada partição ao final do particiona- 

mento. A partir de uma lista de partições densas iniciais, oriundas da etapa de remoção 

de background, são geradas novas partições pela bisseção da partição existente de maior 

custo, sendo extraída uma nova partição com custo estimado de 1/n do custo total da 

imagem, sendo n o número de partições a serem geradas. Essa abordagem do ECB tinha 

porém dois problemas, (i) para valores de n altos, as partições geradas resultavam em 

perda de performance, e (ii) não era realizada a remoção de background grão-fino. Rela- 

tivo ao primeiro problema, as partições geradas por ECB eram “pouco quadradas” (i.e., 

faixas longas e estreitas), o que resultava em tempos de execução maiores para a imagem 

inteira por uma particularidade da aplicação de motivação. 

A segunda versão do particionador denso, o Background Removal Bisection (BRB) 
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teve como objetivo melhorar a performance de particionamento do ECB. Primeiramente, 

foi implementado um modelo de particionamento hierárquico a partir dos fatores primos  

do valor n de partições a serem geradas. Isso conseguiu resolver o problema relacionado 

às partições “pouco quadradas”. Outra oportunidade de otimização era a remoção de 

background grão-fino, ou seja, regiões de background internas às bounding boxes densas. 

Por meio de uma alteração na função geradora de partições, similar à usada pelo ECB, 

foi possível remover background grão-fino com um baixo impacto no desbalanceamento 

de carga. Porém, dado que balanceamento de carga é um dos focos dos algoritmos de 

particionamento aqui implementados, a estratégia de remoção de background grão-fino 

não é muito agressiva em sua remoção de background, resultando em menores quantidades 

de background removido para valores de n menores. 

Os algoritmos de particionamento, em conjunto ao sistema de execução distribuída 

foram testados em um cluster de larga escala a fim de validar suas vantagens comparados 

com a abordagem baseline de particionamento KD-Tree (KDT). Para isso foram usadas 10 

WSIs de até 93k×198k pixels de resolução, testadas em ambientes de execução híbrida com 

até 4 GPUs por nó, e em execução distribuída, com até 32 nós computacionais, cada um 

com duas CPUs e 48 cores totais. Os testes realizados mostraram ganhos significativos 

de performance do CADP comparado ao KDT, de até 4, 52×, sendo o algoritmo BRB 

significativamente melhor que ambos KDT e ECB. Esses ganhos são atribuídos a dois 

fatores: (i) remoção de background e (ii) melhoria no balanceamento de carga. Para 

execuções com apenas 1 único nó usado (e por consequência menos partições) houveram 

ganhos de até  2, 90×,  oriundos  inteiramente  da  remoção  de  background. Foram  também 

testados o algoritmo ECB sem remoção de background, comparado ao KDT. Esse teste 

mostrou ganhos de até 1, 84× e perdas de até 0, 84× do ECB. Porém, o uso de mais nós 

resulta em maiores números de partições, o que é detrimental para ECB. Nesses testes foi 

visto que a soma total de tempo de execução de todos os nós para o ECB chegou a ser 

1, 96× maior que para o KDT. Em relação ao balanceamento de carga, foi notada uma 

correlação entre melhores valores de balanceamento de carga e ganhos de performance. 

Para 32 nós, foi visto uma melhoria do intervalo de eficiência de balanceamento de carga 

de 42 − 73% para o KDT, para 71 − 94% para o ECB. 

Neste trabalho foi implementado um sistema de execução distribuída para workflows 

de WSI, com particionamento automático de dados de forma balanceada. Resultados 

experimentais mostram melhorias significativas na performance de execução com recursos 

híbridos CPU-GPU, comparada com o uso de recursos homogêneos (CPU ou GPU ape- 

nas). Os algoritmos de particionamento foram comparados com uma abordagem baseline 

hierárquica usando KD-Trees (KDT), em ambientes multi-GPU, multi-GPU híbrido e 

distribuído de larga escala. Os resultados mostraram ganhos de até 2.72× para o ECB e 
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de 4.52× para o BRB, ambos em comparação ao KDT. Em adição ao modelo simplificado 

de desenvolvimento de workflows por experts de domínio, a performance vista em ambos 

ambientes híbridos e de larga escala demonstra a eficácia do sistema proposto para uso em 

estudos WSI de larga escala. Ambas melhorias na performance dos algoritmos do CADP 

como no modelo de estimação de custo de execução são esperadas como trabalhos futuros 

para o sistema aqui proposto. 
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Abstract 

 
The analysis of high resolution whole slide tissue images (WSIs) is a computationally 

expensive task, which cost adversely impacts large scale usage of pathology imaging data 

in research. Parallel solutions to optimize such applications have been proposed target- 

ing multiple devices and environments, such as CPUs, GPUs, hybrid compute nodes and 

distributed systems. However, the generalization of efficiently executing parallel code on 

hybrid and/or distributed machines remains an open challenge for digital histopathol- 

ogy. An application developer may have to implement multiple versions of data pro- 

cessing codes targeted for different compute devices. The developer also has to tackle 

the challenges of efficiently distributing computational load among the nodes of a dis- 

tributed memory machine and among computing devices within a node. This can be 

particularly difficult for analysis of high-resolution images with content-dependent com- 

puting costs. This thesis aims to provide a solution for simplifying the development of 

WSI analysis workflows while also enabling efficient use of distributed and hybrid (CPU- 

GPU) resources. For this end, a high-level execution model, coupled with an automatic 

workload partitioning method was proposed. In order to validate the proposed meth- 

ods and algorithms, a high-level image processing language (Halide) was used as a local 

resource (CPU/GPU) parallel solution, together with Region Templates (RT), a system 

for managing data/tasks coordination among distributed nodes. A novel cost-aware data 

partitioning strategy that considers the workload irregularity to minimize load imbalance 

was also developed. For it, two partitioning algorithm were proposed, the Expected Cost 

Bisection (ECB) and the Background Removal Bisection (BRB). Experimental results 

show significant performance improvements on hybrid CPU-GPU machines, as compared 

with using a single compute device (CPU or GPU), as well as with multi-GPU systems. 

The partitioning algorithms were compared with a baseline hierarchical KD-Tree (KDT) 

approach, on multi-GPU-only, hybrid CPU-GPU and large-scale distributed CPU nodes 

environments. Results show speedups of up to 2.72× for ECB and 4.52× for BRB, both 

compared to KDT. In addition to the simpler development model for domain experts, 

the attained performance for both hybrid and large-scale distributed computing environ- 

ments demonstrates the efficacy of the proposed system for large-scale WSI studies. Both 
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improvements on the CADP algorithms performance and the accuracy of the execution 

cost estimation model are expected as future works for the proposed system. 

Keywords: HPC, Histopathology, Halide, Region Templates Framework, Heterogeneous 

Computing, Distributed Computing, Image Processing, Irregular Data Partitioning 
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Chapter 1 

Introduction 

The ability to quickly analyze large datasets is critical to enable scientific studies in several  

application domains. Through modern digital microscopy technology it is possible to 

quickly obtain high-resolution Whole Slide Tissue Images (WSIs). Such images may now 

be captured at around 100K×100K pixels with multiple channels from tissue specimens 

rapidly. These images are used, for instance, to assist in the analysis of several cancer 

types as they contain morphological information at cellular/sub-cellular levels that are 

known to correlate well with molecular and clinical data. These analyses can provide a 

better understating of underlying biological mechanisms, optimizing the selection of them 

as focused as therapeutic targets, and improve survival estimation [4]. 

There are several applications and studies that have used large imaging datasets avail- 

able in the literature. On [5], a group of highly expressive regulators of tumor microen- 

vironments for glioblastoma, a type of brain/spinal-cord cancer, were investigated. The 

correlation between them and a diminished survival rate indicated that treatments for  

such master regulators should be focused, as therapeutic targets. This analysis was per- 

formed using a total of 177 WSIs with 20× magnification, which are images in the order 

of 100K×100K pixels [6]. Although the segmentation of regions of interest were manually 

done, removal of luminal areas and subsequent total tissue area calculations were per- 

formed using computer-based analysis. Another similar study also investigated glioblas- 

toma, but with a more automated process [7]. There, 117 WSIs were classified on an 

oligodendroglioma-astrocytoma spectrum, which complements human-based pathologic 

review. Although the WSIs were annotated by domain experts, the goal of the work was 

to conceive an end-to-end automatic system, which returns valuable information based 

on the input WSI and simple annotations. This was achieved by segmenting the nuclei 

of 4K×4K WSIs’ partitions and extracting multiple features from them. These features 

underwent a selection process to filter the most impactful ones and were combined in a 

nuclear score (NS) on the oligodendroglioma-astrocytoma spectrum. The NS equation 
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was trained through machine-learning methods. The work on [7] manages to improve 

end-user usability by using high-performance computing (HPC) to enable the use of such 

compute-demanding methods. Finally, at [8] an even larger experiment is done, with over 

2400 40× magnification WSIs analyzed through 9879 quantitative extracted features. The 

main goal of this latest work was to improve prognosis prediction accuracy for adenocar- 

cinoma and squamous cell carcinoma (lung cancer). Again, machine-learning algorithms 

were used to find the best features to distinguish short-term from long-term survivors. 

As such, executing complex image analysis workflows with such imaging datasets is a 

costly task. The processing of a single WSI on a regular commodity computer may take 

hours. Consequently, studies that use datasets with hundreds to thousands of images 

would take several days to execute [9, 10]. This high computational cost is one of the 

obstacles for a broader use of large microscopy imaging datasets in clinical and research 

settings. As seen, the use of HPC can empower domain experts, enabling large-scale tasks 

which are unfeasible for humans, thus making them less laborious. However, as the scale  

of available hardware resources grows, so does the complexity of efficiently using such 

resources [9, 11]. 

The use of multi-core CPUs requires knowledge of thread-safeness and data-access 

patterns. GPUs, which have seen growing popularity [6, 12, 13, 14, 15, 16, 17], require 

even more complex understanding of the underlying hardware organization for its proper 

use. The cooperative use of both CPU and GPU can be even harder since the code for 

one compute resource may not be compatible with the other. This means that the same 

algorithm would need to be implemented twice, with one version for CPU execution and 

another for GPU. At last, there is a larger availability of clusters with multiple comput- 

ing nodes at large-scale. Coordinating execution on distributed memory environments 

also has specific challenges, such as maintaining coordination of tasks and data locality.  

Thus, the development of such applications is a time-consuming and error-prone task with 

increasing complexity due to the fast hardware evolution. 

The problem of efficiently developing applications for HPC systems can be particularly 

difficult if the application processing cost vary across different inputs, i.e., being content- 

dependent. For instance, on a WSI feature extraction process there may be more objects 

of interest (e.g., nuclei) in certain image regions, making those areas more compute- 

demanding. Not considering these characteristics during data-partitioning for workload 

distribution may lead to significant load imbalance and inefficient utilization of parallel 

resources. These problems are more difficult to solve for application domain scientists 

who do not necessarily have programming expertise on these conditions. 
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1.1 Problem Definition 

Digital histopathology whole slide imaging analysis is computationally expensive by itself.  

This issue is worsen by large scale studies, which are both expected and common on the 

medical field. HPC solutions are a natural choice in attempting to reduce the execution 

time of these studies, making them more manageable. However, the efficient use of such 

resources is a complex task, requiring the understanding of the underlying devices, code 

generation for each device, and managing workload partitioning. The later, can be ad- 

versely impacted by histopathology applications with irregular processing cost, which can 

vary depending on the input data contents. Given these difficulties, widespread utiliza- 

tion of distributed and/or hybrid computing environments by experts in this application 

domain is still limited. 

 
1.2 Research Hypothesis 

It is the hypothesis of this work that high-level abstract programming coupled with au- 

tomatic cost-aware workload partitioning methods can simplify the development effort of 

digital histopathology applications while enabling the efficient use of hybrid machines and 

distributed compute resources by medical domain experts. 

 
1.3 Goals 

The main goal of this work is to propose and develop methods for rapid and simple imple- 

mentation of efficient WSI analysis applications targeting high-performance hybrid com- 

puting machines on a distributed environment. For such, existing algorithms and methods 

for leveraging high-performance hybrid computing resources are evaluated. From them, 

a WSI workflow processing solution with an automatic cost-aware workload partitioner 

is proposed. These methods should allow easy usage by domain experts of such HPC 

resources through high-level programming structures and semantics for parallel environ- 

ments, automating most of the distributed environment management. In particular, the 

system here implemented using the proposed methods should (i) simplify the application 

development targeting hybrid machines with CPU and GPU compute devices and (ii) 

enable efficient cost-aware workload partitioning for distributed memory environments. 

The specific goals of this work are as follows: 
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Design and implementation of a WSI execution system on distributed memory 

hybrid machines 

Efficient general use of hybrid resources on a distributed setting remains an open problem 

for digital histopathology. As such, these workflows are optimized on a per-application 

basis. Experts of the medical motivating domain should be able to easily access this 

cooperative resource pool through a unified framework. It should be opaque to the domain 

expert whether a compute node is composed by homogeneous elements (e.g., a single CPU) 

or heterogeneous elements (e.g., multiple CPUs and GPUs). Data management should 

also be automated, either across distributed elements or between hybrid resources on a 

compute node. 

 
Proposal and development of irregular cost-aware data partitioning techniques 

for parallel execution of content-dependent applications 

For some digital pathology applications the computational cost can vary according to the  

contents of the input data. This can pose as a problem for distributed execution of such 

applications since poor data partitioning can lead to workload imbalance and inefficient 

usage of distributed compute resources. To avoid workload imbalance on a distribution 

level across compute nodes, or on a node level across compute elements (CPUs/GPUs) 

irregular data partitioning should be supported. An initial analysis of current solutions 

shows that traditional image-partitioning algorithms (e.g., Fixed-Grid [18], KD-Trees and 

Quad-Trees [19]) are not suited for data with processing times dependent on the content. 

After the evaluation of more solutions already proposed, new strategies that take into 

account the content-dependent computations costs will be developed in order to improve 

the quality of the partitioning. 

 
Evaluation of the proposed solutions with a real-world histopathology appli- 

cation on a large-scale compute environment 

In order to validate the proposed techniques, these are experimentally evaluated with a  

well known real-world application, which has been used on past research [7, 9, 20, 21, 22, 

23, 24]. The proposed algorithms are evaluated on a large-scale distributed environment 

with hybrid compute nodes containing CPU and GPU devices. The evaluation should in- 

clude overall speedups of the proposed solution when compared with baseline approaches, 

their scaling efficiency and the state of workload imbalance. 
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1.4 Contributions 

This work resulted in the following concrete contributions for large-scale WSI applications: 

 
• An automated runtime system for simplifying the implementation and deployment 

of WSI workflows on hybrid large-scale compute environments. 

• Cost-aware partitioning algorithms which are able to work with cost-dependent 

workflows by generating cost-wise balanced partitions. 

• Solutions for both coarse-grain and fine-grain background removal, which results in 

lower execution times without impacting the given workflow output quality. 

This work is a continuous effort on efficient execution of WSI analysis applications.  

Previously, the use of sensitivity analysis methods for identifying the most relevant image 

segmentation features were optimized [10]. There, the application workflow used was 

implemented, which lead to a better understanding of the problem approached here. 

Further, methods for reducing the compute cost of large-scale studies with sensitivity 

analysis through reuse were proposed, using the distributed execution system implemented 

on this work [24]. Finally, a previous state of this ongoing work describing implemented 

system with the first irregular data partition algorithm has been published [25]. 

 
1.5 Thesis Organization 

The remainder of this work is organized as follows: 

 
• Chapter 2 [Background]: introduces the background concepts of this work, the 

taxonomy used for HPC execution environments, the used tools and libraries. The 

motivating domain is explored, showing trends for current works. 

• Chapter 3 [Related Works]: elaborates on spatial data partitioning algorithms. 

Related works and the current state of the art solutions for the specific goal of 

distributed execution of WSI applications are also explored. 

• Chapter 4 [Supporting Pathology Image Analysis Applications on Dis- 

tributed Memory Hybrid Systems]: describes the overall runtime system used 

for the execution of WSI workflows. The method for easing the implementation 

effort of domain experts for hybrid compute nodes is also approached. 

• Chapter 5 [Cost-Aware Data Partitioning for Irregular-Cost Applica- 

tions]: details the cost-aware partitioning algorithm proposed on this work. Both 
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workload imbalance and background removal are resolved by the proposed algo- 

rithms. 

• Chapter 6 [Experimental Results]: describes the experimental analysis of the 

proposed solution with the partitioning algorithms on hybrid and large-scale dis- 

tributed environments. 

• Chapter 7 [Conclusion]: overviews the achieved results of this work, also ap- 

proaching open questions and avenues for future works. 
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Chapter 2 

Background 

This chapter presents a taxonomy for defining distributed applications and the underlying 

hardware infrastructure. The main tools and libraries used or improved upon are then 

enumerated and described. Among them, two tools are highlighted, the Halide DSL 

and the Region Templates Framework. Finally, this chapter closes with an introduction 

to the wider research field of Whole Slide Imaging and histopathology and presents the 

motivating application used on this work. 

 
2.1 Taxonomy for Distributed and Parallel Infras- 

tructures and Applications 

First, it is important to define the architectures for computer hardware (low-level) and sys- 

tems (high-level) to provide consistent naming conventions. This distinction relates to the 

level of abstraction on which the parallel solution is implemented. Low-level architectures 

describe only hardware solutions, independently from any program, compiler or software 

on which it is executed. The naming conventions most commonly used for such systems 

are Flynn’s [26] and Duncan’s [1] taxonomies for parallel architectures. Flynn’s taxonomy 

provides a model based on instructions and data streams, classified as either single or mul- 

tiple, focusing only on hardware-level (or instruction-level) features. For Flynn, there are 

three main hardware architectures, Single Instruction-Stream Single Data-Stream (SISD), 

Single Instruction-Stream Multiple Data-Stream (SIMD) and Multiple Instruction-Stream 

Multiple Data-Stream (MIMD). SISD refers to serialized single-core computing elements 

with no parallelism. SIMD refers to any type of data-parallel architecture which runs the 

same instructions on a partitioned data set. Examples of SIMD are array vectorized and 

some types of pipelined architectures. MIMD is the most common parallel architecture, on 

which a set of independent computing elements can execute different instruction-streams 
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on individual data segments. Both SIMD and MIMD classes are too inclusive, making it  

difficult to differentiate between different types of parallel architectures. This was pointed 

by Duncan [1], whose taxonomy is more detailed. 

Duncan’s taxonomy can be mainly divided into synchronous and asynchronous (MIMD) 

architectures, based on whether instructions are executed using a global lock-step, coor- 

dinated by a central control unit. The organization of architecture classes are shown in 

Figure 2.1, from his original publication. Unlike with Flynn’s taxonomy, Duncan’s bet- 

ter classifies SIMD sub-types. Pipelined Vector architectures refer to single-instruction 

specialized processing units. The parallelism is achieved through a pipelined execution 

of a single data-stream. For Duncan, SIMD architectures can be either Processor array 

of Associative memory. Processor array is the most common architecture, on which a 

single instruction is given to a group of processing elements, being executed on individual  

portions of an input data-stream. Examples of such architecture includes the SSE/AVX 

instructions sets [27, 28] and CUDA streaming processors, which execute on a locked-step 

fashion in each streaming multiprocessor [29]. Associative memory architectures inverts 

the von Neumann model, with operations executed by the associative memory unit [30].  

Through the use of bit-masks, query operations are performed on large words on memory, 

which then execute bit-parallel comparison and logic operations. This type of architecture 

is mostly used on programmable hardware, e.g., FPGAs [31]. Systolic architectures can 

be defined as an abstract type of pipelined vector processors. This is composed by an 

array of interconnected specialized processing units which propagate computed results to 

the next unit on a locked-step synchronized manner [32, 33]. 

Duncan’s MIMD architectures represent the most common types of parallel hardware 

architectures, with independent computing elements which can perform asynchronous 

tasks. Regardless of how such processing units are implemented, they can be classified by 

their relation to memory. Shared memory architectures provide direct hardware access to 

the same memory device. Modern multi-core CPUs are an example of such architecture, 

on which each core, independently from the other cores, can perform individual tasks on 

a shared memory device. Also, some GPU architectures can be described in a similar 

way. For instance, CUDA streaming multiprocessors also execute independently on the 

unique GPU’s memory. For distributed memory architectures there are multiple memory 

devices, accessible only by the processing elements directly connected to them. Each of 

these shared memory elements (or groups) are interconnected externally and can only 

communicate explicitly through memory-passing operations. Distributed memory archi- 

tectures are more sensitive to inter-process communication latency. However, they are far 

more extensible through the organization of clusters of processing elements. 
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Figure 2.1: Duncan’s taxonomy for parallel hardware architectures. Image extracted 
from [1]. 

 
 

At last, Duncan also describes a group of hybrid architectures which do not prop- 

erly fit on the previous classifications, all of which being MIMD-based. One type of 

architecture which is widely present nowadays is the MIMD/SIMD hybrid architecture. 

Originally, this type of architecture was comprised of a primary MIMD organization of 

secondary (old slave definition) set of SIMD processors. Currently, processor array SIMD 

(SSE/AVX) processing units, or cores, are packed together on a single shared memory 

MIMD multi-core die. The hybrid organization of MIMD/SIMD raises the question of 

hierarchical classification of architectures. For instance, multiple distributed processors 

are a distributed memory MIMD organization of shared memory MIMD processing cores,  

which are in turn SIMD-processor-array-capable. This can become even more convoluted 

for hybrid CPU/GPU compute nodes. As such, either Flynn’s and Duncan’s taxonomy 

terms should always be accompanied by the layer on which said terminology is being 

applied to. 

Other hybrid architectures are specific MIMD cases of the SIMD and Systolic types. 

Dataflow architectures are composed of a hardware and a software layer, specifically de- 

signed for such applications. The hardware layer is composed by a group of MIMD process- 

ing and instruction/memory elements, connected to a routing network unit, which enable 
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dynamic definition of data paths between elements. From the software-level an application 

is defined as a dataflow of asynchronous task nodes. Each node is expanded to generate a 

data-path, similar to SIMD pipelined vector execution, with each end-node (task) being 

assigned to a processing unit. The execution of the dataflow application is data-driven, 

on which each finished node fires the subsequent nodes based on data dependency [34]. 

An alternative is to implement the processing unit allocation lazily based on the required 

values. This demand-drive model is defined as Reduction architectures [35]. Finally, the 

Wavefront architecture model is equivalent to a Systolic architecture for MIMD dataflow 

computing [36]. This means that different/irregular operations can be loaded for each pro- 

cessing element. Although interesting solutions, the Dataflow, Reduction and Wavefront 

hardware models are proposals of non-von-Neumann architectures not widely used. 

According to Blank et.al [37], there are 3 modeling levels for designing parallel appli- 

cations: (i) Algorithm Model, (ii) Programming Model and (iii) Machine Model. At the 

algorithmic level, parallelism can be achieved either through Data Parallelism (DP) or 

Control Parallelism (CP). For instance, synchronized execution of a partitioned data set,  

and an abstract FCFS thread-pool are respective examples of DP and CP. Algorithms 

are then reduced into a form closer to metal at the Programming Model level. These 

can either be Single Program Multiple Data (SPMD) or Multiple Program Multiple Data 

(MPMD) [38]. Since DP algorithms require implicit synchronization, only SPMD mod- 

els can be applied (DP-SPMD). For CP algorithms, it is possible for it to be translated 

into CP-SPMD with multiple threads on the same program, or CP-MPMD with multiple 

programs. Previous definitions from Flynn’s and Duncan’s taxonomies cover the Machine 

Model. However, Blank’s notation also refers to memory access for the following cases: 

• Shared memory, Single Instruction, Multiple Data Streams (SIMD) 

• Shared memory, Multiple Instruction, Multiple Data Streams (sMIMD) 

• Distributed memory, Multiple Instruction, Multiple Data Streams (dMIMD) 

 
As such, the naming conventions extracted from Blank’s taxonomy are used on this 

work. This is mainly for simplicity, also noting that common modern machine architec- 

tures [39], such as the ones used on this work, can be fully described by his notation. 

 
2.2 Parallel Programming Tools and Languages 

Specific tools and frameworks are required to implement algorithms which can fully utilize 

the distinct resources available on modern distributed environments. For this work there  

are three main considerations which should be addressed: executing on (i) distributed 
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environments, (ii) multi-core CPUs, and (iii) GPUs. The MPI standard was thus chosen, 

with OpenMP and CUDA used for parallel CPU and GPU execution, respectively. These 

tools and languages are detailed on the following sections. 

 
2.2.1 The Message Passing Interface (MPI) 

The Message Passing Interface (MPI) can be defined as a tightly constrained set of sim- 

ple goals for Inter-Process Communication (IPC) on non-shared memory spaces. Such 

memory spaces can be either on the same memory hardware, or on distributed hardware. 

Communication between these can then be respectively performed by IPC or network 

sockets. MPI enables parallel programming through the use of multiple processes, either 

locally on the same compute node, or distributed across a network of compute nodes. The 

semantic for either case is the same. By definition, MPI (i) is an open interface which 

could be implemented by many vendors, without impact to the underlying communication 

and system software, (ii) allows thread-safeness, (iii) abstracts the communication layer, 

and (iv) allows convenient C and Fortran bindings while having language-independent se- 

mantics [40]. This resulted in MPI being a system and architecture agnostic interface, re- 

sponsible for standardizing inter-process communication for programming on dSPMD and 

MPMD machines. From a given space of processes, each and any MPI process can send 

and receive point-to-point messages from other processes of the same space. Communica- 

tion calls (send/receive) can be thread-blocking, with further support for thread-blocking 

barrier primitives. 

Regardless of the implementation, execution of parallel applications on MPI can be 

configured, with the spawned processes scattered locally or across a network. It supports 

both SPMD and MPMD executions. For MPMD it enables the creation of a shared 

message space for more than one executable instance. Another important feature is the 

ability to specify thread-affinity and processes distribution. This is possible due to an 

abstract definition of processing units (PUs), which can be specified by the user. For 

instance, a dual-socket 8-core CPU compute node can configured as a single PU on node 

level, two PUs at socket level, 16 PUs with one per core, or an user-defined number of 

cores per PU. This configuration is important since each PU have an enclosed space for 

the process’ threads. This means that a thread of a given space (and thus process) cannot 

utilize resources (i.e., cores) belonging to another space. It is also possible to remove all  

bindings, thus enabling shared use of all local resources by any thread on the given node.  

Finally, each created process can be distributed (mapped) across PUs on a user-defined 

policy, being possible to oversubscribe a PU (i.e., more than one process per PU). 
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2.2.2 OpenMP 

As MPI became the standard for parallel high-performance scalable code, multi-core ar- 

chitectures began to arise, and with it the possibility for optimizing cache-coherent hard- 

ware. The message-passing model scalability relies on the developer, since it does not 

support high-level directives, and also cannot optimize cache locality. For this new Scal- 

able Shared-Memory Multiprocessor architecture (SSMP) a new programming model/in- 

terface was created, the OpenMP. As with MPI, OpenMP was specified to have native 

Fortran/C bindings, but in contrast, defining high-level compiler directives which could 

be used for incremental parallelization of code [41]. 

OpenMP is used through compiler directives for structured blocks of code which allow 

them to be executed parallelly either with threads on a shared-memory space or with 

aSIMD instructions. These parallel blocks can be both loop iteration spaces or distinct 

sections of code to be executed concurrently. OpenMP also supports the specification of 

private and shared variables on its structured blocks, synchronization directives through 

barriers, critical sections of code and atomic operations, and other hierarchical task struc- 

tures on its latest versions [42, 43]. 

 
2.2.3 CUDA 

In the early days, GPUs were predominately used for fast image and video rendering, for 

instance, in games. Then, GPU cards were mostly required to process integer values (fixed- 

function pipelines [44]). Even with the GPU limitations at that time, initial attempts to 

harness its computational power were made on linear algebra applications [45]. Following 

the growth of the games industry better GPU technology was developed to support richer 

and more realistic graphic effects, eventually resulting in the introduction of floating- 

point arithmetics [46]. Later, the introduction of programmable shaders and floating- 

point operations [47] solved fixed-point overflow-related limitations. This enabled the 

scientific community to implement more complex linear algebra operators [48] and even 

manage to outperform CPUs on a general-purpose task for the first time ever [49]. Still, 

support for general programming was limited, requiring the use of graphics APIs such as 

Microsoft’s DirectX or OpenGL [50]. The continued interest on using GPU devices for 

general computing resulted in the introduction of tools as OpenCL [51] and CUDA [52]. 

CUDA is a proprietary framework for developing efficient general-purpose applications 

on modern NVIDIA GPUs. Compared with regular CPU computing these GPGPUs 

distinguish themselves by having a high count of simple computing units with increased  

memory locality and bandwidth. CUDA devices are a hierarchy of compute units, as 

demonstrated on Figure 2.2. Each core, defined as a Streaming Processor (SP), executes 
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Figure 2.2: CUDA memory hierarchy and hardware organization. Image from [2]. 

 

a thread individually and has direct access to a private registers space. A group of SP is 

assembled in a Streaming Multiprocessor (SM). Each SM possesses a local L1 cache unit,  

shared among the SP which compose the SM. A GPU is composed by a set of SM, all 

sharing a global L2 cache. 
 

Figure 2.3: CUDA organization of execution units, or threads. Image from [2]. 

 

Figure 2.3 shows the organization of executable code on CUDA. The minimal unit of 
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work is a thread, which is executed on a single SP. A group of threads, or thread block, 

is scheduled on a single SM. Since the number of SP of a SM is fixed, there is a limit of 

how many lock-step threads can run in parallel. Each SM groups a subset of threads from 

its thread block into warps, scheduled by the SM which owns them. At the top level, 

the programmer implements kernel grids, which are executed on a whole GPU. Although 

further hierarchical levels may be present on different devices, these changes only regard 

the organization of warp schedulers, cache and operation-specific cores, not influencing the 

programing interface of SMs and SPs. For multi-GPU configurations this work considers 

each device independent, with its own memory space, on a dMIMD environment. Also, 

communication is only performed with the CPU via the PCIe interface [29], although 

other faster interfaces are available [53]. 

 
2.3 Frameworks for High-Performance Image Pro- 

cessing 

The parallel programming tools presented on previous sections can be combined into 

higher-level frameworks for image processing. One tool developed to reduce implemen- 

tation complexity for high-performance image processing applications is the Halide DSL. 

Halide employees OpenMP and CUDA on its back-end. Also, the Region Templates 

Framework, a tool for distributed execution of medical imaging pipelines, is preferable 

instead of just MPI, since it has a higher-level abstraction of inter-node execution. Fi- 

nally, both frameworks use OpenCV as their image data objects, detailed on the following 

sections. 

 
2.3.1 OpenCV 

With the purpose of easing the development of computer vision applications, OpenCV 

was launched in 1999 by Intel. The main goals of OpenCV were to provide a common, 

free, basic infrastructure for vision research. This interface would be one of portable 

code, optimized for different platforms. Some applications which benefits from OpenCV 

are stereo vision, object detection, segmentation and recognition. OpenCV is regarded as  

the main standard for image processing in general, extensively used by C++ and python 

applications [54]. 

The base structure of OpenCV is a cv::Mat, which represents a lightweight n-dimensional 

dense numerical array of an user-defined type. The data inside a cv::Mat can be ac- 

cessed directly, or through pointer arithmetic. Regarding memory, these matrices are 

handled with high-level mechanisms such as reference counting and default shallow copy- 
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ing, enabling easy and implicit memory management. Image pixel data is released only 

when all cv::Mat references are destroyed. Since images can be composed of multiple 

channels, OpenCV provides a simple syntax for color images, also allowing the use of 

different colorspaces. Multiple matrices can be combined with high-level operators like 

sum, dot-product and regular matrix product, which over-saturates the matrices’ types 

on the resulting array. It is possible to perform efficient masked operators for apply- 

ing such equations on defined regions of interest. OpenCV provides a comprehensive 

set of morphological operations, which ease the development process of efficient image 

processing applications. Some of these high-level functions used on this work are ero- 

sion/dilation with different structuring elements and retrieval of connected components’  

bounding boxes [55]. 

Although GPU processing is available to OpenCV, processing of such data can only be 

performed by either OpenCV’s pre-defined data processing functions or a CUDA kernel. 

Direct pixel data access is only allowed inside such CUDA kernels, which allows the 

execution of user-developed operations on GPU data. As such, the only way to share 

data between CPU and GPU memory spaces is through explicit data transfer. 

 
2.3.2 Halide 

On a higher level of abstraction, Halide [56] is a DSL aimed at enabling transparent 

implementation of image processing pipelines through different hardware environments,  

or targets. Its main contributions were to provide an environment on which the imple- 

mentation and optimization of algorithms were done separately, thus enabling the use of  

the same algorithm for multiple hardware targets. This feature eases the implementation 

effort, on which the developer needs only to focus on correctness to later tackle the perfor- 

mance through scheduling directives. Given the vast combinations of available hardware 

resources, the Halide model encourages the programmers to find the best schedules empir- 

ically through few (and simple) directives. It is also worth noting that, although Halide 

was developed for manual scheduling its semantics are representative enough that there 

is extensive work on automatic scheduling systems [57, 58, 59]. 

 
The API and Syntax 

Halide code is comprised mainly of the algorithm definition and its schedule. The algo- 

rithm is thus a set of functional definitions, parameterized by its input domains, which 

operate on buffers, constant values and other functional definitions. The schedule is a set 

of primitives which parallelizes, orders, or defines memory patterns for each functional  

definition on a given domain. For images, each domain can be seen as a dimension of that 
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image (e.g., height or width), and a functional definition can be defined as a stencil to be 

performed once at the image, being possible to compose multiple of those in a workflow. 

Internally, Halide uses interval-based domains to represent iteration spaces, i.e., every 

domain is defined as a triple of a label, its initial value and its end value. This means 

that creating non-rectangular iteration spaces can be somewhat difficult, if not impossible 

for some applications. The alternative would be to use the polyhedral model for describ- 

ing them. However, using interval-based domains is significantly easier for entry-level 

developers to use while also being able to better evaluate implementation correctness at 

compile-time, moving many errors away from execution time [60]. 

Halide algorithms’ implementations mainly use 5 types of directives: 

 
• Var : represents an abstract iterative domain 

• RDom: represents a static iterative domain 

• Func: represents a stage of a pipeline parameterized by its domain coordinates 

• Expr : represents a pure abstract function of Func’s or domain variables 

• Buffer : a concrete in-memory representation of data, which can be used as input 

and/or output 

Var ’s are the base elements for iteration. They represent an abstract domain, in which 

its concrete interval is inferred at run-time. This allows the flexibility of implementing 

pipelines for any-sized input images. It is worth noting that although the domain sizes 

are abstract its structure is not. Thus, the image must have the correct dimensionality 

for execution. It is also possible to define static sub-domains, called Reduction Domains. 

For statically-defined access patterns, which would require exhaustive definition, Halide 

provides RDom variables. For instance, the structuring elements for image processing 

algorithms like erosion/dilation [61] with large static values (e.g., 50 × 50) would either 

require the runtime iteration of a Var or the handwritten definition of all coordinates. 

RDom’s allow the creation of a static domain variable which will be resolved (unrolled) 

at compilation time, thus not impacting negatively the execution time. 

A Halide Func is the base building block for creating pipelines. They can operate on 

an abstract input domain, representing a pixel or any type of data on a k-dimensional 

domain, assuming there are k input domain variables. They are defined as a pure function 

of other Func’s, domain variables, constants, input Buffers and Expr ’s. It is also possible 

to re-define a Func, defined by Halide as a function update. For these, each update is 

fully executed to completion individually and in the order of their definition. It is also 

possible to schedule each update function individually. 



17  

− − 

As a tool to improve code legibility, Halide provides Expr ’s, which are Func’s without 

any input domain. Whenever an Expr is referenced on a Func, Halide fully replaces 

its content on the target Func, acting like a label on a purely functional language [62]. 

Finally, concrete user inputs and outputs are represented by Halide’s Buffer ’s. These 

are strongly-typed, memory-resident data which size must be known before executing on 

them. From this input/output structure Halide infers Func’s typing and domain size. It 

is worth noting that Halide uses a strong type system. 

An extended example of the blur algorithm is presented on Algorithms 1 , 2 and 3. 

First its behavior is shaped by the pure algorithm, to later be scheduled for both CPU 

and GPU though CUDA. The blur algorithm implemented have a structuring element 

of size 3 × 3, as seen on line 3 of Algorithm 1, on which each point of the input image 

(in) is blurred around the intervals [x − 1, x + 1] and [y − 1, y + 1]. Each dimension (or 

domain) is blurred individually to ease the optimization process. The final result is stored 

at buffer out on line 9, as the realization of function blury, which in turns depends on 

blurx. By using the structuring element se we are able to parameterize it, if necessary, 

and with the use of the sum aggregator function, avoid having to expand the terms of 

lines 6-7 manually. Otherwise, for a structuring element of size 11 × 11 we would be 

required to change the algorithm (lines 6-7) to blurx(x,y) = (in(x-5,y) + in(x-4,y) + ... 

+ in(x+5,y))/11. 
 

Algorithm 1 Example of a blur algorithm implementation. 
 

1: Halide::Buffer in, out 
2: Halide::Var x, y 
3: Halide::RDom se( 1, 1, 1, 1) 
4: Halide::Func blurx, blury 
5: 

6: blurx(x, y) = sum(in(x + se.x, y))/3 
7:  blury(x, y) = sum(blurx(x, y + se.y))/3 
8: 

9: out = blury.realize() 
 

This algorithm can then be scheduled for either CPU or GPU execution. Algorithm 2 

presents a simple CPU parallel execution schedule. The scheduling process can be divided 

into three steps: (i) internal tiling/reordering, (ii) inter-functions ordering and memory 

allocation, and (iii) parallelization. Each function is initially bounded by its original 

domains (x and y for both functions). The ordering is from left to right, meaning that 

x is the innermost level of iteration. Each initial domain can be split and tiled, as is 

y for blury (see lines 1-2 of Algorithm 2). This results in the concrete iteration spaces 

for blury of yo, yi and x, from outermost to innermost levels. The next step regards 

execution order of points between functions with producer-consumer relationships. Still 
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on Algorithm 2, line 4 states that blurx will be produced on-demand, for each point of 

yi, i.e., immediately after yi iterates, all required points of blurx, by blury at a yi value, 

will be calculated beforehand. Then, on line 5, we attempt to reduce redundancy of 

computation, storing the calculated values of blurx on the scope of each yo value. This 

means that all values of blurx which are required by blury on the full iteration space of 

yi ×x are stored temporarily, and later discarded for the next value of yo. Finally, blury 

is set to be calculated fully and stored locally before any consumer can access it (line 6).  

Since blury is the last function which is realized, this last compute_root declaration is 

implicit, placed there only for illustration purpose. Regarding parallelization, blurx is 

vectorized by a factor of V ECT _SIZE on coordinate x (line 8), and blury is executed 

parallelly on coordinate yo, meaning that there is a single thread for every yi ×x iteration 

space. It is worth noting than, in the absence of scheduling directives, every function is  

scheduled as a serialized execution, with compute_root stages on every function. 
 

Algorithm 2 CPU Scheduling of the blur algorithm example. 
 

1: Halide::Var yi, yo 
2:    blury.split(y, yo, yi, PARALLEL_BATCH_SIZE) 
3: 

4:  blurx.compute_at(blury, yi) 
5:   blurx.store_at(blury, yo) 
6:   blury.compute_root() 
7: 

8:  blurx.vectorize(x, V ECT _SIZE) 
9:  blury.parallel(yo) 

 

For the GPU schedule, Algorithm 3 is a similar but slightly modified version of the 

CPU schedule due to the differences between CPU and CUDA execution environments. 

For CPU execution each operation can execute parallelly on sMIMD or through vector- 

ization on each SIMD core of the CPU. For CUDA GPUs, aSIMD execution is implicit 

through tasks inside warps (gpu_threads) and sMIMD execution is performed by SMs 

(gpu_blocks for Halide). Also, given the memory hierarchy of GPUs, it is recommended 

to perform computation in rectangular regions. For such, Algorithm 3 changes are, (i) the 

blury domains are fully tiled on both x and y according to the configuration of the used 

GPU (lines 2-3), (ii) blurx is computed at the innermost level for each blury value (lines 5- 

7), and (iii) both blurx and blury are parallelized using the GPU directives (lines 9-10). 

With these changes the GPU schedule works similarly to the CPU schedule, attempting 

to reach a middle-ground on parallelization, redundancy reduction and memory footprint 

reduction. 
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Algorithm 3 GPU Scheduling of the blur algorithm example. 
 

1: Halide::Var xi, xo, yi, yo 
2:   blury.split(y, yo, yi, height/NB_CU DA_SM ) 
3:   blury.split(x, xo, xi, width/NB_CUDA_SP _PER_SM ) 
4: 

5:   blurx.compute_at(blury, xi) 
6:   blurx.store_at(blury, yo) 
7:   blury.compute_root() 
8: 

9:   blury.gpu_blocks(xo, yo) 
10:   blury.gpu_threads(xi, yi) 

 

Halide in Depth 

The Halide DSL uses the LLVM toolkit for creating its own internal representation lan- 

guage. Originally, LLVM was designed as a framework of tools for transparent, life-long, 

code analysis and transformations [63]. Currently it has evolved beyond its initial frame- 

work to include a suite of sub-projects, being the most popular, Clang [64]. The main 

goal for LLVM is to provide an Intermediary Representation (IR) language, which can 

undergo its internal analysis and transformations. This IR is language-independent and 

have strongly-typed Static Single Assignment (SSA) definitions [65], which further im- 

proves its analysis capacity. Further, LLVM provides plenty of target-specific back-ends 

for executing its architecture-independent IR objects (e.g., x86, CUDA, OpenCL). These 

features make LLVM an interesting choice for creating compilers and DSLs. 

On pipelines’ compilation process of Halide, these are converted into Halide’s IR lan- 

guage, based on LLVM’s IR. In the compilation process, being it Just-in-Time (JIT) or 

Ahead-of-Time (AOT), the IR is consecutively lowered, from its initial high-level represen- 

tation to a more hardware-specific (or by Halide’s terms, target-specific) code, initializing 

on the top-level loop. Each lowering passing includes runtime sanity checks which ensures 

that the compiled pipeline is executable. This is required for Halide’s correctness and 

stability guarantees. Thus, any schedule which may violate the assertion that the output 

must be the same, independently of the execution ordering, fails to compile before actually 

running. An example of this would be parallelizing a function on a domain which depends 

on the previous value, e.g., sum(x, y) = sum(x − 1, y) + input(x, y) with a parallel(x) 

schedule. Since every value sum(x, y) can only be calculated after sum(x−1, y), it cannot 

be parallelized on domain x. This could be fixed by changing the parallelization domain 

from x to y. Further, the runtime sanity checks prevents the execution of inputs which 

cannot be properly executed. For instance, It is impossible to execute a blur filter with a 

large structuring element (e.g., 20 × 20) on an image smaller than the structuring element 
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itself (e.g., image is 15 × 18 in size). Attempting to perform such executions would result 

in a runtime error, with Halide stating the problem. 

Currently, Halide supports a number of architectures, or targets, including but not 

limited to x86, ARM [66], MIPS [67], and CUDA [29]. Code generation to multiple hard- 

ware devices is facilitated by the use of LLVM [63]. Halide employs a Visitor Pattern [68] 

on IR elements as a way to decouple the high-level abstraction from hardware specific 

code. This improves Halide’s extensibility for adding new targets. On the compilation 

of the Halide library, each target implementation of these high-level objects (e.g., Func’s 

and Var ’s) is compiled as LLVM IR fragments with the resulting bitcode put together 

as constant strings. When compiling a Halide pipeline, either JIT or AOT, Halide dese- 

rializes the required components for a given target and combine them with the lowered 

pipeline on a single LLVM module. This module is then compiled to the target-specific 

machine code to either be used at once for JIT compilation, or outputted as a runtime 

static library. It is worth noting that for JIT compilation, the compiled module is flex- 

ible in a way that it may be updated dynamically after the initial compilation without 

requiring a whole new runtime to be created. This is possible through the decoupled use 

of individual bitcode strings. 

 
Halide Limitations 

Although Halide was created with the separation between algorithm and schedule in 

mind, some more sophisticated optimizations may require the algorithm to change. This  

happens for problems with more complex inter-stage dependencies and data access pat- 

terns. For instance, the blur algorithm was implemented in a two-step architecture to 

facilitate scheduling, while a single-step implementation was possible. Still, being with 

schedules independent from the algorithm the debugging process remains an easy task. 

Only later the pipeline can be optimized through the same trial-and-error process Halide 

advocates. Further, Halide suffers from having runtime-only errors on schedules, as op- 

posed to compilation-time errors. This is due to the runtime soundness checks which 

cannot be performed on schedules at compilation time, and results in scheduling code 

which is harder to debug. 

Halide is used mainly for image processing problems, but can also be used for stencil 

operations. Regarding complex neural networks, Halide is not the most recommended tool 

since it does not support cyclical pipelines. This is required for Long Short-Term Memory 

architectures in which a number of steps, unknown at compilation time, is required [69]. 

Given that Halide was implemented for shared memory targets only, it does not na- 

tively support any sort of CPU-GPU cooperative or multi-GPU execution, nor it supports 

distributed environments. It is possible however to use Halide as a sSPMD execution 
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tool and add support for distributed memory manually through MPI. This strategy can 

however be cumbersome since efficient MPI/CUDA programming is not a trivial problem. 

Although some work has been done to improve Halide’s usability for hybrid or distributed 

computing [60, 70, 71], cooperative CPU-GPU execution is, to this work publication date, 

still unavailable for Halide. 

Finally, Halide is also limited by its iteration model, which does not support more 

complex irregular spaces. Also, Halide’s static analysis model requires that pipelines 

must be defined as DAGs, not allowing dynamic loops which size are only known at 

runtime. By known at runtime it is meant the Halide pipeline internal execution. For 

instance, it is legal to have a pipeline with domains’ sizes defined only at the pipeline 

execution, however, it is impossible to iterate a given function a number of time which is  

unknown or content-dependent. This limitation can be surpassed with polyhedral DSLs 

as seen next [60]. 

 
Halide Extensions 

With regards to Halide’s lack of cooperative CPU-GPU execution capability, Liao et 

al. [71] propose an extension which partitions the input domain with a user-defined size 

parameter to later enable cooperative execution. Boundaries of the two partitions are 

resolved through redundant computation of borders with regards to existent data depen- 

dencies. In contrast to a naive approach of manually partitioning the input image for 

later concurrent Halide execution on both targets, the proposed work avoids unnecessary 

memory transfer operations by joining the output buffers into a single output by per- 

forming in-place operations on CPU targets and copying the GPU output data directly 

to the final output buffer. In order to reduce load imbalance the input domain can be 

partitioned in more than two parts. The execution model is based on a one-dimension 

array of to-be-executed partitions. This array is consumed from both ends towards the 

middle by both a CPU thread and a GPU thread on each opposing end. This approach 

results in a flexible model for cooperative CPU-GPU execution, however, not enough to 

enable the use of multiple CPU or GPU devices (or threads). 

The work of Denniston et al. [70] focused on adding distribution support for Halide 

by adding a new scheduling level for distributed computing with a tradeoff of redundancy 

vs communication. This is done through the introduction of two new scheduling direc- 

tives: distribute() and compute_rank(). Using a simple producer-consumer pipeline as 

an example, e.g., blurx produces for blury, it is possible to represent four points on the 

redundancy/communication tradeoff: (i) local and global redundancy, (ii) local redun- 

dancy and no global redundancy (through communication), (iii) no local redundancy and 

massive global redundancy, and (iv) no local redundancy and border global redundancy, 
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without communication. These cases are depicted on Figure 2.4. For all cases blury is 

scheduled for distributed execution across the y domain. The first case can be achieved 

through blurx.compute_at(blurx, y), meaning that for every y value of blury an entire 

widith ×3 area of blurx is calculated beforehand. This results in local redundancy be- 

tween every value of y and global redundancy on the intersections between computed 

regions of blurx, as seen on Figure 2.4a. By doing blurx.compute_root().distribute(y) the 

global redundancy is replaced by communication of the bordering regions between parti- 

tions on y (see Figure 2.4b). Local redundancy can be removed completely by scheduling 

blurx.compute_root(), which also results in massive global redundancy, since blurx exe- 

cutes on the whole image on each distributed space, as seen on Figure 2.4c. 
 

  

(a) Scheduling case (i): local and global re- 

dundancy. 
 
 

 

(c) Scheduling case (iii): No local redun- 

dancy and massive global redundancy. 

(b) Scheduling case (ii): local redundancy 

without global redundancy. Dashed ar- 

eas are communicated between distributed 

spaces. 
 

(d) Scheduling case (iv): No local redun- 

dancy with small global redundancy. Over- 

lapping regions are defined as ghost zones. 

 

 

(e) Caption of symbols used to represent computation, communication and 

access to local memory. 

Figure 2.4: Illustration of possible scheduling tradeoffs for the Distributed Halide sched- 
ules example of the blurring algorithm. Each line of blocks is processed on a distributed 
setting, with the first column being the blurx function and the second blury. 
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For this particular example the best schedule is achieved by (iv) with blurx.compute_rank(), 

which removes any local redundancy and minimizes global redundancy without requiring 

communication between distributed spaces. This is possible through the compute_rank() 

directive, which infers a ghost zone [72] required by blury and executes this extended 

partition locally, simulating a compute_root() schedule on a distributed environment. 

The Tiramisu compiler was recently introduced as an extension/specialization of Halide, 

with novel commands for distributed environments [60]. It extends Halide with a polyhe- 

dral syntax with directives to support distributed execution and explicit management for 

data storage and movement. However, Tiramisu does not support JIT compilation and 

parametric tiling of images, i.e., the input size must be known at compilation time. As 

such, a compilation for each data input size is required and must be known AOT. The 

scheduling directives are compiled into a Tiramisu-specific IR, which wraps Halide’s IR 

for local scheduling, and MPI for distribution. Thus, Tiramisu supports all of Halide’s 

directives. Regarding actual coding, Tiramisu represents its polyhedral domains as text 

strings instead of having actual C++ direct bindings (as with Halide for instance). This 

further exacerbates the already present problems of runtime/compilation-time errors by 

also having text strings as high-level entities, which are not validated on compilation-time. 

There has been extensive work on automation using the Halide DSL. Most predom- 

inantly, there has been a focus on automatic schedulers (auto-schedulers) [57, 58, 59], 

which are available for a diverse set of targets. This particular problem is considered 

rather hard by itself given the large search domain for these algorithms on deeper and 

more realistic pipelines. Also, automatic low-level code to high-level Halide translation 

has been applied to over 260 image processing functions on Adobe Photoshop while also 

achieving speedups with auto-schedulers on generated code [73]. 

 
2.3.3 The Region Templates Framework (RT) 

The Region Templates (RT) [74] is a runtime system designed to execute large-scale 

dMPMD image analysis applications. It allows for applications to be described as a hier- 

archical workflow, where coarse-grain workflow stages may be implemented as a workflow 

of fine-grain operations. The overall system architecture is presented in Figure 2.5. The 

system uses the Manager-Worker model, where a single Manager process (system-wide) 

maintains a queue of stage instances to be executed. Stage instances are assigned for pro- 

cessing on Workers in a demand-driven basis as their workflow dependencies are resolved. 

Each Worker is responsible for internal scheduling of fine-grain tasks on available local 

resources. 

RT also abstracts the data storage layer from the application programmer. In RT 

the communication between coarse-gain stage instances is carried out by writing/read- 
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Figure 2.5: RTF architecture and workflow execution steps: (1) Worker queries Manager  
for stage instances created by the application workflow, (2) Worker consumes instances 
for processing, (3) Fine-grain tasks created in each Worker are assigned for execution with 
CPU and/or GPU, (4) Data is read, tasks processed, and results written to storage, and 
(5) Worker is notified of the end of a stage instance execution. 

 
 

ing to/from region templates data elements, instead of performing explicit inter-process 

communication. This simplifies the application development and also enriches the system 

with data placement awareness, which may be used to improve data locality during stage 

instance scheduling. 

Globally, RT uses MPI for inter-node (or inter-Worker) communication and thread 

affinity configurations on a per-node scope. Workers are composed of thread pools to 

manage available devices as CPU and GPUs and a have access to the storage layer. A 

single Worker may be created per computing node as it is able to use of all available 

computing devices. On a given distributed system, each computing node has a single 

Worker process, with a single Manager process globally. For heterogeneous computing 

nodes, each distinct resource on a shared memory space represents a single schedulable 

target on a Worker. For instance, a computing node with dual-socket CPUs and two 

GPUs have a single CPU and two GPU schedulable resources. 

The execution steps when using RT are detailed in Figure 2.5. The Manager creates a 

local queue of stage instances to be executed, and Workers will consume and process them. 

This request is performed through a message (1) sent by the Worker, which is replied (2) by 

the Manager with metadata describing the instance(s) it should process. The Worker then 

(3) creates the fine-grain tasks that represent the processing of the received stage instances 

and inserts them in the local queue. Once (4.1) a task is dispatched for execution with a 

CPU or a GPU, (4.2) the input (or intermediary) data are read, (4.3) the processing takes 

place, and (4.4) output data is written to the RT storage hierarchy after execution. It is 

worth noting that data movement is performed dynamically on-demand when a Worker 

process requests data that may be on another node. After each task is completed, (5) a 
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callback function is executed to notify the Worker about the task’s completion. Further,  

when all of the fine-grain tasks for a given stage instance (created in 3) have finished, 

the Manager is notified along with a request for new stage instances (1). This process 

continues until there are no stage instances left to be processed. 

The distributed storage hierarchy enables exchanging data among stage instances ex- 

ecuted in different Workers or computing nodes. Local and distributed storage are part 

of a single hierarchical infrastructure, and search for the requested data starts in the first  

layer of the storage (local and faster) and follows until it is found, for instance, in the 

distributed storage. The user can configure which storage devices are used in each layer 

of the hierarchy, the amount of space available, and the data replacement policy. For 

instance, as illustrated in Figure 2.5, one could configure the system with a three level 

hierarchy having two node local levels L1 and L2 using, respectively, SSD and HDD, and 

a distributed storage in L3. All data are stored in RT data containers, which are spatial - 

temporal data representing 2D/3D regions with a temporal component. Each RT data 

unit may contain multiple Data Regions (DR), for instance, storing different measures of 

the same spatial location. Typical data structures that a DR may store include vectors, 

matrices, and polygons. The availability of such data structures improve development 

productivity as data are available to the application in common representations used in 

the domain. While RT presents all the features described above, it does not simplify the 

development of stages or tasks code that execute the application transformations. 

 
2.4 Motivating Field of Research 

There is a widespread adoption of Whole Slide Imaging (WSI) solutions for digital histopathol- 

ogy applications [75]. Through the use of powerful slide scanners it is possible to extract 

high-resolution images, which can be used for helping medical professionals [13]. These 

automatic slide loaders are able to quickly retrieve large numbers of WSIs. With these, 

tools and techniques for Computer-Assisted Diagnosis (CAD) are being developed, which 

promises to improve on the effort required by medical professionals by automating la- 

borious tasks [76]. Another interesting application is related to Content-Based Image 

Retrieval (CBIR) related to histopathology [13, 77], on which large databases of WSIs 

can be queried for image content. Finally, there are also research efforts to recognize pat- 

terns of diseases and classify them, how patients may respond to treatment or to estimate 

their prognosis also benefit from WSI usage [78, 79, 80, 81, 82]. 

All mentioned applications and fields have one aspect in common, its use of WSIs. 

These WSIs are high-resolution images, sometimes reaching over 100, 000 × 100, 000 pixels 

of resolution on higher magnifications [6]. These images are aggressively compressed since 
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they could reach over 30 GB of size for an uncompressed color image. Also, these are 

available in a pyramidal representation, on which the same image is available at different  

magnifications (and thus resolutions). Further, each patient may have multiple tissue 

slides, and data from multiple patients are required for larger-scale studies [21, 20, 13]. 

These characteristics compound, increasing the computational cost of performing such 

studies, making it necessary the use of high-performance resources. There are currently 

open databases for such WSIs, with the images used on this work being provided by The 

Cancer Gnome Atlas project (TCGA) through the Genomic Data Commons Data Portal 

(GDC) [83, 84]. 

For such large-scale studies the use of High-Performance Computing (HPC) solutions 

is a natural choice. The usage of such solutions have been more widely employed for 

large-scale WSI studies [6, 13, 14, 15, 77]. However, most related works for such studies 

have only employed the use of GPUs, on some cases using more than one GPU on a 

single node. The use of distributed environments is mostly found on works focusing HPC  

solutions instead of histopathology or cytology [7, 21, 22, 23, 24, 25, 74]. Usage of such 

resources at a larger-scale should then be a goal of histopathology research, mostly since 

there are evermore resources available through public access programs like the Advanced 

Cyberinfrastructure Coordination Ecosystem: Services & Support, previously known as 

the XSEDE. One reason behind the usage of mostly local resources, albeit with multiple 

GPUs, is the usage of Convolutional Neural Network (CNN) solutions [6, 13, 14, 15, 16, 17], 

which is known to have high communication demands, which can be drastically slowed 

down by communication overheads on distributed environments [85]. It is worth noting 

that one field which is gaining increasing interest regarding distributed training of CNNs 

is federated learning [15, 86, 87, 88]. It appeals to the usage of data locally sourced from 

hospital or data silos with privacy requirements. However, it is important to note that 

although most WSI solutions are shifting towards CNNs there is still work being done 

with classical image processing algorithms [16, 77]. Also, there are some limitations to the 

usage of CNNs. It is required for WSIs to be partitioned into rather small regions (e.g., 

around 512 × 512 pixels), being thus unable to work with larger, or even full-sized images. 

This can be restricting for some applications. For instance, the Camelyon16 challenge for  

detecting metastases in WSIs included the goal of also detecting the actual invasive cancer 

region, which would be challenging for CNNs since it requires a more global knowledge of 

the image [89]. 
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2.5 Motivating Application 

A WSI classical image processing application was chosen as the object of study and op- 

timization for distributed execution. This is a well known watershed-based segmentation 

workflow, also used on previous works [7, 9, 20, 21, 22, 23, 25]. This application, also 

seen on Figure 2.6 focus on enabling correlative analysis, such as survival analysis and 

identification of significant gene expressions through pathology imaging features. Thus, 

the motivation of this work is to accelerate the extraction of morphological information 

from histological tissue structures, such as cell nuclei. This process leads to characteristics  

which correlate well with disease progression and clinical data [5, 7]. 

The original WSI image analysis applications have the following set of core analyses 

stages: (i) color normalization, (ii) segmentation, which detects and delineates objects of  

interest or cells nuclei in our use-case, (iii) feature computation to extract descriptors of 

the objects, and (iv) correlative analysis that classifies and/or integrates data extracted 

from image with other information sources according to the target analysis. Stage (i) is 

responsible for normalizing different images, sometimes retrieved by different equipment,  

enabling consistent analysis between different images. The segmentation step mostly 

delineates the boundaries of cell nuclei. The segmented nuclei are used to extract a large 

number of morphological features. These features can undergo a SA process to abbreviate  

the large set of features to the most important ones. From these, a correlational analysis 

can be performed to improve the quality of digital pathology applications. 

Regarding compute costs, the normalization and correlative analysis phases are typ- 

ically compute inexpensive as compared to segmentation and feature computation. The 

correlative analysis, for instance, works on patient signature level or a set (vector) of fea- 

tures per image. The segmentation, which is the most compute expensive step and target 

for implementation of for this work, executes complex operations on high-resolution im- 

ages. 

The segmentation is presented along with the feature computation on Figure 2.6.  It 

identifies and delineates cells and nuclei using a series of transformations built on top 

of morphological operations. First, the background/foreground are identified (GetRGB), 

and an initial object candidate set is reconstructed from the cells seeds (Morphological  

Reconstruction) through erosion/dilation and Irregular Wavefront Propagation Pattern 

algorithms (IWPP). Further, holes in objects are filled (Fill Holes) with another round of  

dilation/erosion and objects are opened (bwOpen) to compute the cell nuclei set. Finally,  

objects touching each other or clumped are separated with Distance Transform and Wa- 

tershed. These morphological reconstruction operations are mostly built on the concept 

of data propagation through the image (IWPP), which makes the computing cost depen- 

dent of data content. In other words, certain data regions, for instance, containing more 
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Figure 2.6: Segmentation and Feature Computation phases of the motivating application. 

 
 

objects of interest tend to require more propagation, and consequently, a larger number of 

iterations through the image, resulting in higher execution times [90]. In contrast to reg- 

ular computing pattern algorithms, as erosion/dilation, propagation algorithms cost my 

be rather different for same-sized inputs. Feature computation is less compute demanding 

than segmentation and calculates characteristics of the segmented objects, which includes 

color, gradient statistics, edge, and morphometry statistics. Most of the features can be 

computed with high parallel efficiency and are easier to implement. Note that after the 

GetRGB step, the execution may be terminated if the algorithm identifies an excessive 

amount of background (e.g., > 98%). This strategy reduces the overall execution cost 

by avoiding fully processing empty tiles. This approach was implemented in the original 

application workflow [5, 7]. 
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Chapter 3 

Related Works 

In order for the motivating application to support distributed execution spatial data 

partitioning algorithms are required. These are thus defined and described on this chapter. 

Further, this chapter also shows a comparative analysis of related works and the current 

state-of-the-art related to this work. 

 
3.1 Spatial Data Partitioning 

In order to expand on data partitioning is important to define the data which is to be 

partitioned. This work focus on the image-based representation of data (ID), where the 

environment in which atomic objects (pixels) lie is partitioned [91]. Another important 

class of data is multidimensional point-based data (PD) [19], which has been extensively 

studied [39, 92, 93]. Both data formats are shown on Figure 3.1. It is important to 

acknowledge PD since many of its constraints are similar to ID, meaning that some 

partitioning algorithms were originally adapted from PD to ID. 

By definition, the elements of PD are spread on a sparse space. Partitioning algorithms 

and data structures for this sort of data focus on balancing the number of elements by 

partition or generating balanced hierarchic structures for later lookup [19]. Such hierar- 

chic organizations (e.g., trees) can prove themselves useful for improving inter-partition 

features, for instance, the communication cost when distributing the partitions for parallel  

execution [94, 18]. These objectives of partition-balancing and inter-partition feature op- 

timization can be transferred for ID, and thus enable the application of such algorithms.  

The partitioning of the space into regions with the same number of points is equivalent to 

cost-wise partitioning of ID. As such, we only regard non-overlapping algorithms. Further, 

the hierarchical partitioning of an ID space can lead to a reduced sum of all perimeters,  

which is addressed on Chapter 5. 
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(a) 2-dimensional point data (PD) parti- 

tioned. 

(b) Extraction of regions of interest of 

image-based data (ID). 

Figure 3.1: Partitioning examples of multidimensional point-based data and image-based 
data. 

 
ID partitions are limited to rectangular regions, which improve storage and access 

patterns. Further, for both ID and PD, partitions can be overlapping or non-overlapping. 

Overlapping partitions can lead to redundant computation for ID partitions. Both data 

representations share two main strategies: Fixed-Grid and Recursive Partitioning [18, 39, 

95, 96, 97]. 

 
3.1.1 Fixed-Grid Spatial Partitioning 

Also seen as regular-mesh [18], Fixed-Grid is a class of regular partitioning algorithms on 

which all partitions have the same geometrical size. For any given input, Fixed-Grid may 

return the exact number of partitions required, being possible to vary the grid structure. 

The two possible ways to generate this partitions are shown in Figure 3.2, on which the 

partitioning can be performed on all coordinates/dimensions or just one. Partitioning on 

all coordinates also have another level of complexity related to the grid organization. For 

instance, 18 partitions on a 2D domain can be achieved by 1×18, 2×9 and 3×6 grids (on 

both coordinates). Thus, for large numbers of required partitions different algorithms to 

find the best grid organization can be implemented. With Fixed-Grid algorithms there is 

no guarantee that the partitions would be balanced cost-wise. 

 
3.1.2 Recursive Spatial Partitioning 

Most popular spatial partitioning techniques are variants of recursive bisection. These 

algorithms performs successive cuts until a desired number of partitions is reached [18].  

The partitions are balanced by a chosen criteria, returning equivalent partitions. Two 

of the most common algorithms are the Quad-Tree and KD-Tree [19]. These algorithms 
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(a) Grid-based mesh. (b) One-dimensional regular mesh. 

Figure 3.2: Fixed-grid partitioning examples. 

 
can be implemented with a hierarchical component, to optimize data search. For the 

purpose of this work hierarchical structures are not required. Exemplified on Figure 3.3a,  

Quad-Trees partitions the image into four equal regions. This algorithm can be adapted 

from PD into ID representation [98]. The KD-Tree algorithm is an example of recursive 

coordinate bisection (RCB) [18], or also defined as multidimensional binary partitions 

(MBP) [94].   RCB algorithms bisect a given image or region into two regions with a 

cut perpendicular to a coordinate axis. This process is done until the expected number 

of partitions is reached. KD-Trees work better when the expected number of partitions 

is a power of two. Otherwise, the partitions can be unbalanced cost-wise due to the 2-

fold partitioning. An example of how an image can be partitioned with KD-Tree is 

shown in Figure 3.3b. KD-Tree usually bisects the largest coordinate, thus reducing the 

total borders. This reduces communication overheads for applications which requires data 

synchronization between partitions. 

 

(a) Quad-Tree partitioning. (b) KD-Tree partitioning. 

Figure 3.3: Recursive spatial data partitioning examples. 
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3.2 Related Languages, Frameworks and Tools 

This sections presents related work on domain-specific languages (DSL) and tools target- 

ing image analysis applications, and runtime/compiler systems for hybrid machines. The 

closest related work may be Halide itself, which was described in details in Section 2.3.2,  

and is extended in this work to support cooperative CPU-GPU execution and distributed 

memory machines along with cost-aware data partitioning. 

The works presented in [70, 71] have extended Halide, respectively, with support for 

distributed memory execution and a hybrid (CPU-GPU) single node execution. Hybrid 

Halide [71] enables the use of CPU and GPU cooperatively in the execution by splitting 

input data for parallel processing. It minimizes host-device communication by copying the 

GPU output data directly to the final host output memory location. The same mechanism 

is implemented in our work, but we also perform efficient cost-aware data partition, even 

on a single node level. The Distributed Halide [70] is an interesting work that introduced 

a new dimension to the scheduling domain related to distributed memory execution. 

It allows the developer to choose a data dimension to be distributed along with the 

introduction of ghost-zones or inter-node communication to resolve border discontinuities. 

In this case, only CPUs are used, and data distribution is left entirely to the programmer,  

increasing the development effort. Tiramisu [60] is another interesting extension of Halide 

that proposes a polyhedral syntax with directives to support distributed execution and 

explicit data movement management. However, Tiramisu does not support Just In Time 

(JIT) compilation and parametric tiling of images, i.e., the input size must be known at 

compilation time. As such, a compilation for each data input size is required and must 

be known Ahead Of Time (AOT). These aspects impose an important limitation for the 

use of Tiramisu in our solution. 

PolyMage [99] is a python embedded DSL whose applications are compiled to C++ to 

enable efficient execution. It abstracts application development as pipelines with a compo- 

sition of image processing operations (e.g., point-wise, stencils, histograms, upsampling, 

downsampling). While its pipelines can only be represented as Directed Acyclic Graphs 

(DAGs), it has a time-iterated operation, which can hide the cyclic portions of pipelines. 

Nevertheless, it does not abstract input size inference, which must be defined by the user, 

using polyhedral notation. The schedule for the pipeline is found by PolyMage automati- 

cally, not supporting any changes on evaluation or traversal order by the user. While this 

can be practical for inexperienced end-users, it can hamper performance on more peculiar 

cases when the domain is well-known. In order to reduce the schedule optimization time, 

the tiles’ sizes, which are the only variables of a given pipeline, have predefined valid 

values that reduce the search space. One advantage of generating the whole scheduling is 

that it enables sophisticated inter-stage tiling (e.g., parallelogram [100] tiling, split tiling 
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[101], overlapping [102], etc), thus optimizing data locality. However, PolyMage does not  

support distributed memory execution, being usable only on local CPU settings. 

Several general purpose compilers and scheduling languages targeting GPU based sys- 

tems have also been designed to facilitate the use of such devices, for instance, in stencil  

applications or linear algebra [103, 104, 105]. While these solutions fail to offer a high- 

level language for image analysis, such as proposed in Halide, they introduce interesting 

optimization aspects targeting GPU equipped machines. Fireiron [103] decouples im- 

plementation from scheduling, enabling code transformation to efficiently exploit data 

locality. Scheduling is performed through specifications or specs. These specs can be 

considered a data-structure which describes the computation patterns of a kernel (im- 

plementation code), such as memory layout, data movement and access, and the use of 

special GPU instructions. Specs can be decomposed hierarchically, providing more inter- 

mediary layers of abstraction for data management. This organization enables fine-grain 

control over GPU implementations at the expense of usability for end-users. 

HSTREAM [104] is a compiler focused on running applications on hybrid machines.  

This is achieved by leveraging pragma scheduling statements to annotate the application 

code and a runtime system. Different from newer versions of OpenMP, which can offload 

computation to single accelerator devices (e.g., GPU), HSTREAM provides mechanisms 

to perform cooperative execution among multiple heterogeneous devices. This is possi- 

ble through a source-to-source compiler for target specific code, which is then executed 

on HSTREAM’s runtime system. On the back-end, HTREAM uses OpenMP for CPU 

scheduling and CUDA for GPUs. Work distribution is performed directly by the code 

programmer through the definition of data chunks for each device. This simple solution 

allows other developers to implement their desired workload partition policies. However,  

HSTREAM’s pragma statements are interpreted at compile time, which limits the sched- 

uler flexibility. 

Panda is another remarkable compiler based solution [105]. It provides a set of pragma 

directives to parallelize and distributed stencil tasks to distributed CPU or GPU only 

settings, or distributed hybrid settings. Execution with multiple GPUs per node is sup- 

ported. As with HSTREAM, Panda uses a source-to-source compiler, which translates its 

pragma annotations to MPI, CUDA, OpenMP or a combination of them. The MPI/CUD- 

A/OpenMP code is fully compiled to binary, meaning that no runtime system is required 

or made available by Panda. While Panda enables efficient stencil execution, it does not 

offer a higher-level language and scheduling concepts, as with Halide. Further, Panda also 

does not offer the flexibility of dynamic scheduling as in our solution. In other words, 

Panda performance on distributed system fully rely on automatic compiler optimizations, 

and it does not deal with irregular data computations. It also does not offer tools specific 
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Table 3.1: Related work comparative analysis. Each work is classified considering code 
availability, whether it is a fully fledged DSL or a set of compilation definitions [3], schedul- 
ing decoupling, target processor, distributed execution, and partitioning characteristics. 

 
 

Code Schedule DSL Img. 
Target Device 

Dist.
 

Cost-Aware 

 
 

 
Hybrid 

Halide [71] 

 
✓ ✓ ✓  

Hybrid, 
CPU,GPU 

Distributed 
Halide [70] 

 
✓ ✓ ✓ CPU ✓ ✘ 

 

PolyMage [99] ✓ ✘ ✓ CPU ✘ ✘ 

Fireiron [103] ✘ ✓ ✘ GPU ✓ ✘ 

HSTREAM [104] ✘ ✘ ✓ 
Hybrid, 

✘ ✘
 

CPU,GPU 

Panda [105] 
 

✘ 
 

✘ ✓ 
Hybrid 

✓ ✘
 

CPU, GPU 

Our 
 

✓ 
 

✓ ✓ 
Hybrid, CPU, 

✓ ✓
 

GPU 

 

to image analysis, which is the target of this work. 

The related work is summarized in Table 3.1 to facilitate comparison. They are char- 

acterized by: (i) public code availability, (ii) whether the schedule can be decoupled from 

the implementation, (iii) how the system is implemented, (iv) the target computing de- 

vices supported, (v) if there is support for distributed memory execution, and (vi) if 

they support irregular data partition for parallel execution. As may be seen, solution 

proposed on this work is the only one to enable hybrid and distributed execution with ir- 

regular data partition targeting image analysis. As presented in the experimental results, 

these features are important to fully take advantage of modern computing systems and, 

consequently, to maximize the performance of our target application domain. 

✓ ✘ 

Work 
Avail. Decoupling Analysis Exec. Partitioning 

Halide [56] ✓ ✓ ✓ CPU or GPU ✘ ✘ 

Tiramisu [60] ✓ ✓ ✓ CPU or GPU ✓ ✘ 
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Chapter 4 

Supporting Pathology Image 

Analysis Applications on Distributed 

Memory Hybrid Systems 

 
This chapter describes the system implementation and other methods for supporting 

efficient execution of histopathology analysis on a dMIMD environment with both multiple 

computing nodes on a network and local heterogeneous computing devices. The execution 

of real-world applications on these modern environments is a complex task that may 

require intervention from the programmer. For instance, (i) workload must be distributed 

among compute nodes and among heterogeneous processing elements on each node, (ii) 

communication must be orchestrated, and (iii) there should be efficient code targeting the 

available devices. In this work, it is built a system solution that enables efficient use of 

hybrid systems and addresses these challenges, while being simple to use. 

As previously stated, there is a demand for automatic WSI analysis applications. 

These can be computationally demanding, needing large amounts of time to be com- 

pleted. HPC solutions are great candidates for improving this issue of high computing 

costs. However, HPC techniques/resources can be complex to use efficiently [106]. In 

order to use distributed resources, the application input must be partitioned, which is a 

complex problem since it adds the issue of workload imbalance, meriting a whole field 

of research [107, 108]. Dynamic scheduling can alleviate such issue at the cost of more 

complex execution systems. Static partitioning can result in better system performance 

regarding overheads, while also rendering the workload imbalance, and thus overall per- 

formance, dependent on the partitioning quality. Further, it has been shown that WSI 

applications are becoming evermore reliant on GPU devices [6, 14, 106, 108]. The use of 

such resources adds even more complexity to these solutions or systems. GPUs not only 

require specific programming languages and/or frameworks but also are more difficult 
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to efficiently program. Also, multi-GPU compute resources are also becoming evermore 

available, for which systems and solutions for distributed memory environments are re- 

quired for coordinating the execution on all GPU devices [108]. Finally, medical domain  

experts are not expected to be familiar enough with all the nuances of using these HPC 

solutions, resulting in a difficulty to efficiently use the available HPC resources. 

The system proposed on this work aims to alleviate the described issues, allowing 

easier and more efficient usage of HPC resources for WSI applications. The user will be 

able to use a high-level DSL for efficiently programming their applications for both CPU 

and GPUs. The input WSIs need to be partitioned with regard to workload imbalance. 

The system also needs to stage computational tasks across distributed hybrid resources, 

resolving data locality issues. A system which resolves all of these issues is  presented on 

the following sections. 

 
4.1 System Overview 

The proposed system employs a simple execution model, on which a user can execute 

a WSI processing workflow, depicted by Figure 4.1. This workflow can be defined as 

a directed acyclic graph of compute stages. Stages are modeled through the high-level 

DSL Halide [56]. Each stage will be executable on any of the available heterogeneous 

resources due to a Halide integration to the system, detailed on the next section. With 

an input workflow and an input WSI, or set thereof, the system is able to run a single 

stage on each available resource. These resources can be a set of CPU cores (e.g., a 

socket or full node) or GPUs and other accelerators. Before the execution of any stage 

the system partitions the input WSIs statically with a cost-aware partitioning algorithm 

with focus on load balancing, which is detailed on Section 5. It is common for WSI 

applications to partition the input images, which require them to manage what should be 

done regarding the borders of the partitions [109]. A border resolution semantic allows the 

independent execution of image partitions. The proposed system resolves the partitions 

borders by employing a redundant overlapping region between every two partitions, which 

allows their independent execution. At the end of execution of a partition, data regarding 

the overlapping regions can be exchanged between partitions which are used for another 

compute stage. From it the execution process iterates on the remaining stages. 

The proposed system, as compatible with RT, employs a worker-dispatcher model. 

The manager is responsible for partitioning the input WSIs and managing the execution 

of the stages. Each Worker requests a stage for execution for each of its compute resource.  

For instance, a hybrid node with dual-socket CPUs and 2 GPUs can request 3 stages, one 

for all the CPU cores and 1 for each GPU. Before the execution of the actual user- 
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Figure 4.1: Execution model of the proposed system. A set of WSIs and a application 
workflow are used as inputs. The system then partitions the input WSIs and executes 
one stage of the workflow at a time. Partitions are executed in parallel. Borders are 
automatically resolved at the end of the execution of a given stage, before the next stage 
can be executed. 

implemented application code the data dependencies are resolved at the distributed inter- 

node level by RT and intra-node by the proposed system. Initially, every Worker possesses 

the input WSIs at local storage to optimize its execution (WSI files are heavily compressed 

and can be transferred to all nodes beforehand). If an input partition for a given stage 

belongs to the initial WSI then a Worker is able to load it directly from its local node 

storage. Otherwise, RT’s data management system ensures that the required data is 

present, transferred from other distributed nodes. When executing on GPUs the data is 

also transferred automatically to it before the user application code is executed. After the 

execution and border resolution, the resource which executed the stage is freed, allowing 

the Worker to request a new stage from the manager. This whole process is shown in 

Figure 4.2. 
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Figure 4.2: Process of executing a stage. After partitioning and task submission any 
required data partitions are loaded for the required resource. After execution and border 
resolution a new stage can be requested. 

4.2 Interface for Implementing the Applications 

One way to improve the entry barrier for non-experts of HPC employed by the proposed 

system was the usage of a high-level DSL which enables an unified programming model 

for both CPU and GPU resources. For such task the Halide DSL [56] was chosen with the 

goal of providing a high-level language for Region Templates (RT) application developers 

while enabling distributed memory and hybrid CPU-GPU execution of applications. The 

combined use of Halide and RT was also motivated by the goal of maintaining application 

decomposition into a hierarchical workflow. This model is natively supported in RT, 

with Halide serving as a language for implementing stages’ internal code or processing 

transformations. 

In theory, the proposed system could use any sort of DSL as a basis for programing 

the user-defined application, given that its semantics allow programing for both CPU and 

GPU without distinction. However, given the motivating domain of WSI applications, 

Halide is a great fit as an image processing focused tool. As stated, Halide provides an 

unified semantic for programming for both CPU and GPU devices, which is not true for  

other lower-level tools, such as CUDA or OpenMP. In order to improve its usability, it 

is desirable for the chosen DSL or framework to be embedded on C++, excluding more 

specific solutions, like the Chapel parallel programing language [110]. Also regarding 

better support, Halide is a consolidated tool, under regular development since 2013 with 

its original paper currently having over 1200 citations on Google Scholar [56] and relevant 

research work being done with it [73, 111, 112, 113]. Regarding performance, Halide 

proves to be efficient to the degree of being used to elevate the performance of legate 

code [111] or even improve on the performance of operations from the widely used image 

editing tool Photoshop [73]. Other tools, e.g, the HIPAcc DSL [114, 115], have been 

proposed as valid alternatives to Halide performance-wide. However, Halide’s decision of 
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having scheduling code separated from the remaining of the code allows more flexibility 

of usage by non-experts on HPC, while still attaining reasonable performance. Finally, 

there is extensive work on automatic scheduling of Halide workflows, further reducing the 

difficulty of reaching performant code without extensive knowledge on HPC [57, 58, 59]. 
 

Algorithm 4 Example of an application on top of RT with Halide. 
 

1: function STAGE1(images, parameters, target) 
2: Halide::Func f implementation of task with parameters 
3: scheduleF orT arget(f, target) 
4: images.at(0) f.realize(images.at(1)) 
5: end function 

6: function STAGE2(images, parameters, target) 
7: Halide::Func g implementation of task with parameters 
8: scheduleF orT arget(g, target) 
9: images.at(0) g.realize(images.at(1)) 

10: end function 

11: function MANAGER( ) 
12: params list of all application parameters 

13: partitioner RT::CADP(dataP ath, gzSize, n, costFunction, gpuSpeedup) 
14: for each partition in partitioner.getP arts() do 

15:  RT::EXECUTE(stage1,   partition,   params) 

16:  RT::EXECUTE(stage2,   partition,   params) 
17:  stage2.depends(stage1) 
18: end for 
19: RT::STARTUPEXECUTION(  ) 

20: RT::FINALIZESYSTEM(   ) 
21: end function  

 
The proposed solution concentrates on the development and optimization of the domain- 

specific data transformations (stages). A pseudo-code example for a typical user-defined 

application with two stages in the proposed system is presented in Algorithm 4. The user 

is required to implement the stage function that will execute on the Workers, following 

a predefined template. This template includes used data partitions (input and output 

images with the Halide data types), parameters, and the target device (lines 1 and 6). 

The output data of each stage is locally assigned (lines 4 and 9) and globally managed by 

RT. Thus, any data movement required after the completion of a stage is automatically 

handled. With this model the code within each stage is a set of Halide functions instead 

of pure C/C++ (or CUDA) as with original RT applications. This eases the burden of 

application development due to the simpler Halide syntax. Besides decoupling implemen- 

tation and code optimization, this strategy also reduces the effort on code generation or 

implementation targeting multiple devices, since we can rely on Halide to generate effi- 

cient code. We can thus generate, for instance, CPU and GPU code in order to enable 
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cooperative execution on hybrid compute nodes. Although Halide by itself could execute 

the same code (lines 1 to 10), it would only be possible to use a single processing element 

(either CPU or 1 GPU) in a shared memory machine, also requiring data management 

code before the pipeline implementation. 

The Manager side of the application is presented on line 11 of Algorithm 4. The code 

developed in this case partitions the input data (large input tissue image) for parallel and 

distributed execution, and instantiates the application workflow by creating stages and 

setting respective dependencies (line 17). The data partitioning strategy used to divide 

the application data domain is chosen in line 13. The execution strategy is designed so 

that communication among tiles (or among processors) is allowed by the exchange of tile  

borders or ghost zones [72, 109] at the beginning of a stage instance execution. The ghost 

zones or ghost borders are areas around tiles with defined width that are included in 

the original tiles for processing. Once border information is added to a tile, the stage 

instance may process tiles independently. Because the data is written/read to/from the 

RT storage system at the end/beginning of a stage instance execution, information among 

tiles (borders) are automatically exchanged without additional explicit communication 

As the default partitioner, the Cost-Aware Data Partitioning algorithm (CADP), pre- 

sented in Chapter 5, has been selected. This strategy receives as input the data to be 

processed, size of ghost zone for tiles if required (gzSize), number of partitions to be 

generated (nTiles), a cost-function used to estimate computing demand of data domain 

regions (costFunction), and expected GPU vs. CPU speedup (gpuSpeedup) for cases in 

which CPUs are used cooperatively with accelerators. The remaining of the Manager code 

(lines 14 to 20) describes the workflow generation, which dispatches a workflow with a 

single stage for each input tile, and the actual startup and end of the execution. However,  

multiple stages and arbitrary application workflows with dependencies are supported in 

our system. 

 
4.3 Internal Data Management for Hybrid Execution 

In order to execute Halide tasks while also supporting hybrid cooperative execution, 

Region Templates (RT) had its internal tasks representation changed. Mainly, a new Stage 

class, the AutoStage, was implemented. AutoStage supports (i) the execution of arbitrary 

code, defined outside RT by the user, (ii) conversion of images to and from Halide’s 

format, and (iii) the early termination of workflows. Since the selection of the target 

architecture for execution (e.g., CPU/GPU) is passed to the user stage implementation 

(see Algorithm 4, lines 1 and 6), AutoStage instances are tagged with the architecture 

it should execute. This tag is defined by the data partitioning algorithm (line 13) and 



41  

passed through to the user code. It is important to notice that in the manager code 

(lines 11-21), the user is not required to directly manage images or files. Only Halide’s 

data structures are used on its application’s implementation (lines 1 to 10). 

After the partitioning of the input images, these must be added to RT’s internal data 

repository. This allows easy and consistent data access on a distributed memory setting.  

Each input image and intermediary image buffer must have a Region Templates Object 

(RTO) encapsulating it. A RTO represents a globally accessible image, which can be 

spatially decomposed and have multiple versions . This also allows in-place execution 

with a backup of previous versions. RTOs are composed by Data Regions (DR), each 

representing a partition of concrete data, available locally on memory of a compute node.  

Since the I/O process of generating the RTOs and its DRs is performed by RT’s Manager 

process, the DRs were updated to allow a lazy creation process. DRs’ actual data from 

.svs files are then only read by Worker processes on demand. This optimized the I/O 

process of DRs by decentralizing it. 

By sending a stage for execution with a data partition (Algorithm 4, lines 15 and 16), 

an AutoStage instance is created. This processes the input parameters of the application 

and finds the partition’s global RTO reference, with its DRs. Both inputs and outputs 

are assigned. Each submitted stage is added to the proper global execution queue on the 

Manager for its tagged execution target. As with the original version of RT, each Worker 

has an execution thread per computing resource. For instance, for a compute node with 

two GPUs on a dual-CPU-socket motherboard, three threads are created, one for each 

GPU device and one for one for all CPU cores. 

When a local Worker’s thread receives a task (either for CPU or GPU) the process of 

Algorithm 5 is performed. The first step is the retrieval of DRs (lines 2-6). As mentioned 

before, DRs are in-memory data objects, which in this work are lazily read from the .svs 

files. The reading process is performed at this point. If a DR is not a .svs input file 

then its data is present on RT, which handles the data movement. It is worth noting 

that the RT scheduler is data-aware, meaning that it is likely that the required data is 

already present on the executing node. The output DR is also created/allocated at this 

point. Next, the input DRs are checked for the termination of the workflow (lines 7-12). 

The motivating domain of this work benefits from early termination of inconsequential  

partitions (e.g., background only). If a realized task returns a terminated flag, then 

all subsequent tasks should be terminated (line 17). This signal is propagated by the 

input/output DRs (lines 7-12 and 18-21). 

The input/output data for the executing task are pre-formatted for Halide applications 

(lines 13-15). The conversion process between RT and Halide objects does not perform 

any copy, using the internal OpenCV data references, common to both formats. This 
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Algorithm 5 Internal execution of an AutoStage on a Worker. 
 

1: function AUTOSTAGE::RUN( ) 

2: outputDr RT::GENERATEDR(outputShape,  partitionId,  outputRT O) 
3: drList.append(outputDr) 
4: for each r in inputRtoList do 
5: drList.append(r.getDr(partitionId)) 
6: end for 

7: for each dr in drList do 
8: if dr.terminated() then 

9: outputDr.terminate() 
10: return 
11: end if 
12: end for 
13: for each dr in drList do 

14: halBuf List.append(RT::CVTOHAL(dr.getCv())) 
15: end for 

16: task RT::GETTASK(taskRef ) 
17: terminated task.realize(halBuf List, parameters, target) 
18: if terminated then 
19: outputDr.terminate() 
20: return 
21: end if 
22: halOut halBuf List.at(0) 

23: outputDr RT::HALTODR(halOut) 
24: end function  

 

process is further detailed in the next section. The reference for the task to be executed 

is retrieved from a RT library. The code reference is accessible by any distributed Worker  

MPI process through the generation of a local map of references to the user-defined 

Halide implementations. This map is generated on every distributed process to enable 

the decoupling of RT code from user code. After the retrieved task is executed completely  

(line 17), the output data is reformatted back to RT (lines 22 and 23). This also does 

not perform any local data copy or transfer, but allows for RT to send this data to other 

nodes. The exception is for GPU execution, on which data is transferred between device  

and host. 

 
4.4 Halide Integration and Implementation Details 

In order to enable the seamless use of Halide by the user, RT need to (i) perform auto- 

matic conversion of its internal data representation to/from Halide’s representation, (ii)  

automatically manage GPU data, and (iii) manage execution with multiple GPUs. As 

mentioned, conversions between DRs and Halide::Buffer’s (Halide’s data representation) 
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do not perform unwanted data copy or movement. This is possible since both data types 

use the OpenCV’s cv::Mat data type as their underlying data container. However, for 

color cv::Mat data the memory layout of color channels can either be interleaved or planar. 

For planar data, the full image of each color channel is sequentially set on memory, one  

channel at a time. Interleaved data is set on memory on a per-pixel basis, on which each 

pixel with all of its channels’ values are grouped together, with each pixel set sequentially 

on memory. This is an important information to know since different layouts can lead to 

incorrect execution results. This presents a problem for Halide, which uses the interleaved 

pattern by default since, by definition, the innermost coordinate of a color image is the 

color channel. Given that the data read from the .svs files can be in the planar format, 

this planar-interleaved conversion is performed automatically when necessary. For GPU 

execution, data transfer to/from device is also automatically performed by AutoStage. 

As currently available, Halide does not natively supports cooperative execution of its  

pipelines on distributed memory environments. These environments can be either multiple 

GPUs or heterogeneous devices (e.g., CPU + GPU). Heterogeneous execution is handled 

by RT while multi-GPU execution was implemented by extending Halide itself. 

GPU execution (as used on this work by Halide) is performed through CUDA. As such 

it requires the initialization of a reference object to a given GPU device before performing 

data movement or execution operations. Originally, Halide initializes a single static refer- 

ence of a GPU. If more than one GPU is available, the initialized reference points to the 

device with the highest processing capacity (i.e., most CUDA cores). These references are 

initialized only once, at the first realization call of a Halide pipeline scheduled for CUDA. 

Multi-GPU support was implemented by maintaining an internal array of references to 

each GPU device available. These are instantiated once with a new initialization function, 

also responsible for configuring the number of GPU devices to be available. This initial- 

ization function is invoked at regular RT initialization. One aspect to be aware is that 

each pipeline can only be executed on the GPU on which its data is present. Also, GPU 

memory is much scarcer than CPU memory, meaning that execution of multiple pipelines 

on the same GPU should be avoided. As such, before realizing or performing data move- 

ment operations, a GPU reference is allocated by an assignment function (getGpuRef()) 

which locks a single GPU for use, returning its ID. 

Figure 4.3 shows how a GPU device can be accessed in a thread-safe manner, while also 

operating on the correct GPU. At the header of the realization code, a GPU ID is retrieved.  

The allocated GPU is tagged as unavailable until the finalization step. From an allocated 

GPU it is possible to execute as many Halide’s realizations as desired. All realizations 

are performed on the same GPU. Any data dependency, which can only exist at the host 

side, is lazily resolved by Halide. The finalization step frees all temporary data on GPU 
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Figure 4.3: An illustration of the processes involved into using multiple GPU devices. 
Direct communication between CUDA and user code is just a simplification. In reality 
all CUDA-related calls are performed only through Halide. 

(e.g., copied inputs) and enables the transfer of result data back to the host. The design 

of using preparation functions was devised as a way to inform Halide the correct GPU 

to use while not interfering with its interfaces (e.g., realize(), copyToHost()). In order 

to support multiple GPU executions the preparation functions are thread-safe, locking 

the whole Halide GPU sub-system and unlocking at either a realization or a finalization. 

After the beginning of the realization process, the GPU sub-system is unlocked and can 

attend to other GPUs. It is worth noting that the thread-locked section of this protocol is 

short enough to not significantly influence the overall execution time. After finalizeGpu() 

finishes all required device-to-host transfers and clear its memory, the GPU is once again 

available to other tasks. 
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Chapter 5 

Cost-Aware Data Partitioning for 

Irregular-Cost Applications 

 
This chapter details the problem of partitioning input images for parallel execution on 

hybrid distributed memory machines. The closest related work, on image analysis, leaves 

this task to the programmer which performs trivial regular partitioning of the domain [70]. 

In other application domains a significant number of approaches to automate this task 

were proposed [39, 116, 117, 118, 119, 120]. However, these strategies consider that 

processing costs are homogeneous across the data domain and employ data structures like 

Quad-Trees and KD-Trees to partition the data. In our motivating application domain, 

on the other hand, the computing cost of a region is heterogeneous and vary, for instance,  

according to the density and size of objects it contains. Thus, using those data partitioning 

strategies may lead to significant load imbalance in the parallel execution. 

This observation has motivated the development of a new class of automatic partition- 

ing algorithms, called Cost-Aware Data Partitioning (CADP), which takes into consid- 

eration the heterogeneity or irregularity of the domain’s processing cost to minimize the  

load imbalance. CADP algorithms consider this irregularity in the partitioning and uses 

the expected computation cost of partitions created to reduce imbalance among them on 

a distributed execution environment. Since the computational cost of a region may be 

dependent of the application processing patterns and data content, the cost estimation 

used by CADP is provided by a cost-function that can be customized according to the 

application being executed. The function receives a Region Template (RT) data region as  

input and is expected to return a value, which is used in CADP to compare the relative 

cost of different regions. In our motivating application’s domain of segmentation for cells 

nuclei of tissue images, some examples of such metrics could be the number of objects or  

their areas in a region, or the density of the partition compared to the background area. 
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5.1 The Expected Cost Bisection (ECB) CADP Al- 

gorithm 

The first CADP algorithm was designed based on the successive bisection of a larger area, 

extracting a partition with an expected cost, the ECB. Each partition is set to have a cost  

proportional to the number of expected partitions. For instance, for 8 partitions each of 

these should have 1/8 of the processing cost for the whole image. The main phases of ECB 

proposed here are presented in Algorithm 6. It is composed of three main components: 

(i) a background/foreground separation that is employed to perform an early detection 

of background/foreground areas; (ii) a 2-cut cost-wise based partitioning algorithm that 

performs the data domain division for parallel processing on both homogeneous and het- 

erogeneous environments, and (iii) a cost-function used to guide the data partitioning 

(see Section 5.3). The first step of Algorithm 6 (line 2) is in charge of detecting areas 

of the image that are mostly foreground (dense), and separate them for the background 

areas (sparse). This separation is performed to avoid that very large partitions with a 

small computing cost are created, because this may increase I/O costs of such partitions, 

consequently making the balanced partition process harder. This step separates the whole 

input image in two sets of regions/sub-images: denseT iles and sparseTiles. Since the 

sparse partitions do not contain semantically relevant information for the workflow, only 

the dense partitions are sent for execution. The denseT iles, which are at least one, are 

then submitted to the cost-aware partitioning (line 3) to return the exact nTiles for par- 

allel execution. It is possible that the initial number of dense tiles is greater than the 

number of expected tiles, nTiles. Currently, the dense partitioner returns the same dense 

tiles for this case, doing nothing. However, this case is rare for the application domain, 

on which 1-4 initial dense regions are usually found, with nTiles being in the interval of 

8-32. Finally, all tiles are combined and then returned (line 4) 
 

Algorithm 6 Cost-Aware Data Partitioning (CADP) Algorithm. 
 

1:   function CADP(image, foregroundF unc, costFunc, nTiles, gpuAcc) 

2: (denseT iles, sparseTiles) RT::BFSEPARATION(image, foregroundF unc) 

3: denseT iles RT::DENSEHYBRIDPARTITION(denseT iles, costFunc, nTiles, gpuAcc) 
4: return denseT iles 

   5: end function  
 
 

5.1.1 Background Separation/Partitioning 

The background/f oreground separation (BFSeparation) is performed in the following 

steps (i) find the dense regions minimum bounding boxes (BB), (ii) remove overlapping 
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A smaller then B 
≤

 

Table 5.1: All possible cases of overlapping between two bounding boxes A and B with 
how they are resolved. By definition B is larger in area than A. 

 

Case description Condition Resolution 

1 A inside B 
A.xi ≥ B.xi and A.xo ≤ B.xo and Remove region A 

A left of B A. yi ≥ B.yi and A.yo ≤ B.yo 

2 
vertically inside 

A.xi < B.xi and B.xi < A.xo ≤ B.xo and A.xo = B.xi − 1 

A right of B A. yi ≥ B.yi and A.yo ≤ B.yo 

3 
vertically inside 

B.xi < A.xi ≤ B.xo  and A.xo > B.xo  and A.xi = B.xo + 1 

A above of B A. yi ≥ B.yi and A.yo ≤ B.yo 

4 
horizontally inside 

A.xi ≥ B.xi and A.xo ≤ B.xo and A.yo = B.yi − 1 

A below of B A. yi < B.yi and B.yi < A.yo ≤ B.yo 

5 
horizontally inside 

A.xi ≥ B.xi and A.xo ≤ B.xo and A.yi = B.yo + 1 

A above left of B B. yi < A.yi ≤ B.yo and A.yo > B.yo 

6 
A smaller then B 

A.xi < B.xi and B.xi < A.xo ≤ B.xo  and Break region B on 

A above right of B A.yi < B.yi and B.yi < A.yo ≤ B.yo x = A.xo, y = A.yo 

7 
A smaller then B 

B.xi ≤ A.xi < B.xo  and A.xo > B.xo  and Break region B on 

A below left of B A. yi < B.yi and B.yi < A.yo ≤ B.yo x = A.xi, y = A.yo 

8 
A smaller then B 

A.xi < B.xi and B.xi < A.xo ≤ B.xo  and Break region B on 

A below right of B B. yi < A.yi ≤ B.yo and A.yo > B.yo x = A.xo, y = A.yi 

B.xi A.xi < B.xo and A.xo > B.xo and 

B.yi < A.yi ≤ B.yo and A.yo > B.yo 

Break region B on 

x = A.xi, y = A.yi 
 

 

between dense BBs, and (iii) generate background tiles for the remaining image areas. 

Background areas may be found in tissue images with a threshold cost-function, but 

it may require more sophisticated approaches in other domains. Thus, the function is 

customizable by the user depending on the target application (foregroundF unc). This 

function must also be inexpensive, otherwise some of the partitioning benefits would be 

offset by its cost. This is further discussed in Section 5.3, but we want to anticipate 

that we use lower resolution versions of the data to perform such computation, thus 

reducing partitioning costs. With the aid of the foregroundF unc, Bounding Boxes (BB) 

are computed for each dense region, and overlapping BB are resolved to create non- 

overlapping dense tiles. Another advantage of this strategy is that, for the motivating 

application, identified background only areas may be aborted earlier at run-time without 

impacting the final output quality, thus reducing the overall execution cost for the image. 

Although the execution time for these sparse tiles is expected to be negligible, the I/O 
 

(a) Horizontal case. (b) Horizontal sol. (c) Diagonal case. (d) Diagonal solution. 

Figure 5.1: Overlapping BB resolution. For the horizontal/vertical cases, A is reduced. 
For the Diagonal cases, B is broken into 4 tiles, being the fully overlapped tile removed. 

9 
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reading times can be expressive since the number of generated sparse tiles, as their sizes, 

are irregular. This can impact negatively the overall load imbalance of the application. 

To attenuate this, sparse tiles are partitioned into the smallest multiple of the expected 

tiles, greater than the initial number of sparse tiles. For instance, for an expected 16 tiles 

with (i) 8 and (ii) 22 sparse tiles, the partitioning would result in a total of (i) 16 and (ii) 

32 sparse tiles. The partitioning algorithm for sparse partitions is the same as the dense 

partitioner (see Algorithm 9), using the area of the partition as its cost-function. 
 

Algorithm 7 Background partitions generator. 
 

1: function GENERATEBGPARTITIONS(dense) 

2: allPart ← dense 
3: open ← [] 
4: prevY ← 0 
5: SORTBYYI(dense) 

6: while open not empty or dense not empty do 
7: if dense not empty then 

8: cur dense.head() 
9: end if 

10: headY open.head_y() 
11: if open is empty or (dense not empty and cur.yi headY.yo) then 

12: allPart.insert(MAKEBLOCKS(open, prevY, cur.yi, w 1)) 
13: prevY cur.yi 
14: open.insert(cur) 
15: dense.erase(cur) 
16: else if dense is empty or (dense not empty and cur.yi > headY.yo) then 

17: allPart.insert(MAKEBLOCKS(open, prevY, headY.yo, w 1)) 
18: prevY headY.yo 
19: open.erase(headY ) 
20: end if 
21: end while 

22: lastPart(xi, yi, xo, yo) (0, prevY, w 1, h 1) 
23: allPart.insert(lastP   art) 
24: return allPart 
25: end function  

 
The first step for BFSeparation, after generating the initial dense BB is the removal 

of overlapping regions. Essentially, there are two main types of overlapping, vertical/hor- 

izontal and diagonal. Assuming two partitions A and B, being A smaller than B, for the 

first case, aiming to maintain the same number of initial dense partitions, the smaller  

partition is reduced in order to not overlap anymore. Thus, the overlap between the two 

partitions is only executed by partition B (see Figures 5.1a and 5.1b). For the diago- 

nal case it is impossible to remove the overlapping while also returning rectangular BBs 

which covers all the initial area. For these cases the larger partition (B) is divided in 4 
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(a) Initial test image from a 

small section of a whole slide 

tissue image. 
 
 
 

(d) On second dense region 
only a single partition is gen- 

erated (BG2). 

(b) Background binary mask 

with three dense regions. 
 
 
 
 

(e) Scan line finds the end of 

a dense region. BG3 and BG4 
can now be generated. 

(c) Scan line hits its first 

dense region, generating all 

partitions between the begin- 

ning of the image and the 

scan line. 
 

 

(f) Final result after scan line 

reached the bottom of the im- 

age. 

Figure 5.2: Background partition generation from initial dense partitions using the scan 
line algorithm. Partitions are numbered according to the order they were generated. 

 
 

new parts, one of which is fully inside A. For this trivial overlapping case, the smaller and 

internal partition is destroyed (see Figures 5.1c and 5.1d). Although Figure 5.1 shows 

only one example of each type of overlapping, Table 5.1 enumerates all remaining analo- 

gous overlapping cases, assuming bounding boxes A and B with coordinates A.xi (initial  

coordinate x), A.yo (final coordinate y), and that A is smaller than B, area-wise. 

With the non-overlapping dense regions, the background partitions are generated 

through a vertical scanning of the image, from top to bottom (see Figure 5.2). As described 

in Algorithm 7, the dense partitions (as bounding boxes) are copied into the output list 

(line 2) since the dense list itself will be consumed by the algorithm. The dense partitions 

are then sorted by their upper vertical component (yi) in a non-descending order (line 5), 

simulating the vertical scan. In addition to the dense list, the open list is used as a register 

of which dense regions are currently in the supposed scan line (see Figure 5.2d). This list 
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is populated by transferring a dense region from dense to open whenever the scan line 

reaches an upper-bound of it (line 14). The actual background regions are generated on 

two occasions, (i) when the scan line hits the top of a dense partition (lines 11-15) or (ii) 

when the scan line hits the end of a dense partition on the open list (lines 16-20). The 

background partitions generated are between [prevY, cur.yi] for (i) (line 12) and between 

[prevY, headY.yo] for (ii) (line 17). The generation occurs also emulating a scan line, 

horizontal this time. The regions are generated whenever there is a void between the 

borders of the image or the borders of dense open regions. These partitions are inserted 

on the output allPart list (lines 12 and 17). When all dense and open partitions have 

been consumed, the last horizontal partition is created (lines 22-23), from prevY to the 

bottom border of the image, spanning the whole width of the image. Figure 5.2 presents 

an example, on which three initial dense partitions generate 10 background partitions. 

 
5.1.2 Data Partitioning for Homogeneous Environments 

The data partitioning phase will receive as input a list of m dense regions to be partitioned 

into n (number of nodes) regions with minimum load imbalance, described in Algorithm 8. 

In this process all partitions are kept on a list sorted by their estimated cost, beginning 

with the initial m partitions (initialPart on line 3). Although able to be parameterized, 

the expectedCost value of each partition is defined as the ratio of the initial full image 

cost by the number of expected partitions (line 2). It then selects the partition with the 

higher cost and breaks that partition into two others with (almost) same estimated cost  

(line 6). The bisection, which can be either vertical or horizontal on a 2-dimensional 

domain, is sought with a binary-search algorithm in the partition domain. 
 

Algorithm 8 ECB Homogeneous Partitioner Algorithm. 
 

1: function HOMOGENEOUSPARTITION(image, initialPart, costFunc, n) 
2: expectedCost costFunc(image)/n 
3: partitions initialPart 
4: RT::SORTBYCOST(partitions,    costFunc) 
5: while partitions.size() < n do 

6: expP art, remP art RT::BTS(partitions.pop(), expectedCost) 
7: partitions.orderedInsert(expP art, costFunc) 
8: partitions.orderedInsert(remP  art,  costFunc) 
9: end while 

10: return partitions 
11: end function  

 

In this process the Binary-search Tile Splitting Algorithm (BTS) developed here (see 

Algorithm 9) is executed. A cut pivot p is initially set in the midpoint of the current region 
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(image), creating two regions [di, p] and [p+1, df ] (line 2), which have their costs compared 

(line 15). If the cost difference is smaller than a given error (imbalance among these two 

partitions), the process stops and two partitions are returned (line 16). Otherwise, p 

is updated to the midpoint of the region with the highest cost (lines 7-13) and checked 

again. This process continues until an acceptable cost difference is found. If the expected 

cost is impossible to be achieved, the search stops at the closest value, when pivotLength 

reaches zero (line 15). 

For an arbitrary number d of dimensions, BTS can be executed on any of the d 

orthogonal coordinates. In order to reduce the ghost zone overhead in applications that use 

this strategy, the algorithm should return a partitioning with the least Sum of Perimeters 

(SoP) of the output tiles. Greater SoP values result in larger ghost zones, increasing 

I/O and processing costs. BTS solves this by partitioning only the largest current tile 

dimension (see Algorithm 9, line 2). 
 

Algorithm 9 Binary-search Tile Splitting Algorithm (BTS). 
 

1: function BTS(image, expectedCost) 
2: (di, df ) (min value of largest dimension, max value of largest dimension) 
3: p, pivotLength (df di)/2 
4: do 

5: aTileCost cost of image in the current dimension interval [di, p] 
6: bT ileCost cost of image in the current dimension interval [p + 1, df ] 
7: if  aTileCost > bT ileCost and 
8: expectedCost > bT ileCost and 
9: aTileCost > expectedCost then 

10: p p pivotLength 
11: else 
12: p p + pivotLength 
13: end if 

14: pivotLength pivotLength/2 
15: while aTileCost or bT ileCost not close enough to expectedCost and 

pivotLength > 0 
16: return (di, p), (p + 1, df ) 
17: end function  

 
Figure 5.3 shows the BTS process on a region with expected cost of 37 on an initial 

image with 70 units of cost, assuming 10% imbalance upper limit error. This means that a 

tile with a cost in the interval [34,41] is searched. The initial split point p1 on Figure 5.3a 

represents a partition cost ratio of 15/55. As none of the current partitions’ cost are 

in the expected error interval the search proceeds to the next pivot p2, with 45/25 cost 

partition. The process then stops when the desired tile is found in the partition 30/40 of  

Figure 5.3c, returning the second tile as the one closest to the expected cost. Although 
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(a) Initial split test with p1 results in 15/55 

cost partition. 

(b) The next pivot p2 is moved to right 

(costly side), leading to 45/25 partition. 
 

 

(c) After updating end3 and p3 a cost ratio 

of 30/40 (left/right of p3) found and the al- 
gorithm stops, returning the tile in the right. 

Figure 5.3: An example partitioning with at upper limit of 10% error on a tile with 

expected cost of 37. Initial bounds begin1 and end1 image limits are defined and tightened 
after each split attempt until a partition with imbalance smaller than the target is found. 

 
this maximum error margin is configurable, we have used a default of 2% since smaller 

errors did not result in significant performance differences. 

 
5.1.3 Data Partitioning for Hybrid Environments 

This section discusses the extensions to the data partitioning algorithm presented in pre- 

vious section to support hybrid machines equipped with CPUs and GPUs. This strategy 

receives as input the initial regions to be partitioned, cost-function, number of partitions 

to be generated to CPU and GPU, and the expected GPU acceleration as compared to the 

CPU. Further, the full expected cost of the input data is computed and it then estimates 

the cost for partitions that each device available (CPU or GPU) should receive. This 

cost is proportional to the devices’ relative performance, mostly, expected GPU vs. CPU 

speedup (lines 3 and 4 of Algorithm 10). We assume that the GPU acceleration (gpuAcc) 

is obtained in a profiling phase before the actual application execution and is provided to  

the system by the user. In this work, for instance, we executed the CPU-based and GPU- 

based versions of the application codes on the smallest input image (Figure reffig:wsi0) 

to collect this value, which was then employed for the rest of the experiments. 

After that point, partitions are sorted according to their cost, and the next partition 

will always take place on the costly region until the desired number of data partitions 
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Algorithm 10 Hybrid Partitioner Algorithm. 
 

1: function HYBRIDPARTITION(denseP arts, costFunc, nCpu, nGpu, gpuAcc)) 

2: fullCost costFunc(part) part in denseP arts 
3: gpuCost fullCost (gpuAcc)/(nCpu + nGpu gpuAcc) 
4: cpuCost fullCost 1/(nCpu + nGpu gpuAcc) 
5: RT::SORTBYCOST(denseP arts, costFunc) 
6: i denseP arts.size() 
7: for count 0; i nGpu + nCpu; count + + do 
8: if count < nGpu then 
9: expCost gpuCost 

10: else 
11: expCost cpuCost 
12: end if 

13: expP art, remP art RT::BTS(denseP arts.pop(), expCost) 
14: finalPartitions.pushBack(expP   art) 
15: denseP arts.orderedInsert(remP art) 
16: end for 

17: for each remP art in denseP arts do 
18: finalPartitions.pushBack(remP  art) 
19: end for 
20: return   finalPartitions 
21: end function  

 

(nCpu + nGpu) is reached. The first nGpu partitions created are appropriated to the 

GPU, each with approximately gpuCost. In this process, the BTS algorithm presented in 

previous section is used to find the tile cut point that results in the desired cost based on 

the gpuAcc parameter. When it occurs, the partition is performed and the tile with desired 

cost is inserted in the final set of partitions and marked for execution with the proper 

target device. This process is repeated to generate the required number of partitions. 

 
5.2 The Background Removal Bisection (BRB) CADP 

Algorithm 

Although the ECB algorithm proved effective for reducing overall load imbalance for 

partitioning the input WSI images (see Section 6), it also showed few avenues for im- 

provement. When initially tested, the partitions generated by the ECB algorithm were 

visually reasonable, resulting in partitions which could be generated manually, as shown 

in Figure 5.4a. However, when scaling the numbers of partitions to be generated a trend 

was observed. As seen in Figure 5.4b, the partitions generated were long thin strips of the 

image. This is due to the nature of ECB algorithm. ECB extracts a single partition a time 
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with the expected cost. For 32 partitions, as on Figure 5.4b, each partition would have 

1/32 of the overall image cost. Thus, only such thin strips could be generated from the 

original image (one of the four lateral strips, on top, bottom, left and right), even with the  

ECB heuristic to prefer more square-shaped partitions. This strip partitions phenomenon 

was later correlated with an increased cost of executing such partitions when compared to 

more square-shaped partitions. This increased execution cost is related to the Irregular 

Wavefront Propagation Pattern (IWPP) section of the motivating application. On the 

worst-case scenario for IWPP, a pixel can be propagated from one end of the image to the 

other. Assuming two images with the same area, one square and one long and rectangular, 

and retrieving the longest distance between two pixel in both images, the latter would 

have the greatest value. And this could impact on the number of propagation operations 

performed by the IWPP algorithm, increasing this value and consequently its cost. With 

these considerations, an improvement to restrict the generation of these strip partitions 

is wanted. 

(a) ECB generating 4 partitions. (b) ECB generating 32 partitions. 

Figure 5.4: Two cases of ECB partitioning. Although the partitions cost was similar, the 
shapes for generating 32 partitions are mostly long and thin strips. 

 
 

Another opportunity of improvement for the CADP lies on removing more background 

at a finer-grain. As shown in Figure 5.6, the method proposed above on Section 5.1.1 can 

only remove so much background area. Every partition generated by the CADP must be 

rectangular. The dense regions however, are not expected to fit this shape neatly. This 

limitation of the proposed coarse-grain background removal algorithm results in a missed 

opportunity to remove the additional background inside each dense region, as portrayed 

in Figure 5.5b. 
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(a) Result of coarse-grain background removal, which 

generates rectangular dense regions. 

(b) The triangular background re- 

gions are not trivially removable. 

Figure 5.5: Although the coarse-grain background removal algorithm can remove most of 
the background, some of it still remains inside the dense rectangular regions. 

 
 

At first, a viability study was performed to assess how much background could be 

feasibly removed from such WSIs. From a set of 10 images each of 6 different class of 

WSI, the available fine-grain background was partitioned manually for later compilation 

of results. Only background which could be trivially removed from the vicinity of the 

dense region was considered (i.e., background inside dense regions was not considered).  

Then, the total sum of removable background area was evaluated with regard to the 

total area, shown in Figure 5.6a. As seen, the amount of background viable for removal is 

significant, with over half of all images having at least 16% of removable area (Figure 5.6b), 

thus indicating the viability of such approach. 

 

(a) Histogram of amount of removable back- 

ground on the left scale, with the cumulative 

count on the right scale. 

(b) Accumulated counts of how many im- 

ages had at least a certain amount of re- 

movable background. E.g., over 30% of the 

images had at least 25% of removable back- 

ground. 

Figure 5.6: Viability study for fine-grain background removal using 60 images. 
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5.2.1 A Method for Hierarchical Partitioning with Background 

Removal 

Two issues should be addressed by the new BRB algorithm, improving on ECB: the im- 

provement on the shape of the partitions and the fine-grain removal of background. As 

early described, ECB generates thin strip partitions when the number of expected par- 

titions is high. The BTS algorithm however proved to generate reasonable partitions for 

smaller numbers of expected partitions with ECB. As such, the problem of generating a 

large number of partitions without the strip partitions issue is harder than for generating 

a smaller number of partitions. With this in mind, BRB aims to reach the same number n 

of partitions, but through the partitioning with smaller intermediate numbers of expected 

partitions. One way to achieve the n expected partitions is by extracting the factors of n 

and performing a hierarchical partitioning for each of these factors. By using the smallest  

factors of n the partitioning algorithm reduces a hard problem of partitioning a large 

value of n into multiple small easier problems of partitioning for smaller numbers. Coin- 

cidentally, these factors are the prime factors of a number. For instance, the partitioning 

of an image into 6 partitions can be performed by first partitioning the full image in 2 

(see Figure 5.7) to then partition the resulting partitions in 3 (see Figure 5.7b) since (2, 3) 

are the prime factors of 6. Though this hierarchical process the correct expected number 

of 6 partitions is reached. However, the problem of generating 6 partitions is reduced 

to the partitioning with 2 and 3 expected partitions, which are easier to generate better 

partitions which are not strips. 

The next issue to be addressed by BRB is the fine-grain background removal. Initially, 

the algorithm had a background-removal-centric approach, on which it should remove 

the most amount of background possible, to later solve balance issues, if any. On this 

 

   

(a) Initial single partition. (b) Partitioning result for 2 

expected partitions. 

(c) Partitioning result for 6 

expected partitions. 

Figure 5.7: Hierarchical partitioning for 6 expected partitions. First, 2 partitions are 
generated (red) from the single initial dense partition (blue). Then, 3 more partitions 
(green) are required by each of the previous 2, resulting in 6 partitions. 
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(a) First background tile gen- 

erated by creating a rectangle 

from a point in the dense re- 

gion contour and the corner of 

the full image (lower left). 

(b) A point on the contour 

for the second background tile 

is found, however, it overlaps 

with the previously generated 

background tile. 

(c) Overlapping with the 

newly generated background 

tile is removed, resulting in a 

second background tile. 

Figure 5.8: First approach for background removal. The contour of the dense region is 
delineated in white, being the background on the lower left corner of the image. Two 
background tiles are expected to be generated. Background tiles generated are expected 
to maximize their area. 

 
approach a dense region contour would be generated as a convex-hull. From this contour 

it is possible to generate a rectangle between a point on it and one of the four corners 

of the image, as shown in Figure 5.8a. By testing all points in the contour, the tested 

background tile with the largest area would then be chosen. This point selection process  

could be iterated over again, as many times as needed, removing more background each 

time (see Figure 5.8). As such, the amount of background to be removed would be 

proportional to an input parameter of how many tiles should be generated. 

 

   

(a) All dense partitions are generated, however, 

there is a partition which is rather small, and 

should probably be merged with another parti- 

tion. 

(b) First alterna- 

tive, merge with the 

right partition. 

(c) First alterna- 

tive, merge with 

the left partition, 

adding back less 

background. 

Figure 5.9: Generation of partitions which result in removing previously generated back- 
ground tiles. The partition highlighted in red is considered too small, and as such should  
be merged with another partition. 
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From the background tiles previously generated the actual dense partitions would 

then be created, as depicted on Figure 5.9a. They can be generated by an algorithm 

similar to Algorithm 7. The first issue encountered with this approach is the possibility 

of creating rather small partitions, highlighted in red in Figure 5.9a. This is problematic 

since there are overheads regarding the execution of a partition, and the execution time 

of such partitions would be dominated by these overheads. A solution for this was the 

merger of these small partition to one of its neighbors. By merging them, a new partition 

covering both would be generated. This new partition would also add some of the removed 

background, and thus the selected neighbor would be the one which added the least 

amount of background (see Figures 5.9b and 5.9c). 

This early background-removal-centric resulted in highly imbalanced partitions, be- 

ing slower to execute then ECB on preliminary tests. The reason this algorithm was 

problematic was twofold: (i) it required the optimization of the parameter of how many 

background tiles should be generated, and (ii) these tiles could result in poorly shaped 

dense partitions, which only after many re-partitioning improve its imbalance. With this 

knowledge, the BRB algorithm would be partition-centric, with the background removal 

done as an afterthought to further reduce executing costs. 

The final algorithm with both the hierarchical partition generation and background 

removal is presented on Algorithm 11. Similar to ECB, a list of partitions is maintained 

(line 2), being incremented once at a time with a new partition (line 12). However, in order 

to allow the hierarchical partitioning the expected number of partitions nPartitions is 

decomposed into its prime factors. From each iterated prime factor the number of expected 

 

Algorithm 11 BRB Homogeneous Partitioner Algorithm. 
 

1: function BACKGROUNDREMOVALBISSECTION(dense, nPartitions) 
2: allParts dense 
3: primeFactors getP    rimeFactors(nPartitions) 
4: partialNumP artitions 1 
5: for multiple in primeFactors do 
6: partialNumP artitions partialNumP artitions multiple 
7: sumOf Costs cost of all partitions on allParts 
8: expectedCost sumOf  Costs/partialNumP   artitions 
9: while  allParts.size() < partialNumP artitions  do 

10: curPart allParts.pop() 
11: newParts BGREMOVALBTS(curPart, expectedCost) 
12: allParts.orderedInsert(newP arts) 
13: end while 
14: end for 
15: return allParts 
16: end function  
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Algorithm 12 Simple Background Removal Algorithm for BgRemovalBTS. 
 

1: function SIMPLEBGREM(image, costFunc) 

2: denseT iles list of rectangular dense regions of image 
3:        bestXi      image.Xo 
4:         bestXo      image.Xi 
5:       bestY i      image.Y o 
6: bestY o image.Y i 
7: for tile in denseT iles do 
8:   bestXi  min(bestXi,   tile.Xi) 

9:  bestXo max(bestXo, tile.Xo) 
10:   bestY i  min(bestY i, tile.Y i) 
11:   bestY o   max(bestY o, tile.Y o) 
12: end for 

13: return tile(bestXi, bestXo, bestY i, bestY o) 
14: end function  

 

partitions is updated to the number of partitions required after the end of each iterations. 

For instance, if we were to generate 30 partitions the factors would be (2, 3, 5). Assuming 

this current order, the first iteration should yield 2 partitions, with the following yielding 

6 (3 for each of the previous 2) and 30 (5 for each of the previous 6) partitions respectively. 

Iterating through the factors (line 5), the expected cost for the first factor 2 would be 

the total cost divided by 2 (line 7). After the expected number of current partitions 

is generated (lines 9 - 13), the algorithm goes to the next prime factor 3, updating the 

expected number of partitions for the current iteration to 6 (line 6). Although the ordering 

of the prime factors does not influence on the resulting number of output partitions it may 

influence on the quality of them. It is reasonable to assume that an earlier iteration of 

the hierarchical partitioning have impact on the overall quality of the output partitions. 

Using the (2, 3, 5) partitions example, if the first partitioning was inaccurate, generating 

two partitions a and b with relative cost of 10 and 20 respectively, the imbalance between 

a and b could not be resolved by the following partitioning of (3, 5). As such, since it 

was shown that the partitioning for smaller numbers of expected partitions is an easier 

problem, the prime factors are sorted in a non-descending order. 

The final component of BRB is the background removal. This is done inside the 

BTS algorithm. Whenever a new tile is tested by BTS (i.e., have its cost calculated and 

compared), the background is first removed. The removal of background is simple, only 

being able to remove one or more of the 4 sides of the image, as depicted by Figure 5.10. 

The removal process is defined in Algorithm 12. First, a list of all dense regions of the tile 

is compiled (line 2). From this list, the best coordinates for the four borders of the tile is  

found by checking each dense sub-region. The final borders should include in its entirely 

all dense sub-regions. This updated version of BTS is used by Algorithm 11, on line 11. 
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(a) First cut for a partition if 

found by BTS. 
 
 
 
 

(d) Third partition is gen- 

erated, also removing more 

background. 

(b) From the first cut, all 

background only region is re- 

moved. Background is also 

removed from the remaining 

partition in green. 
 

(e) Fourth partition gener- 

ated. 

(c) Second partition is gener- 

ated. However no background 

can be removed without also 

removing important sections 

of the partition. 
 

(f) The remaining of the im- 

age is the fifth partition. 

Figure 5.10: Extraction of partitions with a background removal version of BTS. It is 
expected to generate 5 partitions. Red lines mark the current partition generated. The 
remaining partition is shown in green. Previously generated partitions are shown in blue.  
The black area is the background. 

 
 

Figure 5.11 shows both cases for a small and large amount of expected partitions when 

using the BRB algorithm. When compared with the results of ECB from Figure 5.4, BRB 

manages to output more square-shaped partitions, while also removing fine-grain back- 

ground regions. It is worth noting that the amount of background removed is proportional 

to the number of expected partitions. Also, as described in details on the next section, 

the cost-function estimation is also based on the area of a partition. As such, by removing 

background, the total cost of the initial image is greater than the final sum of background 

removed partitions. This may lead to an increased imbalance between partitions for BRB 

when compared to ECB. While imbalance was shown to be significant for the conducted 

experiments (see Section 6), the trade-off of removing background and thus reducing the 

overall execution cost against a reduced balance efficiency resulted in significant speedups. 
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(a) BRB partitioning for 4 ex- 

pected partitions. 

(b) BRB partitioning for 32 

expected partitions. 

(c) ECB partitioning for 32 

expected partitions. 

Figure 5.11: BRB partitioning algorithm for 4 and 32 expected partitions. ECB parti- 
tioning results for the same image are also shown as a comparison to BRB. 

 

5.3 Data Region Cost-Functions 

The cost-function is a crucial building block for an irregular partitioner to work properly.  

While it is important to develop functions that approximate the cost of the data regions 

well, it is also mandatory for them to be inexpensive in order not to offset the gains 

of CADP partitioning. In order to enable CADP to work with other applications, we 

have allowed for the cost-function to be a parameter to CADP that can be customized or 

developed by the user according to new applications added to the system. 

In our target application domain, as previously discussed, the data domain processing 

cost is heterogeneous and vary according to the number and area of objects in a region. 

Therefore, it is important to develop a cost-function that approximates that metric and, 

consequently, correlates with the expected processing time. Computing a separate, ex- 

pensive segmentation workflow to detect objects, such as nuclei and cells, would not be 

efficient, because such a workflow is already implemented in the application itself. Thus, 

we developed a simple and very efficient threshold-based segmentation cost-function to 

identify objects in the images. After the threshold our function counts the number of 

foreground pixels (area) that is used as our metric. This function was developed on top 

of Halide to exploit parallelism at instruction and thread levels (through Halide parallel  

directives). 

The proposed cost-function is not compute intensive, but it could become costly if 

applied to the full high resolution images as it would be necessary to read the entire data.  

In order to avoid this cost, we took advantage of the WSIs pyramidal representation 

natively available in the used microscopy images. It consists of the images being stored 

by default at multiple magnifications, and we use a low resolution version of the images 

as input to the cost-function to minimize its execution time. The WSIs are are processed 
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at 40× magnification (.25 micrometers/pixel) by the use-case application. To execute 

our threshold based segmentation cost-function efficiently, we always used images with 

the lowest resolution available. This approach resulted in a resolution reduction from 

1024× to up to 4096× for such images. We found that using the lowest resolution images 

had no significant impact to the partitioning algorithm, while it reduced the execution 

times significantly. However, we note that this effect should be evaluated for each new 

cost-function to properly optimize the image resolution for the new cost-function. 

 
5.4 Time Complexity Analysis of CADP 

For the purpose of time analysis, the whole CADP partitioner can be defined as the 

following set of components: (i) dense bounding boxes generation, (ii) bounding boxes 

overlapping resolution, (iii) background tiles generation, (iv) dense partitioning, and (v)  

the cost-function. The calculations are done with regard to the number of pixels of the 

image (n), the maximum value between the image’s height and width (m), the number of 

initial dense partitions (d) and the number of expected dense partitions (t). The image 

dimensions are related to the low-resolution version of the input image, used exclusively 

for partitioning. 

 
5.4.1 Time Complexity Analysis of ECB 

Background tiles are generated by the sequential composition of components (i-iii). The 

dense region bounding boxes are found through a standard OpenCV algorithm to find all  

connected components [121]. These are then passed through an erosion/dilation process 

to remove insignificant (small) regions. The connected components algorithm scales lin- 

early with the number of pixels, as does the erosion/dilation: O(n). The d1 generated 

tiles from (i) are checked for internal, sideways and diagonal overlapping cases. For all 

three cases a pairwise comparison between all d1 tiles is required: O(d2). The initial 

number of tiles can be reduced by internal overlapping resolutions or increased by di- 

agonal resolutions, resulting in d2 dense non-overlapping tiles. For simplicity, we define 

d = max(d1, d2), resulting in (ii)’s complexity of O(d2). The background partitions are 

generated by successive MakeBlocks() calls on both initial and end coordinates of all d 

dense tiles (see Algorithm 7). On the worst case, MakeBlocks() iterates through a full 

open list of tiles. Since MakeBlocks iterating through d open tiles d times would mean 

that there are a sequence of d horizontal tiles and d vertical tiles, it would also mean that 

for d tiles there is a number of at least 2d tiles being traversed. Since this is impossible, 

(iii) can never be on the order of d2 or greater, resulting in o(d2). Further, (iii) is Ω(d) 
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given the two best cases of a single vertical or horizontal arrangement of tiles. Thus, the 

background generation section of CADP is O(n + d2). 

Whenever d ≥ t the dense partitioner returns the initial d tiles immediately, voiding 

the cost of (iv). Thus, we assume that d < t in order to evaluate the worst case scenario. 

As shown in both Algorithms 8 and 10, a number of at most t dense tiles is generated 

by executing the BTS algorithm. BTS uses a recursive logarithmic checking pattern for 

pivots, always moving forward towards completion by halving the pivotLenth at each 

iteration (see lines 14 - 15 on Algorithm 9). Given that BTS iterates through completion 

on the worst case (i.e., when pivotLength = 1), it may have at most log2(m) pivots. 

For each pivot the cost-function is executed on the current tile, with the used function 

being Θ(n). As such, the dense partitioner executes in O(t n log2(m)). The final time 

complexity of CADP is then O(d2 + t n log2(m)). Since by definition m ≤ n and d < t 

(as per our initial assumption), CADP can further be simplified to O(t2 + t n log2(n)), 

with t as the number of expected partitions and n as the number of pixels in the input 

image. 

 
5.4.2 Time Complexity Analysis of BRB 

The main differences between ECB and BRB are hierarchical partitioning and the back- 

ground removal done on BTS. Regarding the hierarchical partitioning, although the order 

of partitioning, the amount of partitions generated by BRB is equal in any case to the 

number of partitions when using ECB. Regarding the updated BTS, the background re- 

moval cost of Algorithm 12 is insignificant. Asymptotically, its cost is proportional to the 

number of dense sub-regions found on a partition. Although this number is rarely greater 

than 1, the execution cost of performing 4 min/max operations is negligible. Thus, the 

changes on BTS for BRB are not significant enough for its performance to differ from 

its previous ECB version. Since both changes do not impact the cost of generating a 

partition or the number of partitions generated (i.e., calls to BTS), the time complexity 

of BRB is equivalent to the one of ECB 
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Chapter 6 

Experimental Results 

This chapter presents the performance evaluation of the proposed algorithms for the 

distributed execution solution. All experiments were conducted with two types of compute  

nodes, a CPU-only node and a CPU-GPU node. The former is composed of dual-sockets 

Intel(R) Xeon(R) Gold 6252 CPUs (24 cores per CPU, 48 per node) with over 370 GB of 

RAM. The CPU-GPU node, is similarly configured to the CPU-only node with 4 NVIDIA 

Tesla V100 GPUs. Each V100 GPU with 32 GB of dedicated memory. The experiments 

used the segmentation phase of the brain cancer studies image analysis application (see 

Section 2.4) and input data consists of a selection of The Cancer Genome Atlas (TCGA) 

whole slide tissue images [84] downloaded from the Genomic Data Commons Data Portal 

(GDC) [83]. A randomly sampled subset of 10 images from a set of 60 images of 6 

different cancer types was chosen, as seen on Figure 6.1 and Table 6.1. The chosen 

images can be classified in two main classes of WSIs: dense (e.g., Figures 6.1a and 6.1h),  

and sparse (e.g., Figures 6.1d and 6.1e). Dense WSIs are those with a single large and 

contiguous tissue Region of Interest (RoI) that occupies most of the image area. In 

contrast, sparse WSIs may contain multiple smaller regions with significant background 

area. This value was then employed in the partitioning in hybrid environments in the 

rest of the experiments when processing other images. In all of data partitioning, a ghost 

zone of 100 pixels was used since it is sufficient to include objects (nuclei) within its 

borders [109]. All execution times reported refer to the application end-to-end execution 

times, which includes both I/O and processing times. This is also referred on this text 

as the application makespan. Initially both partitioning algorithms KD-Tree and Quad- 

Tree (see Section 3.1) were considered as baselines. However, the Quad-Tree algorithm 

performed consistently worse than all other approaches, including KD-Tree. As such, in 

order to improve the presentation of the results, only the KD-Tree algorithm (KDT) was 

shown as the baseline. All tested algorithms were fed the same inputs, with a goal of 

4 partitions per compute resource (e.g., 8 CPU-only nodes would receive 32 partitions). 
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Every test conducted, for each point or configuration, was executed 5 times. For each 

point, the median makespan was chosen, with its corresponding values for other metrics 

(e.g., max task time, sum of task times). Further, assuming a normal distribution of 

samples for each set of 5 executions, it was found that almost all performance comparisons 

(speedups) between algorithms were significantly different for p = 0.05, with only around 

18 out of over 1200 test points not being statistically different. Also, no error bars are 

shown on the graphs since they are too small to be visible (also using p = 0.05) and a 

significant difference was already statistically established. 

Three main metrics were evaluated across all experiments: speedups, scaling efficiency 

and balance efficiency. The two former metrics are already well known in HPC. Regard- 

ing the latter metric, it was important to quantitatively assess how workload imbalance 

impacts overall performance. Based on the Percentage of Imbalance metric (λ [122]) a 

new metric was proposed, the Balance Efficiency. Similar to the equation of Percentage of 

Imbalance λ = (Lmax/L̄ − 1) × 100%, with Lmax  being the maximum load (the makespan 

or total time for this domain) and L being the average load (average of workers’ times), 

the  Balance  Efficiency  is  calculated  as  (L̄/Lmax) × 100%.   The  ratio  Lsum/Lmax,  being 

Lsum the sum of all workers’ times, approximates the speedup of parallel execution when 

compared to serialized execution (not considering distribution overheads). Ideally, this 

speedup should be equal to the number of parallel resources, meaning that the workload 

is perfectly balanced. Thus, by calculating (Lsum/Lmax)/nresources we have an efficiency 

metric  which  can  also  be  calculated  as  (L̄/Lmax) × 100%  and  is  bounded  by  the  range 

(0%, 100%]. 

Given that 10 images were tested it is unfeasible to show the performance charts for 

all of them, for each experimental setting. As such, two images (BR-8682 and B6-A0X1) 

have their data plotted for each setting. These images were chosen since they represent 

the two main classes of images, dense: with only a single contiguous region of interest 

and not much background, and sparse: with one or more contiguous regions of interest 

and higher ratios of background. Also, speedups, balance and scaling efficiencies are fully 

displayed on tables for each experimental setting, for completeness. 

 
6.1 Single Node Evaluation 

This section evaluates the performance of the proposed system with the motivating appli- 

cation into a single node. Section 6.1.1 compares handwritten code based on OpenCV to 

automatically generated code using Halide in a sequential execution using CPU. It also 

evaluates the CPU multi-core scalability of the Halide based code. Section 6.1.2 evaluates 
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(a) 86-8668 (87, 582 × 76, 160). (b) 86-8669 (90, 623 × 95, 200). 

(c) B6-A0RG (93, 657 × 147, 468). (d) B6-A0X1 (93, 358 × 198, 220). 

  

(e) BR-8285 (70, 894 × 163, 344). (f) BR-8296 (70, 894 × 105, 576). 

(g) BR-8361 (70, 894 × 87, 648). (h) BR-8682 (77, 870 × 100, 912). 

  

(i) FA-8693 (92, 241 × 91, 392). (j) LL-A8F5 (90, 462 × 107, 567). 

Figure 6.1: All WSIs images used for the experimental evaluations. Each image has its 
ID and their resolution. 
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Table 6.1: Information on all images used for the experiments. 
 

TCGA GDC Image Identifier Database Image Type  Resolution 

TCGA-86-8668-01A-01-TS1 Lung Adenocarcinoma 87, 582 × 76, 160 

TCGA-86-8669-01A-01-TS1 Lung Adenocarcinoma 90, 623 × 95, 200 
TCGA-B6-A0RG-01Z-00-DX1 Breast Invasive Carcinoma 93, 657 × 147, 468 TCGA-B6-
A0X1-01Z-00-DX1 Breast Invasive Carcinoma 93, 358 × 198, 220 TCGA-BR-8285-01A-
01-TS1 Stomach Adenocarcinoma 70, 894 × 163, 344 
TCGA-BR-8296-01A-01-TS1 Stomach Adenocarcinoma 70, 894 × 105, 576 
TCGA-BR-8361-01A-01-BS1 Stomach Adenocarcinoma 70, 894 × 87, 648 
TCGA-BR-8682-01A-01-TS1 Stomach Adenocarcinoma 77, 870 × 100, 912 
TCGA-FA-8693-01A-01-TS1 Diffuse Large B-cell Lymphoma 92, 241 × 91, 392 TCGA-
LL-A8F5-01Z-00-DX1      Breast Invasive Carcinoma     90, 462 × 107, 567 

 
the performance in GPU only devices, and Section 6.1.3 evaluates the application into a 

hybrid CPU-GPU setting. 

 
6.1.1 Comparison to handwritten and Multi-core scalability 

We first compared the application written using Halide to the sequential handwritten code 

implemented in a previous work [22], both deployed into RT. When executing the code 

sequentially using a single CPU core, the RT/Halide code version took 1480.19 seconds,  

while the Handwritten code executed in 1654.28 seconds. Most of the performance gains 

in the Halide based application, as seen in details on Table 6.2, were concentrated on 

Erode/Dilate operations executed within the Morphological Reconstruction, which were 

implemented in the original Handwritten application leveraging OpenCV [55]. These 

operations execute pixel neighborhood or stencil operations with different stencil shapes 

and sizes. This is a computing pattern friendly for optimization with Halide that was able 

to generate hardware specific tiling, improving cache locality and performance although 

using a single CPU core. This result shows that the Halide enabled Region Templates 

code is not only higher-level, but it may be more efficient than code base on OpenCV. 

This is one of the reasons Halide is being used as a backend for some stencil-related 

functionalities/operations in OpenCV [123, 124]. It should be noted that although using 

Halide resulted in better performance, being this case expected in most cases, its use may 

eventually result in slight slowdowns [111]. 

Table 6.2: Profiling of the pipeline’s tasks on a serialized environment for Halide and 
Handwritten code. I/O times not considered. 

 

 

Code 
Handwritten 

 
3.64 450.53 378.45 810.00 4.63 5.90 1654.28 

  Code  

Task GetRBG Erode Dilate IWPP Dilate2 Erode2 Full time 

RT/Halide 
3.37

 
414.71 288.29 761.85 5.16 5.69 1480.19 
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Figure 6.2: Scalability of the motivating application developed using Halide on a single 
CPU with 28 cores. 

 
 

Then the scalability for the number of CPU computing cores was further analyzed 

when using the Halide parallelized code. The results presented in Figure 6.2 reached a 

76% scaling efficiency with 28 CPU cores on a CPU-only machine. Sub-linear scalability 

is, however, expected for the application because of the irregular computation costs in dif- 

ferent image regions, memory subsystems competition, and additional costs to synchronize 

threads and I/O times that do not decrease linearly with the number of CPU cores used. 

These results agree with previous works on the application domain and Halide [22, 125]. 

 
6.1.2 Multi-GPU Execution 

This experiment evaluates the performance of our system for multi-GPU compute nodes. 

This setting compares the CADP algorithms with the baseline KDT algorithm. For each 

GPU used, a RT Worker was instantiated. For all the cases evaluated here a single GPU 

could not store the entire image, which was partitioned for out-of-core GPU processing, 

with 4 partitions per GPU device. The raw size of some of the input images used in 

this section could reach over 20 GB in size (as shown in Table 6.1) which is larger than 

the memory of a single GPU. Within a single compute node, 1-4 GPU devices were used 

on a scaling setting. The performance of all algorithms regarding speedups, scaling and 

balance efficiency are displayed on the tables of Figure 6.3. Since most results are similar 

between WSIs, two images were chosen for a deeper analysis: BR-8682 and B6-A0X1. 

As shown on the results of Figure 6.3, ECB achieved speedups of 0.88-1.93×, with 

BRB improving it to 0.97-2.72×, both compared with KDT. Regarding scaling efficiency, 

all algorithms achieved good efficiency, with only 3/60 cases for both ECB and BRB 

below 90% efficiency. However, the evaluated scaling efficiency for such few distributed 

workers was expected. Regarding the worse results from KDT, one source of lower scaling 

efficiency is the also lower balance efficiency, which is expected to deteriorate even fur- 
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Figure 6.3: Full data for single node experiments executed on a single GPU-only compute 
node. For each image, the values are related to the number of compute elements used, 
from 1-4 GPUs for the used node. 

  Speedups for ECB vs.  KDT    Speedups for BRB vs. KDT  

Image 1 2 3 4 Image 1 2 3 4 
  

 
 
 
 
 
 
 

    LL-A8F5 1.06 1.12 1.06 1.23 LL-A8F5 1.16 1.10 1.11 1.24  
 

  Speedups for BRB vs. ECB    Scaling Efficiency for ECB  

Image 1 2 3 4 Image 2 3 4 
  

 
 
 
 
 
 
 

    LL-A8F5 1.09 0.98 1.04 1.01 LL-A8F5 101% 99% 99%  
 

  Scaling Efficiency for KDT    Scaling Efficiency for BRB  
 

 
 
 
 
 
 

 
    LL-A8F5 96% 99% 86% LL-A8F5 91% 94% 92%  

 

  Balance Efficiency for ECB    Balance Efficiency for KDT  

  Image 2 3 4  Image 2 3 4 

86-8668 
86-8669 

98% 
100% 

93% 
95% 

91% 
96% 

86-8668 
86-8669 

86% 
89% 

94% 
90% 

88% 
66% 

B6-A0RG 96% 94% 97% B6-A0RG 92% 91% 76% 
B6-A0X1 93% 99% 97% B6-A0X1 97% 95% 89% 
BR-8285 98% 94% 93% BR-8285 92% 94% 84% 
BR-8296 99% 97% 97% BR-8296 83% 98% 68% 
BR-8361 100% 99% 97% BR-8361 98% 93% 87% 
BR-8682 97% 99% 96% BR-8682 95% 98% 83% 

FA-8693 100% 98% 97% FA-8693 86% 98% 68% 

    LL-A8F5 98% 96% 97% LL-A8F5 89% 95% 84%  
 

  Balance Efficiency for BRB  
  Image 2 3 4  

86-8668 97% 96% 93% 
86-8669 97% 94% 92% 

B6-A0RG 98% 88% 79% 
B6-A0X1 94% 94% 98% 
BR-8285 93% 92% 93% 
BR-8296 96% 91% 88% 
BR-8361 99% 95% 95% 
BR-8682 91% 95% 95% 
FA-8693 89% 92% 89% 

    LL-A8F5 90% 95% 95%  

86-8668 0.90 1.15 0.99 1.06 86-8668 1.03 1.38 1.27 1.39 
86-8669 0.91 1.12 1.01 1.40 86-8669 1.12 1.37 1.37 1.87 

B6-A0RG 1.00 1.00 1.07 1.35 B6-A0RG 0.98 1.04 1.14 1.13 
B6-A0X1 1.41 1.28 1.38 1.44 B6-A0X1 1.42 1.34 1.48 1.66 
BR-8285 1.94 1.64 1.46 1.52 BR-8285 2.51 2.19 2.17 2.72 
BR-8296 0.97 1.12 0.95 1.29 BR-8296 1.10 1.30 1.18 1.59 
BR-8361 1.00 1.03 1.06 1.11 BR-8361 1.04 1.15 1.15 1.24 
BR-8682 1.09 1.08 1.07 1.22 BR-8682 1.18 1.15 1.23 1.42 

FA-8693 0.95 1.12 0.89 1.28 FA-8693 1.30 1.38 1.29 1.84 

 

86-8668 1.15 1.20 1.29 1.31 86-8668 113% 104% 102% 
86-8669 1.24 1.23 1.36 1.34 86-8669 120% 107% 107% 

B6-A0RG 0.98 1.04 1.06 0.84 B6-A0RG 105% 105% 109% 
B6-A0X1 1.00 1.04 1.08 1.15 B6-A0X1 98% 98% 95% 
BR-8285 1.30 1.34 1.49 1.79 BR-8285 100% 90% 80% 
BR-8296 1.14 1.16 1.24 1.23 BR-8296 96% 91% 85% 
BR-8361 1.04 1.11 1.08 1.11 BR-8361 102% 94% 90% 
BR-8682 1.09 1.07 1.15 1.17 BR-8682 100% 100% 97% 

FA-8693 1.37 1.23 1.46 1.43 FA-8693 108% 94% 96% 

 

Image 2 3 4 Image 2 3 4 

86-8668 88% 94% 86% 86-8668 117% 116% 116% 
86-8669 97% 96% 69% 86-8669 119% 118% 116% 

B6-A0RG 105% 98% 81% B6-A0RG 112% 115% 94% 
B6-A0X1 107% 100% 93% B6-A0X1 101% 105% 109% 
BR-8285 119% 120% 102% BR-8285 104% 104% 111% 
BR-8296 83% 92% 64% BR-8296 98% 99% 93% 
BR-8361 99% 89% 81% BR-8361 109% 98% 96% 
BR-8682 101% 102% 86% BR-8682 98% 106% 104% 

FA-8693 92% 101% 71% FA-8693 98% 100% 100% 
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(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.4: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 4 GPUs used. 

 

(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.5: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 4 GPUs used. 
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ther its performance for larger numbers of workers. Another interesting aspect regarding 

balance efficiency is that BRB improved ECB’s performance by 0.84-1.79× even with 

25/30 multi-GPU results with worse balance efficiency. As mentioned on Section 5.2.1, 

it was expected for BRB to perform worse than ECB regarding balance efficiency, but 

improving performance due to background removal. Section 5.2.1 also show how much 

fine-grain background can be removed, while Section 6.3 shows experimental results re- 

garding background removal and its impacts. 

The images BR-8682 and B6-A0X1 were chosen as they represent the two main classes 

of images, dense and sparse, respectively, with their results shown in Figures 6.4 and 6.5. 

For image BR-8682 the speedups of BRB compared to ECB are greater than the ones 

for B6-A0X1. This is due to the amount of fine-grain background which can be removed. 

The first dense image have almost no coarse-grain background to be removed while also 

having a significant amount of background which can be easily removed by BRB. This 

difference allowed BRB to outperform ECB. For B6-A0X1, most of the background which 

could be removed is coarse-grain, bringing ECB closer to BRB. The speedups however 

increase with the number of GPUs, and thus partitions generated, allowing for more fine- 

grain background removal for BRB. Finally, the impacts of balance efficiency on speedups 

are more visible for these images. As shown in Figures 6.4a and 6.4b, as KDT balance 

efficiency drops, ECB and BRB speedups grow. 

 
6.1.3 Cooperative CPU/GPU Execution 

This section evaluates the benefits of cooperative execution on RT. As previously dis- 

cussed, our platform can use multiple devices by partitioning the input image into disjoint  

tiles that are dispatched for processing in available processors. This partitioning is pa- 

rameterized by the expected acceleration of the GPU as compared to the CPU to create 

partitions with size/cost that are proportional to their computing power. The speedup 

values of a GPU vs. CPU multi-core are presented in Table 6.3. For all cases and algo- 

rithms 4 partitions were generated per device (GPU or CPU) and an acceleration value 

of 1.6 was used for hybrid partitioning. 

Table 6.3 presents the speedup of the hybrid execution as compared to CPU-only 

execution.   BRB attained the best gains for using hybrid execution for 7/10 images. 

On some cases, the attained hybrid vs. CPU-only performance was significantly better 

than the expected theoretical. For instance, image 86-8669 expected speedup for hybrid 

execution should be 2.48× (1.48+1(CPU)). These cases, more common for BRB, can 

be explained by more background removal and improved load imbalance due to more 

partitions being generated. Nevertheless, all algorithms performed well, with the worst 
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Table 6.3: Speedups of the GPU-only and hybrid CPU-GPU execution vs. CPU-only 
(48 cores) on a single node. A single V100 GPU was used for the GPU-only and Hybrid 
cases. 

 
GPU-only 
vs. CPU 

 
Hybrid 

vs. CPU 

 
 

 
 
 
 
 
 

FA-8693 1.58 2.33 2.26 2.62 
    LL-A8F5 1.55 2.43 2.48 2.28  

 

hybrid execution efficiency (hybrid_speedup/(1+cpu_only_speedup)) around 84% and 

median of 96%. 

When scaling the number of GPUs used (all results on the tables of Figure 6.6), both 

CAPD algorithms significantly outperformed KDT, with min/average/max speedups of 

0.88/1.11/1.55× and 1.02/1.39/2.37× for ECB and BRB respectively. These gains are 

lower than the ones with GPU-only execution since there is a new source of error to 

the partitioning process related to using hybrid resources. This is also shown with lower  

balance efficiency values for all algorithm when compared with GPU-only execution, with 

BRB being the most affected. This still did not resulted into KDT outperforming BRB 

given the latter execution cost reduction due to background removal and yet reasonable 

workload balance efficiency. At last, when comparing balance efficiencies of KDT and ECB 

the only cases on which speedups are not proportional to balance efficiency are for image 

BR-8285. Since this image is sparse, the gains can be attributed mostly to background 

removal. It is also worth noting that, as expected, all makespan values for hybrid execution 

are better than their GPU-only counterparts, for all images and algorithms. 

The results for hybrid execution of images BR-8682 and B6-A0X1 (see Figures 6.7 

and 6.8) are similar to the ones for GPU-only execution, with slight worse balance and 

scaling efficiencies due to the use of hybrid partitioning. 

Image 

86-8668 1.51 
KDT 
2.40 

ECB 
2.49 

BRB 
2,50 

86-8669 1.48 2.42 2.44 3.06 
B6-A0RG 1.42 2.48 2.31 1.88 
B6-A0X1 1.54 2.44 2.40 2.48 
BR-8285 1.41 2.93 2.01 2.03 
BR-8296 1.52 2.42 2.32 2.73 
BR-8361 1.58 2.48 2.43 2.64 

BR-8682 1.63 2.55 2.54 2.71 
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Figure 6.6: Full data for hybrid execution experiments on a single CPU-GPU compute 
node. For each image, the values are related to the number of compute GPU devices 
used, from 1-4 GPUs. 

  Speedups for ECB vs.  KDT    Speedups for BRB vs. KDT  

Image 1 2 3 4 Image 1 2 3 4 
  

 
 
 
 
 
 
 

    LL-A8F5 1.05 1.06 1.09 1.15 LL-A8F5 1.03 1.06 1.05 1.08  
 

  Speedups for BRB vs. ECB    Scaling Efficiency for ECB  

Image 1 2 3 4 Image 2 3 4 
  

 
 
 
 
 
 
 

    LL-A8F5 0.98 1.00 0.96 0.94 LL-A8F5 80% 73% 69%  
 

  Scaling Efficiency for KDT    Scaling Efficiency for BRB  

Image 2 3 4 Image 2 3 4 
  

 
 
 
 
 
 
 

    LL-A8F5 80% 70% 63% LL-A8F5 82% 72% 66%  
 

  Balance Efficiency for ECB    Balance Efficiency for KDT  

  Image 2 3 4  Image 2 3 4 

86-8668 
86-8669 

85% 93% 90% 
99% 91% 89% 

86-8668 
86-8669 

97% 
93% 

90% 
88% 

81% 
79% 

B6-A0RG 85% 88% 93% B6-A0RG 92% 89% 80% 
B6-A0X1 82% 98% 91% B6-A0X1 81% 97% 77% 
BR-8285 84% 94% 76% BR-8285 99% 91% 91% 
BR-8296 83% 97% 95% BR-8296 83% 88% 79% 
BR-8361 97% 90% 89% BR-8361 83% 87% 86% 
BR-8682 99% 87% 92% BR-8682 81% 97% 86% 

FA-8693 100% 89% 90% FA-8693 79% 85% 66% 

    LL-A8F5 99% 88% 90% LL-A8F5 84% 88% 87%  
 

  Balance Efficiency for BRB  

Image 2 3 4 
86-8668 85% 82% 87% 
86-8669 82% 83% 88% 

B6-A0RG 83% 85% 95% 
B6-A0X1 97% 93% 94% 
BR-8285 96% 87% 84% 
BR-8296 91% 93% 85% 
BR-8361 85% 90% 90% 
BR-8682 83% 87% 81% 

FA-8693 85% 87% 88% 

    LL-A8F5 82% 86% 91%  

86-8668 1.03 1.13 1.01 1.05 86-8668 1.17 1.24 1.28 1.49 
86-8669 0.94 1.07 0.99 1.13 86-8669 1.31 1.41 1.26 1.57 

B6-A0RG 0.95 1.11 1.15 1.06 B6-A0RG 1.08 1.28 1.32 1.24 
B6-A0X1 1.27 1.33 1.33 1.55 B6-A0X1 1.32 1.42 1.49 1.69 
BR-8285 1.35 1.40 1.40 1.44 BR-8285 2.01 2.13 2.20 2.37 
BR-8296 0.97 1.00 0.89 1.12 BR-8296 1.26 1.23 1.25 1.41 
BR-8361 0.99 1.02 1.01 1.07 BR-8361 1.11 1.15 1.15 1.27 
BR-8682 1.03 1.09 1.04 1.12 BR-8682 1.17 1.30 1.29 1.21 

FA-8693 0.94 1.01 1.04 1.16 FA-8693 1.49 1.62 1.54 1.76 

 

86-8668 1.13 1.10 1.27 1.42 86-8668 84% 71% 66% 
86-8669 1.39 1.32 1.27 1.39 86-8669 84% 78% 68% 

B6-A0RG 1.14 1.15 1.15 1.17 B6-A0RG 84% 78% 71% 
B6-A0X1 1.04 1.07 1.12 1.09 B6-A0X1 78% 71% 69% 
BR-8285 1.49 1.52 1.58 1.65 BR-8285 77% 70% 60% 
BR-8296 1.30 1.23 1.41 1.26 BR-8296 76% 65% 60% 
BR-8361 1.11 1.12 1.13 1.18 BR-8361 78% 70% 64% 
BR-8682 1.13 1.19 1.25 1.08 BR-8682 80% 73% 69% 

FA-8693 1.59 1.61 1.48 1.52 FA-8693 83% 79% 72% 

 

86-8668 77% 73% 65% 86-8668 81% 79% 83% 
86-8669 73% 73% 57% 86-8669 79% 71% 68% 

B6-A0RG 72% 64% 64% B6-A0RG 86% 79% 74% 
B6-A0X1 74% 67% 56% B6-A0X1 80% 76% 72% 
BR-8285 74% 67% 57% BR-8285 78% 74% 67% 
BR-8296 73% 70% 52% BR-8296 72% 70% 58% 
BR-8361 76% 68% 59% BR-8361 79% 71% 68% 
BR-8682 76% 73% 63% BR-8682 84% 81% 66% 

FA-8693 76% 71% 58% FA-8693 83% 74% 69% 
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(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.7: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 4 GPUs used for hybrid execution. 

 

(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.8: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 4 GPUs used for hybrid execution. 
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6.2 Distributed Memory Execution 

This section evaluates the system in for distributed memory execution using up to 32 

CPU-only compute nodes, for a total of 896 CPU-cores. Similarly to the previous sections, 

the images were processed while using different partitioning algorithms and a ghost zone  

of 100 pixels and 4 partitions per node for all tested algorithms. The performance of 

the application with different strategies and images is presented in full on the tables of 

Figure 6.11. As shown, both CADP algorithms once again performed better than the 

baseline algorithm in most of the cases, with BRB improving on the performance of both 

ECB and KDT. Overall, ECB was faster than KDT on 49 out of 60 test points (10 images 

and 6 distributed settings), with speedups in the range of 0.9× to 2.4×. BRB managed 

even better, with speedups between 1.02× and 4.5× when compared to KDT, and 0.91× 

and 3.03× when comparing to ECB. 

Similarly with the previous subsections, a couple of selected WSIs are emphasized 
 
 

(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.9: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases of low background 
images while B6-A0X1 represents sparse images. 
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(a) Results for dense image BR-8682. 

 

(b) Results for sparse image B6-A0X1. 

Figure 6.10: Application makespan of images BR-8682 and B6-A0X1 with related scaling 
efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases of low background 
images while B6-A0X1 represents sparse images. 

here to better understand some of the performance results. On the first type of chart of 

Figures 6.9a and 6.9b it is visible that ECB was significantly better than KDT, with BRB 

improving on both for every number of used nodes. Regarding scaling efficiency, every 

algorithm scaled relatively well up to 16 nodes, with lower values at 32 nodes. The case 

of BRB is a bit different with over 100% efficiency at some cases. This is due to the fact 

that more nodes means more partitions are generated. With larger numbers of partitions 

BRB is able to remove ever more background, reducing the overall execution cost to the 

extent of showing these scaling efficiency values. For KDT, there is one outlier for image 

BR-8285, which manages to achieve scaling efficiencies of over 100%. This particular 

case can be explained by the irregular nature of IWPP applications. For this image, 

the overall cost of executing the 4 partitions with a single node was particularly high 

(higher number of propagation iterations), resulting in skewed values. Another aspect to 

observe on the balance efficiency results of Figure 6.11 is that on most cases (36/50) ECB 

had better results, as discussed before on Section 5.2.1. However, the trade-off of larger 
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Figure 6.11: Full data for distributed execution experiments on CPU-only compute nodes. 
For each image, the values are related to the number of compute nodes used, from 1-32 
nodes. 

  Speedups for ECB vs.  KDT    Speedups for BRB vs. KDT  

Image 1 2 4 8 16 32 Image 1 2 4 8 16 32 
  

 
 
 
 
 
 
 

    LL-A8F5 1.03 1.12 1.10 1.22 1.26 1.30 LL-A8F5 1.09 1.23 1.31 1.44 1.16 1.28  
 

  Speedups for BRB vs. ECB    Scaling Efficiency for ECB  

Image 1 2 4 8 16 32 Image 2 4 8 16 32 
  

 
 
 
 
 
 
 

    LL-A8F5 1.06 1.10 1.18 1.19 0.92 0.98 LL-A8F5 99% 96% 95% 85% 72%  
 

  Scaling Efficiency for KDT    Scaling Efficiency for BRB  

  Image 2 4 8 16 32  

86-8668 89% 94% 75% 63% 69% 

  Image 2 4 8 16 32  

86-8668 111% 108% 121% 104% 100% 

 
 
 
 
 

 

    LL-A8F5 91% 89% 80% 69% 57% LL-A8F5 103% 107% 106% 74% 67%  
 

  Balance Efficiency for ECB    Balance Efficiency for KDT  

Image 2 4 8 16 32 Image 2 4 8 16 32 
  

 
 
 
 
 
 
 

    LL-A8F5 99% 91% 93% 90% 88% LL-A8F5 89% 88% 81% 74% 65%  
 

  Balance Efficiency for BRB   

Image  2 4 8 16 32 
86-8668 98% 87% 91% 90% 61% 
86-8669 99% 92% 91% 77% 70% 

B6-A0RG 100% 99% 96% 90% 81% 
B6-A0X1 98% 94% 94% 93% 73% 
BR-8285 95% 88% 92% 93% 91% 
BR-8296 92% 87% 85% 92% 84% 
BR-8361 91% 91% 94% 70% 71% 
BR-8682 97% 91% 89% 89% 89% 

FA-8693 97% 94% 83% 83% 91% 

    LL-A8F5 97% 94% 94% 94% 92%  

86-8668 0.99 1.17 1.08 1.26 1.24 0.94 86-8668 1.12 1.39 1.29 1.80 1.84 1.62 
86-8669 0.93 1.02 1.28 1.67 0.97 2.43 86-8669 1.03 1.31 1.82 2.31 1.58 4.52 

B6-A0RG 1.02 1.03 1.26 1.50 1.72 1.19 B6-A0RG 1.42 1.90 2.33 2.74 2.96 1.68 
B6-A0X1 1.29 1.26 1.41 1.42 1.57 2.21 B6-A0X1 1.30 1.34 1.50 1.63 1.84 3.00 
BR-8285 1.97 1.86 1.57 1.19 1.62 1.27 BR-8285 2.90 2.89 3.32 2.72 3.69 3.86 
BR-8296 1.00 1.18 1.34 0.97 1.08 1.02 BR-8296 1.11 1.27 1.60 1.38 1.78 2.19 
BR-8361 1.01 1.03 1.14 0.98 0.98 0.90 BR-8361 1.04 1.05 1.21 1.22 1.37 1.30 
BR-8682 1.04 1.06 1.25 1.01 1.26 1.43 BR-8682 1.09 1.17 1.47 1.21 1.63 2.19 

FA-8693 0.96 1.16 1.30 1.53 0.98 0.98 FA-8693 1.32 1.45 1.72 2.26 1.52 1.66 

 

86-8668 1.13 1.19 1.19 1.43 1.48 1.73 86-8668 105% 102% 95% 79% 65% 
86-8669 1.10 1.29 1.43 1.38 1.63 1.86 86-8669 101% 97% 101% 75% 54% 

B6-A0RG 1.39 1.85 1.84 1.82 1.72 1.41 B6-A0RG 97% 97% 98% 91% 63% 
B6-A0X1 1.00 1.06 1.06 1.14 1.18 1.36 B6-A0X1 97% 100% 96% 88% 54% 
BR-8285 1.48 1.56 2.11 2.29 2.27 3.04 BR-8285 102% 83% 75% 54% 38% 
BR-8296 1.10 1.08 1.19 1.42 1.65 2.14 BR-8296 99% 89% 74% 61% 42% 
BR-8361 1.02 1.02 1.06 1.24 1.40 1.44 BR-8361 100% 96% 89% 69% 44% 
BR-8682 1.06 1.11 1.18 1.19 1.29 1.53 BR-8682 99% 100% 99% 92% 54% 

FA-8693 1.36 1.25 1.33 1.48 1.56 1.69 FA-8693 108% 99% 93% 80% 61% 

 

86-8669 92% 71% 56% 72% 21% 86-8669 118% 126% 126% 110% 91% 
B6-A0RG 97% 79% 67% 54% 54% B6-A0RG 129% 129% 128% 112% 64% 
B6-A0X1 99% 91% 87% 73% 32% B6-A0X1 102% 106% 109% 104% 74% 
BR-8285 108% 103% 124% 65% 59% BR-8285 108% 118% 116% 83% 79% 
BR-8296 85% 67% 76% 57% 41% BR-8296 97% 96% 95% 92% 82% 
BR-8361 98% 85% 92% 72% 49% BR-8361 100% 100% 108% 95% 62% 
BR-8682 97% 83% 102% 76% 39% BR-8682 104% 111% 112% 112% 78% 

FA-8693 90% 74% 59% 79% 60% FA-8693 99% 96% 101% 92% 75% 

 

86-8668 99% 92% 90% 88% 72% 86-8668 86% 89% 69% 61% 68% 
86-8669 95% 93% 89% 78% 72% 86-8669 89% 67% 52% 57% 44% 

B6-A0RG 94% 92% 94% 92% 94% B6-A0RG 94% 77% 65% 55% 58% 
B6-A0X1 97% 99% 97% 95% 91% B6-A0X1 100% 90% 87% 75% 73% 
BR-8285 96% 89% 94% 85% 84% BR-8285 83% 80% 75% 52% 42% 
BR-8296 100% 96% 92% 93% 85% BR-8296 85% 68% 74% 58% 48% 
BR-8361 99% 98% 95% 86% 82% BR-8361 97% 85% 87% 77% 60% 
BR-8682 97% 97% 96% 95% 94% BR-8682 94% 79% 89% 77% 59% 

FA-8693 97% 96% 92% 86% 71% FA-8693 85% 69% 55% 69% 58% 
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(a) Partitioning with BRB. (b) Partitioning with ECB. (c) Partitioning with KDT. 

Figure 6.12: Partitioning results for image BR-8682. 32 partitions were generated for the 
execution with 8 nodes. 

amount of fine-grain background removed versus lower balance efficiency still proved to 

be advantageous to BRB. 

On the second type of chart, on Figures 6.10a and 6.10b it becomes easier to see why 

both ECB and BRB outperform the baseline KDT algorithm. As seen, partitioning with 

KDT results in less balanced partitions, which in turn hurts the balance efficiency. It is 

interesting to see that when KDT manages to improve its balance efficiency, its relative 

performance is also improved, as seen on Figure 6.10a on which ECB and BRB speedups 

against KDT drop, and on Figure 6.9a with a spike of scaling efficiency. 

It is also important to highlight that KDT is naturally prone to perform worse since 

it is usually executing a larger region of the whole WSI. Figures 6.12 and 6.13 show the 

partitioning results for the execution of 8 nodes, on which 32 partitions were generated.  

For Figure 6.12 it is seen that only BRB manages to significantly reduce the amount of 

background available, resulting in the higher disparity of speedups of BRB and ECB on 

Figure 6.10a. As such, together with the results of Figure 6.9a, points to the conclusion 

of how good ECB is at balancing the generated partitions. The partitions of Figure 6.13 

show a major limitation of KDT: not being able to work with an arbitrary number of 

initial dense regions. These scenarios present the best outcomes for both ECB and BRB, 

which speedups against KDT are generally greater and closer to each other, as seen on 

Figure 6.10b. As expected, BRB manager to improve significantly on ECB due to its 

hierarchical partitioning, generating more square-shaped partitions and removing more 

 
 

(a) Partitioning with BRB. (b) Partitioning with ECB. (c) Partitioning with KDT. 

Figure 6.13: Partitioning results for image B6-A0X1. 32 partitions were generated for the 
execution with 8 nodes. 



79  

 
 

 

(a) Workload distribution for image BR-8682 on 16 CPU nodes. 
 

(b) Workload distribution for image B6-A0X1 on 16 CPU nodes. 

Figure 6.14: Workers workload for 16 CPU nodes configuration with BRB, ECB and 
KDT respectively, images BR-8682 and B6-A0X1. Execution times are sorted for better 
visualization. 

 
 

background with minor impact on the balance efficiency. 

Finally, Figure 6.14 shows the workload distribution for 16 compute nodes with the 

BR-8682 and B6-A0X1 images, better illustrating the actual impact of the CADP ap- 

proach on workload imbalance. It is important to notice that although BRB seems to 

outperform ECB regarding balance efficiency this is not the case (95% vs. 89% on BR- 

8682, and 95% vs. 93% on B6-A0X1 for ECB and BRB respectively). It is also noteworthy 

that at least 8 CPU-only nodes are required to outperform the use of a single GPU node 

on hybrid execution with 4 GPUs. 

 
6.2.1 Execution Time of the Partitioning Algorithms 

Naturally, The input partitioning process has an execution cost which offsets its makespan 

gains. As such, there is a tradeoff of generating good partitions and how much time is 

required to generate these partitions should be observed. As shown in the tables of Fig- 

ure 6.15, KDT achieves the best partitioning times given its simplicity. For the CADP 

algorithms, ECB is significantly more computationally expensive than BRB. Although 

ECB and BRB have equivalent algorithmic complexity, when executing the BTS section 

of the algorithm BRB is should find the expected cost partition earlier on the binary- 

search process. For instance, in order to find the first partition out of 32 on a perfectly 
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Figure 6.15: Execution times in seconds for the partitioning algorithms on CPU-only 
compute nodes. For each image, the values are related to the number of compute nodes 
used, from 1-32 nodes. 

  Partitioning times for ECB    Partitioning times for BRB  

  Image 1 2 4 8 16 32  Image 1 2 4 8 16 32 

86-8668 
86-8669 

1.13 
1.45 

1.97 
2.29 

3.26 
4.03 

6.60 
7.74 

12.29 22.91 
14.45 27.61 

86-8668 
86-8669 

1.89 
2.41 

2.54 
3.07 

3.11 
3.84 

3.82 
4.65 

4.76 
5.60 

5.63 
6.75 

B6-A0RG 0.66 1.10 1.96 3.80 6.42 12.36 B6-A0RG 0.90 1.35 1.10 2.03 2.37 2.79 
B6-A0X1 0.61 0.83 1.30 2.10 3.40 6.86 B6-A0X1 0.92 1.34 1.76 2.19 2.76 3.30 
BR-8285 0.54 0.74 1.16 2.01 3.52 6.86 BR-8285 0.82 0.98 1.11 1.28 1.45 1.59 
BR-8296 1.29 1.89 3.25 6.03 11.45 20.77 BR-8296 2.07 2.73 3.36 4.16 5.12 5.98 
BR-8361 1.01 1.74 3.14 5.84 10.57 20.36 BR-8361 1.93 2.42 3.04 3.77 4.68 5.68 
BR-8682 1.45 2.14 3.88 7.46 14.68 28.58 BR-8682 2.28 2.92 3.65 4.52 5.47 6.68 

FA-8693 1.34 2.26 4.17 7.35 14.58 26.69 FA-8693 2.12 2.70 3.38 4.22 5.18 6.07 

    LL-A8F5 1.64 2.48 4.61 9.12 17.65 34.28 LL-A8F5 2.45 3.31 4.19 5.05 6.46 7.42  
 

  Partitioning times for KDT  

  Image 1 2 4 8 16 32  
86-8668 0.38 0.47 0.53 0.63 0.73 0.86 
86-8669 0.52 0.59 0.67 0.77 0.88 1.04 

B6-A0RG 0.26 0.30 0.36 0.41 0.47 0.52 
B6-A0X1 0.33 0.37 0.44 0.48 0.55 0.60 
BR-8285 0.25 0.29 0.39 0.38 0.42 0.47 
BR-8296 0.51 0.52 0.65 0.68 0.78 0.86 
BR-8361 0.39 0.45 0.51 0.56 0.65 0.73 
BR-8682 0.48 0.54 0.61 0.69 0.81 1.00 
FA-8693 0.51 0.57 0.67 0.75 0.97 1.03 

    LL-A8F5 0.54 0.64 0.74 0.84 0.97 1.13  

 

homogeneous image, ECB should require at least 5 cuts (log(32)) while BRB could per- 

form a single cut due to its decomposition of 32 into 2 × 2 × 2 × 2 × 2 and its hierarchical 

partitioning. Finally, although the partitioning costs can be expensive for increasing 

numbers of partitions, these algorithms still achieved positive overall makespan speedups. 

However, further optimization these algorithms still remains and open problem. 

 
6.3 Impact of Background Removal 

It is important to evaluate the speedup impacts of using background removal. This, how- 

ever, can mainly be done for ECB, since BRB performs fine-grain background removal 

even after the coarse-grain removal. Alternatively, ECB’s background removal/partition- 

ing step is fully executed before the actual balanced partitioning algorithm. This section 

evaluates this impact. 

After running both ECB an BRB without coarse-grain background removal both al- 

gorithms worsen their performance. First, the overall speedups of ECB fell from the 

max/avg/min values of 2.42/1.24/0.90× to 1.43/1.05/0.61×. For ECB, 38% of all speedups 

are below 1×, compared with 18% when using coarse-grain background removal, shown 

in the tables of Figure 6.16. When evaluating the balance efficiency, it becomes clear that  

its worsening relates to some of the performance losses, as shown in tables of Figure 6.17  

with the balance efficiency difference and speedups between/of both versions. One source 
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Figure 6.16: Speedups for ECB vs. KDT. ECB with and without coarse-grain background 
removal shown. 

  Original Speedups for ECB vs. KDT  ECB w/o coarse-grain background removal vs. KDT  

Image 1 2 4 8 16 32 Image 1 2 4 8 16 32 
  

 
 
 
 
 
 
 

    LL-A8F5 1.03 1.12 1.10 1.22 1.26 1.30 LL-A8F5 1.00 1.09 1.15 1.02 1.22 1.32  

 

 

which explains such worsening of balance efficiency is the quality of the partitioning. As 

seen in Figure 6.18 the partitions generated for images B6-A0X1 and BR-8285 (images 

with the worst results) by KDT are more reasonable than the ones generated by ECB. 

This can be explained by (i) ECB low sensitivity to partitions’ sizes, which influence on 

I/O times, and (ii) that ECB generation is not hierarchical, resulting in the long strips 

shown in Figures 6.18a and 6.18c. 

Further, there are still very few cases on which balance efficiency does not correlate 

with improved performance, i.e., KDT manages to outperform ECB even with worse 

balance efficiency. As mentioned on Section 5.2, one of the motivations of BRB was to 

improve on the quality of the partitions as to generate more square-shaped partitions 

(see Figure 6.18c), since the stripe-shaped partitions could increase the overall cost of 

processing them due to IWPP. This effect can be seen on Figure 6.19, on which ECB 

workers execution times are more balanced, but overall higher than the times of KDT. By 

removing the coarse-grain background removal step the losses in performance were such 

that improving load balance was not enough for ECB to still attain gains when compared 

to KDT. 

Figure 6.17: Comparative data of ECB with vs. without coarse-grain background removal. 

ECB Balance eff. difference with-w/o background removal Speedup of ECB with vs. w/o background removal  

  Image 2 4 8 16 32  Image 1 2 4 8 16 32 

86-8668 
86-8669 

-0.46 
4.84 

2.29 
1.54 

-17.73 
-17.52 

1.31 
4.61 

6.13 
-0.09 

86-8668 
86-8669 

1.01 
0.92 

1.02 
0.92 

1.04 
0.94 

1.39 
1.48 

0.95 
0.95 

1.08 
0.99 

B6-A0RG 3.52 0.76 -23.94 -9.48 -9.99 B6-A0RG 1.04 0.97 1.04 1.63 1.21 0.93 
B6-A0X1 2.34 -3.23 -33.05 -7.33 -2.70 B6-A0X1 1.31 1.26 1.29 2.29 1.49 1.18 
BR-8285 -8.47 0.76 -8.97 -7.71 -12.91 BR-8285 1.63 1.64 1.34 1.49 1.55 1.47 
BR-8296 -0.01 -1.65 -12.01 -4.12 1.47 BR-8296 1.00 1.01 0.97 1.34 0.88 0.79 
BR-8361 0.30 -0.22 -24.49 -0.12 0.17 BR-8361 1.00 1.00 1.00 1.50 1.00 0.87 
BR-8682 -0.71 -2.14 -20.64 -2.74 -22.02 BR-8682 1.02 1.04 1.04 1.45 1.06 1.05 

FA-8693 0.05 -1.32 -27.58 -0.28 8.96 FA-8693 1.00 1.00 1.01 1.61 1.00 1.00 

    LL-A8F5 0.04 5.34 -5.93 -0.90 0.47 LL-A8F5 1.03 1.03 1.00 1.27 1.08 1.01  

86-8668 0.99 1.17 1.08 1.26 1.24 0.94 86-8668 0.99 1.16 1.03 0.89 1.27 0.83 
86-8669 0.93 1.02 1.28 1.67 0.97 2.43 86-8669 1.02 1.10 1.36 1.12 1.01 0.99 

B6-A0RG 1.02 1.03 1.26 1.50 1.72 1.19 B6-A0RG 0.98 1.05 1.21 0.91 1.39 1.30 
B6-A0X1 1.29 1.26 1.41 1.42 1.57 2.21 B6-A0X1 0.99 0.99 1.09 0.62 1.06 0.84 
BR-8285 1.97 1.86 1.57 1.19 1.62 1.27 BR-8285 1.21 1.13 1.18 0.80 0.88 0.86 
BR-8296 1.00 1.18 1.34 0.97 1.08 1.02 BR-8296 1.00 1.16 1.39 0.72 1.22 1.43 
BR-8361 1.01 1.03 1.14 0.98 0.98 0.90 BR-8361 1.02 1.03 1.14 0.64 0.95 1.06 
BR-8682 1.04 1.06 1.25 1.01 1.26 1.43 BR-8682 1.02 1.01 1.19 1.11 1.05 0.87 

FA-8693 0.96 1.16 1.30 1.53 0.98 0.98 FA-8693 0.96 1.16 1.29 0.94 0.96 0.95 
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(a) Partitioning of B6-A0X1 with ECB. (b) Partitioning of B6-A0X1 with KDT. 

(c) Partitioning of BR-8285 with ECB. (d) Partitioning of BR-8285 with KDT. 

Figure 6.18: Partitioning results for images B6-A0X1 and BR-8285 using algorithms ECB 
and KDT. 16 partitions were generated for the execution with 4 nodes. 

 
 
 
 

 

 

Figure 6.19: Workers workload for 32 CPU nodes configuration with ECB and KDT for 
image B6-A0X1. Execution times are sorted for better visualization. 

Table 6.4: Speedups of BRB with vs. without coarse-grain background removal. 
 

  Image 1 2 4 8 16 32  
86-8668 1.00 1.01 0.99 1.36 0.90 1.05 
86-8669 0.95 0.97 0.97 1.04 0.95 1.01 

B6-A0RG 1.38 1.84 1.81 1.76 1.46 1.00 
B6-A0X1 1.23 1.27 1.33 1.55 1.58 1.12 
BR-8285 1.19 1.30 1.45 1.64 0.92 1.15 

BR-8296 1.01 1.02 1.01 1.22 0.95 1.09 
BR-8361 1.00 0.92 0.96 1.01 0.99 1.00 
BR-8682 1.00 1.01 0.99 1.38 1.02 0.90 

FA-8693 1.00 1.06 0.91 1.31 0.90 0.98 

   LL-A8F5 1.00 1.10 1.09 1.13 0.96 1.20   
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(a) Partitioning of B6-A0X1 using BRB 

with coarse-grain background removal. 

(b) Partitioning of B6-A0X1 using BRB 

without coarse-grain background removal. 

Figure 6.20: Partitioning results for image B6-A0X1 using algorithm BRB with and 
without coarse-grain background removal. 16 partitions were generated for the execution 
with 4 nodes. 

 
At last, BRB performance is only slightly affected by the use of coarse-grain back- 

ground removal, as seen on Table 6.4 which shows the speedups of using coarse-grain 

background removal, ranging from 0.89-1.84×. Three images showed the highest discrep- 

ancy of performance: B6-A0RG, B6-A0X1 and BR-8285, all being sparse images. As seen 

on Figure 6.20b, although BRB is able to remove a significant amount of background 

for Image B6-A0X1, it was not able to generate partitions which not include the back- 

ground between dense regions. This happened due to the number of dense regions being 

a multiple of 3 while the number of partitions is a multiple of 2. 

 
6.4 Impact of Inaccurate Cost-Function Estimates 

In this section, we evaluate the impact of errors or inaccuracy of the cost estimates pro- 

vided to CADP to its performance. To evaluate this effect, we have intentionally inserted 

errors to the estimated cost in a systematic manner. Our strategy consisted on defining 

an X% error (positive or negative), in which a value between −X and +X (at random) 

is added to the calculated value returned by the cost-function. The X% error is then 

kept fixed within each experiment, and we varied this percentage and executed multiple 

experiments to evaluate the systems performance. The experiments were executed using 

16 nodes and ECB partitioning algorithm in order to avoid any performance impacts from 

fine-grain background removal. 

The performance of the application for CADP normalized by the case in which there 

are no errors inserted in the cost-function are shown in Figure 6.21. As may be observed, 

the usage of an error skewed cost-function for CADP only slightly impacts its performance 

until 15% of inserted error. However, there is a more significant performance degradation 

for error in the range of 30%. Higher error rates at the cost-function level may lead 

the partitioning algorithms to lose the capacity to distinguish sparse from dense regions, 
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Figure 6.21: Normalized execution time of CADP using an error-prone cost-function 
against regular CADP. KD-Tree performance added as a baseline. 

required by the CADP. It is worth noting that KDT attained similar performance with 

CADP for high added error values, over 30%. 
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Chapter 7 

Conclusion 

In this work, the use of distributed memory hybrid machines to efficiently execute histopathol- 

ogy image analysis applications was studied. A runtime system that enables easy and 

efficient application deployment on hybrid computing systems, while achieving high per- 

formance and reasonable scalability was proposed. This runtime system enabled the 

execution of general workflow implementations for both CPU and GPU using a high-level 

DSL as an embedded solution to ease the implementation process for domain experts. 

Histopathology image processing applications with irregular execution cost were the 

focus of the solution proposed by this work. It was shown that large scale experimentation 

using Whole-Slide Tissue Images (WSI) is a compute intensive task, for which High- 

Performance Computing (HPC) solutions should be employed. Two main issues arise 

from using HPC: (i) the ease of implementing a local analysis algorithm to large scale 

distributed and sometimes hybrid compute environments, and (ii) the efficient distribution 

of work among such distributed resources. 

A straightforward runtime system was implemented, based on the Region Templates 

Framework (RT), which allowed the execution of workflows on partitioned WSIs. Also, 

this new system had the Halide DSL embedded as a way to ease the implementation 

process for such workflows while allowing simple yet efficient implementations for both 

CPU and GPU devices with the same code. Finally, many spatial partitioning algorithms 

were developed to enable efficient distributed execution of these WSI workflows. 

The Cost-Aware Data Partitioning (CADP), the solution used for smart partitioning 

of WSIs, is comprised of two main steps. First, the dense regions of the image are 

segmented, thus reducing the overall execution cost by not executing the workflow on 

background regions. Then, the dense regions are partitioned for distributed execution. 

This novel solution took into consideration the expected cost of a data/image partition 

when splitting it for parallel processing. 

Initially, the Expect-Cost Bisection (ECB) CADP algorithm was developed. While 
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ECB already showed significant gains compared to the KD-Tree (KDT) partitioning al- 

gorithm, used as a baseline for comparison, it also showed some limitations. Although 

ECB managed to produce load-balanced partitions, as the number of generated parti- 

tions increased, the quality of the partitions decreased. These partitions would become 

evermore stripe-shaped. Given the use of an Irregular Wavefront Propagation Pattern 

algorithm (IWPP) by the motivating application, such stripe-shaped partitions would be 

more expensive to execute than more square-shape partitions with the same area. This 

behavior was later seen experimentally. Also, a study on further removing background 

from the dense regions was done to assess how beneficial could the further removal of 

them be. This study on a large set of WSIs showed that at least 16% of background area 

could be removed from over half of all evaluated images. 

With the limitations of ECB and a new goal of removing background even more a 

new CADP algorithm was implemented. The Background Removal Bisection (BRB) 

algorithm used a hierarchical partitioning method to avoid generating stripe-shaped par- 

titions. Further each generated partition would undergo a fine-grain background removal 

step to reduce even further the overall WSI execution cost. Both of these changes re- 

sulted in an improved BRB performance when compared to ECB, while also reducing the  

partitioning time. 

The proposed CADP algorithm were evaluated experimentally on a distributed envi- 

ronment of up to 32 CPU-only compute nodes and 4 GPUs on a single hybrid node. At 

first, the use of Halide as a DSL for implementing the workflows was evaluated, showing 

reasonable scaling efficiency (at least 76% for 28 CPU cores) and slight overall speedups. 

These gains can be explained by data access patterns, which naturally arise on Halide 

implementations, improving spatial data locality. Regarding the use of CADP, it has 

shown significant improvements on the baseline KDT approach. When using the more 

sophisticated BRB algorithm, speedups of up to 4.52× were achieved. The GPU-only and 

hybrid executions have shown good scaling efficiency and balance efficiency, with the hy- 

brid setting showing slight worse performance. Further, CADP was validated for a large 

scale execution environment of up to 32 compute nodes, with a total of 896 CPU cores. 

Compared to the hybrid execution results, at least 8 compute nodes would be necessary 

to outperform a single hybrid node with 4 GPUs. Also, the large scale distributed study 

better showed that CADP improved on KDT performance by (i) reducing workload im- 

balance and (ii) smartly removing background. Although ECB managed to perform best 

regarding balance efficiency, BRB managed to improve upon it by removing even more  

background at the cost of some of the balance efficiency. It was also shown that BRB 

improved on the problem of stripe-shaped partitions, which was shown to significantly 

impact overall workflow performance. At last, it was shown CADP’s robustness to errors 
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added to the cost-function, an important section of the overall solution. CADP was shown 

to still attain enough gains, even with an added random error of up to 30% to the cost 

estimations. 

Given the time complexity of CADP of O(t2 + t n log2(n)), with t as the number 

of expected partitions and n as the number of pixels in the input image, attempts were 

made to improve its partitioning cost. A caching system on which the full image was 

partitioned into fixed-sized tiles was implemented. Each partition generated by CADP 

would have its cost as the sum of the cost of tiles inside it. This solution, however, was 

not able to improve the CADP performance. In order to return accurate cost values, the 

number of tiles would need to be loo large, resulting in a higher cost to aggregate all of 

the ones inside a partition. Further, experimentally, the tiles’ cost reuse rate was low. 

As such, on this trade-off space between less tiles/quicker partitioning/worse quality and 

more tiles/slower partitioning/better quality, a point on which CADP performance was 

improved and its partitioning quality was still acceptable was not found. 

Finally, there was an attempt at finding an improved cost-function. Since the cost- 

function is executed multiple times throughout the CADP execution, it cannot be an 

expensive function. Thus, the LightGBM framework was used to generate regression 

models. As input, a set of over 20,000 partitions of different sizes were generated from 10 

WSIs. Well known morphological features were used for training, such as: total area, dense 

area, solidity, relative centroid, sum of perimeters, circularity, euler number, convexity,  

and convex hull perimeter and area. Some feature selection algorithms were used, such as:  

boruta, recursive feature elimination and addition. Also, a leave-one-image-out scheme 

was used, as a regular train-test-validation data splitting. Finally, the input partitions 

were balanced according to their sizes and execution costs. However, the best model 

generated was still not able to outperform the simple threshold cost-function already in 

use. 

With the above considerations, there are still more directions to explore from the 

current state of this work. The cost of partitioning, although having the CADP somewhat 

optimized, was not fully addressed. Since the more complex task of performing cost- 

function calls reuse though the combination of other calls did not perform well, perhaps 

the calls themselves can be optimized. Currently, the cost-function is implemented on 

Halide, and thus is executed in parallel using all CPU cores. It could then be moved to 

the GPU for even better execution times. However, a study on the overheads of running 

just the cost-function on a GPU should be done. The whole partitioning algorithm can also 

be moved to the GPU, which could solve some of these overheads. A new implementation 

a more parallel version of CADP can also be pursued, on which more than one partition 

is generated at a time. 



88  

It is believed that the main reason that the regression models for calculating the cost- 

function failed was that the chosen morphological features were not representative enough. 

In theory, the regular computing section of the workflow could be estimated relatively well 

since it only depends on the sizes of the inputs. This is not so simple for the irregular 

computing section, the IWPP. Although some correlation to the ratio of height/width 

exists (shown experimentally on Section 6.3), accurate cost estimation is still an open 

problem. Given the inefficacy of more classical morphological features, using generative 

deep learning solutions. Though them, a new set of non-trivial features that better relate 

to the execution times could be found. However, by using such neural networks there is 

the issue of input sizes, for which are fixed. Thus, a generative method would require a 

solution for managing the execution of irregular sized partitions. 

At last, this work was developed with irregular cost applications as the main motivat- 

ing domain. More specifically, applications which use classical image processing workflows. 

Although there are plenty of different applications with these features, a study on whether  

other applications could benefit from the solutions presented on this work should be done. 

For instance, among the many applications of histopathology, Content-Based Image Re- 

trieval (CBIR) is a great candidate for such. CBIR applications may query partitions of 

different sizes, thus adding a cost-awareness aspect to be observed. Another more present 

class of applications on histopathology regards machine learning and deep and/or convo- 

lutions neural networks. Although the computing patterns of such applications are more 

regular, a study on the possible gains of using the solutions here proposed would also be 

interesting. 
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