

Universidade de Bras lia
Instituto de Ci ncias Exatas

Departamento de Ci ncia da Computa o

Efficient Execution of Microscopy Image Analysis on
Distributed Memory Hybrid Machines

Willian de Oliveira Barreiros Júnior

Tese apresentada como requisito parcial para

conclusão do Doutorado em Informática

Orientador

Prof. Dr. George Luiz Medeiros Teodoro

Brasília

2023

Universidade de Bras lia
Instituto de Ci ncias Exatas

Departamento de Ci ncia da Computa o

Efficient Execution of Microscopy Image Analysis on
Distributed Memory Hybrid Machines

Willian de Oliveira Barreiros Júnior

Tese apresentada como requisito parcial para

conclusão do Doutorado em Informática

Prof. Dr. George Luiz Medeiros Teodoro (Orientador)

DCC/UFMG

Profa. Dra. Cristiana Barbosa Bentes Prof. Dr. Renato Antônio Celso Ferreira

DESC/UERJ DCC/UFMG

Prof. Dr. Ricardo Pezzuol Jacobi Prof. Dr. Alfredo Goldman vel Lejbman

CIC/UnB IME/USP (Suplente)

Prof. Dr. Ricardo Pezzuol Jacobi

Coordenador do Programa de Pós-graduação em Informática

Brasília, 8 de março de 2023

iv

Dedicatória

Este trabalho só pôde ser feito com o apoio da minha família, a pedra fundamental sob a

qual me suporto. Em especial, dedico este trabalho à minha mãe Rosângela e meu irmão

Lucas.

v

Agradecimentos

Primeiramente, agradeço ao meu orientador Prof. Dr. George Luiz Medeiros Teodoro,

com quem tenho tido o prazer e a honra de trabalhar por mais de 6 anos. Sou muito

grato por sua influência, já me auxiliando no meio de HPC desde minha monografia,

me orientando no mestrado, e agora em meu doutorado. Não somente agradeço por todo

conhecimento específico do nosso domínio de pesquisa, mas também por me guiar no meio

acadêmico e pessoal.

Gostaria de agradecer aos colegas pesquisadores com quem tive contato nesse período

de doutorado. Agradeço aos pesquisadores Prof. Dr. Joel Saltz e Dr. Tashin Kurc pelos

recursos de supercomputação disponibilizados para minha pesquisa. Agradeço também à

Profa. Dra. Alba Cristina Magalhães Alves de Melo por sua contribuição nos trabalhos

publicados neste período, assim como sua orientação nesses últimos meses antes da entrega

dessa tese.

Por fim, agradeço aos meu amigos, em especial Luís e Igor, que não apenas me aju-

daram a permanecer são nesse período, mas pelas nossas diversas conversas e saraus de

discursões técnicas do campo de expertise de cada um.

vi

Execução Eficiente de Análise de Imagens de Microscopia
em Máquinas Híbridas de Memória Distribuída

Resumo

A análise de imagens de whole slide tissue image (WSIs) é uma tarefa computacional-

mente cara, impactando negativamente no uso de dados de patologia em imagens em

larga escala para pesquisa. Diversas soluções paralelas para otimizar tais aplicações já

foram propostas, mirando no uso de dispositivos e ambientes, como CPUs, GPUs e/ou sis-

temas distribuídos. Porém, a execução eficiente de código paralelo em máquinas híbridas

e/ou distribuídas permanece um problema em aberto para histopatologia digital. Desen-

volvedores de aplicações podem precisar implementar múltiplas versões de código para

diferentes dispositivos de hardware. Desenvolvedores também precisam lidar com os de-

safios de distribuição eficiente de carga para nós computacionais de máquinas de memória

distribuída, assim como para os dispositivos de execução de cada nó. Essa tarefa pode ser

particularmente difícil para análises de imagens de alta resolução com custo computacional

dependente de conteúdo. Esta tese tem como objetivo propor uma solução para a simpli-

ficação do desenvolvimento de aplicações de análise de WSI, assegurando o uso eficiente

de recursos distribuídos híbridos (CPU-GPU). Para esse fim foi proposto um modelo de

execução de alto nível de abstração, em conjunto com um método de particionamento au-

tomático de carga. A fim de validar os métodos e algoritmos propostos, uma linguagem de

processamento de imagem de alto nível de abstração (Halide) foi utilizada como solução

de paralelismo local (CPU/GPU), junto com o Region Templates (RT), um sistema de

gestão de coordenação de dados e tarefas entre nós distribuídos. Também foi desenvolvida

uma nova estratégia cost-aware de particionamento de dados (CADP) que considera a ir-

regularidade de custo de tarefas a fim de minimizar o desbalanceamento de carga. Para

tal, dois algoritmos de particionamento foram propostos, o Expected Cost Bisection e o

Background Removal Bisection. Resultados experimentais mostram melhorias significa-

tivas na performance de execução com recursos híbridos CPU-GPU, comparada com o

uso de recursos homogêneos (CPU ou GPU apenas). Os algoritmos de particionamento

foram comparados com uma abordagem baseline hierárquica usando KD-Trees (KDT),

vii

em ambientes multi-GPU, multi-GPU híbrido e distribuído de larga escala. Os resultados

mostraram ganhos de até 2.72× para o ECB e de 4.52× para o BRB, ambos em com-

paração ao KDT. Em adição ao modelo simplificado de desenvolvimento de workflows por

viii

experts de domínio, a performance vista em ambos ambientes híbridos e de larga escala

demonstra a eficácia do sistema proposto para uso em estudos WSI de larga escala. Am-

bas melhorias na performance dos algoritmos do CADP como no modelo de estimação de

custo de execução são esperadas como trabalhos futuros para o sistema aqui proposto.

Palavras-chave: HPC, Histopatologia, Halide, Region Templates Framework, Computação

Heterogênea, Computação Distribuida, Processamento de Imagens, Particionamento Ir-

regular de Dados

ix

Resumo Expandido

A análise de imagens de whole slide tissue image (WSIs) é uma tarefa computacional-

mente cara, impactando negativamente no uso de dados de patologia em imagens em

larga escala para pesquisa. Diversas soluções paralelas para otimizar tais aplicações já

foram propostas, mirando no uso de dispositivos e ambientes, como CPUs, GPUs e/ou sis-

temas distribuídos. Porém, a execução eficiente de código paralelo em máquinas híbridas

e/ou distribuídas permanece um problema em aberto para histopatologia digital. Desen-

volvedores de aplicações podem precisar implementar múltiplas versões de código para

diferentes dispositivos de hardware. Desenvolvedores também precisam lidar com os de-

safios de distribuição eficiente de carga para nós computacionais de máquinas de memória

distribuída, assim como para os dispositivos de execução de cada nó. Essa tarefa pode

ser particularmente difícil para análises de imagens de alta resolução com custo computa-

cional dependente de conteúdo. Esta tese tem como objetivo propor uma solução para

a simplificação do desenvolvimento de aplicações de análise de WSI, assegurando o uso

eficiente de recursos distribuídos híbridos (CPU-GPU).

Uma aplicação WSI clássica foi escolhida como objeto de estudo para otimização e

execução distribuída neste trabalho. Esta aplicação tem como objetivo permitir análises

correlativas e de sobrevivência de pacientes, assim como a identificação de expressões

genéticas por meio de características de patologias em imagens. De forma mais específica,

esse trabalho tem como motivação acelerar ferramentas de a extração de características

morfológicas a partir de estruturas em tecido, como núcleos celulares, gerando caracterís-

ticas que tem boa correlação com progressões de doenças e dados clínicos. Essa aplicação

é composta por quatro etapas: (i) normalização de cores, (ii) segmentação, (iii) com-

putação de características e (iv) análise correlativa de dados. Todas essas etapas, com

foco na segmentação que é a de maior custo computacional, são compostas por tarefas

menores. Essas são definidas como de custo regular ou irregular. Tarefas de custo regular

tem seu tempo de execução dependente apenas do tamanho da sua entrada, enquanto

tarefas de custo irregular também dependem do conteúdo da entrada.

Tendo em vista o domínio motivacional de tarefas de processamento de imagens, foi

utilizada uma ferramenta para facilitar a implementação de aplicações neste domínio. O

x

Halide é uma Domain Specific Language (DSL) para processamento de imagens, que tem

como objetivo ser uma ferramenta de fácil uso para implementar aplicações de processa-

mento de imagens de forma eficiente em diversos tipos de hardware (e.g., CPUs e GPUs).

Para alcançar esse objetivo o Halide possui uma arquitetura que separa a implementação

da aplicação de seu escalonamento. Isso significa que primeiramente o usuário deverá

apenas implementar a sua aplicação, sem considerações de performance, apenas de vali-

dade semântica. Em seguida, é possível ordenar o acesso de dados e escolher que níveis de

acesso podem ser paralelizáveis, isso sem impactar os resultados. Porém, o Halide possuí

certas limitações. Halide não suporta aplicações cíclicas onde não é conhecido o cam-

inho completo de execução. Por exemplo, é sabível à priori todas as operações/instruções

que uma aplicação de filtro de imagem precisa executar, porém no caso de algoritmos de

propagação em onda o número de iterações executadas depende do conteúdo da imagem,

e assim só é sabível em tempo de execução. O Halide foi implementado para ser executado

em ambientes de memória unificada. Por exemplo, é possível executar suas aplicações em

GPU, usando sua memória interna, ou em CPU usando a memória do sistema. Porém,

não é possível realizar execução cooperativa em CPU-GPU já que assim temos dois es-

paços de memória. Embora seja possível realizar o particionamento da entrada e executar

essas partições em ambos ambientes de CPU e GPU simultaneamente, essa não é uma

tarefa trivial. Por fim, o Halide permite apenas o uso de espaços de iteração regulares

(e.g., retângulos para imagens).

Outra ferramenta interessante para os objetivos deste trabalho é o Region Templates

(RT), que é um sistema de execução de aplicações de análise de imagens em ambientes

distribuídos de larga escala. O RT permite que um workflow de tarefas seja submetido e

executado, respeitando suas dependências e realizando eventuais movimentações de dados

quando necessário. Seu sistema de execução é baseado no modelo gerente-trabalhador,

onde vários processos trabalhador pedem novas tarefas ao gerente. Esse gerente é re-

sponsável pelo escalonamento de tarefas, levando em consideração o tipo de recurso a ser

usado (CPU ou GPU) e os dados presentes em cada nó a fim de maximizar a localidade

de dados, assim reduzindo transferências de dados entre trabalhadores.

Para alcançar os objetivos propostos neste trabalho foi implementado um sistema

de execução de workflows de WSIs em ambientes distribuídos híbridos de larga escala.

Usando o RT como base, o sistema proposto também se aproveita do modelo gerente-

trabalhador, recebendo unidades de execução, ou tarefas. Para facilitar seu uso por ex-

perts de domínio, a DSL Halide foi usada como linguagem de modelação dessas tarefas.

Para tal, foram implementados objetos de interface RT-Halide. Ambas ferramentas usam

imagens OpenCV como unidades de armazenamento de dados locais, porém, cada uma

possui uma interface específica. Esses novos objetos de interface permitiram o uso normal

xi

de buffers Halide, aproveitando o sistema de armazenamento do RT, sem a necessidade

de cópias desnecessárias de dados entre eles. Para execução híbrida, o Halide também

foi extendido internamente, a fim de ter suporte a execução com múltiplas GPUs em um

mesmo nó de computação.

A fim de permitir a execução de workflows simples com grandes volumes de dados

são necessários algoritmos de particionamento de dados. Tendo em vista que as entradas

para a aplicação motivacional deste trabalho são imagens, os algoritmos de particiona-

mento deverão ser focados neste meio. Também considerando a irregularidade no custo

de execução da aplicação de motivação, as abordagens propostas tiveram como objetivo

reduzir o desbalanceamento de carga. Uma solução trivial para o problema de desbal-

anceamento de carga é gerar um maior número de partições. No domínio em questão tal

solução seria ineficiente já que existem overheads de submissão de tarefas assim como de

bordas, oughost zones que são geradas. Outra característica dos algoritmos propostos é

que esses são estáticos, sendo realizada a partição completa da entrada antes da execução

de qualquer tarefa, e tais partições não podem ser alteradas em tempo de execução.

O modelo de particionamento, chamado Cost-Aware Data Partitioning (CADP) con-

siste em duas partes, (i) separação/remoção de background e (ii) particionamento de

regiões densas. Para aplicações de WSI é comum que uma parte significativa da área

da imagem seja background. Ou seja, não possui tecido, e assim não tem informação a

ser analisada. Uma estratégia comumente empregada nessas aplicações é de remover esse

background antes da analise da imagem, a fim de reduzir o custo computacional total sem

impactar a qualidade do resultado. O CADP usa um algoritmo de geração de bounding

boxes ao redor de regiões densas de tecido (podem haver 1 ou mais em uma imagem),

resolvendo ocasionais sobreposições e gerando as partições esparsas (ou de background)

com um algoritmo de scanline.

A primeira versão do particionador denso, Expected Cost Bisection (ECB), se baseia

na geração de partições a partir do custo esperado de cada partição ao final do particiona-

mento. A partir de uma lista de partições densas iniciais, oriundas da etapa de remoção

de background, são geradas novas partições pela bisseção da partição existente de maior

custo, sendo extraída uma nova partição com custo estimado de 1/n do custo total da

imagem, sendo n o número de partições a serem geradas. Essa abordagem do ECB tinha

porém dois problemas, (i) para valores de n altos, as partições geradas resultavam em

perda de performance, e (ii) não era realizada a remoção de background grão-fino. Rela-

tivo ao primeiro problema, as partições geradas por ECB eram “pouco quadradas” (i.e.,

faixas longas e estreitas), o que resultava em tempos de execução maiores para a imagem

inteira por uma particularidade da aplicação de motivação.

A segunda versão do particionador denso, o Background Removal Bisection (BRB)

xii

teve como objetivo melhorar a performance de particionamento do ECB. Primeiramente,

foi implementado um modelo de particionamento hierárquico a partir dos fatores primos

do valor n de partições a serem geradas. Isso conseguiu resolver o problema relacionado

às partições “pouco quadradas”. Outra oportunidade de otimização era a remoção de

background grão-fino, ou seja, regiões de background internas às bounding boxes densas.

Por meio de uma alteração na função geradora de partições, similar à usada pelo ECB,

foi possível remover background grão-fino com um baixo impacto no desbalanceamento

de carga. Porém, dado que balanceamento de carga é um dos focos dos algoritmos de

particionamento aqui implementados, a estratégia de remoção de background grão-fino

não é muito agressiva em sua remoção de background, resultando em menores quantidades

de background removido para valores de n menores.

Os algoritmos de particionamento, em conjunto ao sistema de execução distribuída

foram testados em um cluster de larga escala a fim de validar suas vantagens comparados

com a abordagem baseline de particionamento KD-Tree (KDT). Para isso foram usadas 10

WSIs de até 93k×198k pixels de resolução, testadas em ambientes de execução híbrida com

até 4 GPUs por nó, e em execução distribuída, com até 32 nós computacionais, cada um

com duas CPUs e 48 cores totais. Os testes realizados mostraram ganhos significativos

de performance do CADP comparado ao KDT, de até 4, 52×, sendo o algoritmo BRB

significativamente melhor que ambos KDT e ECB. Esses ganhos são atribuídos a dois

fatores: (i) remoção de background e (ii) melhoria no balanceamento de carga. Para

execuções com apenas 1 único nó usado (e por consequência menos partições) houveram

ganhos de até 2, 90×, oriundos inteiramente da remoção de background. Foram também

testados o algoritmo ECB sem remoção de background, comparado ao KDT. Esse teste

mostrou ganhos de até 1, 84× e perdas de até 0, 84× do ECB. Porém, o uso de mais nós

resulta em maiores números de partições, o que é detrimental para ECB. Nesses testes foi

visto que a soma total de tempo de execução de todos os nós para o ECB chegou a ser

1, 96× maior que para o KDT. Em relação ao balanceamento de carga, foi notada uma

correlação entre melhores valores de balanceamento de carga e ganhos de performance.

Para 32 nós, foi visto uma melhoria do intervalo de eficiência de balanceamento de carga

de 42 − 73% para o KDT, para 71 − 94% para o ECB.

Neste trabalho foi implementado um sistema de execução distribuída para workflows

de WSI, com particionamento automático de dados de forma balanceada. Resultados

experimentais mostram melhorias significativas na performance de execução com recursos

híbridos CPU-GPU, comparada com o uso de recursos homogêneos (CPU ou GPU ape-

nas). Os algoritmos de particionamento foram comparados com uma abordagem baseline

hierárquica usando KD-Trees (KDT), em ambientes multi-GPU, multi-GPU híbrido e

distribuído de larga escala. Os resultados mostraram ganhos de até 2.72× para o ECB e

xiii

de 4.52× para o BRB, ambos em comparação ao KDT. Em adição ao modelo simplificado

de desenvolvimento de workflows por experts de domínio, a performance vista em ambos

ambientes híbridos e de larga escala demonstra a eficácia do sistema proposto para uso em

estudos WSI de larga escala. Ambas melhorias na performance dos algoritmos do CADP

como no modelo de estimação de custo de execução são esperadas como trabalhos futuros

para o sistema aqui proposto.

xiv

Abstract

The analysis of high resolution whole slide tissue images (WSIs) is a computationally

expensive task, which cost adversely impacts large scale usage of pathology imaging data

in research. Parallel solutions to optimize such applications have been proposed target-

ing multiple devices and environments, such as CPUs, GPUs, hybrid compute nodes and

distributed systems. However, the generalization of efficiently executing parallel code on

hybrid and/or distributed machines remains an open challenge for digital histopathol-

ogy. An application developer may have to implement multiple versions of data pro-

cessing codes targeted for different compute devices. The developer also has to tackle

the challenges of efficiently distributing computational load among the nodes of a dis-

tributed memory machine and among computing devices within a node. This can be

particularly difficult for analysis of high-resolution images with content-dependent com-

puting costs. This thesis aims to provide a solution for simplifying the development of

WSI analysis workflows while also enabling efficient use of distributed and hybrid (CPU-

GPU) resources. For this end, a high-level execution model, coupled with an automatic

workload partitioning method was proposed. In order to validate the proposed meth-

ods and algorithms, a high-level image processing language (Halide) was used as a local

resource (CPU/GPU) parallel solution, together with Region Templates (RT), a system

for managing data/tasks coordination among distributed nodes. A novel cost-aware data

partitioning strategy that considers the workload irregularity to minimize load imbalance

was also developed. For it, two partitioning algorithm were proposed, the Expected Cost

Bisection (ECB) and the Background Removal Bisection (BRB). Experimental results

show significant performance improvements on hybrid CPU-GPU machines, as compared

with using a single compute device (CPU or GPU), as well as with multi-GPU systems.

The partitioning algorithms were compared with a baseline hierarchical KD-Tree (KDT)

approach, on multi-GPU-only, hybrid CPU-GPU and large-scale distributed CPU nodes

environments. Results show speedups of up to 2.72× for ECB and 4.52× for BRB, both

compared to KDT. In addition to the simpler development model for domain experts,

the attained performance for both hybrid and large-scale distributed computing environ-

ments demonstrates the efficacy of the proposed system for large-scale WSI studies. Both

xv

improvements on the CADP algorithms performance and the accuracy of the execution

cost estimation model are expected as future works for the proposed system.

Keywords: HPC, Histopathology, Halide, Region Templates Framework, Heterogeneous

Computing, Distributed Computing, Image Processing, Irregular Data Partitioning

xvi

Contents

1 Introduction 1

1.1 Problem Definition ... 3

1.2 Research Hypothesis .. 3

1.3 Goals... 3

1.4 Contributions .. 5

1.5 Thesis Organization .. 5

2 Background 7

2.1 Taxonomy for Distributed and Parallel Infrastructures and Applications 7

2.2 Parallel Programming Tools and Languages ..10

2.2.1 The Message Passing Interface (MPI) .. 11

2.2.2 OpenMP ... 12

2.2.3 CUDA ... 12

2.3 Frameworks for High-Performance Image Processing .. 14

2.3.1 OpenCV .. 14

2.3.2 Halide ... 15

2.3.3 The Region Templates Framework (RT).. 23

2.4 Motivating Field of Research... 25

2.5 Motivating Application .. 27

3 Related Works 29

3.1 Spatial Data Partitioning ... 29

3.1.1 Fixed-Grid Spatial Partitioning .. 30

3.1.2 Recursive Spatial Partitioning ... 30

3.2 Related Languages, Frameworks and Tools ...32

4 Supporting Pathology Image Analysis Applications on Distributed Me-

mory Hybrid Systems 35

4.1 System Overview .. 36

4.2 Interface for Implementing the Applications ...38

xvii

4.3 Internal Data Management for Hybrid Execution ... 40

4.4 Halide Integration and Implementation Details .. 42

5 Cost-Aware Data Partitioning for Irregular-Cost Applications 45

5.1 The Expected Cost Bisection (ECB) CADP Algorithm .. 46

5.1.1 Background Separation/Partitioning .. 46

5.1.2 Data Partitioning for Homogeneous Environments 50

5.1.3 Data Partitioning for Hybrid Environments ... 52

5.2 The Background Removal Bisection (BRB) CADP Algorithm 53

5.2.1 A Method for Hierarchical Partitioning with Background Removal 56

5.3 Data Region Cost-Functions .. 61

5.4 Time Complexity Analysis of CADP ... 62

5.4.1 Time Complexity Analysis of ECB .. 62

5.4.2 Time Complexity Analysis of BRB .. 63

6 Experimental Results 64

6.1 Single Node Evaluation .. 65

6.1.1 Comparison to handwritten and Multi-core scalability 67

6.1.2 Multi-GPU Execution .. 68

6.1.3 Cooperative CPU/GPU Execution .. 71

6.2 Distributed Memory Execution ... 75

6.2.1 Execution Time of the Partitioning Algorithms ... 79

6.3 Impact of Background Removal ... 80

6.4 Impact of Inaccurate Cost-Function Estimates .. 83

7 Conclusion 85

References 89

xviii

List of Figures

2.1 Duncan’s taxonomy for parallel hardware architectures. Image extracted

from [1]. .. 9

2.2 CUDA memory hierarchy and hardware organization. Image from [2]. 13

2.3 CUDA organization of execution units, or threads. Image from [2]. 13

2.4 Illustration of possible scheduling tradeoffs for the Distributed Halide sche-

dules example of the blurring algorithm. Each line of blocks is processed

on a distributed setting, with the first column being the blurx function and

the second blury ... 22

2.5 RTF architecture and workflow execution steps: (1) Worker queries Ma-

nager for stage instances created by the application workflow, (2) Worker

consumes instances for processing, (3) Fine-grain tasks created in each Wor-

ker are assigned for execution with CPU and/or GPU, (4) Data is read,

tasks processed, and results written to storage, and (5) Worker is notified

of the end of a stage instance execution. .. 24

2.6 Segmentation and Feature Computation phases of the motivating application. 28

3.1 Partitioning examples of multidimensional point-based data and image-

based data. ... 30

3.2 Fixed-grid partitioning examples. .. 31

3.3 Recursive spatial data partitioning examples. ... 31

4.1 Execution model of the proposed system. A set of WSIs and a application

workflow are used as inputs. The system then partitions the input WSIs

and executes one stage of the workflow at a time. Partitions are executed

in parallel. Borders are automatically resolved at the end of the execution

of a given stage, before the next stage can be executed. 37

4.2 Process of executing a stage. After partitioning and task submission any re-

quired data partitions are loaded for the required resource. After execution

and border resolution a new stage can be requested. ...38

xix

4.3 An illustration of the processes involved into using multiple GPU devices.

Direct communication between CUDA and user code is just a simplification.

In reality all CUDA-related calls are performed only through Halide. 44

5.1 Overlapping BB resolution. For the horizontal/vertical cases, A is reduced.

For the Diagonal cases, B is broken into 4 tiles, being the fully overlapped

tile removed. ..47

5.2 Background partition generation from initial dense partitions using the scan

line algorithm. Partitions are numbered according to the order they were

generated. ... 49

5.3 An example partitioning with at upper limit of 10% error on a tile with

expected cost of 37. Initial bounds begin1 and end1 image limits are defined

and tightened after each split attempt until a partition with imbalance

smaller than the target is found. ... 52

5.4 Two cases of ECB partitioning. Although the partitions cost was similar,

the shapes for generating 32 partitions are mostly long and thin strips. 54

5.5 Although the coarse-grain background removal algorithm can remove most

of the background, some of it still remains inside the dense rectangular

regions. ... 55

5.6 Viability study for fine-grain background removal using 60 images. 55

5.7 Hierarchical partitioning for 6 expected partitions. First, 2 partitions are

generated (red) from the single initial dense partition (blue). Then, 3 more

partitions (green) are required by each of the previous 2, resulting in 6

partitions. ... 56

5.8 First approach for background removal. The contour of the dense region is

delineated in white, being the background on the lower left corner of the

image. Two background tiles are expected to be generated. Background

tiles generated are expected to maximize their area. ..57

5.9 Generation of partitions which result in removing previously generated

background tiles. The partition highlighted in red is considered too small,

and as such should be merged with another partition. .. 57

5.10 Extraction of partitions with a background removal version of BTS. It

is expected to generate 5 partitions. Red lines mark the current partition

generated. The remaining partition is shown in green. Previously generated

partitions are shown in blue. The black area is the background. 60

xx

5.11 BRB partitioning algorithm for 4 and 32 expected partitions. ECB par-

titioning results for the same image are also shown as a comparison to

BRB. .. 61

6.1 All WSIs images used for the experimental evaluations. Each image has its

ID and their resolution. ..66

6.2 Scalability of the motivating application developed using Halide on a single

CPU with 28 cores. ... 68

6.3 Full data for single node experiments executed on a single GPU-only com-

pute node. For each image, the values are related to the number of compute

elements used, from 1-4 GPUs for the used node. .. 69

6.4 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 4 GPUs used. ... 70

6.5 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 4 GPUs used. ... 70

6.6 Full data for hybrid execution experiments on a single CPU-GPU compute

node. For each image, the values are related to the number of compute

GPU devices used, from 1-4 GPUs. .. 73

6.7 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 4 GPUs used for hybrid execution. 74

6.8 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 4 GPUs used for hybrid execution. 74

6.9 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases

of low background images while B6-A0X1 represents sparse images. 75

6.10 Application makespan of images BR-8682 and B6-A0X1 with related sca-

ling efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases

of low background images while B6-A0X1 represents sparse images. 76

6.11 Full data for distributed execution experiments on CPU-only compute no-

des. For each image, the values are related to the number of compute nodes

used, from 1-32 nodes. ... 77

6.12 Partitioning results for image BR-8682. 32 partitions were generated for

the execution with 8 nodes.. 78

6.13 Partitioning results for image B6-A0X1. 32 partitions were generated for

the execution with 8 nodes.. 78

6.14 Workers workload for 16 CPU nodes configuration with BRB, ECB and

KDT respectively, images BR-8682 and B6-A0X1. Execution times are

sorted for better visualization. .. 79

xxi

6.15 Execution times in seconds for the partitioning algorithms on CPU-only

compute nodes. For each image, the values are related to the number of

compute nodes used, from 1-32 nodes. ... 80

6.16 Speedups for ECB vs. KDT. ECB with and without coarse-grain back-

ground removal shown. ... 81

6.17 Comparative data of ECB with vs. without coarse-grain background removal. 81

6.18 Partitioning results for images B6-A0X1 and BR-8285 using algorithms

ECB and KDT. 16 partitions were generated for the execution with 4 nodes. 82

6.19 Workers workload for 32 CPU nodes configuration with ECB and KDT for

image B6-A0X1. Execution times are sorted for better visualization. 82

6.20 Partitioning results for image B6-A0X1 using algorithm BRB with and

without coarse-grain background removal. 16 partitions were generated for

the execution with 4 nodes. ... 83

6.21 Normalized execution time of CADP using an error-prone cost-function

against regular CADP. KD-Tree performance added as a baseline. 84

xxii

List of Tables

3.1 Related work comparative analysis. Each work is classified considering code

availability, whether it is a fully fledged DSL or a set of compilation definiti-

ons [3], scheduling decoupling, target processor, distributed execution, and

partitioning characteristics. ... 34

5.1 All possible cases of overlapping between two bounding boxes A and B with

how they are resolved. By definition B is larger in area than A. 47

6.1 Information on all images used for the experiments. .. 67

6.2 Profiling of the pipeline’s tasks on a serialized environment for Halide and

Handwritten code. I/O times not considered. ... 67

6.3 Speedups of the GPU-only and hybrid CPU-GPU execution vs. CPU-only

(48 cores) on a single node. A single V100 GPU was used for the GPU-only

and Hybrid cases. .. 72

6.4 Speedups of BRB with vs. without coarse-grain background removal. 82

1

Chapter 1

Introduction

The ability to quickly analyze large datasets is critical to enable scientific studies in several

application domains. Through modern digital microscopy technology it is possible to

quickly obtain high-resolution Whole Slide Tissue Images (WSIs). Such images may now

be captured at around 100K×100K pixels with multiple channels from tissue specimens

rapidly. These images are used, for instance, to assist in the analysis of several cancer

types as they contain morphological information at cellular/sub-cellular levels that are

known to correlate well with molecular and clinical data. These analyses can provide a

better understating of underlying biological mechanisms, optimizing the selection of them

as focused as therapeutic targets, and improve survival estimation [4].

There are several applications and studies that have used large imaging datasets avail-

able in the literature. On [5], a group of highly expressive regulators of tumor microen-

vironments for glioblastoma, a type of brain/spinal-cord cancer, were investigated. The

correlation between them and a diminished survival rate indicated that treatments for

such master regulators should be focused, as therapeutic targets. This analysis was per-

formed using a total of 177 WSIs with 20× magnification, which are images in the order

of 100K×100K pixels [6]. Although the segmentation of regions of interest were manually

done, removal of luminal areas and subsequent total tissue area calculations were per-

formed using computer-based analysis. Another similar study also investigated glioblas-

toma, but with a more automated process [7]. There, 117 WSIs were classified on an

oligodendroglioma-astrocytoma spectrum, which complements human-based pathologic

review. Although the WSIs were annotated by domain experts, the goal of the work was

to conceive an end-to-end automatic system, which returns valuable information based

on the input WSI and simple annotations. This was achieved by segmenting the nuclei

of 4K×4K WSIs’ partitions and extracting multiple features from them. These features

underwent a selection process to filter the most impactful ones and were combined in a

nuclear score (NS) on the oligodendroglioma-astrocytoma spectrum. The NS equation

2

was trained through machine-learning methods. The work on [7] manages to improve

end-user usability by using high-performance computing (HPC) to enable the use of such

compute-demanding methods. Finally, at [8] an even larger experiment is done, with over

2400 40× magnification WSIs analyzed through 9879 quantitative extracted features. The

main goal of this latest work was to improve prognosis prediction accuracy for adenocar-

cinoma and squamous cell carcinoma (lung cancer). Again, machine-learning algorithms

were used to find the best features to distinguish short-term from long-term survivors.

As such, executing complex image analysis workflows with such imaging datasets is a

costly task. The processing of a single WSI on a regular commodity computer may take

hours. Consequently, studies that use datasets with hundreds to thousands of images

would take several days to execute [9, 10]. This high computational cost is one of the

obstacles for a broader use of large microscopy imaging datasets in clinical and research

settings. As seen, the use of HPC can empower domain experts, enabling large-scale tasks

which are unfeasible for humans, thus making them less laborious. However, as the scale

of available hardware resources grows, so does the complexity of efficiently using such

resources [9, 11].

The use of multi-core CPUs requires knowledge of thread-safeness and data-access

patterns. GPUs, which have seen growing popularity [6, 12, 13, 14, 15, 16, 17], require

even more complex understanding of the underlying hardware organization for its proper

use. The cooperative use of both CPU and GPU can be even harder since the code for

one compute resource may not be compatible with the other. This means that the same

algorithm would need to be implemented twice, with one version for CPU execution and

another for GPU. At last, there is a larger availability of clusters with multiple comput-

ing nodes at large-scale. Coordinating execution on distributed memory environments

also has specific challenges, such as maintaining coordination of tasks and data locality.

Thus, the development of such applications is a time-consuming and error-prone task with

increasing complexity due to the fast hardware evolution.

The problem of efficiently developing applications for HPC systems can be particularly

difficult if the application processing cost vary across different inputs, i.e., being content-

dependent. For instance, on a WSI feature extraction process there may be more objects

of interest (e.g., nuclei) in certain image regions, making those areas more compute-

demanding. Not considering these characteristics during data-partitioning for workload

distribution may lead to significant load imbalance and inefficient utilization of parallel

resources. These problems are more difficult to solve for application domain scientists

who do not necessarily have programming expertise on these conditions.

3

1.1 Problem Definition

Digital histopathology whole slide imaging analysis is computationally expensive by itself.

This issue is worsen by large scale studies, which are both expected and common on the

medical field. HPC solutions are a natural choice in attempting to reduce the execution

time of these studies, making them more manageable. However, the efficient use of such

resources is a complex task, requiring the understanding of the underlying devices, code

generation for each device, and managing workload partitioning. The later, can be ad-

versely impacted by histopathology applications with irregular processing cost, which can

vary depending on the input data contents. Given these difficulties, widespread utiliza-

tion of distributed and/or hybrid computing environments by experts in this application

domain is still limited.

1.2 Research Hypothesis

It is the hypothesis of this work that high-level abstract programming coupled with au-

tomatic cost-aware workload partitioning methods can simplify the development effort of

digital histopathology applications while enabling the efficient use of hybrid machines and

distributed compute resources by medical domain experts.

1.3 Goals

The main goal of this work is to propose and develop methods for rapid and simple imple-

mentation of efficient WSI analysis applications targeting high-performance hybrid com-

puting machines on a distributed environment. For such, existing algorithms and methods

for leveraging high-performance hybrid computing resources are evaluated. From them,

a WSI workflow processing solution with an automatic cost-aware workload partitioner

is proposed. These methods should allow easy usage by domain experts of such HPC

resources through high-level programming structures and semantics for parallel environ-

ments, automating most of the distributed environment management. In particular, the

system here implemented using the proposed methods should (i) simplify the application

development targeting hybrid machines with CPU and GPU compute devices and (ii)

enable efficient cost-aware workload partitioning for distributed memory environments.

The specific goals of this work are as follows:

4

Design and implementation of a WSI execution system on distributed memory

hybrid machines

Efficient general use of hybrid resources on a distributed setting remains an open problem

for digital histopathology. As such, these workflows are optimized on a per-application

basis. Experts of the medical motivating domain should be able to easily access this

cooperative resource pool through a unified framework. It should be opaque to the domain

expert whether a compute node is composed by homogeneous elements (e.g., a single CPU)

or heterogeneous elements (e.g., multiple CPUs and GPUs). Data management should

also be automated, either across distributed elements or between hybrid resources on a

compute node.

Proposal and development of irregular cost-aware data partitioning techniques

for parallel execution of content-dependent applications

For some digital pathology applications the computational cost can vary according to the

contents of the input data. This can pose as a problem for distributed execution of such

applications since poor data partitioning can lead to workload imbalance and inefficient

usage of distributed compute resources. To avoid workload imbalance on a distribution

level across compute nodes, or on a node level across compute elements (CPUs/GPUs)

irregular data partitioning should be supported. An initial analysis of current solutions

shows that traditional image-partitioning algorithms (e.g., Fixed-Grid [18], KD-Trees and

Quad-Trees [19]) are not suited for data with processing times dependent on the content.

After the evaluation of more solutions already proposed, new strategies that take into

account the content-dependent computations costs will be developed in order to improve

the quality of the partitioning.

Evaluation of the proposed solutions with a real-world histopathology appli-

cation on a large-scale compute environment

In order to validate the proposed techniques, these are experimentally evaluated with a

well known real-world application, which has been used on past research [7, 9, 20, 21, 22,

23, 24]. The proposed algorithms are evaluated on a large-scale distributed environment

with hybrid compute nodes containing CPU and GPU devices. The evaluation should in-

clude overall speedups of the proposed solution when compared with baseline approaches,

their scaling efficiency and the state of workload imbalance.

5

1.4 Contributions

This work resulted in the following concrete contributions for large-scale WSI applications:

• An automated runtime system for simplifying the implementation and deployment

of WSI workflows on hybrid large-scale compute environments.

• Cost-aware partitioning algorithms which are able to work with cost-dependent

workflows by generating cost-wise balanced partitions.

• Solutions for both coarse-grain and fine-grain background removal, which results in

lower execution times without impacting the given workflow output quality.

This work is a continuous effort on efficient execution of WSI analysis applications.

Previously, the use of sensitivity analysis methods for identifying the most relevant image

segmentation features were optimized [10]. There, the application workflow used was

implemented, which lead to a better understanding of the problem approached here.

Further, methods for reducing the compute cost of large-scale studies with sensitivity

analysis through reuse were proposed, using the distributed execution system implemented

on this work [24]. Finally, a previous state of this ongoing work describing implemented

system with the first irregular data partition algorithm has been published [25].

1.5 Thesis Organization

The remainder of this work is organized as follows:

• Chapter 2 [Background]: introduces the background concepts of this work, the

taxonomy used for HPC execution environments, the used tools and libraries. The

motivating domain is explored, showing trends for current works.

• Chapter 3 [Related Works]: elaborates on spatial data partitioning algorithms.

Related works and the current state of the art solutions for the specific goal of

distributed execution of WSI applications are also explored.

• Chapter 4 [Supporting Pathology Image Analysis Applications on Dis-

tributed Memory Hybrid Systems]: describes the overall runtime system used

for the execution of WSI workflows. The method for easing the implementation

effort of domain experts for hybrid compute nodes is also approached.

• Chapter 5 [Cost-Aware Data Partitioning for Irregular-Cost Applica-

tions]: details the cost-aware partitioning algorithm proposed on this work. Both

6

workload imbalance and background removal are resolved by the proposed algo-

rithms.

• Chapter 6 [Experimental Results]: describes the experimental analysis of the

proposed solution with the partitioning algorithms on hybrid and large-scale dis-

tributed environments.

• Chapter 7 [Conclusion]: overviews the achieved results of this work, also ap-

proaching open questions and avenues for future works.

7

Chapter 2

Background

This chapter presents a taxonomy for defining distributed applications and the underlying

hardware infrastructure. The main tools and libraries used or improved upon are then

enumerated and described. Among them, two tools are highlighted, the Halide DSL

and the Region Templates Framework. Finally, this chapter closes with an introduction

to the wider research field of Whole Slide Imaging and histopathology and presents the

motivating application used on this work.

2.1 Taxonomy for Distributed and Parallel Infras-

tructures and Applications

First, it is important to define the architectures for computer hardware (low-level) and sys-

tems (high-level) to provide consistent naming conventions. This distinction relates to the

level of abstraction on which the parallel solution is implemented. Low-level architectures

describe only hardware solutions, independently from any program, compiler or software

on which it is executed. The naming conventions most commonly used for such systems

are Flynn’s [26] and Duncan’s [1] taxonomies for parallel architectures. Flynn’s taxonomy

provides a model based on instructions and data streams, classified as either single or mul-

tiple, focusing only on hardware-level (or instruction-level) features. For Flynn, there are

three main hardware architectures, Single Instruction-Stream Single Data-Stream (SISD),

Single Instruction-Stream Multiple Data-Stream (SIMD) and Multiple Instruction-Stream

Multiple Data-Stream (MIMD). SISD refers to serialized single-core computing elements

with no parallelism. SIMD refers to any type of data-parallel architecture which runs the

same instructions on a partitioned data set. Examples of SIMD are array vectorized and

some types of pipelined architectures. MIMD is the most common parallel architecture, on

which a set of independent computing elements can execute different instruction-streams

8

on individual data segments. Both SIMD and MIMD classes are too inclusive, making it

difficult to differentiate between different types of parallel architectures. This was pointed

by Duncan [1], whose taxonomy is more detailed.

Duncan’s taxonomy can be mainly divided into synchronous and asynchronous (MIMD)

architectures, based on whether instructions are executed using a global lock-step, coor-

dinated by a central control unit. The organization of architecture classes are shown in

Figure 2.1, from his original publication. Unlike with Flynn’s taxonomy, Duncan’s bet-

ter classifies SIMD sub-types. Pipelined Vector architectures refer to single-instruction

specialized processing units. The parallelism is achieved through a pipelined execution

of a single data-stream. For Duncan, SIMD architectures can be either Processor array

of Associative memory. Processor array is the most common architecture, on which a

single instruction is given to a group of processing elements, being executed on individual

portions of an input data-stream. Examples of such architecture includes the SSE/AVX

instructions sets [27, 28] and CUDA streaming processors, which execute on a locked-step

fashion in each streaming multiprocessor [29]. Associative memory architectures inverts

the von Neumann model, with operations executed by the associative memory unit [30].

Through the use of bit-masks, query operations are performed on large words on memory,

which then execute bit-parallel comparison and logic operations. This type of architecture

is mostly used on programmable hardware, e.g., FPGAs [31]. Systolic architectures can

be defined as an abstract type of pipelined vector processors. This is composed by an

array of interconnected specialized processing units which propagate computed results to

the next unit on a locked-step synchronized manner [32, 33].

Duncan’s MIMD architectures represent the most common types of parallel hardware

architectures, with independent computing elements which can perform asynchronous

tasks. Regardless of how such processing units are implemented, they can be classified by

their relation to memory. Shared memory architectures provide direct hardware access to

the same memory device. Modern multi-core CPUs are an example of such architecture,

on which each core, independently from the other cores, can perform individual tasks on

a shared memory device. Also, some GPU architectures can be described in a similar

way. For instance, CUDA streaming multiprocessors also execute independently on the

unique GPU’s memory. For distributed memory architectures there are multiple memory

devices, accessible only by the processing elements directly connected to them. Each of

these shared memory elements (or groups) are interconnected externally and can only

communicate explicitly through memory-passing operations. Distributed memory archi-

tectures are more sensitive to inter-process communication latency. However, they are far

more extensible through the organization of clusters of processing elements.

9

Figure 2.1: Duncan’s taxonomy for parallel hardware architectures. Image extracted
from [1].

At last, Duncan also describes a group of hybrid architectures which do not prop-

erly fit on the previous classifications, all of which being MIMD-based. One type of

architecture which is widely present nowadays is the MIMD/SIMD hybrid architecture.

Originally, this type of architecture was comprised of a primary MIMD organization of

secondary (old slave definition) set of SIMD processors. Currently, processor array SIMD

(SSE/AVX) processing units, or cores, are packed together on a single shared memory

MIMD multi-core die. The hybrid organization of MIMD/SIMD raises the question of

hierarchical classification of architectures. For instance, multiple distributed processors

are a distributed memory MIMD organization of shared memory MIMD processing cores,

which are in turn SIMD-processor-array-capable. This can become even more convoluted

for hybrid CPU/GPU compute nodes. As such, either Flynn’s and Duncan’s taxonomy

terms should always be accompanied by the layer on which said terminology is being

applied to.

Other hybrid architectures are specific MIMD cases of the SIMD and Systolic types.

Dataflow architectures are composed of a hardware and a software layer, specifically de-

signed for such applications. The hardware layer is composed by a group of MIMD process-

ing and instruction/memory elements, connected to a routing network unit, which enable

10

dynamic definition of data paths between elements. From the software-level an application

is defined as a dataflow of asynchronous task nodes. Each node is expanded to generate a

data-path, similar to SIMD pipelined vector execution, with each end-node (task) being

assigned to a processing unit. The execution of the dataflow application is data-driven,

on which each finished node fires the subsequent nodes based on data dependency [34].

An alternative is to implement the processing unit allocation lazily based on the required

values. This demand-drive model is defined as Reduction architectures [35]. Finally, the

Wavefront architecture model is equivalent to a Systolic architecture for MIMD dataflow

computing [36]. This means that different/irregular operations can be loaded for each pro-

cessing element. Although interesting solutions, the Dataflow, Reduction and Wavefront

hardware models are proposals of non-von-Neumann architectures not widely used.

According to Blank et.al [37], there are 3 modeling levels for designing parallel appli-

cations: (i) Algorithm Model, (ii) Programming Model and (iii) Machine Model. At the

algorithmic level, parallelism can be achieved either through Data Parallelism (DP) or

Control Parallelism (CP). For instance, synchronized execution of a partitioned data set,

and an abstract FCFS thread-pool are respective examples of DP and CP. Algorithms

are then reduced into a form closer to metal at the Programming Model level. These

can either be Single Program Multiple Data (SPMD) or Multiple Program Multiple Data

(MPMD) [38]. Since DP algorithms require implicit synchronization, only SPMD mod-

els can be applied (DP-SPMD). For CP algorithms, it is possible for it to be translated

into CP-SPMD with multiple threads on the same program, or CP-MPMD with multiple

programs. Previous definitions from Flynn’s and Duncan’s taxonomies cover the Machine

Model. However, Blank’s notation also refers to memory access for the following cases:

• Shared memory, Single Instruction, Multiple Data Streams (SIMD)

• Shared memory, Multiple Instruction, Multiple Data Streams (sMIMD)

• Distributed memory, Multiple Instruction, Multiple Data Streams (dMIMD)

As such, the naming conventions extracted from Blank’s taxonomy are used on this

work. This is mainly for simplicity, also noting that common modern machine architec-

tures [39], such as the ones used on this work, can be fully described by his notation.

2.2 Parallel Programming Tools and Languages

Specific tools and frameworks are required to implement algorithms which can fully utilize

the distinct resources available on modern distributed environments. For this work there

are three main considerations which should be addressed: executing on (i) distributed

11

environments, (ii) multi-core CPUs, and (iii) GPUs. The MPI standard was thus chosen,

with OpenMP and CUDA used for parallel CPU and GPU execution, respectively. These

tools and languages are detailed on the following sections.

2.2.1 The Message Passing Interface (MPI)

The Message Passing Interface (MPI) can be defined as a tightly constrained set of sim-

ple goals for Inter-Process Communication (IPC) on non-shared memory spaces. Such

memory spaces can be either on the same memory hardware, or on distributed hardware.

Communication between these can then be respectively performed by IPC or network

sockets. MPI enables parallel programming through the use of multiple processes, either

locally on the same compute node, or distributed across a network of compute nodes. The

semantic for either case is the same. By definition, MPI (i) is an open interface which

could be implemented by many vendors, without impact to the underlying communication

and system software, (ii) allows thread-safeness, (iii) abstracts the communication layer,

and (iv) allows convenient C and Fortran bindings while having language-independent se-

mantics [40]. This resulted in MPI being a system and architecture agnostic interface, re-

sponsible for standardizing inter-process communication for programming on dSPMD and

MPMD machines. From a given space of processes, each and any MPI process can send

and receive point-to-point messages from other processes of the same space. Communica-

tion calls (send/receive) can be thread-blocking, with further support for thread-blocking

barrier primitives.

Regardless of the implementation, execution of parallel applications on MPI can be

configured, with the spawned processes scattered locally or across a network. It supports

both SPMD and MPMD executions. For MPMD it enables the creation of a shared

message space for more than one executable instance. Another important feature is the

ability to specify thread-affinity and processes distribution. This is possible due to an

abstract definition of processing units (PUs), which can be specified by the user. For

instance, a dual-socket 8-core CPU compute node can configured as a single PU on node

level, two PUs at socket level, 16 PUs with one per core, or an user-defined number of

cores per PU. This configuration is important since each PU have an enclosed space for

the process’ threads. This means that a thread of a given space (and thus process) cannot

utilize resources (i.e., cores) belonging to another space. It is also possible to remove all

bindings, thus enabling shared use of all local resources by any thread on the given node.

Finally, each created process can be distributed (mapped) across PUs on a user-defined

policy, being possible to oversubscribe a PU (i.e., more than one process per PU).

12

2.2.2 OpenMP

As MPI became the standard for parallel high-performance scalable code, multi-core ar-

chitectures began to arise, and with it the possibility for optimizing cache-coherent hard-

ware. The message-passing model scalability relies on the developer, since it does not

support high-level directives, and also cannot optimize cache locality. For this new Scal-

able Shared-Memory Multiprocessor architecture (SSMP) a new programming model/in-

terface was created, the OpenMP. As with MPI, OpenMP was specified to have native

Fortran/C bindings, but in contrast, defining high-level compiler directives which could

be used for incremental parallelization of code [41].

OpenMP is used through compiler directives for structured blocks of code which allow

them to be executed parallelly either with threads on a shared-memory space or with

aSIMD instructions. These parallel blocks can be both loop iteration spaces or distinct

sections of code to be executed concurrently. OpenMP also supports the specification of

private and shared variables on its structured blocks, synchronization directives through

barriers, critical sections of code and atomic operations, and other hierarchical task struc-

tures on its latest versions [42, 43].

2.2.3 CUDA

In the early days, GPUs were predominately used for fast image and video rendering, for

instance, in games. Then, GPU cards were mostly required to process integer values (fixed-

function pipelines [44]). Even with the GPU limitations at that time, initial attempts to

harness its computational power were made on linear algebra applications [45]. Following

the growth of the games industry better GPU technology was developed to support richer

and more realistic graphic effects, eventually resulting in the introduction of floating-

point arithmetics [46]. Later, the introduction of programmable shaders and floating-

point operations [47] solved fixed-point overflow-related limitations. This enabled the

scientific community to implement more complex linear algebra operators [48] and even

manage to outperform CPUs on a general-purpose task for the first time ever [49]. Still,

support for general programming was limited, requiring the use of graphics APIs such as

Microsoft’s DirectX or OpenGL [50]. The continued interest on using GPU devices for

general computing resulted in the introduction of tools as OpenCL [51] and CUDA [52].

CUDA is a proprietary framework for developing efficient general-purpose applications

on modern NVIDIA GPUs. Compared with regular CPU computing these GPGPUs

distinguish themselves by having a high count of simple computing units with increased

memory locality and bandwidth. CUDA devices are a hierarchy of compute units, as

demonstrated on Figure 2.2. Each core, defined as a Streaming Processor (SP), executes

13

Figure 2.2: CUDA memory hierarchy and hardware organization. Image from [2].

a thread individually and has direct access to a private registers space. A group of SP is

assembled in a Streaming Multiprocessor (SM). Each SM possesses a local L1 cache unit,

shared among the SP which compose the SM. A GPU is composed by a set of SM, all

sharing a global L2 cache.

Figure 2.3: CUDA organization of execution units, or threads. Image from [2].

Figure 2.3 shows the organization of executable code on CUDA. The minimal unit of

14

work is a thread, which is executed on a single SP. A group of threads, or thread block,

is scheduled on a single SM. Since the number of SP of a SM is fixed, there is a limit of

how many lock-step threads can run in parallel. Each SM groups a subset of threads from

its thread block into warps, scheduled by the SM which owns them. At the top level,

the programmer implements kernel grids, which are executed on a whole GPU. Although

further hierarchical levels may be present on different devices, these changes only regard

the organization of warp schedulers, cache and operation-specific cores, not influencing the

programing interface of SMs and SPs. For multi-GPU configurations this work considers

each device independent, with its own memory space, on a dMIMD environment. Also,

communication is only performed with the CPU via the PCIe interface [29], although

other faster interfaces are available [53].

2.3 Frameworks for High-Performance Image Pro-

cessing

The parallel programming tools presented on previous sections can be combined into

higher-level frameworks for image processing. One tool developed to reduce implemen-

tation complexity for high-performance image processing applications is the Halide DSL.

Halide employees OpenMP and CUDA on its back-end. Also, the Region Templates

Framework, a tool for distributed execution of medical imaging pipelines, is preferable

instead of just MPI, since it has a higher-level abstraction of inter-node execution. Fi-

nally, both frameworks use OpenCV as their image data objects, detailed on the following

sections.

2.3.1 OpenCV

With the purpose of easing the development of computer vision applications, OpenCV

was launched in 1999 by Intel. The main goals of OpenCV were to provide a common,

free, basic infrastructure for vision research. This interface would be one of portable

code, optimized for different platforms. Some applications which benefits from OpenCV

are stereo vision, object detection, segmentation and recognition. OpenCV is regarded as

the main standard for image processing in general, extensively used by C++ and python

applications [54].

The base structure of OpenCV is a cv::Mat, which represents a lightweight n-dimensional

dense numerical array of an user-defined type. The data inside a cv::Mat can be ac-

cessed directly, or through pointer arithmetic. Regarding memory, these matrices are

handled with high-level mechanisms such as reference counting and default shallow copy-

15

ing, enabling easy and implicit memory management. Image pixel data is released only

when all cv::Mat references are destroyed. Since images can be composed of multiple

channels, OpenCV provides a simple syntax for color images, also allowing the use of

different colorspaces. Multiple matrices can be combined with high-level operators like

sum, dot-product and regular matrix product, which over-saturates the matrices’ types

on the resulting array. It is possible to perform efficient masked operators for apply-

ing such equations on defined regions of interest. OpenCV provides a comprehensive

set of morphological operations, which ease the development process of efficient image

processing applications. Some of these high-level functions used on this work are ero-

sion/dilation with different structuring elements and retrieval of connected components’

bounding boxes [55].

Although GPU processing is available to OpenCV, processing of such data can only be

performed by either OpenCV’s pre-defined data processing functions or a CUDA kernel.

Direct pixel data access is only allowed inside such CUDA kernels, which allows the

execution of user-developed operations on GPU data. As such, the only way to share

data between CPU and GPU memory spaces is through explicit data transfer.

2.3.2 Halide

On a higher level of abstraction, Halide [56] is a DSL aimed at enabling transparent

implementation of image processing pipelines through different hardware environments,

or targets. Its main contributions were to provide an environment on which the imple-

mentation and optimization of algorithms were done separately, thus enabling the use of

the same algorithm for multiple hardware targets. This feature eases the implementation

effort, on which the developer needs only to focus on correctness to later tackle the perfor-

mance through scheduling directives. Given the vast combinations of available hardware

resources, the Halide model encourages the programmers to find the best schedules empir-

ically through few (and simple) directives. It is also worth noting that, although Halide

was developed for manual scheduling its semantics are representative enough that there

is extensive work on automatic scheduling systems [57, 58, 59].

The API and Syntax

Halide code is comprised mainly of the algorithm definition and its schedule. The algo-

rithm is thus a set of functional definitions, parameterized by its input domains, which

operate on buffers, constant values and other functional definitions. The schedule is a set

of primitives which parallelizes, orders, or defines memory patterns for each functional

definition on a given domain. For images, each domain can be seen as a dimension of that

16

image (e.g., height or width), and a functional definition can be defined as a stencil to be

performed once at the image, being possible to compose multiple of those in a workflow.

Internally, Halide uses interval-based domains to represent iteration spaces, i.e., every

domain is defined as a triple of a label, its initial value and its end value. This means

that creating non-rectangular iteration spaces can be somewhat difficult, if not impossible

for some applications. The alternative would be to use the polyhedral model for describ-

ing them. However, using interval-based domains is significantly easier for entry-level

developers to use while also being able to better evaluate implementation correctness at

compile-time, moving many errors away from execution time [60].

Halide algorithms’ implementations mainly use 5 types of directives:

• Var : represents an abstract iterative domain

• RDom: represents a static iterative domain

• Func: represents a stage of a pipeline parameterized by its domain coordinates

• Expr : represents a pure abstract function of Func’s or domain variables

• Buffer : a concrete in-memory representation of data, which can be used as input

and/or output

Var ’s are the base elements for iteration. They represent an abstract domain, in which

its concrete interval is inferred at run-time. This allows the flexibility of implementing

pipelines for any-sized input images. It is worth noting that although the domain sizes

are abstract its structure is not. Thus, the image must have the correct dimensionality

for execution. It is also possible to define static sub-domains, called Reduction Domains.

For statically-defined access patterns, which would require exhaustive definition, Halide

provides RDom variables. For instance, the structuring elements for image processing

algorithms like erosion/dilation [61] with large static values (e.g., 50 × 50) would either

require the runtime iteration of a Var or the handwritten definition of all coordinates.

RDom’s allow the creation of a static domain variable which will be resolved (unrolled)

at compilation time, thus not impacting negatively the execution time.

A Halide Func is the base building block for creating pipelines. They can operate on

an abstract input domain, representing a pixel or any type of data on a k-dimensional

domain, assuming there are k input domain variables. They are defined as a pure function

of other Func’s, domain variables, constants, input Buffers and Expr ’s. It is also possible

to re-define a Func, defined by Halide as a function update. For these, each update is

fully executed to completion individually and in the order of their definition. It is also

possible to schedule each update function individually.

17

− −

As a tool to improve code legibility, Halide provides Expr ’s, which are Func’s without

any input domain. Whenever an Expr is referenced on a Func, Halide fully replaces

its content on the target Func, acting like a label on a purely functional language [62].

Finally, concrete user inputs and outputs are represented by Halide’s Buffer ’s. These

are strongly-typed, memory-resident data which size must be known before executing on

them. From this input/output structure Halide infers Func’s typing and domain size. It

is worth noting that Halide uses a strong type system.

An extended example of the blur algorithm is presented on Algorithms 1 , 2 and 3.

First its behavior is shaped by the pure algorithm, to later be scheduled for both CPU

and GPU though CUDA. The blur algorithm implemented have a structuring element

of size 3 × 3, as seen on line 3 of Algorithm 1, on which each point of the input image

(in) is blurred around the intervals [x − 1, x + 1] and [y − 1, y + 1]. Each dimension (or

domain) is blurred individually to ease the optimization process. The final result is stored

at buffer out on line 9, as the realization of function blury, which in turns depends on

blurx. By using the structuring element se we are able to parameterize it, if necessary,

and with the use of the sum aggregator function, avoid having to expand the terms of

lines 6-7 manually. Otherwise, for a structuring element of size 11 × 11 we would be

required to change the algorithm (lines 6-7) to blurx(x,y) = (in(x-5,y) + in(x-4,y) + ...

+ in(x+5,y))/11.

Algorithm 1 Example of a blur algorithm implementation.

1: Halide::Buffer in, out
2: Halide::Var x, y
3: Halide::RDom se(1, 1, 1, 1)
4: Halide::Func blurx, blury
5:

6: blurx(x, y) = sum(in(x + se.x, y))/3
7: blury(x, y) = sum(blurx(x, y + se.y))/3
8:

9: out = blury.realize()

This algorithm can then be scheduled for either CPU or GPU execution. Algorithm 2

presents a simple CPU parallel execution schedule. The scheduling process can be divided

into three steps: (i) internal tiling/reordering, (ii) inter-functions ordering and memory

allocation, and (iii) parallelization. Each function is initially bounded by its original

domains (x and y for both functions). The ordering is from left to right, meaning that

x is the innermost level of iteration. Each initial domain can be split and tiled, as is

y for blury (see lines 1-2 of Algorithm 2). This results in the concrete iteration spaces

for blury of yo, yi and x, from outermost to innermost levels. The next step regards

execution order of points between functions with producer-consumer relationships. Still

18

on Algorithm 2, line 4 states that blurx will be produced on-demand, for each point of

yi, i.e., immediately after yi iterates, all required points of blurx, by blury at a yi value,

will be calculated beforehand. Then, on line 5, we attempt to reduce redundancy of

computation, storing the calculated values of blurx on the scope of each yo value. This

means that all values of blurx which are required by blury on the full iteration space of

yi ×x are stored temporarily, and later discarded for the next value of yo. Finally, blury

is set to be calculated fully and stored locally before any consumer can access it (line 6).

Since blury is the last function which is realized, this last compute_root declaration is

implicit, placed there only for illustration purpose. Regarding parallelization, blurx is

vectorized by a factor of V ECT _SIZE on coordinate x (line 8), and blury is executed

parallelly on coordinate yo, meaning that there is a single thread for every yi ×x iteration

space. It is worth noting than, in the absence of scheduling directives, every function is

scheduled as a serialized execution, with compute_root stages on every function.

Algorithm 2 CPU Scheduling of the blur algorithm example.

1: Halide::Var yi, yo
2: blury.split(y, yo, yi, PARALLEL_BATCH_SIZE)
3:

4: blurx.compute_at(blury, yi)
5: blurx.store_at(blury, yo)
6: blury.compute_root()
7:

8: blurx.vectorize(x, V ECT _SIZE)
9: blury.parallel(yo)

For the GPU schedule, Algorithm 3 is a similar but slightly modified version of the

CPU schedule due to the differences between CPU and CUDA execution environments.

For CPU execution each operation can execute parallelly on sMIMD or through vector-

ization on each SIMD core of the CPU. For CUDA GPUs, aSIMD execution is implicit

through tasks inside warps (gpu_threads) and sMIMD execution is performed by SMs

(gpu_blocks for Halide). Also, given the memory hierarchy of GPUs, it is recommended

to perform computation in rectangular regions. For such, Algorithm 3 changes are, (i) the

blury domains are fully tiled on both x and y according to the configuration of the used

GPU (lines 2-3), (ii) blurx is computed at the innermost level for each blury value (lines 5-

7), and (iii) both blurx and blury are parallelized using the GPU directives (lines 9-10).

With these changes the GPU schedule works similarly to the CPU schedule, attempting

to reach a middle-ground on parallelization, redundancy reduction and memory footprint

reduction.

19

Algorithm 3 GPU Scheduling of the blur algorithm example.

1: Halide::Var xi, xo, yi, yo
2: blury.split(y, yo, yi, height/NB_CU DA_SM)
3: blury.split(x, xo, xi, width/NB_CUDA_SP _PER_SM)
4:

5: blurx.compute_at(blury, xi)
6: blurx.store_at(blury, yo)
7: blury.compute_root()
8:

9: blury.gpu_blocks(xo, yo)
10: blury.gpu_threads(xi, yi)

Halide in Depth

The Halide DSL uses the LLVM toolkit for creating its own internal representation lan-

guage. Originally, LLVM was designed as a framework of tools for transparent, life-long,

code analysis and transformations [63]. Currently it has evolved beyond its initial frame-

work to include a suite of sub-projects, being the most popular, Clang [64]. The main

goal for LLVM is to provide an Intermediary Representation (IR) language, which can

undergo its internal analysis and transformations. This IR is language-independent and

have strongly-typed Static Single Assignment (SSA) definitions [65], which further im-

proves its analysis capacity. Further, LLVM provides plenty of target-specific back-ends

for executing its architecture-independent IR objects (e.g., x86, CUDA, OpenCL). These

features make LLVM an interesting choice for creating compilers and DSLs.

On pipelines’ compilation process of Halide, these are converted into Halide’s IR lan-

guage, based on LLVM’s IR. In the compilation process, being it Just-in-Time (JIT) or

Ahead-of-Time (AOT), the IR is consecutively lowered, from its initial high-level represen-

tation to a more hardware-specific (or by Halide’s terms, target-specific) code, initializing

on the top-level loop. Each lowering passing includes runtime sanity checks which ensures

that the compiled pipeline is executable. This is required for Halide’s correctness and

stability guarantees. Thus, any schedule which may violate the assertion that the output

must be the same, independently of the execution ordering, fails to compile before actually

running. An example of this would be parallelizing a function on a domain which depends

on the previous value, e.g., sum(x, y) = sum(x − 1, y) + input(x, y) with a parallel(x)

schedule. Since every value sum(x, y) can only be calculated after sum(x−1, y), it cannot

be parallelized on domain x. This could be fixed by changing the parallelization domain

from x to y. Further, the runtime sanity checks prevents the execution of inputs which

cannot be properly executed. For instance, It is impossible to execute a blur filter with a

large structuring element (e.g., 20 × 20) on an image smaller than the structuring element

20

itself (e.g., image is 15 × 18 in size). Attempting to perform such executions would result

in a runtime error, with Halide stating the problem.

Currently, Halide supports a number of architectures, or targets, including but not

limited to x86, ARM [66], MIPS [67], and CUDA [29]. Code generation to multiple hard-

ware devices is facilitated by the use of LLVM [63]. Halide employs a Visitor Pattern [68]

on IR elements as a way to decouple the high-level abstraction from hardware specific

code. This improves Halide’s extensibility for adding new targets. On the compilation

of the Halide library, each target implementation of these high-level objects (e.g., Func’s

and Var ’s) is compiled as LLVM IR fragments with the resulting bitcode put together

as constant strings. When compiling a Halide pipeline, either JIT or AOT, Halide dese-

rializes the required components for a given target and combine them with the lowered

pipeline on a single LLVM module. This module is then compiled to the target-specific

machine code to either be used at once for JIT compilation, or outputted as a runtime

static library. It is worth noting that for JIT compilation, the compiled module is flex-

ible in a way that it may be updated dynamically after the initial compilation without

requiring a whole new runtime to be created. This is possible through the decoupled use

of individual bitcode strings.

Halide Limitations

Although Halide was created with the separation between algorithm and schedule in

mind, some more sophisticated optimizations may require the algorithm to change. This

happens for problems with more complex inter-stage dependencies and data access pat-

terns. For instance, the blur algorithm was implemented in a two-step architecture to

facilitate scheduling, while a single-step implementation was possible. Still, being with

schedules independent from the algorithm the debugging process remains an easy task.

Only later the pipeline can be optimized through the same trial-and-error process Halide

advocates. Further, Halide suffers from having runtime-only errors on schedules, as op-

posed to compilation-time errors. This is due to the runtime soundness checks which

cannot be performed on schedules at compilation time, and results in scheduling code

which is harder to debug.

Halide is used mainly for image processing problems, but can also be used for stencil

operations. Regarding complex neural networks, Halide is not the most recommended tool

since it does not support cyclical pipelines. This is required for Long Short-Term Memory

architectures in which a number of steps, unknown at compilation time, is required [69].

Given that Halide was implemented for shared memory targets only, it does not na-

tively support any sort of CPU-GPU cooperative or multi-GPU execution, nor it supports

distributed environments. It is possible however to use Halide as a sSPMD execution

21

tool and add support for distributed memory manually through MPI. This strategy can

however be cumbersome since efficient MPI/CUDA programming is not a trivial problem.

Although some work has been done to improve Halide’s usability for hybrid or distributed

computing [60, 70, 71], cooperative CPU-GPU execution is, to this work publication date,

still unavailable for Halide.

Finally, Halide is also limited by its iteration model, which does not support more

complex irregular spaces. Also, Halide’s static analysis model requires that pipelines

must be defined as DAGs, not allowing dynamic loops which size are only known at

runtime. By known at runtime it is meant the Halide pipeline internal execution. For

instance, it is legal to have a pipeline with domains’ sizes defined only at the pipeline

execution, however, it is impossible to iterate a given function a number of time which is

unknown or content-dependent. This limitation can be surpassed with polyhedral DSLs

as seen next [60].

Halide Extensions

With regards to Halide’s lack of cooperative CPU-GPU execution capability, Liao et

al. [71] propose an extension which partitions the input domain with a user-defined size

parameter to later enable cooperative execution. Boundaries of the two partitions are

resolved through redundant computation of borders with regards to existent data depen-

dencies. In contrast to a naive approach of manually partitioning the input image for

later concurrent Halide execution on both targets, the proposed work avoids unnecessary

memory transfer operations by joining the output buffers into a single output by per-

forming in-place operations on CPU targets and copying the GPU output data directly

to the final output buffer. In order to reduce load imbalance the input domain can be

partitioned in more than two parts. The execution model is based on a one-dimension

array of to-be-executed partitions. This array is consumed from both ends towards the

middle by both a CPU thread and a GPU thread on each opposing end. This approach

results in a flexible model for cooperative CPU-GPU execution, however, not enough to

enable the use of multiple CPU or GPU devices (or threads).

The work of Denniston et al. [70] focused on adding distribution support for Halide

by adding a new scheduling level for distributed computing with a tradeoff of redundancy

vs communication. This is done through the introduction of two new scheduling direc-

tives: distribute() and compute_rank(). Using a simple producer-consumer pipeline as

an example, e.g., blurx produces for blury, it is possible to represent four points on the

redundancy/communication tradeoff: (i) local and global redundancy, (ii) local redun-

dancy and no global redundancy (through communication), (iii) no local redundancy and

massive global redundancy, and (iv) no local redundancy and border global redundancy,

22

without communication. These cases are depicted on Figure 2.4. For all cases blury is

scheduled for distributed execution across the y domain. The first case can be achieved

through blurx.compute_at(blurx, y), meaning that for every y value of blury an entire

widith ×3 area of blurx is calculated beforehand. This results in local redundancy be-

tween every value of y and global redundancy on the intersections between computed

regions of blurx, as seen on Figure 2.4a. By doing blurx.compute_root().distribute(y) the

global redundancy is replaced by communication of the bordering regions between parti-

tions on y (see Figure 2.4b). Local redundancy can be removed completely by scheduling

blurx.compute_root(), which also results in massive global redundancy, since blurx exe-

cutes on the whole image on each distributed space, as seen on Figure 2.4c.

(a) Scheduling case (i): local and global re-

dundancy.

(c) Scheduling case (iii): No local redun-

dancy and massive global redundancy.

(b) Scheduling case (ii): local redundancy

without global redundancy. Dashed ar-

eas are communicated between distributed

spaces.

(d) Scheduling case (iv): No local redun-

dancy with small global redundancy. Over-

lapping regions are defined as ghost zones.

(e) Caption of symbols used to represent computation, communication and

access to local memory.

Figure 2.4: Illustration of possible scheduling tradeoffs for the Distributed Halide sched-
ules example of the blurring algorithm. Each line of blocks is processed on a distributed
setting, with the first column being the blurx function and the second blury.

23

For this particular example the best schedule is achieved by (iv) with blurx.compute_rank(),

which removes any local redundancy and minimizes global redundancy without requiring

communication between distributed spaces. This is possible through the compute_rank()

directive, which infers a ghost zone [72] required by blury and executes this extended

partition locally, simulating a compute_root() schedule on a distributed environment.

The Tiramisu compiler was recently introduced as an extension/specialization of Halide,

with novel commands for distributed environments [60]. It extends Halide with a polyhe-

dral syntax with directives to support distributed execution and explicit management for

data storage and movement. However, Tiramisu does not support JIT compilation and

parametric tiling of images, i.e., the input size must be known at compilation time. As

such, a compilation for each data input size is required and must be known AOT. The

scheduling directives are compiled into a Tiramisu-specific IR, which wraps Halide’s IR

for local scheduling, and MPI for distribution. Thus, Tiramisu supports all of Halide’s

directives. Regarding actual coding, Tiramisu represents its polyhedral domains as text

strings instead of having actual C++ direct bindings (as with Halide for instance). This

further exacerbates the already present problems of runtime/compilation-time errors by

also having text strings as high-level entities, which are not validated on compilation-time.

There has been extensive work on automation using the Halide DSL. Most predom-

inantly, there has been a focus on automatic schedulers (auto-schedulers) [57, 58, 59],

which are available for a diverse set of targets. This particular problem is considered

rather hard by itself given the large search domain for these algorithms on deeper and

more realistic pipelines. Also, automatic low-level code to high-level Halide translation

has been applied to over 260 image processing functions on Adobe Photoshop while also

achieving speedups with auto-schedulers on generated code [73].

2.3.3 The Region Templates Framework (RT)

The Region Templates (RT) [74] is a runtime system designed to execute large-scale

dMPMD image analysis applications. It allows for applications to be described as a hier-

archical workflow, where coarse-grain workflow stages may be implemented as a workflow

of fine-grain operations. The overall system architecture is presented in Figure 2.5. The

system uses the Manager-Worker model, where a single Manager process (system-wide)

maintains a queue of stage instances to be executed. Stage instances are assigned for pro-

cessing on Workers in a demand-driven basis as their workflow dependencies are resolved.

Each Worker is responsible for internal scheduling of fine-grain tasks on available local

resources.

RT also abstracts the data storage layer from the application programmer. In RT

the communication between coarse-gain stage instances is carried out by writing/read-

24

Figure 2.5: RTF architecture and workflow execution steps: (1) Worker queries Manager
for stage instances created by the application workflow, (2) Worker consumes instances
for processing, (3) Fine-grain tasks created in each Worker are assigned for execution with
CPU and/or GPU, (4) Data is read, tasks processed, and results written to storage, and
(5) Worker is notified of the end of a stage instance execution.

ing to/from region templates data elements, instead of performing explicit inter-process

communication. This simplifies the application development and also enriches the system

with data placement awareness, which may be used to improve data locality during stage

instance scheduling.

Globally, RT uses MPI for inter-node (or inter-Worker) communication and thread

affinity configurations on a per-node scope. Workers are composed of thread pools to

manage available devices as CPU and GPUs and a have access to the storage layer. A

single Worker may be created per computing node as it is able to use of all available

computing devices. On a given distributed system, each computing node has a single

Worker process, with a single Manager process globally. For heterogeneous computing

nodes, each distinct resource on a shared memory space represents a single schedulable

target on a Worker. For instance, a computing node with dual-socket CPUs and two

GPUs have a single CPU and two GPU schedulable resources.

The execution steps when using RT are detailed in Figure 2.5. The Manager creates a

local queue of stage instances to be executed, and Workers will consume and process them.

This request is performed through a message (1) sent by the Worker, which is replied (2) by

the Manager with metadata describing the instance(s) it should process. The Worker then

(3) creates the fine-grain tasks that represent the processing of the received stage instances

and inserts them in the local queue. Once (4.1) a task is dispatched for execution with a

CPU or a GPU, (4.2) the input (or intermediary) data are read, (4.3) the processing takes

place, and (4.4) output data is written to the RT storage hierarchy after execution. It is

worth noting that data movement is performed dynamically on-demand when a Worker

process requests data that may be on another node. After each task is completed, (5) a

25

callback function is executed to notify the Worker about the task’s completion. Further,

when all of the fine-grain tasks for a given stage instance (created in 3) have finished,

the Manager is notified along with a request for new stage instances (1). This process

continues until there are no stage instances left to be processed.

The distributed storage hierarchy enables exchanging data among stage instances ex-

ecuted in different Workers or computing nodes. Local and distributed storage are part

of a single hierarchical infrastructure, and search for the requested data starts in the first

layer of the storage (local and faster) and follows until it is found, for instance, in the

distributed storage. The user can configure which storage devices are used in each layer

of the hierarchy, the amount of space available, and the data replacement policy. For

instance, as illustrated in Figure 2.5, one could configure the system with a three level

hierarchy having two node local levels L1 and L2 using, respectively, SSD and HDD, and

a distributed storage in L3. All data are stored in RT data containers, which are spatial -

temporal data representing 2D/3D regions with a temporal component. Each RT data

unit may contain multiple Data Regions (DR), for instance, storing different measures of

the same spatial location. Typical data structures that a DR may store include vectors,

matrices, and polygons. The availability of such data structures improve development

productivity as data are available to the application in common representations used in

the domain. While RT presents all the features described above, it does not simplify the

development of stages or tasks code that execute the application transformations.

2.4 Motivating Field of Research

There is a widespread adoption of Whole Slide Imaging (WSI) solutions for digital histopathol-

ogy applications [75]. Through the use of powerful slide scanners it is possible to extract

high-resolution images, which can be used for helping medical professionals [13]. These

automatic slide loaders are able to quickly retrieve large numbers of WSIs. With these,

tools and techniques for Computer-Assisted Diagnosis (CAD) are being developed, which

promises to improve on the effort required by medical professionals by automating la-

borious tasks [76]. Another interesting application is related to Content-Based Image

Retrieval (CBIR) related to histopathology [13, 77], on which large databases of WSIs

can be queried for image content. Finally, there are also research efforts to recognize pat-

terns of diseases and classify them, how patients may respond to treatment or to estimate

their prognosis also benefit from WSI usage [78, 79, 80, 81, 82].

All mentioned applications and fields have one aspect in common, its use of WSIs.

These WSIs are high-resolution images, sometimes reaching over 100, 000 × 100, 000 pixels

of resolution on higher magnifications [6]. These images are aggressively compressed since

26

they could reach over 30 GB of size for an uncompressed color image. Also, these are

available in a pyramidal representation, on which the same image is available at different

magnifications (and thus resolutions). Further, each patient may have multiple tissue

slides, and data from multiple patients are required for larger-scale studies [21, 20, 13].

These characteristics compound, increasing the computational cost of performing such

studies, making it necessary the use of high-performance resources. There are currently

open databases for such WSIs, with the images used on this work being provided by The

Cancer Gnome Atlas project (TCGA) through the Genomic Data Commons Data Portal

(GDC) [83, 84].

For such large-scale studies the use of High-Performance Computing (HPC) solutions

is a natural choice. The usage of such solutions have been more widely employed for

large-scale WSI studies [6, 13, 14, 15, 77]. However, most related works for such studies

have only employed the use of GPUs, on some cases using more than one GPU on a

single node. The use of distributed environments is mostly found on works focusing HPC

solutions instead of histopathology or cytology [7, 21, 22, 23, 24, 25, 74]. Usage of such

resources at a larger-scale should then be a goal of histopathology research, mostly since

there are evermore resources available through public access programs like the Advanced

Cyberinfrastructure Coordination Ecosystem: Services & Support, previously known as

the XSEDE. One reason behind the usage of mostly local resources, albeit with multiple

GPUs, is the usage of Convolutional Neural Network (CNN) solutions [6, 13, 14, 15, 16, 17],

which is known to have high communication demands, which can be drastically slowed

down by communication overheads on distributed environments [85]. It is worth noting

that one field which is gaining increasing interest regarding distributed training of CNNs

is federated learning [15, 86, 87, 88]. It appeals to the usage of data locally sourced from

hospital or data silos with privacy requirements. However, it is important to note that

although most WSI solutions are shifting towards CNNs there is still work being done

with classical image processing algorithms [16, 77]. Also, there are some limitations to the

usage of CNNs. It is required for WSIs to be partitioned into rather small regions (e.g.,

around 512 × 512 pixels), being thus unable to work with larger, or even full-sized images.

This can be restricting for some applications. For instance, the Camelyon16 challenge for

detecting metastases in WSIs included the goal of also detecting the actual invasive cancer

region, which would be challenging for CNNs since it requires a more global knowledge of

the image [89].

27

2.5 Motivating Application

A WSI classical image processing application was chosen as the object of study and op-

timization for distributed execution. This is a well known watershed-based segmentation

workflow, also used on previous works [7, 9, 20, 21, 22, 23, 25]. This application, also

seen on Figure 2.6 focus on enabling correlative analysis, such as survival analysis and

identification of significant gene expressions through pathology imaging features. Thus,

the motivation of this work is to accelerate the extraction of morphological information

from histological tissue structures, such as cell nuclei. This process leads to characteristics

which correlate well with disease progression and clinical data [5, 7].

The original WSI image analysis applications have the following set of core analyses

stages: (i) color normalization, (ii) segmentation, which detects and delineates objects of

interest or cells nuclei in our use-case, (iii) feature computation to extract descriptors of

the objects, and (iv) correlative analysis that classifies and/or integrates data extracted

from image with other information sources according to the target analysis. Stage (i) is

responsible for normalizing different images, sometimes retrieved by different equipment,

enabling consistent analysis between different images. The segmentation step mostly

delineates the boundaries of cell nuclei. The segmented nuclei are used to extract a large

number of morphological features. These features can undergo a SA process to abbreviate

the large set of features to the most important ones. From these, a correlational analysis

can be performed to improve the quality of digital pathology applications.

Regarding compute costs, the normalization and correlative analysis phases are typ-

ically compute inexpensive as compared to segmentation and feature computation. The

correlative analysis, for instance, works on patient signature level or a set (vector) of fea-

tures per image. The segmentation, which is the most compute expensive step and target

for implementation of for this work, executes complex operations on high-resolution im-

ages.

The segmentation is presented along with the feature computation on Figure 2.6. It

identifies and delineates cells and nuclei using a series of transformations built on top

of morphological operations. First, the background/foreground are identified (GetRGB),

and an initial object candidate set is reconstructed from the cells seeds (Morphological

Reconstruction) through erosion/dilation and Irregular Wavefront Propagation Pattern

algorithms (IWPP). Further, holes in objects are filled (Fill Holes) with another round of

dilation/erosion and objects are opened (bwOpen) to compute the cell nuclei set. Finally,

objects touching each other or clumped are separated with Distance Transform and Wa-

tershed. These morphological reconstruction operations are mostly built on the concept

of data propagation through the image (IWPP), which makes the computing cost depen-

dent of data content. In other words, certain data regions, for instance, containing more

28

Figure 2.6: Segmentation and Feature Computation phases of the motivating application.

objects of interest tend to require more propagation, and consequently, a larger number of

iterations through the image, resulting in higher execution times [90]. In contrast to reg-

ular computing pattern algorithms, as erosion/dilation, propagation algorithms cost my

be rather different for same-sized inputs. Feature computation is less compute demanding

than segmentation and calculates characteristics of the segmented objects, which includes

color, gradient statistics, edge, and morphometry statistics. Most of the features can be

computed with high parallel efficiency and are easier to implement. Note that after the

GetRGB step, the execution may be terminated if the algorithm identifies an excessive

amount of background (e.g., > 98%). This strategy reduces the overall execution cost

by avoiding fully processing empty tiles. This approach was implemented in the original

application workflow [5, 7].

29

Chapter 3

Related Works

In order for the motivating application to support distributed execution spatial data

partitioning algorithms are required. These are thus defined and described on this chapter.

Further, this chapter also shows a comparative analysis of related works and the current

state-of-the-art related to this work.

3.1 Spatial Data Partitioning

In order to expand on data partitioning is important to define the data which is to be

partitioned. This work focus on the image-based representation of data (ID), where the

environment in which atomic objects (pixels) lie is partitioned [91]. Another important

class of data is multidimensional point-based data (PD) [19], which has been extensively

studied [39, 92, 93]. Both data formats are shown on Figure 3.1. It is important to

acknowledge PD since many of its constraints are similar to ID, meaning that some

partitioning algorithms were originally adapted from PD to ID.

By definition, the elements of PD are spread on a sparse space. Partitioning algorithms

and data structures for this sort of data focus on balancing the number of elements by

partition or generating balanced hierarchic structures for later lookup [19]. Such hierar-

chic organizations (e.g., trees) can prove themselves useful for improving inter-partition

features, for instance, the communication cost when distributing the partitions for parallel

execution [94, 18]. These objectives of partition-balancing and inter-partition feature op-

timization can be transferred for ID, and thus enable the application of such algorithms.

The partitioning of the space into regions with the same number of points is equivalent to

cost-wise partitioning of ID. As such, we only regard non-overlapping algorithms. Further,

the hierarchical partitioning of an ID space can lead to a reduced sum of all perimeters,

which is addressed on Chapter 5.

30

(a) 2-dimensional point data (PD) parti-

tioned.

(b) Extraction of regions of interest of

image-based data (ID).

Figure 3.1: Partitioning examples of multidimensional point-based data and image-based
data.

ID partitions are limited to rectangular regions, which improve storage and access

patterns. Further, for both ID and PD, partitions can be overlapping or non-overlapping.

Overlapping partitions can lead to redundant computation for ID partitions. Both data

representations share two main strategies: Fixed-Grid and Recursive Partitioning [18, 39,

95, 96, 97].

3.1.1 Fixed-Grid Spatial Partitioning

Also seen as regular-mesh [18], Fixed-Grid is a class of regular partitioning algorithms on

which all partitions have the same geometrical size. For any given input, Fixed-Grid may

return the exact number of partitions required, being possible to vary the grid structure.

The two possible ways to generate this partitions are shown in Figure 3.2, on which the

partitioning can be performed on all coordinates/dimensions or just one. Partitioning on

all coordinates also have another level of complexity related to the grid organization. For

instance, 18 partitions on a 2D domain can be achieved by 1×18, 2×9 and 3×6 grids (on

both coordinates). Thus, for large numbers of required partitions different algorithms to

find the best grid organization can be implemented. With Fixed-Grid algorithms there is

no guarantee that the partitions would be balanced cost-wise.

3.1.2 Recursive Spatial Partitioning

Most popular spatial partitioning techniques are variants of recursive bisection. These

algorithms performs successive cuts until a desired number of partitions is reached [18].

The partitions are balanced by a chosen criteria, returning equivalent partitions. Two

of the most common algorithms are the Quad-Tree and KD-Tree [19]. These algorithms

31

(a) Grid-based mesh. (b) One-dimensional regular mesh.

Figure 3.2: Fixed-grid partitioning examples.

can be implemented with a hierarchical component, to optimize data search. For the

purpose of this work hierarchical structures are not required. Exemplified on Figure 3.3a,

Quad-Trees partitions the image into four equal regions. This algorithm can be adapted

from PD into ID representation [98]. The KD-Tree algorithm is an example of recursive

coordinate bisection (RCB) [18], or also defined as multidimensional binary partitions

(MBP) [94]. RCB algorithms bisect a given image or region into two regions with a

cut perpendicular to a coordinate axis. This process is done until the expected number

of partitions is reached. KD-Trees work better when the expected number of partitions

is a power of two. Otherwise, the partitions can be unbalanced cost-wise due to the 2-

fold partitioning. An example of how an image can be partitioned with KD-Tree is

shown in Figure 3.3b. KD-Tree usually bisects the largest coordinate, thus reducing the

total borders. This reduces communication overheads for applications which requires data

synchronization between partitions.

(a) Quad-Tree partitioning. (b) KD-Tree partitioning.

Figure 3.3: Recursive spatial data partitioning examples.

32

3.2 Related Languages, Frameworks and Tools

This sections presents related work on domain-specific languages (DSL) and tools target-

ing image analysis applications, and runtime/compiler systems for hybrid machines. The

closest related work may be Halide itself, which was described in details in Section 2.3.2,

and is extended in this work to support cooperative CPU-GPU execution and distributed

memory machines along with cost-aware data partitioning.

The works presented in [70, 71] have extended Halide, respectively, with support for

distributed memory execution and a hybrid (CPU-GPU) single node execution. Hybrid

Halide [71] enables the use of CPU and GPU cooperatively in the execution by splitting

input data for parallel processing. It minimizes host-device communication by copying the

GPU output data directly to the final host output memory location. The same mechanism

is implemented in our work, but we also perform efficient cost-aware data partition, even

on a single node level. The Distributed Halide [70] is an interesting work that introduced

a new dimension to the scheduling domain related to distributed memory execution.

It allows the developer to choose a data dimension to be distributed along with the

introduction of ghost-zones or inter-node communication to resolve border discontinuities.

In this case, only CPUs are used, and data distribution is left entirely to the programmer,

increasing the development effort. Tiramisu [60] is another interesting extension of Halide

that proposes a polyhedral syntax with directives to support distributed execution and

explicit data movement management. However, Tiramisu does not support Just In Time

(JIT) compilation and parametric tiling of images, i.e., the input size must be known at

compilation time. As such, a compilation for each data input size is required and must

be known Ahead Of Time (AOT). These aspects impose an important limitation for the

use of Tiramisu in our solution.

PolyMage [99] is a python embedded DSL whose applications are compiled to C++ to

enable efficient execution. It abstracts application development as pipelines with a compo-

sition of image processing operations (e.g., point-wise, stencils, histograms, upsampling,

downsampling). While its pipelines can only be represented as Directed Acyclic Graphs

(DAGs), it has a time-iterated operation, which can hide the cyclic portions of pipelines.

Nevertheless, it does not abstract input size inference, which must be defined by the user,

using polyhedral notation. The schedule for the pipeline is found by PolyMage automati-

cally, not supporting any changes on evaluation or traversal order by the user. While this

can be practical for inexperienced end-users, it can hamper performance on more peculiar

cases when the domain is well-known. In order to reduce the schedule optimization time,

the tiles’ sizes, which are the only variables of a given pipeline, have predefined valid

values that reduce the search space. One advantage of generating the whole scheduling is

that it enables sophisticated inter-stage tiling (e.g., parallelogram [100] tiling, split tiling

33

[101], overlapping [102], etc), thus optimizing data locality. However, PolyMage does not

support distributed memory execution, being usable only on local CPU settings.

Several general purpose compilers and scheduling languages targeting GPU based sys-

tems have also been designed to facilitate the use of such devices, for instance, in stencil

applications or linear algebra [103, 104, 105]. While these solutions fail to offer a high-

level language for image analysis, such as proposed in Halide, they introduce interesting

optimization aspects targeting GPU equipped machines. Fireiron [103] decouples im-

plementation from scheduling, enabling code transformation to efficiently exploit data

locality. Scheduling is performed through specifications or specs. These specs can be

considered a data-structure which describes the computation patterns of a kernel (im-

plementation code), such as memory layout, data movement and access, and the use of

special GPU instructions. Specs can be decomposed hierarchically, providing more inter-

mediary layers of abstraction for data management. This organization enables fine-grain

control over GPU implementations at the expense of usability for end-users.

HSTREAM [104] is a compiler focused on running applications on hybrid machines.

This is achieved by leveraging pragma scheduling statements to annotate the application

code and a runtime system. Different from newer versions of OpenMP, which can offload

computation to single accelerator devices (e.g., GPU), HSTREAM provides mechanisms

to perform cooperative execution among multiple heterogeneous devices. This is possi-

ble through a source-to-source compiler for target specific code, which is then executed

on HSTREAM’s runtime system. On the back-end, HTREAM uses OpenMP for CPU

scheduling and CUDA for GPUs. Work distribution is performed directly by the code

programmer through the definition of data chunks for each device. This simple solution

allows other developers to implement their desired workload partition policies. However,

HSTREAM’s pragma statements are interpreted at compile time, which limits the sched-

uler flexibility.

Panda is another remarkable compiler based solution [105]. It provides a set of pragma

directives to parallelize and distributed stencil tasks to distributed CPU or GPU only

settings, or distributed hybrid settings. Execution with multiple GPUs per node is sup-

ported. As with HSTREAM, Panda uses a source-to-source compiler, which translates its

pragma annotations to MPI, CUDA, OpenMP or a combination of them. The MPI/CUD-

A/OpenMP code is fully compiled to binary, meaning that no runtime system is required

or made available by Panda. While Panda enables efficient stencil execution, it does not

offer a higher-level language and scheduling concepts, as with Halide. Further, Panda also

does not offer the flexibility of dynamic scheduling as in our solution. In other words,

Panda performance on distributed system fully rely on automatic compiler optimizations,

and it does not deal with irregular data computations. It also does not offer tools specific

34

Table 3.1: Related work comparative analysis. Each work is classified considering code
availability, whether it is a fully fledged DSL or a set of compilation definitions [3], schedul-
ing decoupling, target processor, distributed execution, and partitioning characteristics.

Code Schedule DSL Img.
Target Device

Dist.

Cost-Aware

Hybrid

Halide [71]

✓ ✓ ✓

Hybrid,
CPU,GPU

Distributed
Halide [70]

✓ ✓ ✓ CPU ✓ ✘

PolyMage [99] ✓ ✘ ✓ CPU ✘ ✘

Fireiron [103] ✘ ✓ ✘ GPU ✓ ✘

HSTREAM [104] ✘ ✘ ✓
Hybrid,

✘ ✘

CPU,GPU

Panda [105]

✘

✘ ✓
Hybrid

✓ ✘

CPU, GPU

Our

✓

✓ ✓
Hybrid, CPU,

✓ ✓

GPU

to image analysis, which is the target of this work.

The related work is summarized in Table 3.1 to facilitate comparison. They are char-

acterized by: (i) public code availability, (ii) whether the schedule can be decoupled from

the implementation, (iii) how the system is implemented, (iv) the target computing de-

vices supported, (v) if there is support for distributed memory execution, and (vi) if

they support irregular data partition for parallel execution. As may be seen, solution

proposed on this work is the only one to enable hybrid and distributed execution with ir-

regular data partition targeting image analysis. As presented in the experimental results,

these features are important to fully take advantage of modern computing systems and,

consequently, to maximize the performance of our target application domain.

✓ ✘

Work
Avail. Decoupling Analysis Exec. Partitioning

Halide [56] ✓ ✓ ✓ CPU or GPU ✘ ✘

Tiramisu [60] ✓ ✓ ✓ CPU or GPU ✓ ✘

35

Chapter 4

Supporting Pathology Image

Analysis Applications on Distributed

Memory Hybrid Systems

This chapter describes the system implementation and other methods for supporting

efficient execution of histopathology analysis on a dMIMD environment with both multiple

computing nodes on a network and local heterogeneous computing devices. The execution

of real-world applications on these modern environments is a complex task that may

require intervention from the programmer. For instance, (i) workload must be distributed

among compute nodes and among heterogeneous processing elements on each node, (ii)

communication must be orchestrated, and (iii) there should be efficient code targeting the

available devices. In this work, it is built a system solution that enables efficient use of

hybrid systems and addresses these challenges, while being simple to use.

As previously stated, there is a demand for automatic WSI analysis applications.

These can be computationally demanding, needing large amounts of time to be com-

pleted. HPC solutions are great candidates for improving this issue of high computing

costs. However, HPC techniques/resources can be complex to use efficiently [106]. In

order to use distributed resources, the application input must be partitioned, which is a

complex problem since it adds the issue of workload imbalance, meriting a whole field

of research [107, 108]. Dynamic scheduling can alleviate such issue at the cost of more

complex execution systems. Static partitioning can result in better system performance

regarding overheads, while also rendering the workload imbalance, and thus overall per-

formance, dependent on the partitioning quality. Further, it has been shown that WSI

applications are becoming evermore reliant on GPU devices [6, 14, 106, 108]. The use of

such resources adds even more complexity to these solutions or systems. GPUs not only

require specific programming languages and/or frameworks but also are more difficult

36

to efficiently program. Also, multi-GPU compute resources are also becoming evermore

available, for which systems and solutions for distributed memory environments are re-

quired for coordinating the execution on all GPU devices [108]. Finally, medical domain

experts are not expected to be familiar enough with all the nuances of using these HPC

solutions, resulting in a difficulty to efficiently use the available HPC resources.

The system proposed on this work aims to alleviate the described issues, allowing

easier and more efficient usage of HPC resources for WSI applications. The user will be

able to use a high-level DSL for efficiently programming their applications for both CPU

and GPUs. The input WSIs need to be partitioned with regard to workload imbalance.

The system also needs to stage computational tasks across distributed hybrid resources,

resolving data locality issues. A system which resolves all of these issues is presented on

the following sections.

4.1 System Overview

The proposed system employs a simple execution model, on which a user can execute

a WSI processing workflow, depicted by Figure 4.1. This workflow can be defined as

a directed acyclic graph of compute stages. Stages are modeled through the high-level

DSL Halide [56]. Each stage will be executable on any of the available heterogeneous

resources due to a Halide integration to the system, detailed on the next section. With

an input workflow and an input WSI, or set thereof, the system is able to run a single

stage on each available resource. These resources can be a set of CPU cores (e.g., a

socket or full node) or GPUs and other accelerators. Before the execution of any stage

the system partitions the input WSIs statically with a cost-aware partitioning algorithm

with focus on load balancing, which is detailed on Section 5. It is common for WSI

applications to partition the input images, which require them to manage what should be

done regarding the borders of the partitions [109]. A border resolution semantic allows the

independent execution of image partitions. The proposed system resolves the partitions

borders by employing a redundant overlapping region between every two partitions, which

allows their independent execution. At the end of execution of a partition, data regarding

the overlapping regions can be exchanged between partitions which are used for another

compute stage. From it the execution process iterates on the remaining stages.

The proposed system, as compatible with RT, employs a worker-dispatcher model.

The manager is responsible for partitioning the input WSIs and managing the execution

of the stages. Each Worker requests a stage for execution for each of its compute resource.

For instance, a hybrid node with dual-socket CPUs and 2 GPUs can request 3 stages, one

for all the CPU cores and 1 for each GPU. Before the execution of the actual user-

37

Figure 4.1: Execution model of the proposed system. A set of WSIs and a application
workflow are used as inputs. The system then partitions the input WSIs and executes
one stage of the workflow at a time. Partitions are executed in parallel. Borders are
automatically resolved at the end of the execution of a given stage, before the next stage
can be executed.

implemented application code the data dependencies are resolved at the distributed inter-

node level by RT and intra-node by the proposed system. Initially, every Worker possesses

the input WSIs at local storage to optimize its execution (WSI files are heavily compressed

and can be transferred to all nodes beforehand). If an input partition for a given stage

belongs to the initial WSI then a Worker is able to load it directly from its local node

storage. Otherwise, RT’s data management system ensures that the required data is

present, transferred from other distributed nodes. When executing on GPUs the data is

also transferred automatically to it before the user application code is executed. After the

execution and border resolution, the resource which executed the stage is freed, allowing

the Worker to request a new stage from the manager. This whole process is shown in

Figure 4.2.

38

Figure 4.2: Process of executing a stage. After partitioning and task submission any
required data partitions are loaded for the required resource. After execution and border
resolution a new stage can be requested.

4.2 Interface for Implementing the Applications

One way to improve the entry barrier for non-experts of HPC employed by the proposed

system was the usage of a high-level DSL which enables an unified programming model

for both CPU and GPU resources. For such task the Halide DSL [56] was chosen with the

goal of providing a high-level language for Region Templates (RT) application developers

while enabling distributed memory and hybrid CPU-GPU execution of applications. The

combined use of Halide and RT was also motivated by the goal of maintaining application

decomposition into a hierarchical workflow. This model is natively supported in RT,

with Halide serving as a language for implementing stages’ internal code or processing

transformations.

In theory, the proposed system could use any sort of DSL as a basis for programing

the user-defined application, given that its semantics allow programing for both CPU and

GPU without distinction. However, given the motivating domain of WSI applications,

Halide is a great fit as an image processing focused tool. As stated, Halide provides an

unified semantic for programming for both CPU and GPU devices, which is not true for

other lower-level tools, such as CUDA or OpenMP. In order to improve its usability, it

is desirable for the chosen DSL or framework to be embedded on C++, excluding more

specific solutions, like the Chapel parallel programing language [110]. Also regarding

better support, Halide is a consolidated tool, under regular development since 2013 with

its original paper currently having over 1200 citations on Google Scholar [56] and relevant

research work being done with it [73, 111, 112, 113]. Regarding performance, Halide

proves to be efficient to the degree of being used to elevate the performance of legate

code [111] or even improve on the performance of operations from the widely used image

editing tool Photoshop [73]. Other tools, e.g, the HIPAcc DSL [114, 115], have been

proposed as valid alternatives to Halide performance-wide. However, Halide’s decision of

39

←

←

←

←

←
←

having scheduling code separated from the remaining of the code allows more flexibility

of usage by non-experts on HPC, while still attaining reasonable performance. Finally,

there is extensive work on automatic scheduling of Halide workflows, further reducing the

difficulty of reaching performant code without extensive knowledge on HPC [57, 58, 59].

Algorithm 4 Example of an application on top of RT with Halide.

1: function STAGE1(images, parameters, target)
2: Halide::Func f implementation of task with parameters
3: scheduleF orT arget(f, target)
4: images.at(0) f.realize(images.at(1))
5: end function

6: function STAGE2(images, parameters, target)
7: Halide::Func g implementation of task with parameters
8: scheduleF orT arget(g, target)
9: images.at(0) g.realize(images.at(1))

10: end function

11: function MANAGER()
12: params list of all application parameters

13: partitioner RT::CADP(dataP ath, gzSize, n, costFunction, gpuSpeedup)
14: for each partition in partitioner.getP arts() do

15: RT::EXECUTE(stage1, partition, params)

16: RT::EXECUTE(stage2, partition, params)
17: stage2.depends(stage1)
18: end for
19: RT::STARTUPEXECUTION()

20: RT::FINALIZESYSTEM()
21: end function

The proposed solution concentrates on the development and optimization of the domain-

specific data transformations (stages). A pseudo-code example for a typical user-defined

application with two stages in the proposed system is presented in Algorithm 4. The user

is required to implement the stage function that will execute on the Workers, following

a predefined template. This template includes used data partitions (input and output

images with the Halide data types), parameters, and the target device (lines 1 and 6).

The output data of each stage is locally assigned (lines 4 and 9) and globally managed by

RT. Thus, any data movement required after the completion of a stage is automatically

handled. With this model the code within each stage is a set of Halide functions instead

of pure C/C++ (or CUDA) as with original RT applications. This eases the burden of

application development due to the simpler Halide syntax. Besides decoupling implemen-

tation and code optimization, this strategy also reduces the effort on code generation or

implementation targeting multiple devices, since we can rely on Halide to generate effi-

cient code. We can thus generate, for instance, CPU and GPU code in order to enable

40

cooperative execution on hybrid compute nodes. Although Halide by itself could execute

the same code (lines 1 to 10), it would only be possible to use a single processing element

(either CPU or 1 GPU) in a shared memory machine, also requiring data management

code before the pipeline implementation.

The Manager side of the application is presented on line 11 of Algorithm 4. The code

developed in this case partitions the input data (large input tissue image) for parallel and

distributed execution, and instantiates the application workflow by creating stages and

setting respective dependencies (line 17). The data partitioning strategy used to divide

the application data domain is chosen in line 13. The execution strategy is designed so

that communication among tiles (or among processors) is allowed by the exchange of tile

borders or ghost zones [72, 109] at the beginning of a stage instance execution. The ghost

zones or ghost borders are areas around tiles with defined width that are included in

the original tiles for processing. Once border information is added to a tile, the stage

instance may process tiles independently. Because the data is written/read to/from the

RT storage system at the end/beginning of a stage instance execution, information among

tiles (borders) are automatically exchanged without additional explicit communication

As the default partitioner, the Cost-Aware Data Partitioning algorithm (CADP), pre-

sented in Chapter 5, has been selected. This strategy receives as input the data to be

processed, size of ghost zone for tiles if required (gzSize), number of partitions to be

generated (nTiles), a cost-function used to estimate computing demand of data domain

regions (costFunction), and expected GPU vs. CPU speedup (gpuSpeedup) for cases in

which CPUs are used cooperatively with accelerators. The remaining of the Manager code

(lines 14 to 20) describes the workflow generation, which dispatches a workflow with a

single stage for each input tile, and the actual startup and end of the execution. However,

multiple stages and arbitrary application workflows with dependencies are supported in

our system.

4.3 Internal Data Management for Hybrid Execution

In order to execute Halide tasks while also supporting hybrid cooperative execution,

Region Templates (RT) had its internal tasks representation changed. Mainly, a new Stage

class, the AutoStage, was implemented. AutoStage supports (i) the execution of arbitrary

code, defined outside RT by the user, (ii) conversion of images to and from Halide’s

format, and (iii) the early termination of workflows. Since the selection of the target

architecture for execution (e.g., CPU/GPU) is passed to the user stage implementation

(see Algorithm 4, lines 1 and 6), AutoStage instances are tagged with the architecture

it should execute. This tag is defined by the data partitioning algorithm (line 13) and

41

passed through to the user code. It is important to notice that in the manager code

(lines 11-21), the user is not required to directly manage images or files. Only Halide’s

data structures are used on its application’s implementation (lines 1 to 10).

After the partitioning of the input images, these must be added to RT’s internal data

repository. This allows easy and consistent data access on a distributed memory setting.

Each input image and intermediary image buffer must have a Region Templates Object

(RTO) encapsulating it. A RTO represents a globally accessible image, which can be

spatially decomposed and have multiple versions . This also allows in-place execution

with a backup of previous versions. RTOs are composed by Data Regions (DR), each

representing a partition of concrete data, available locally on memory of a compute node.

Since the I/O process of generating the RTOs and its DRs is performed by RT’s Manager

process, the DRs were updated to allow a lazy creation process. DRs’ actual data from

.svs files are then only read by Worker processes on demand. This optimized the I/O

process of DRs by decentralizing it.

By sending a stage for execution with a data partition (Algorithm 4, lines 15 and 16),

an AutoStage instance is created. This processes the input parameters of the application

and finds the partition’s global RTO reference, with its DRs. Both inputs and outputs

are assigned. Each submitted stage is added to the proper global execution queue on the

Manager for its tagged execution target. As with the original version of RT, each Worker

has an execution thread per computing resource. For instance, for a compute node with

two GPUs on a dual-CPU-socket motherboard, three threads are created, one for each

GPU device and one for one for all CPU cores.

When a local Worker’s thread receives a task (either for CPU or GPU) the process of

Algorithm 5 is performed. The first step is the retrieval of DRs (lines 2-6). As mentioned

before, DRs are in-memory data objects, which in this work are lazily read from the .svs

files. The reading process is performed at this point. If a DR is not a .svs input file

then its data is present on RT, which handles the data movement. It is worth noting

that the RT scheduler is data-aware, meaning that it is likely that the required data is

already present on the executing node. The output DR is also created/allocated at this

point. Next, the input DRs are checked for the termination of the workflow (lines 7-12).

The motivating domain of this work benefits from early termination of inconsequential

partitions (e.g., background only). If a realized task returns a terminated flag, then

all subsequent tasks should be terminated (line 17). This signal is propagated by the

input/output DRs (lines 7-12 and 18-21).

The input/output data for the executing task are pre-formatted for Halide applications

(lines 13-15). The conversion process between RT and Halide objects does not perform

any copy, using the internal OpenCV data references, common to both formats. This

42

←

←
←

←
←

Algorithm 5 Internal execution of an AutoStage on a Worker.

1: function AUTOSTAGE::RUN()

2: outputDr RT::GENERATEDR(outputShape, partitionId, outputRT O)
3: drList.append(outputDr)
4: for each r in inputRtoList do
5: drList.append(r.getDr(partitionId))
6: end for

7: for each dr in drList do
8: if dr.terminated() then

9: outputDr.terminate()
10: return
11: end if
12: end for
13: for each dr in drList do

14: halBuf List.append(RT::CVTOHAL(dr.getCv()))
15: end for

16: task RT::GETTASK(taskRef)
17: terminated task.realize(halBuf List, parameters, target)
18: if terminated then
19: outputDr.terminate()
20: return
21: end if
22: halOut halBuf List.at(0)

23: outputDr RT::HALTODR(halOut)
24: end function

process is further detailed in the next section. The reference for the task to be executed

is retrieved from a RT library. The code reference is accessible by any distributed Worker

MPI process through the generation of a local map of references to the user-defined

Halide implementations. This map is generated on every distributed process to enable

the decoupling of RT code from user code. After the retrieved task is executed completely

(line 17), the output data is reformatted back to RT (lines 22 and 23). This also does

not perform any local data copy or transfer, but allows for RT to send this data to other

nodes. The exception is for GPU execution, on which data is transferred between device

and host.

4.4 Halide Integration and Implementation Details

In order to enable the seamless use of Halide by the user, RT need to (i) perform auto-

matic conversion of its internal data representation to/from Halide’s representation, (ii)

automatically manage GPU data, and (iii) manage execution with multiple GPUs. As

mentioned, conversions between DRs and Halide::Buffer’s (Halide’s data representation)

43

do not perform unwanted data copy or movement. This is possible since both data types

use the OpenCV’s cv::Mat data type as their underlying data container. However, for

color cv::Mat data the memory layout of color channels can either be interleaved or planar.

For planar data, the full image of each color channel is sequentially set on memory, one

channel at a time. Interleaved data is set on memory on a per-pixel basis, on which each

pixel with all of its channels’ values are grouped together, with each pixel set sequentially

on memory. This is an important information to know since different layouts can lead to

incorrect execution results. This presents a problem for Halide, which uses the interleaved

pattern by default since, by definition, the innermost coordinate of a color image is the

color channel. Given that the data read from the .svs files can be in the planar format,

this planar-interleaved conversion is performed automatically when necessary. For GPU

execution, data transfer to/from device is also automatically performed by AutoStage.

As currently available, Halide does not natively supports cooperative execution of its

pipelines on distributed memory environments. These environments can be either multiple

GPUs or heterogeneous devices (e.g., CPU + GPU). Heterogeneous execution is handled

by RT while multi-GPU execution was implemented by extending Halide itself.

GPU execution (as used on this work by Halide) is performed through CUDA. As such

it requires the initialization of a reference object to a given GPU device before performing

data movement or execution operations. Originally, Halide initializes a single static refer-

ence of a GPU. If more than one GPU is available, the initialized reference points to the

device with the highest processing capacity (i.e., most CUDA cores). These references are

initialized only once, at the first realization call of a Halide pipeline scheduled for CUDA.

Multi-GPU support was implemented by maintaining an internal array of references to

each GPU device available. These are instantiated once with a new initialization function,

also responsible for configuring the number of GPU devices to be available. This initial-

ization function is invoked at regular RT initialization. One aspect to be aware is that

each pipeline can only be executed on the GPU on which its data is present. Also, GPU

memory is much scarcer than CPU memory, meaning that execution of multiple pipelines

on the same GPU should be avoided. As such, before realizing or performing data move-

ment operations, a GPU reference is allocated by an assignment function (getGpuRef())

which locks a single GPU for use, returning its ID.

Figure 4.3 shows how a GPU device can be accessed in a thread-safe manner, while also

operating on the correct GPU. At the header of the realization code, a GPU ID is retrieved.

The allocated GPU is tagged as unavailable until the finalization step. From an allocated

GPU it is possible to execute as many Halide’s realizations as desired. All realizations

are performed on the same GPU. Any data dependency, which can only exist at the host

side, is lazily resolved by Halide. The finalization step frees all temporary data on GPU

44

Figure 4.3: An illustration of the processes involved into using multiple GPU devices.
Direct communication between CUDA and user code is just a simplification. In reality
all CUDA-related calls are performed only through Halide.

(e.g., copied inputs) and enables the transfer of result data back to the host. The design

of using preparation functions was devised as a way to inform Halide the correct GPU

to use while not interfering with its interfaces (e.g., realize(), copyToHost()). In order

to support multiple GPU executions the preparation functions are thread-safe, locking

the whole Halide GPU sub-system and unlocking at either a realization or a finalization.

After the beginning of the realization process, the GPU sub-system is unlocked and can

attend to other GPUs. It is worth noting that the thread-locked section of this protocol is

short enough to not significantly influence the overall execution time. After finalizeGpu()

finishes all required device-to-host transfers and clear its memory, the GPU is once again

available to other tasks.

45

Chapter 5

Cost-Aware Data Partitioning for

Irregular-Cost Applications

This chapter details the problem of partitioning input images for parallel execution on

hybrid distributed memory machines. The closest related work, on image analysis, leaves

this task to the programmer which performs trivial regular partitioning of the domain [70].

In other application domains a significant number of approaches to automate this task

were proposed [39, 116, 117, 118, 119, 120]. However, these strategies consider that

processing costs are homogeneous across the data domain and employ data structures like

Quad-Trees and KD-Trees to partition the data. In our motivating application domain,

on the other hand, the computing cost of a region is heterogeneous and vary, for instance,

according to the density and size of objects it contains. Thus, using those data partitioning

strategies may lead to significant load imbalance in the parallel execution.

This observation has motivated the development of a new class of automatic partition-

ing algorithms, called Cost-Aware Data Partitioning (CADP), which takes into consid-

eration the heterogeneity or irregularity of the domain’s processing cost to minimize the

load imbalance. CADP algorithms consider this irregularity in the partitioning and uses

the expected computation cost of partitions created to reduce imbalance among them on

a distributed execution environment. Since the computational cost of a region may be

dependent of the application processing patterns and data content, the cost estimation

used by CADP is provided by a cost-function that can be customized according to the

application being executed. The function receives a Region Template (RT) data region as

input and is expected to return a value, which is used in CADP to compare the relative

cost of different regions. In our motivating application’s domain of segmentation for cells

nuclei of tissue images, some examples of such metrics could be the number of objects or

their areas in a region, or the density of the partition compared to the background area.

46

←
←

5.1 The Expected Cost Bisection (ECB) CADP Al-

gorithm

The first CADP algorithm was designed based on the successive bisection of a larger area,

extracting a partition with an expected cost, the ECB. Each partition is set to have a cost

proportional to the number of expected partitions. For instance, for 8 partitions each of

these should have 1/8 of the processing cost for the whole image. The main phases of ECB

proposed here are presented in Algorithm 6. It is composed of three main components:

(i) a background/foreground separation that is employed to perform an early detection

of background/foreground areas; (ii) a 2-cut cost-wise based partitioning algorithm that

performs the data domain division for parallel processing on both homogeneous and het-

erogeneous environments, and (iii) a cost-function used to guide the data partitioning

(see Section 5.3). The first step of Algorithm 6 (line 2) is in charge of detecting areas

of the image that are mostly foreground (dense), and separate them for the background

areas (sparse). This separation is performed to avoid that very large partitions with a

small computing cost are created, because this may increase I/O costs of such partitions,

consequently making the balanced partition process harder. This step separates the whole

input image in two sets of regions/sub-images: denseT iles and sparseTiles. Since the

sparse partitions do not contain semantically relevant information for the workflow, only

the dense partitions are sent for execution. The denseT iles, which are at least one, are

then submitted to the cost-aware partitioning (line 3) to return the exact nTiles for par-

allel execution. It is possible that the initial number of dense tiles is greater than the

number of expected tiles, nTiles. Currently, the dense partitioner returns the same dense

tiles for this case, doing nothing. However, this case is rare for the application domain,

on which 1-4 initial dense regions are usually found, with nTiles being in the interval of

8-32. Finally, all tiles are combined and then returned (line 4)

Algorithm 6 Cost-Aware Data Partitioning (CADP) Algorithm.

1: function CADP(image, foregroundF unc, costFunc, nTiles, gpuAcc)

2: (denseT iles, sparseTiles) RT::BFSEPARATION(image, foregroundF unc)

3: denseT iles RT::DENSEHYBRIDPARTITION(denseT iles, costFunc, nTiles, gpuAcc)
4: return denseT iles

 5: end function

5.1.1 Background Separation/Partitioning

The background/f oreground separation (BFSeparation) is performed in the following

steps (i) find the dense regions minimum bounding boxes (BB), (ii) remove overlapping

47

A smaller then B
≤

Table 5.1: All possible cases of overlapping between two bounding boxes A and B with
how they are resolved. By definition B is larger in area than A.

Case description Condition Resolution

1 A inside B
A.xi ≥ B.xi and A.xo ≤ B.xo and Remove region A

A left of B A. yi ≥ B.yi and A.yo ≤ B.yo

2
vertically inside

A.xi < B.xi and B.xi < A.xo ≤ B.xo and A.xo = B.xi − 1

A right of B A. yi ≥ B.yi and A.yo ≤ B.yo

3
vertically inside

B.xi < A.xi ≤ B.xo and A.xo > B.xo and A.xi = B.xo + 1

A above of B A. yi ≥ B.yi and A.yo ≤ B.yo

4
horizontally inside

A.xi ≥ B.xi and A.xo ≤ B.xo and A.yo = B.yi − 1

A below of B A. yi < B.yi and B.yi < A.yo ≤ B.yo

5
horizontally inside

A.xi ≥ B.xi and A.xo ≤ B.xo and A.yi = B.yo + 1

A above left of B B. yi < A.yi ≤ B.yo and A.yo > B.yo

6
A smaller then B

A.xi < B.xi and B.xi < A.xo ≤ B.xo and Break region B on

A above right of B A.yi < B.yi and B.yi < A.yo ≤ B.yo x = A.xo, y = A.yo

7
A smaller then B

B.xi ≤ A.xi < B.xo and A.xo > B.xo and Break region B on

A below left of B A. yi < B.yi and B.yi < A.yo ≤ B.yo x = A.xi, y = A.yo

8
A smaller then B

A.xi < B.xi and B.xi < A.xo ≤ B.xo and Break region B on

A below right of B B. yi < A.yi ≤ B.yo and A.yo > B.yo x = A.xo, y = A.yi

B.xi A.xi < B.xo and A.xo > B.xo and

B.yi < A.yi ≤ B.yo and A.yo > B.yo

Break region B on

x = A.xi, y = A.yi

between dense BBs, and (iii) generate background tiles for the remaining image areas.

Background areas may be found in tissue images with a threshold cost-function, but

it may require more sophisticated approaches in other domains. Thus, the function is

customizable by the user depending on the target application (foregroundF unc). This

function must also be inexpensive, otherwise some of the partitioning benefits would be

offset by its cost. This is further discussed in Section 5.3, but we want to anticipate

that we use lower resolution versions of the data to perform such computation, thus

reducing partitioning costs. With the aid of the foregroundF unc, Bounding Boxes (BB)

are computed for each dense region, and overlapping BB are resolved to create non-

overlapping dense tiles. Another advantage of this strategy is that, for the motivating

application, identified background only areas may be aborted earlier at run-time without

impacting the final output quality, thus reducing the overall execution cost for the image.

Although the execution time for these sparse tiles is expected to be negligible, the I/O

(a) Horizontal case. (b) Horizontal sol. (c) Diagonal case. (d) Diagonal solution.

Figure 5.1: Overlapping BB resolution. For the horizontal/vertical cases, A is reduced.
For the Diagonal cases, B is broken into 4 tiles, being the fully overlapped tile removed.

9

48

←

←
−

≤
←

←
−

← − −

reading times can be expressive since the number of generated sparse tiles, as their sizes,

are irregular. This can impact negatively the overall load imbalance of the application.

To attenuate this, sparse tiles are partitioned into the smallest multiple of the expected

tiles, greater than the initial number of sparse tiles. For instance, for an expected 16 tiles

with (i) 8 and (ii) 22 sparse tiles, the partitioning would result in a total of (i) 16 and (ii)

32 sparse tiles. The partitioning algorithm for sparse partitions is the same as the dense

partitioner (see Algorithm 9), using the area of the partition as its cost-function.

Algorithm 7 Background partitions generator.

1: function GENERATEBGPARTITIONS(dense)

2: allPart ← dense
3: open ← []
4: prevY ← 0
5: SORTBYYI(dense)

6: while open not empty or dense not empty do
7: if dense not empty then

8: cur dense.head()
9: end if

10: headY open.head_y()
11: if open is empty or (dense not empty and cur.yi headY.yo) then

12: allPart.insert(MAKEBLOCKS(open, prevY, cur.yi, w 1))
13: prevY cur.yi
14: open.insert(cur)
15: dense.erase(cur)
16: else if dense is empty or (dense not empty and cur.yi > headY.yo) then

17: allPart.insert(MAKEBLOCKS(open, prevY, headY.yo, w 1))
18: prevY headY.yo
19: open.erase(headY)
20: end if
21: end while

22: lastPart(xi, yi, xo, yo) (0, prevY, w 1, h 1)
23: allPart.insert(lastP art)
24: return allPart
25: end function

The first step for BFSeparation, after generating the initial dense BB is the removal

of overlapping regions. Essentially, there are two main types of overlapping, vertical/hor-

izontal and diagonal. Assuming two partitions A and B, being A smaller than B, for the

first case, aiming to maintain the same number of initial dense partitions, the smaller

partition is reduced in order to not overlap anymore. Thus, the overlap between the two

partitions is only executed by partition B (see Figures 5.1a and 5.1b). For the diago-

nal case it is impossible to remove the overlapping while also returning rectangular BBs

which covers all the initial area. For these cases the larger partition (B) is divided in 4

49

(a) Initial test image from a

small section of a whole slide

tissue image.

(d) On second dense region
only a single partition is gen-

erated (BG2).

(b) Background binary mask

with three dense regions.

(e) Scan line finds the end of

a dense region. BG3 and BG4
can now be generated.

(c) Scan line hits its first

dense region, generating all

partitions between the begin-

ning of the image and the

scan line.

(f) Final result after scan line

reached the bottom of the im-

age.

Figure 5.2: Background partition generation from initial dense partitions using the scan
line algorithm. Partitions are numbered according to the order they were generated.

new parts, one of which is fully inside A. For this trivial overlapping case, the smaller and

internal partition is destroyed (see Figures 5.1c and 5.1d). Although Figure 5.1 shows

only one example of each type of overlapping, Table 5.1 enumerates all remaining analo-

gous overlapping cases, assuming bounding boxes A and B with coordinates A.xi (initial

coordinate x), A.yo (final coordinate y), and that A is smaller than B, area-wise.

With the non-overlapping dense regions, the background partitions are generated

through a vertical scanning of the image, from top to bottom (see Figure 5.2). As described

in Algorithm 7, the dense partitions (as bounding boxes) are copied into the output list

(line 2) since the dense list itself will be consumed by the algorithm. The dense partitions

are then sorted by their upper vertical component (yi) in a non-descending order (line 5),

simulating the vertical scan. In addition to the dense list, the open list is used as a register

of which dense regions are currently in the supposed scan line (see Figure 5.2d). This list

50

←
←

←

is populated by transferring a dense region from dense to open whenever the scan line

reaches an upper-bound of it (line 14). The actual background regions are generated on

two occasions, (i) when the scan line hits the top of a dense partition (lines 11-15) or (ii)

when the scan line hits the end of a dense partition on the open list (lines 16-20). The

background partitions generated are between [prevY, cur.yi] for (i) (line 12) and between

[prevY, headY.yo] for (ii) (line 17). The generation occurs also emulating a scan line,

horizontal this time. The regions are generated whenever there is a void between the

borders of the image or the borders of dense open regions. These partitions are inserted

on the output allPart list (lines 12 and 17). When all dense and open partitions have

been consumed, the last horizontal partition is created (lines 22-23), from prevY to the

bottom border of the image, spanning the whole width of the image. Figure 5.2 presents

an example, on which three initial dense partitions generate 10 background partitions.

5.1.2 Data Partitioning for Homogeneous Environments

The data partitioning phase will receive as input a list of m dense regions to be partitioned

into n (number of nodes) regions with minimum load imbalance, described in Algorithm 8.

In this process all partitions are kept on a list sorted by their estimated cost, beginning

with the initial m partitions (initialPart on line 3). Although able to be parameterized,

the expectedCost value of each partition is defined as the ratio of the initial full image

cost by the number of expected partitions (line 2). It then selects the partition with the

higher cost and breaks that partition into two others with (almost) same estimated cost

(line 6). The bisection, which can be either vertical or horizontal on a 2-dimensional

domain, is sought with a binary-search algorithm in the partition domain.

Algorithm 8 ECB Homogeneous Partitioner Algorithm.

1: function HOMOGENEOUSPARTITION(image, initialPart, costFunc, n)
2: expectedCost costFunc(image)/n
3: partitions initialPart
4: RT::SORTBYCOST(partitions, costFunc)
5: while partitions.size() < n do

6: expP art, remP art RT::BTS(partitions.pop(), expectedCost)
7: partitions.orderedInsert(expP art, costFunc)
8: partitions.orderedInsert(remP art, costFunc)
9: end while

10: return partitions
11: end function

In this process the Binary-search Tile Splitting Algorithm (BTS) developed here (see

Algorithm 9) is executed. A cut pivot p is initially set in the midpoint of the current region

51

←
←

←

←

← −
←

← −

(image), creating two regions [di, p] and [p+1, df] (line 2), which have their costs compared

(line 15). If the cost difference is smaller than a given error (imbalance among these two

partitions), the process stops and two partitions are returned (line 16). Otherwise, p

is updated to the midpoint of the region with the highest cost (lines 7-13) and checked

again. This process continues until an acceptable cost difference is found. If the expected

cost is impossible to be achieved, the search stops at the closest value, when pivotLength

reaches zero (line 15).

For an arbitrary number d of dimensions, BTS can be executed on any of the d

orthogonal coordinates. In order to reduce the ghost zone overhead in applications that use

this strategy, the algorithm should return a partitioning with the least Sum of Perimeters

(SoP) of the output tiles. Greater SoP values result in larger ghost zones, increasing

I/O and processing costs. BTS solves this by partitioning only the largest current tile

dimension (see Algorithm 9, line 2).

Algorithm 9 Binary-search Tile Splitting Algorithm (BTS).

1: function BTS(image, expectedCost)
2: (di, df) (min value of largest dimension, max value of largest dimension)
3: p, pivotLength (df di)/2
4: do

5: aTileCost cost of image in the current dimension interval [di, p]
6: bT ileCost cost of image in the current dimension interval [p + 1, df]
7: if aTileCost > bT ileCost and
8: expectedCost > bT ileCost and
9: aTileCost > expectedCost then

10: p p pivotLength
11: else
12: p p + pivotLength
13: end if

14: pivotLength pivotLength/2
15: while aTileCost or bT ileCost not close enough to expectedCost and

pivotLength > 0
16: return (di, p), (p + 1, df)
17: end function

Figure 5.3 shows the BTS process on a region with expected cost of 37 on an initial

image with 70 units of cost, assuming 10% imbalance upper limit error. This means that a

tile with a cost in the interval [34,41] is searched. The initial split point p1 on Figure 5.3a

represents a partition cost ratio of 15/55. As none of the current partitions’ cost are

in the expected error interval the search proceeds to the next pivot p2, with 45/25 cost

partition. The process then stops when the desired tile is found in the partition 30/40 of

Figure 5.3c, returning the second tile as the one closest to the expected cost. Although

52

(a) Initial split test with p1 results in 15/55

cost partition.

(b) The next pivot p2 is moved to right

(costly side), leading to 45/25 partition.

(c) After updating end3 and p3 a cost ratio

of 30/40 (left/right of p3) found and the al-
gorithm stops, returning the tile in the right.

Figure 5.3: An example partitioning with at upper limit of 10% error on a tile with

expected cost of 37. Initial bounds begin1 and end1 image limits are defined and tightened
after each split attempt until a partition with imbalance smaller than the target is found.

this maximum error margin is configurable, we have used a default of 2% since smaller

errors did not result in significant performance differences.

5.1.3 Data Partitioning for Hybrid Environments

This section discusses the extensions to the data partitioning algorithm presented in pre-

vious section to support hybrid machines equipped with CPUs and GPUs. This strategy

receives as input the initial regions to be partitioned, cost-function, number of partitions

to be generated to CPU and GPU, and the expected GPU acceleration as compared to the

CPU. Further, the full expected cost of the input data is computed and it then estimates

the cost for partitions that each device available (CPU or GPU) should receive. This

cost is proportional to the devices’ relative performance, mostly, expected GPU vs. CPU

speedup (lines 3 and 4 of Algorithm 10). We assume that the GPU acceleration (gpuAcc)

is obtained in a profiling phase before the actual application execution and is provided to

the system by the user. In this work, for instance, we executed the CPU-based and GPU-

based versions of the application codes on the smallest input image (Figure reffig:wsi0)

to collect this value, which was then employed for the rest of the experiments.

After that point, partitions are sorted according to their cost, and the next partition

will always take place on the costly region until the desired number of data partitions

53

←

←

←

← ≤
←

Σ
← ∀

← ∗ ∗
← ∗ ∗

Algorithm 10 Hybrid Partitioner Algorithm.

1: function HYBRIDPARTITION(denseP arts, costFunc, nCpu, nGpu, gpuAcc))

2: fullCost costFunc(part) part in denseP arts
3: gpuCost fullCost (gpuAcc)/(nCpu + nGpu gpuAcc)
4: cpuCost fullCost 1/(nCpu + nGpu gpuAcc)
5: RT::SORTBYCOST(denseP arts, costFunc)
6: i denseP arts.size()
7: for count 0; i nGpu + nCpu; count + + do
8: if count < nGpu then
9: expCost gpuCost

10: else
11: expCost cpuCost
12: end if

13: expP art, remP art RT::BTS(denseP arts.pop(), expCost)
14: finalPartitions.pushBack(expP art)
15: denseP arts.orderedInsert(remP art)
16: end for

17: for each remP art in denseP arts do
18: finalPartitions.pushBack(remP art)
19: end for
20: return finalPartitions
21: end function

(nCpu + nGpu) is reached. The first nGpu partitions created are appropriated to the

GPU, each with approximately gpuCost. In this process, the BTS algorithm presented in

previous section is used to find the tile cut point that results in the desired cost based on

the gpuAcc parameter. When it occurs, the partition is performed and the tile with desired

cost is inserted in the final set of partitions and marked for execution with the proper

target device. This process is repeated to generate the required number of partitions.

5.2 The Background Removal Bisection (BRB) CADP

Algorithm

Although the ECB algorithm proved effective for reducing overall load imbalance for

partitioning the input WSI images (see Section 6), it also showed few avenues for im-

provement. When initially tested, the partitions generated by the ECB algorithm were

visually reasonable, resulting in partitions which could be generated manually, as shown

in Figure 5.4a. However, when scaling the numbers of partitions to be generated a trend

was observed. As seen in Figure 5.4b, the partitions generated were long thin strips of the

image. This is due to the nature of ECB algorithm. ECB extracts a single partition a time

54

with the expected cost. For 32 partitions, as on Figure 5.4b, each partition would have

1/32 of the overall image cost. Thus, only such thin strips could be generated from the

original image (one of the four lateral strips, on top, bottom, left and right), even with the

ECB heuristic to prefer more square-shaped partitions. This strip partitions phenomenon

was later correlated with an increased cost of executing such partitions when compared to

more square-shaped partitions. This increased execution cost is related to the Irregular

Wavefront Propagation Pattern (IWPP) section of the motivating application. On the

worst-case scenario for IWPP, a pixel can be propagated from one end of the image to the

other. Assuming two images with the same area, one square and one long and rectangular,

and retrieving the longest distance between two pixel in both images, the latter would

have the greatest value. And this could impact on the number of propagation operations

performed by the IWPP algorithm, increasing this value and consequently its cost. With

these considerations, an improvement to restrict the generation of these strip partitions

is wanted.

(a) ECB generating 4 partitions. (b) ECB generating 32 partitions.

Figure 5.4: Two cases of ECB partitioning. Although the partitions cost was similar, the
shapes for generating 32 partitions are mostly long and thin strips.

Another opportunity of improvement for the CADP lies on removing more background

at a finer-grain. As shown in Figure 5.6, the method proposed above on Section 5.1.1 can

only remove so much background area. Every partition generated by the CADP must be

rectangular. The dense regions however, are not expected to fit this shape neatly. This

limitation of the proposed coarse-grain background removal algorithm results in a missed

opportunity to remove the additional background inside each dense region, as portrayed

in Figure 5.5b.

55

(a) Result of coarse-grain background removal, which

generates rectangular dense regions.

(b) The triangular background re-

gions are not trivially removable.

Figure 5.5: Although the coarse-grain background removal algorithm can remove most of
the background, some of it still remains inside the dense rectangular regions.

At first, a viability study was performed to assess how much background could be

feasibly removed from such WSIs. From a set of 10 images each of 6 different class of

WSI, the available fine-grain background was partitioned manually for later compilation

of results. Only background which could be trivially removed from the vicinity of the

dense region was considered (i.e., background inside dense regions was not considered).

Then, the total sum of removable background area was evaluated with regard to the

total area, shown in Figure 5.6a. As seen, the amount of background viable for removal is

significant, with over half of all images having at least 16% of removable area (Figure 5.6b),

thus indicating the viability of such approach.

(a) Histogram of amount of removable back-

ground on the left scale, with the cumulative

count on the right scale.

(b) Accumulated counts of how many im-

ages had at least a certain amount of re-

movable background. E.g., over 30% of the

images had at least 25% of removable back-

ground.

Figure 5.6: Viability study for fine-grain background removal using 60 images.

56

5.2.1 A Method for Hierarchical Partitioning with Background

Removal

Two issues should be addressed by the new BRB algorithm, improving on ECB: the im-

provement on the shape of the partitions and the fine-grain removal of background. As

early described, ECB generates thin strip partitions when the number of expected par-

titions is high. The BTS algorithm however proved to generate reasonable partitions for

smaller numbers of expected partitions with ECB. As such, the problem of generating a

large number of partitions without the strip partitions issue is harder than for generating

a smaller number of partitions. With this in mind, BRB aims to reach the same number n

of partitions, but through the partitioning with smaller intermediate numbers of expected

partitions. One way to achieve the n expected partitions is by extracting the factors of n

and performing a hierarchical partitioning for each of these factors. By using the smallest

factors of n the partitioning algorithm reduces a hard problem of partitioning a large

value of n into multiple small easier problems of partitioning for smaller numbers. Coin-

cidentally, these factors are the prime factors of a number. For instance, the partitioning

of an image into 6 partitions can be performed by first partitioning the full image in 2

(see Figure 5.7) to then partition the resulting partitions in 3 (see Figure 5.7b) since (2, 3)

are the prime factors of 6. Though this hierarchical process the correct expected number

of 6 partitions is reached. However, the problem of generating 6 partitions is reduced

to the partitioning with 2 and 3 expected partitions, which are easier to generate better

partitions which are not strips.

The next issue to be addressed by BRB is the fine-grain background removal. Initially,

the algorithm had a background-removal-centric approach, on which it should remove

the most amount of background possible, to later solve balance issues, if any. On this

(a) Initial single partition. (b) Partitioning result for 2

expected partitions.

(c) Partitioning result for 6

expected partitions.

Figure 5.7: Hierarchical partitioning for 6 expected partitions. First, 2 partitions are
generated (red) from the single initial dense partition (blue). Then, 3 more partitions
(green) are required by each of the previous 2, resulting in 6 partitions.

57

(a) First background tile gen-

erated by creating a rectangle

from a point in the dense re-

gion contour and the corner of

the full image (lower left).

(b) A point on the contour

for the second background tile

is found, however, it overlaps

with the previously generated

background tile.

(c) Overlapping with the

newly generated background

tile is removed, resulting in a

second background tile.

Figure 5.8: First approach for background removal. The contour of the dense region is
delineated in white, being the background on the lower left corner of the image. Two
background tiles are expected to be generated. Background tiles generated are expected
to maximize their area.

approach a dense region contour would be generated as a convex-hull. From this contour

it is possible to generate a rectangle between a point on it and one of the four corners

of the image, as shown in Figure 5.8a. By testing all points in the contour, the tested

background tile with the largest area would then be chosen. This point selection process

could be iterated over again, as many times as needed, removing more background each

time (see Figure 5.8). As such, the amount of background to be removed would be

proportional to an input parameter of how many tiles should be generated.

(a) All dense partitions are generated, however,

there is a partition which is rather small, and

should probably be merged with another parti-

tion.

(b) First alterna-

tive, merge with the

right partition.

(c) First alterna-

tive, merge with

the left partition,

adding back less

background.

Figure 5.9: Generation of partitions which result in removing previously generated back-
ground tiles. The partition highlighted in red is considered too small, and as such should
be merged with another partition.

58

←
←

←

←
←

←
←

← ∗

From the background tiles previously generated the actual dense partitions would

then be created, as depicted on Figure 5.9a. They can be generated by an algorithm

similar to Algorithm 7. The first issue encountered with this approach is the possibility

of creating rather small partitions, highlighted in red in Figure 5.9a. This is problematic

since there are overheads regarding the execution of a partition, and the execution time

of such partitions would be dominated by these overheads. A solution for this was the

merger of these small partition to one of its neighbors. By merging them, a new partition

covering both would be generated. This new partition would also add some of the removed

background, and thus the selected neighbor would be the one which added the least

amount of background (see Figures 5.9b and 5.9c).

This early background-removal-centric resulted in highly imbalanced partitions, be-

ing slower to execute then ECB on preliminary tests. The reason this algorithm was

problematic was twofold: (i) it required the optimization of the parameter of how many

background tiles should be generated, and (ii) these tiles could result in poorly shaped

dense partitions, which only after many re-partitioning improve its imbalance. With this

knowledge, the BRB algorithm would be partition-centric, with the background removal

done as an afterthought to further reduce executing costs.

The final algorithm with both the hierarchical partition generation and background

removal is presented on Algorithm 11. Similar to ECB, a list of partitions is maintained

(line 2), being incremented once at a time with a new partition (line 12). However, in order

to allow the hierarchical partitioning the expected number of partitions nPartitions is

decomposed into its prime factors. From each iterated prime factor the number of expected

Algorithm 11 BRB Homogeneous Partitioner Algorithm.

1: function BACKGROUNDREMOVALBISSECTION(dense, nPartitions)
2: allParts dense
3: primeFactors getP rimeFactors(nPartitions)
4: partialNumP artitions 1
5: for multiple in primeFactors do
6: partialNumP artitions partialNumP artitions multiple
7: sumOf Costs cost of all partitions on allParts
8: expectedCost sumOf Costs/partialNumP artitions
9: while allParts.size() < partialNumP artitions do

10: curPart allParts.pop()
11: newParts BGREMOVALBTS(curPart, expectedCost)
12: allParts.orderedInsert(newP arts)
13: end while
14: end for
15: return allParts
16: end function

59

←
←
←
←

←

←
←
←
←

Algorithm 12 Simple Background Removal Algorithm for BgRemovalBTS.

1: function SIMPLEBGREM(image, costFunc)

2: denseT iles list of rectangular dense regions of image
3: bestXi image.Xo
4: bestXo image.Xi
5: bestY i image.Y o
6: bestY o image.Y i
7: for tile in denseT iles do
8: bestXi min(bestXi, tile.Xi)

9: bestXo max(bestXo, tile.Xo)
10: bestY i min(bestY i, tile.Y i)
11: bestY o max(bestY o, tile.Y o)
12: end for

13: return tile(bestXi, bestXo, bestY i, bestY o)
14: end function

partitions is updated to the number of partitions required after the end of each iterations.

For instance, if we were to generate 30 partitions the factors would be (2, 3, 5). Assuming

this current order, the first iteration should yield 2 partitions, with the following yielding

6 (3 for each of the previous 2) and 30 (5 for each of the previous 6) partitions respectively.

Iterating through the factors (line 5), the expected cost for the first factor 2 would be

the total cost divided by 2 (line 7). After the expected number of current partitions

is generated (lines 9 - 13), the algorithm goes to the next prime factor 3, updating the

expected number of partitions for the current iteration to 6 (line 6). Although the ordering

of the prime factors does not influence on the resulting number of output partitions it may

influence on the quality of them. It is reasonable to assume that an earlier iteration of

the hierarchical partitioning have impact on the overall quality of the output partitions.

Using the (2, 3, 5) partitions example, if the first partitioning was inaccurate, generating

two partitions a and b with relative cost of 10 and 20 respectively, the imbalance between

a and b could not be resolved by the following partitioning of (3, 5). As such, since it

was shown that the partitioning for smaller numbers of expected partitions is an easier

problem, the prime factors are sorted in a non-descending order.

The final component of BRB is the background removal. This is done inside the

BTS algorithm. Whenever a new tile is tested by BTS (i.e., have its cost calculated and

compared), the background is first removed. The removal of background is simple, only

being able to remove one or more of the 4 sides of the image, as depicted by Figure 5.10.

The removal process is defined in Algorithm 12. First, a list of all dense regions of the tile

is compiled (line 2). From this list, the best coordinates for the four borders of the tile is

found by checking each dense sub-region. The final borders should include in its entirely

all dense sub-regions. This updated version of BTS is used by Algorithm 11, on line 11.

60

(a) First cut for a partition if

found by BTS.

(d) Third partition is gen-

erated, also removing more

background.

(b) From the first cut, all

background only region is re-

moved. Background is also

removed from the remaining

partition in green.

(e) Fourth partition gener-

ated.

(c) Second partition is gener-

ated. However no background

can be removed without also

removing important sections

of the partition.

(f) The remaining of the im-

age is the fifth partition.

Figure 5.10: Extraction of partitions with a background removal version of BTS. It is
expected to generate 5 partitions. Red lines mark the current partition generated. The
remaining partition is shown in green. Previously generated partitions are shown in blue.
The black area is the background.

Figure 5.11 shows both cases for a small and large amount of expected partitions when

using the BRB algorithm. When compared with the results of ECB from Figure 5.4, BRB

manages to output more square-shaped partitions, while also removing fine-grain back-

ground regions. It is worth noting that the amount of background removed is proportional

to the number of expected partitions. Also, as described in details on the next section,

the cost-function estimation is also based on the area of a partition. As such, by removing

background, the total cost of the initial image is greater than the final sum of background

removed partitions. This may lead to an increased imbalance between partitions for BRB

when compared to ECB. While imbalance was shown to be significant for the conducted

experiments (see Section 6), the trade-off of removing background and thus reducing the

overall execution cost against a reduced balance efficiency resulted in significant speedups.

61

(a) BRB partitioning for 4 ex-

pected partitions.

(b) BRB partitioning for 32

expected partitions.

(c) ECB partitioning for 32

expected partitions.

Figure 5.11: BRB partitioning algorithm for 4 and 32 expected partitions. ECB parti-
tioning results for the same image are also shown as a comparison to BRB.

5.3 Data Region Cost-Functions

The cost-function is a crucial building block for an irregular partitioner to work properly.

While it is important to develop functions that approximate the cost of the data regions

well, it is also mandatory for them to be inexpensive in order not to offset the gains

of CADP partitioning. In order to enable CADP to work with other applications, we

have allowed for the cost-function to be a parameter to CADP that can be customized or

developed by the user according to new applications added to the system.

In our target application domain, as previously discussed, the data domain processing

cost is heterogeneous and vary according to the number and area of objects in a region.

Therefore, it is important to develop a cost-function that approximates that metric and,

consequently, correlates with the expected processing time. Computing a separate, ex-

pensive segmentation workflow to detect objects, such as nuclei and cells, would not be

efficient, because such a workflow is already implemented in the application itself. Thus,

we developed a simple and very efficient threshold-based segmentation cost-function to

identify objects in the images. After the threshold our function counts the number of

foreground pixels (area) that is used as our metric. This function was developed on top

of Halide to exploit parallelism at instruction and thread levels (through Halide parallel

directives).

The proposed cost-function is not compute intensive, but it could become costly if

applied to the full high resolution images as it would be necessary to read the entire data.

In order to avoid this cost, we took advantage of the WSIs pyramidal representation

natively available in the used microscopy images. It consists of the images being stored

by default at multiple magnifications, and we use a low resolution version of the images

as input to the cost-function to minimize its execution time. The WSIs are are processed

62

1

at 40× magnification (.25 micrometers/pixel) by the use-case application. To execute

our threshold based segmentation cost-function efficiently, we always used images with

the lowest resolution available. This approach resulted in a resolution reduction from

1024× to up to 4096× for such images. We found that using the lowest resolution images

had no significant impact to the partitioning algorithm, while it reduced the execution

times significantly. However, we note that this effect should be evaluated for each new

cost-function to properly optimize the image resolution for the new cost-function.

5.4 Time Complexity Analysis of CADP

For the purpose of time analysis, the whole CADP partitioner can be defined as the

following set of components: (i) dense bounding boxes generation, (ii) bounding boxes

overlapping resolution, (iii) background tiles generation, (iv) dense partitioning, and (v)

the cost-function. The calculations are done with regard to the number of pixels of the

image (n), the maximum value between the image’s height and width (m), the number of

initial dense partitions (d) and the number of expected dense partitions (t). The image

dimensions are related to the low-resolution version of the input image, used exclusively

for partitioning.

5.4.1 Time Complexity Analysis of ECB

Background tiles are generated by the sequential composition of components (i-iii). The

dense region bounding boxes are found through a standard OpenCV algorithm to find all

connected components [121]. These are then passed through an erosion/dilation process

to remove insignificant (small) regions. The connected components algorithm scales lin-

early with the number of pixels, as does the erosion/dilation: O(n). The d1 generated

tiles from (i) are checked for internal, sideways and diagonal overlapping cases. For all

three cases a pairwise comparison between all d1 tiles is required: O(d2). The initial

number of tiles can be reduced by internal overlapping resolutions or increased by di-

agonal resolutions, resulting in d2 dense non-overlapping tiles. For simplicity, we define

d = max(d1, d2), resulting in (ii)’s complexity of O(d2). The background partitions are

generated by successive MakeBlocks() calls on both initial and end coordinates of all d

dense tiles (see Algorithm 7). On the worst case, MakeBlocks() iterates through a full

open list of tiles. Since MakeBlocks iterating through d open tiles d times would mean

that there are a sequence of d horizontal tiles and d vertical tiles, it would also mean that

for d tiles there is a number of at least 2d tiles being traversed. Since this is impossible,

(iii) can never be on the order of d2 or greater, resulting in o(d2). Further, (iii) is Ω(d)

63

given the two best cases of a single vertical or horizontal arrangement of tiles. Thus, the

background generation section of CADP is O(n + d2).

Whenever d ≥ t the dense partitioner returns the initial d tiles immediately, voiding

the cost of (iv). Thus, we assume that d < t in order to evaluate the worst case scenario.

As shown in both Algorithms 8 and 10, a number of at most t dense tiles is generated

by executing the BTS algorithm. BTS uses a recursive logarithmic checking pattern for

pivots, always moving forward towards completion by halving the pivotLenth at each

iteration (see lines 14 - 15 on Algorithm 9). Given that BTS iterates through completion

on the worst case (i.e., when pivotLength = 1), it may have at most log2(m) pivots.

For each pivot the cost-function is executed on the current tile, with the used function

being Θ(n). As such, the dense partitioner executes in O(t n log2(m)). The final time

complexity of CADP is then O(d2 + t n log2(m)). Since by definition m ≤ n and d < t

(as per our initial assumption), CADP can further be simplified to O(t2 + t n log2(n)),

with t as the number of expected partitions and n as the number of pixels in the input

image.

5.4.2 Time Complexity Analysis of BRB

The main differences between ECB and BRB are hierarchical partitioning and the back-

ground removal done on BTS. Regarding the hierarchical partitioning, although the order

of partitioning, the amount of partitions generated by BRB is equal in any case to the

number of partitions when using ECB. Regarding the updated BTS, the background re-

moval cost of Algorithm 12 is insignificant. Asymptotically, its cost is proportional to the

number of dense sub-regions found on a partition. Although this number is rarely greater

than 1, the execution cost of performing 4 min/max operations is negligible. Thus, the

changes on BTS for BRB are not significant enough for its performance to differ from

its previous ECB version. Since both changes do not impact the cost of generating a

partition or the number of partitions generated (i.e., calls to BTS), the time complexity

of BRB is equivalent to the one of ECB

64

Chapter 6

Experimental Results

This chapter presents the performance evaluation of the proposed algorithms for the

distributed execution solution. All experiments were conducted with two types of compute

nodes, a CPU-only node and a CPU-GPU node. The former is composed of dual-sockets

Intel(R) Xeon(R) Gold 6252 CPUs (24 cores per CPU, 48 per node) with over 370 GB of

RAM. The CPU-GPU node, is similarly configured to the CPU-only node with 4 NVIDIA

Tesla V100 GPUs. Each V100 GPU with 32 GB of dedicated memory. The experiments

used the segmentation phase of the brain cancer studies image analysis application (see

Section 2.4) and input data consists of a selection of The Cancer Genome Atlas (TCGA)

whole slide tissue images [84] downloaded from the Genomic Data Commons Data Portal

(GDC) [83]. A randomly sampled subset of 10 images from a set of 60 images of 6

different cancer types was chosen, as seen on Figure 6.1 and Table 6.1. The chosen

images can be classified in two main classes of WSIs: dense (e.g., Figures 6.1a and 6.1h),

and sparse (e.g., Figures 6.1d and 6.1e). Dense WSIs are those with a single large and

contiguous tissue Region of Interest (RoI) that occupies most of the image area. In

contrast, sparse WSIs may contain multiple smaller regions with significant background

area. This value was then employed in the partitioning in hybrid environments in the

rest of the experiments when processing other images. In all of data partitioning, a ghost

zone of 100 pixels was used since it is sufficient to include objects (nuclei) within its

borders [109]. All execution times reported refer to the application end-to-end execution

times, which includes both I/O and processing times. This is also referred on this text

as the application makespan. Initially both partitioning algorithms KD-Tree and Quad-

Tree (see Section 3.1) were considered as baselines. However, the Quad-Tree algorithm

performed consistently worse than all other approaches, including KD-Tree. As such, in

order to improve the presentation of the results, only the KD-Tree algorithm (KDT) was

shown as the baseline. All tested algorithms were fed the same inputs, with a goal of

4 partitions per compute resource (e.g., 8 CPU-only nodes would receive 32 partitions).

65

¯

Every test conducted, for each point or configuration, was executed 5 times. For each

point, the median makespan was chosen, with its corresponding values for other metrics

(e.g., max task time, sum of task times). Further, assuming a normal distribution of

samples for each set of 5 executions, it was found that almost all performance comparisons

(speedups) between algorithms were significantly different for p = 0.05, with only around

18 out of over 1200 test points not being statistically different. Also, no error bars are

shown on the graphs since they are too small to be visible (also using p = 0.05) and a

significant difference was already statistically established.

Three main metrics were evaluated across all experiments: speedups, scaling efficiency

and balance efficiency. The two former metrics are already well known in HPC. Regard-

ing the latter metric, it was important to quantitatively assess how workload imbalance

impacts overall performance. Based on the Percentage of Imbalance metric (λ [122]) a

new metric was proposed, the Balance Efficiency. Similar to the equation of Percentage of

Imbalance λ = (Lmax/L̄ − 1) × 100%, with Lmax being the maximum load (the makespan

or total time for this domain) and L being the average load (average of workers’ times),

the Balance Efficiency is calculated as (L̄/Lmax) × 100%. The ratio Lsum/Lmax, being

Lsum the sum of all workers’ times, approximates the speedup of parallel execution when

compared to serialized execution (not considering distribution overheads). Ideally, this

speedup should be equal to the number of parallel resources, meaning that the workload

is perfectly balanced. Thus, by calculating (Lsum/Lmax)/nresources we have an efficiency

metric which can also be calculated as (L̄/Lmax) × 100% and is bounded by the range

(0%, 100%].

Given that 10 images were tested it is unfeasible to show the performance charts for

all of them, for each experimental setting. As such, two images (BR-8682 and B6-A0X1)

have their data plotted for each setting. These images were chosen since they represent

the two main classes of images, dense: with only a single contiguous region of interest

and not much background, and sparse: with one or more contiguous regions of interest

and higher ratios of background. Also, speedups, balance and scaling efficiencies are fully

displayed on tables for each experimental setting, for completeness.

6.1 Single Node Evaluation

This section evaluates the performance of the proposed system with the motivating appli-

cation into a single node. Section 6.1.1 compares handwritten code based on OpenCV to

automatically generated code using Halide in a sequential execution using CPU. It also

evaluates the CPU multi-core scalability of the Halide based code. Section 6.1.2 evaluates

66

(a) 86-8668 (87, 582 × 76, 160). (b) 86-8669 (90, 623 × 95, 200).

(c) B6-A0RG (93, 657 × 147, 468). (d) B6-A0X1 (93, 358 × 198, 220).

(e) BR-8285 (70, 894 × 163, 344). (f) BR-8296 (70, 894 × 105, 576).

(g) BR-8361 (70, 894 × 87, 648). (h) BR-8682 (77, 870 × 100, 912).

(i) FA-8693 (92, 241 × 91, 392). (j) LL-A8F5 (90, 462 × 107, 567).

Figure 6.1: All WSIs images used for the experimental evaluations. Each image has its
ID and their resolution.

67

Table 6.1: Information on all images used for the experiments.

TCGA GDC Image Identifier Database Image Type Resolution

TCGA-86-8668-01A-01-TS1 Lung Adenocarcinoma 87, 582 × 76, 160

TCGA-86-8669-01A-01-TS1 Lung Adenocarcinoma 90, 623 × 95, 200
TCGA-B6-A0RG-01Z-00-DX1 Breast Invasive Carcinoma 93, 657 × 147, 468 TCGA-B6-
A0X1-01Z-00-DX1 Breast Invasive Carcinoma 93, 358 × 198, 220 TCGA-BR-8285-01A-
01-TS1 Stomach Adenocarcinoma 70, 894 × 163, 344
TCGA-BR-8296-01A-01-TS1 Stomach Adenocarcinoma 70, 894 × 105, 576
TCGA-BR-8361-01A-01-BS1 Stomach Adenocarcinoma 70, 894 × 87, 648
TCGA-BR-8682-01A-01-TS1 Stomach Adenocarcinoma 77, 870 × 100, 912
TCGA-FA-8693-01A-01-TS1 Diffuse Large B-cell Lymphoma 92, 241 × 91, 392 TCGA-
LL-A8F5-01Z-00-DX1 Breast Invasive Carcinoma 90, 462 × 107, 567

the performance in GPU only devices, and Section 6.1.3 evaluates the application into a

hybrid CPU-GPU setting.

6.1.1 Comparison to handwritten and Multi-core scalability

We first compared the application written using Halide to the sequential handwritten code

implemented in a previous work [22], both deployed into RT. When executing the code

sequentially using a single CPU core, the RT/Halide code version took 1480.19 seconds,

while the Handwritten code executed in 1654.28 seconds. Most of the performance gains

in the Halide based application, as seen in details on Table 6.2, were concentrated on

Erode/Dilate operations executed within the Morphological Reconstruction, which were

implemented in the original Handwritten application leveraging OpenCV [55]. These

operations execute pixel neighborhood or stencil operations with different stencil shapes

and sizes. This is a computing pattern friendly for optimization with Halide that was able

to generate hardware specific tiling, improving cache locality and performance although

using a single CPU core. This result shows that the Halide enabled Region Templates

code is not only higher-level, but it may be more efficient than code base on OpenCV.

This is one of the reasons Halide is being used as a backend for some stencil-related

functionalities/operations in OpenCV [123, 124]. It should be noted that although using

Halide resulted in better performance, being this case expected in most cases, its use may

eventually result in slight slowdowns [111].

Table 6.2: Profiling of the pipeline’s tasks on a serialized environment for Halide and
Handwritten code. I/O times not considered.

Code
Handwritten

3.64 450.53 378.45 810.00 4.63 5.90 1654.28

 Code

Task GetRBG Erode Dilate IWPP Dilate2 Erode2 Full time

RT/Halide
3.37

414.71 288.29 761.85 5.16 5.69 1480.19

68

Figure 6.2: Scalability of the motivating application developed using Halide on a single
CPU with 28 cores.

Then the scalability for the number of CPU computing cores was further analyzed

when using the Halide parallelized code. The results presented in Figure 6.2 reached a

76% scaling efficiency with 28 CPU cores on a CPU-only machine. Sub-linear scalability

is, however, expected for the application because of the irregular computation costs in dif-

ferent image regions, memory subsystems competition, and additional costs to synchronize

threads and I/O times that do not decrease linearly with the number of CPU cores used.

These results agree with previous works on the application domain and Halide [22, 125].

6.1.2 Multi-GPU Execution

This experiment evaluates the performance of our system for multi-GPU compute nodes.

This setting compares the CADP algorithms with the baseline KDT algorithm. For each

GPU used, a RT Worker was instantiated. For all the cases evaluated here a single GPU

could not store the entire image, which was partitioned for out-of-core GPU processing,

with 4 partitions per GPU device. The raw size of some of the input images used in

this section could reach over 20 GB in size (as shown in Table 6.1) which is larger than

the memory of a single GPU. Within a single compute node, 1-4 GPU devices were used

on a scaling setting. The performance of all algorithms regarding speedups, scaling and

balance efficiency are displayed on the tables of Figure 6.3. Since most results are similar

between WSIs, two images were chosen for a deeper analysis: BR-8682 and B6-A0X1.

As shown on the results of Figure 6.3, ECB achieved speedups of 0.88-1.93×, with

BRB improving it to 0.97-2.72×, both compared with KDT. Regarding scaling efficiency,

all algorithms achieved good efficiency, with only 3/60 cases for both ECB and BRB

below 90% efficiency. However, the evaluated scaling efficiency for such few distributed

workers was expected. Regarding the worse results from KDT, one source of lower scaling

efficiency is the also lower balance efficiency, which is expected to deteriorate even fur-

69

Figure 6.3: Full data for single node experiments executed on a single GPU-only compute
node. For each image, the values are related to the number of compute elements used,
from 1-4 GPUs for the used node.

 Speedups for ECB vs. KDT Speedups for BRB vs. KDT

Image 1 2 3 4 Image 1 2 3 4

 LL-A8F5 1.06 1.12 1.06 1.23 LL-A8F5 1.16 1.10 1.11 1.24

 Speedups for BRB vs. ECB Scaling Efficiency for ECB

Image 1 2 3 4 Image 2 3 4

 LL-A8F5 1.09 0.98 1.04 1.01 LL-A8F5 101% 99% 99%

 Scaling Efficiency for KDT Scaling Efficiency for BRB

 LL-A8F5 96% 99% 86% LL-A8F5 91% 94% 92%

 Balance Efficiency for ECB Balance Efficiency for KDT

 Image 2 3 4 Image 2 3 4

86-8668
86-8669

98%
100%

93%
95%

91%
96%

86-8668
86-8669

86%
89%

94%
90%

88%
66%

B6-A0RG 96% 94% 97% B6-A0RG 92% 91% 76%
B6-A0X1 93% 99% 97% B6-A0X1 97% 95% 89%
BR-8285 98% 94% 93% BR-8285 92% 94% 84%
BR-8296 99% 97% 97% BR-8296 83% 98% 68%
BR-8361 100% 99% 97% BR-8361 98% 93% 87%
BR-8682 97% 99% 96% BR-8682 95% 98% 83%

FA-8693 100% 98% 97% FA-8693 86% 98% 68%

 LL-A8F5 98% 96% 97% LL-A8F5 89% 95% 84%

 Balance Efficiency for BRB
 Image 2 3 4

86-8668 97% 96% 93%
86-8669 97% 94% 92%

B6-A0RG 98% 88% 79%
B6-A0X1 94% 94% 98%
BR-8285 93% 92% 93%
BR-8296 96% 91% 88%
BR-8361 99% 95% 95%
BR-8682 91% 95% 95%
FA-8693 89% 92% 89%

 LL-A8F5 90% 95% 95%

86-8668 0.90 1.15 0.99 1.06 86-8668 1.03 1.38 1.27 1.39
86-8669 0.91 1.12 1.01 1.40 86-8669 1.12 1.37 1.37 1.87

B6-A0RG 1.00 1.00 1.07 1.35 B6-A0RG 0.98 1.04 1.14 1.13
B6-A0X1 1.41 1.28 1.38 1.44 B6-A0X1 1.42 1.34 1.48 1.66
BR-8285 1.94 1.64 1.46 1.52 BR-8285 2.51 2.19 2.17 2.72
BR-8296 0.97 1.12 0.95 1.29 BR-8296 1.10 1.30 1.18 1.59
BR-8361 1.00 1.03 1.06 1.11 BR-8361 1.04 1.15 1.15 1.24
BR-8682 1.09 1.08 1.07 1.22 BR-8682 1.18 1.15 1.23 1.42

FA-8693 0.95 1.12 0.89 1.28 FA-8693 1.30 1.38 1.29 1.84

86-8668 1.15 1.20 1.29 1.31 86-8668 113% 104% 102%
86-8669 1.24 1.23 1.36 1.34 86-8669 120% 107% 107%

B6-A0RG 0.98 1.04 1.06 0.84 B6-A0RG 105% 105% 109%
B6-A0X1 1.00 1.04 1.08 1.15 B6-A0X1 98% 98% 95%
BR-8285 1.30 1.34 1.49 1.79 BR-8285 100% 90% 80%
BR-8296 1.14 1.16 1.24 1.23 BR-8296 96% 91% 85%
BR-8361 1.04 1.11 1.08 1.11 BR-8361 102% 94% 90%
BR-8682 1.09 1.07 1.15 1.17 BR-8682 100% 100% 97%

FA-8693 1.37 1.23 1.46 1.43 FA-8693 108% 94% 96%

Image 2 3 4 Image 2 3 4

86-8668 88% 94% 86% 86-8668 117% 116% 116%
86-8669 97% 96% 69% 86-8669 119% 118% 116%

B6-A0RG 105% 98% 81% B6-A0RG 112% 115% 94%
B6-A0X1 107% 100% 93% B6-A0X1 101% 105% 109%
BR-8285 119% 120% 102% BR-8285 104% 104% 111%
BR-8296 83% 92% 64% BR-8296 98% 99% 93%
BR-8361 99% 89% 81% BR-8361 109% 98% 96%
BR-8682 101% 102% 86% BR-8682 98% 106% 104%

FA-8693 92% 101% 71% FA-8693 98% 100% 100%

70

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.4: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 4 GPUs used.

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.5: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 4 GPUs used.

71

ther its performance for larger numbers of workers. Another interesting aspect regarding

balance efficiency is that BRB improved ECB’s performance by 0.84-1.79× even with

25/30 multi-GPU results with worse balance efficiency. As mentioned on Section 5.2.1,

it was expected for BRB to perform worse than ECB regarding balance efficiency, but

improving performance due to background removal. Section 5.2.1 also show how much

fine-grain background can be removed, while Section 6.3 shows experimental results re-

garding background removal and its impacts.

The images BR-8682 and B6-A0X1 were chosen as they represent the two main classes

of images, dense and sparse, respectively, with their results shown in Figures 6.4 and 6.5.

For image BR-8682 the speedups of BRB compared to ECB are greater than the ones

for B6-A0X1. This is due to the amount of fine-grain background which can be removed.

The first dense image have almost no coarse-grain background to be removed while also

having a significant amount of background which can be easily removed by BRB. This

difference allowed BRB to outperform ECB. For B6-A0X1, most of the background which

could be removed is coarse-grain, bringing ECB closer to BRB. The speedups however

increase with the number of GPUs, and thus partitions generated, allowing for more fine-

grain background removal for BRB. Finally, the impacts of balance efficiency on speedups

are more visible for these images. As shown in Figures 6.4a and 6.4b, as KDT balance

efficiency drops, ECB and BRB speedups grow.

6.1.3 Cooperative CPU/GPU Execution

This section evaluates the benefits of cooperative execution on RT. As previously dis-

cussed, our platform can use multiple devices by partitioning the input image into disjoint

tiles that are dispatched for processing in available processors. This partitioning is pa-

rameterized by the expected acceleration of the GPU as compared to the CPU to create

partitions with size/cost that are proportional to their computing power. The speedup

values of a GPU vs. CPU multi-core are presented in Table 6.3. For all cases and algo-

rithms 4 partitions were generated per device (GPU or CPU) and an acceleration value

of 1.6 was used for hybrid partitioning.

Table 6.3 presents the speedup of the hybrid execution as compared to CPU-only

execution. BRB attained the best gains for using hybrid execution for 7/10 images.

On some cases, the attained hybrid vs. CPU-only performance was significantly better

than the expected theoretical. For instance, image 86-8669 expected speedup for hybrid

execution should be 2.48× (1.48+1(CPU)). These cases, more common for BRB, can

be explained by more background removal and improved load imbalance due to more

partitions being generated. Nevertheless, all algorithms performed well, with the worst

72

Table 6.3: Speedups of the GPU-only and hybrid CPU-GPU execution vs. CPU-only
(48 cores) on a single node. A single V100 GPU was used for the GPU-only and Hybrid
cases.

GPU-only
vs. CPU

Hybrid

vs. CPU

FA-8693 1.58 2.33 2.26 2.62
 LL-A8F5 1.55 2.43 2.48 2.28

hybrid execution efficiency (hybrid_speedup/(1+cpu_only_speedup)) around 84% and

median of 96%.

When scaling the number of GPUs used (all results on the tables of Figure 6.6), both

CAPD algorithms significantly outperformed KDT, with min/average/max speedups of

0.88/1.11/1.55× and 1.02/1.39/2.37× for ECB and BRB respectively. These gains are

lower than the ones with GPU-only execution since there is a new source of error to

the partitioning process related to using hybrid resources. This is also shown with lower

balance efficiency values for all algorithm when compared with GPU-only execution, with

BRB being the most affected. This still did not resulted into KDT outperforming BRB

given the latter execution cost reduction due to background removal and yet reasonable

workload balance efficiency. At last, when comparing balance efficiencies of KDT and ECB

the only cases on which speedups are not proportional to balance efficiency are for image

BR-8285. Since this image is sparse, the gains can be attributed mostly to background

removal. It is also worth noting that, as expected, all makespan values for hybrid execution

are better than their GPU-only counterparts, for all images and algorithms.

The results for hybrid execution of images BR-8682 and B6-A0X1 (see Figures 6.7

and 6.8) are similar to the ones for GPU-only execution, with slight worse balance and

scaling efficiencies due to the use of hybrid partitioning.

Image

86-8668 1.51
KDT
2.40

ECB
2.49

BRB
2,50

86-8669 1.48 2.42 2.44 3.06
B6-A0RG 1.42 2.48 2.31 1.88
B6-A0X1 1.54 2.44 2.40 2.48
BR-8285 1.41 2.93 2.01 2.03
BR-8296 1.52 2.42 2.32 2.73
BR-8361 1.58 2.48 2.43 2.64

BR-8682 1.63 2.55 2.54 2.71

73

Figure 6.6: Full data for hybrid execution experiments on a single CPU-GPU compute
node. For each image, the values are related to the number of compute GPU devices
used, from 1-4 GPUs.

 Speedups for ECB vs. KDT Speedups for BRB vs. KDT

Image 1 2 3 4 Image 1 2 3 4

 LL-A8F5 1.05 1.06 1.09 1.15 LL-A8F5 1.03 1.06 1.05 1.08

 Speedups for BRB vs. ECB Scaling Efficiency for ECB

Image 1 2 3 4 Image 2 3 4

 LL-A8F5 0.98 1.00 0.96 0.94 LL-A8F5 80% 73% 69%

 Scaling Efficiency for KDT Scaling Efficiency for BRB

Image 2 3 4 Image 2 3 4

 LL-A8F5 80% 70% 63% LL-A8F5 82% 72% 66%

 Balance Efficiency for ECB Balance Efficiency for KDT

 Image 2 3 4 Image 2 3 4

86-8668
86-8669

85% 93% 90%
99% 91% 89%

86-8668
86-8669

97%
93%

90%
88%

81%
79%

B6-A0RG 85% 88% 93% B6-A0RG 92% 89% 80%
B6-A0X1 82% 98% 91% B6-A0X1 81% 97% 77%
BR-8285 84% 94% 76% BR-8285 99% 91% 91%
BR-8296 83% 97% 95% BR-8296 83% 88% 79%
BR-8361 97% 90% 89% BR-8361 83% 87% 86%
BR-8682 99% 87% 92% BR-8682 81% 97% 86%

FA-8693 100% 89% 90% FA-8693 79% 85% 66%

 LL-A8F5 99% 88% 90% LL-A8F5 84% 88% 87%

 Balance Efficiency for BRB

Image 2 3 4
86-8668 85% 82% 87%
86-8669 82% 83% 88%

B6-A0RG 83% 85% 95%
B6-A0X1 97% 93% 94%
BR-8285 96% 87% 84%
BR-8296 91% 93% 85%
BR-8361 85% 90% 90%
BR-8682 83% 87% 81%

FA-8693 85% 87% 88%

 LL-A8F5 82% 86% 91%

86-8668 1.03 1.13 1.01 1.05 86-8668 1.17 1.24 1.28 1.49
86-8669 0.94 1.07 0.99 1.13 86-8669 1.31 1.41 1.26 1.57

B6-A0RG 0.95 1.11 1.15 1.06 B6-A0RG 1.08 1.28 1.32 1.24
B6-A0X1 1.27 1.33 1.33 1.55 B6-A0X1 1.32 1.42 1.49 1.69
BR-8285 1.35 1.40 1.40 1.44 BR-8285 2.01 2.13 2.20 2.37
BR-8296 0.97 1.00 0.89 1.12 BR-8296 1.26 1.23 1.25 1.41
BR-8361 0.99 1.02 1.01 1.07 BR-8361 1.11 1.15 1.15 1.27
BR-8682 1.03 1.09 1.04 1.12 BR-8682 1.17 1.30 1.29 1.21

FA-8693 0.94 1.01 1.04 1.16 FA-8693 1.49 1.62 1.54 1.76

86-8668 1.13 1.10 1.27 1.42 86-8668 84% 71% 66%
86-8669 1.39 1.32 1.27 1.39 86-8669 84% 78% 68%

B6-A0RG 1.14 1.15 1.15 1.17 B6-A0RG 84% 78% 71%
B6-A0X1 1.04 1.07 1.12 1.09 B6-A0X1 78% 71% 69%
BR-8285 1.49 1.52 1.58 1.65 BR-8285 77% 70% 60%
BR-8296 1.30 1.23 1.41 1.26 BR-8296 76% 65% 60%
BR-8361 1.11 1.12 1.13 1.18 BR-8361 78% 70% 64%
BR-8682 1.13 1.19 1.25 1.08 BR-8682 80% 73% 69%

FA-8693 1.59 1.61 1.48 1.52 FA-8693 83% 79% 72%

86-8668 77% 73% 65% 86-8668 81% 79% 83%
86-8669 73% 73% 57% 86-8669 79% 71% 68%

B6-A0RG 72% 64% 64% B6-A0RG 86% 79% 74%
B6-A0X1 74% 67% 56% B6-A0X1 80% 76% 72%
BR-8285 74% 67% 57% BR-8285 78% 74% 67%
BR-8296 73% 70% 52% BR-8296 72% 70% 58%
BR-8361 76% 68% 59% BR-8361 79% 71% 68%
BR-8682 76% 73% 63% BR-8682 84% 81% 66%

FA-8693 76% 71% 58% FA-8693 83% 74% 69%

74

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.7: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 4 GPUs used for hybrid execution.

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.8: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 4 GPUs used for hybrid execution.

75

6.2 Distributed Memory Execution

This section evaluates the system in for distributed memory execution using up to 32

CPU-only compute nodes, for a total of 896 CPU-cores. Similarly to the previous sections,

the images were processed while using different partitioning algorithms and a ghost zone

of 100 pixels and 4 partitions per node for all tested algorithms. The performance of

the application with different strategies and images is presented in full on the tables of

Figure 6.11. As shown, both CADP algorithms once again performed better than the

baseline algorithm in most of the cases, with BRB improving on the performance of both

ECB and KDT. Overall, ECB was faster than KDT on 49 out of 60 test points (10 images

and 6 distributed settings), with speedups in the range of 0.9× to 2.4×. BRB managed

even better, with speedups between 1.02× and 4.5× when compared to KDT, and 0.91×

and 3.03× when comparing to ECB.

Similarly with the previous subsections, a couple of selected WSIs are emphasized

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.9: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases of low background
images while B6-A0X1 represents sparse images.

76

(a) Results for dense image BR-8682.

(b) Results for sparse image B6-A0X1.

Figure 6.10: Application makespan of images BR-8682 and B6-A0X1 with related scaling
efficiency for 1 to 32 nodes used. Image BR-8682 represents the cases of low background
images while B6-A0X1 represents sparse images.

here to better understand some of the performance results. On the first type of chart of

Figures 6.9a and 6.9b it is visible that ECB was significantly better than KDT, with BRB

improving on both for every number of used nodes. Regarding scaling efficiency, every

algorithm scaled relatively well up to 16 nodes, with lower values at 32 nodes. The case

of BRB is a bit different with over 100% efficiency at some cases. This is due to the fact

that more nodes means more partitions are generated. With larger numbers of partitions

BRB is able to remove ever more background, reducing the overall execution cost to the

extent of showing these scaling efficiency values. For KDT, there is one outlier for image

BR-8285, which manages to achieve scaling efficiencies of over 100%. This particular

case can be explained by the irregular nature of IWPP applications. For this image,

the overall cost of executing the 4 partitions with a single node was particularly high

(higher number of propagation iterations), resulting in skewed values. Another aspect to

observe on the balance efficiency results of Figure 6.11 is that on most cases (36/50) ECB

had better results, as discussed before on Section 5.2.1. However, the trade-off of larger

77

Figure 6.11: Full data for distributed execution experiments on CPU-only compute nodes.
For each image, the values are related to the number of compute nodes used, from 1-32
nodes.

 Speedups for ECB vs. KDT Speedups for BRB vs. KDT

Image 1 2 4 8 16 32 Image 1 2 4 8 16 32

 LL-A8F5 1.03 1.12 1.10 1.22 1.26 1.30 LL-A8F5 1.09 1.23 1.31 1.44 1.16 1.28

 Speedups for BRB vs. ECB Scaling Efficiency for ECB

Image 1 2 4 8 16 32 Image 2 4 8 16 32

 LL-A8F5 1.06 1.10 1.18 1.19 0.92 0.98 LL-A8F5 99% 96% 95% 85% 72%

 Scaling Efficiency for KDT Scaling Efficiency for BRB

 Image 2 4 8 16 32

86-8668 89% 94% 75% 63% 69%

 Image 2 4 8 16 32

86-8668 111% 108% 121% 104% 100%

 LL-A8F5 91% 89% 80% 69% 57% LL-A8F5 103% 107% 106% 74% 67%

 Balance Efficiency for ECB Balance Efficiency for KDT

Image 2 4 8 16 32 Image 2 4 8 16 32

 LL-A8F5 99% 91% 93% 90% 88% LL-A8F5 89% 88% 81% 74% 65%

 Balance Efficiency for BRB

Image 2 4 8 16 32
86-8668 98% 87% 91% 90% 61%
86-8669 99% 92% 91% 77% 70%

B6-A0RG 100% 99% 96% 90% 81%
B6-A0X1 98% 94% 94% 93% 73%
BR-8285 95% 88% 92% 93% 91%
BR-8296 92% 87% 85% 92% 84%
BR-8361 91% 91% 94% 70% 71%
BR-8682 97% 91% 89% 89% 89%

FA-8693 97% 94% 83% 83% 91%

 LL-A8F5 97% 94% 94% 94% 92%

86-8668 0.99 1.17 1.08 1.26 1.24 0.94 86-8668 1.12 1.39 1.29 1.80 1.84 1.62
86-8669 0.93 1.02 1.28 1.67 0.97 2.43 86-8669 1.03 1.31 1.82 2.31 1.58 4.52

B6-A0RG 1.02 1.03 1.26 1.50 1.72 1.19 B6-A0RG 1.42 1.90 2.33 2.74 2.96 1.68
B6-A0X1 1.29 1.26 1.41 1.42 1.57 2.21 B6-A0X1 1.30 1.34 1.50 1.63 1.84 3.00
BR-8285 1.97 1.86 1.57 1.19 1.62 1.27 BR-8285 2.90 2.89 3.32 2.72 3.69 3.86
BR-8296 1.00 1.18 1.34 0.97 1.08 1.02 BR-8296 1.11 1.27 1.60 1.38 1.78 2.19
BR-8361 1.01 1.03 1.14 0.98 0.98 0.90 BR-8361 1.04 1.05 1.21 1.22 1.37 1.30
BR-8682 1.04 1.06 1.25 1.01 1.26 1.43 BR-8682 1.09 1.17 1.47 1.21 1.63 2.19

FA-8693 0.96 1.16 1.30 1.53 0.98 0.98 FA-8693 1.32 1.45 1.72 2.26 1.52 1.66

86-8668 1.13 1.19 1.19 1.43 1.48 1.73 86-8668 105% 102% 95% 79% 65%
86-8669 1.10 1.29 1.43 1.38 1.63 1.86 86-8669 101% 97% 101% 75% 54%

B6-A0RG 1.39 1.85 1.84 1.82 1.72 1.41 B6-A0RG 97% 97% 98% 91% 63%
B6-A0X1 1.00 1.06 1.06 1.14 1.18 1.36 B6-A0X1 97% 100% 96% 88% 54%
BR-8285 1.48 1.56 2.11 2.29 2.27 3.04 BR-8285 102% 83% 75% 54% 38%
BR-8296 1.10 1.08 1.19 1.42 1.65 2.14 BR-8296 99% 89% 74% 61% 42%
BR-8361 1.02 1.02 1.06 1.24 1.40 1.44 BR-8361 100% 96% 89% 69% 44%
BR-8682 1.06 1.11 1.18 1.19 1.29 1.53 BR-8682 99% 100% 99% 92% 54%

FA-8693 1.36 1.25 1.33 1.48 1.56 1.69 FA-8693 108% 99% 93% 80% 61%

86-8669 92% 71% 56% 72% 21% 86-8669 118% 126% 126% 110% 91%
B6-A0RG 97% 79% 67% 54% 54% B6-A0RG 129% 129% 128% 112% 64%
B6-A0X1 99% 91% 87% 73% 32% B6-A0X1 102% 106% 109% 104% 74%
BR-8285 108% 103% 124% 65% 59% BR-8285 108% 118% 116% 83% 79%
BR-8296 85% 67% 76% 57% 41% BR-8296 97% 96% 95% 92% 82%
BR-8361 98% 85% 92% 72% 49% BR-8361 100% 100% 108% 95% 62%
BR-8682 97% 83% 102% 76% 39% BR-8682 104% 111% 112% 112% 78%

FA-8693 90% 74% 59% 79% 60% FA-8693 99% 96% 101% 92% 75%

86-8668 99% 92% 90% 88% 72% 86-8668 86% 89% 69% 61% 68%
86-8669 95% 93% 89% 78% 72% 86-8669 89% 67% 52% 57% 44%

B6-A0RG 94% 92% 94% 92% 94% B6-A0RG 94% 77% 65% 55% 58%
B6-A0X1 97% 99% 97% 95% 91% B6-A0X1 100% 90% 87% 75% 73%
BR-8285 96% 89% 94% 85% 84% BR-8285 83% 80% 75% 52% 42%
BR-8296 100% 96% 92% 93% 85% BR-8296 85% 68% 74% 58% 48%
BR-8361 99% 98% 95% 86% 82% BR-8361 97% 85% 87% 77% 60%
BR-8682 97% 97% 96% 95% 94% BR-8682 94% 79% 89% 77% 59%

FA-8693 97% 96% 92% 86% 71% FA-8693 85% 69% 55% 69% 58%

78

(a) Partitioning with BRB. (b) Partitioning with ECB. (c) Partitioning with KDT.

Figure 6.12: Partitioning results for image BR-8682. 32 partitions were generated for the
execution with 8 nodes.

amount of fine-grain background removed versus lower balance efficiency still proved to

be advantageous to BRB.

On the second type of chart, on Figures 6.10a and 6.10b it becomes easier to see why

both ECB and BRB outperform the baseline KDT algorithm. As seen, partitioning with

KDT results in less balanced partitions, which in turn hurts the balance efficiency. It is

interesting to see that when KDT manages to improve its balance efficiency, its relative

performance is also improved, as seen on Figure 6.10a on which ECB and BRB speedups

against KDT drop, and on Figure 6.9a with a spike of scaling efficiency.

It is also important to highlight that KDT is naturally prone to perform worse since

it is usually executing a larger region of the whole WSI. Figures 6.12 and 6.13 show the

partitioning results for the execution of 8 nodes, on which 32 partitions were generated.

For Figure 6.12 it is seen that only BRB manages to significantly reduce the amount of

background available, resulting in the higher disparity of speedups of BRB and ECB on

Figure 6.10a. As such, together with the results of Figure 6.9a, points to the conclusion

of how good ECB is at balancing the generated partitions. The partitions of Figure 6.13

show a major limitation of KDT: not being able to work with an arbitrary number of

initial dense regions. These scenarios present the best outcomes for both ECB and BRB,

which speedups against KDT are generally greater and closer to each other, as seen on

Figure 6.10b. As expected, BRB manager to improve significantly on ECB due to its

hierarchical partitioning, generating more square-shaped partitions and removing more

(a) Partitioning with BRB. (b) Partitioning with ECB. (c) Partitioning with KDT.

Figure 6.13: Partitioning results for image B6-A0X1. 32 partitions were generated for the
execution with 8 nodes.

79

(a) Workload distribution for image BR-8682 on 16 CPU nodes.

(b) Workload distribution for image B6-A0X1 on 16 CPU nodes.

Figure 6.14: Workers workload for 16 CPU nodes configuration with BRB, ECB and
KDT respectively, images BR-8682 and B6-A0X1. Execution times are sorted for better
visualization.

background with minor impact on the balance efficiency.

Finally, Figure 6.14 shows the workload distribution for 16 compute nodes with the

BR-8682 and B6-A0X1 images, better illustrating the actual impact of the CADP ap-

proach on workload imbalance. It is important to notice that although BRB seems to

outperform ECB regarding balance efficiency this is not the case (95% vs. 89% on BR-

8682, and 95% vs. 93% on B6-A0X1 for ECB and BRB respectively). It is also noteworthy

that at least 8 CPU-only nodes are required to outperform the use of a single GPU node

on hybrid execution with 4 GPUs.

6.2.1 Execution Time of the Partitioning Algorithms

Naturally, The input partitioning process has an execution cost which offsets its makespan

gains. As such, there is a tradeoff of generating good partitions and how much time is

required to generate these partitions should be observed. As shown in the tables of Fig-

ure 6.15, KDT achieves the best partitioning times given its simplicity. For the CADP

algorithms, ECB is significantly more computationally expensive than BRB. Although

ECB and BRB have equivalent algorithmic complexity, when executing the BTS section

of the algorithm BRB is should find the expected cost partition earlier on the binary-

search process. For instance, in order to find the first partition out of 32 on a perfectly

80

Figure 6.15: Execution times in seconds for the partitioning algorithms on CPU-only
compute nodes. For each image, the values are related to the number of compute nodes
used, from 1-32 nodes.

 Partitioning times for ECB Partitioning times for BRB

 Image 1 2 4 8 16 32 Image 1 2 4 8 16 32

86-8668
86-8669

1.13
1.45

1.97
2.29

3.26
4.03

6.60
7.74

12.29 22.91
14.45 27.61

86-8668
86-8669

1.89
2.41

2.54
3.07

3.11
3.84

3.82
4.65

4.76
5.60

5.63
6.75

B6-A0RG 0.66 1.10 1.96 3.80 6.42 12.36 B6-A0RG 0.90 1.35 1.10 2.03 2.37 2.79
B6-A0X1 0.61 0.83 1.30 2.10 3.40 6.86 B6-A0X1 0.92 1.34 1.76 2.19 2.76 3.30
BR-8285 0.54 0.74 1.16 2.01 3.52 6.86 BR-8285 0.82 0.98 1.11 1.28 1.45 1.59
BR-8296 1.29 1.89 3.25 6.03 11.45 20.77 BR-8296 2.07 2.73 3.36 4.16 5.12 5.98
BR-8361 1.01 1.74 3.14 5.84 10.57 20.36 BR-8361 1.93 2.42 3.04 3.77 4.68 5.68
BR-8682 1.45 2.14 3.88 7.46 14.68 28.58 BR-8682 2.28 2.92 3.65 4.52 5.47 6.68

FA-8693 1.34 2.26 4.17 7.35 14.58 26.69 FA-8693 2.12 2.70 3.38 4.22 5.18 6.07

 LL-A8F5 1.64 2.48 4.61 9.12 17.65 34.28 LL-A8F5 2.45 3.31 4.19 5.05 6.46 7.42

 Partitioning times for KDT

 Image 1 2 4 8 16 32
86-8668 0.38 0.47 0.53 0.63 0.73 0.86
86-8669 0.52 0.59 0.67 0.77 0.88 1.04

B6-A0RG 0.26 0.30 0.36 0.41 0.47 0.52
B6-A0X1 0.33 0.37 0.44 0.48 0.55 0.60
BR-8285 0.25 0.29 0.39 0.38 0.42 0.47
BR-8296 0.51 0.52 0.65 0.68 0.78 0.86
BR-8361 0.39 0.45 0.51 0.56 0.65 0.73
BR-8682 0.48 0.54 0.61 0.69 0.81 1.00
FA-8693 0.51 0.57 0.67 0.75 0.97 1.03

 LL-A8F5 0.54 0.64 0.74 0.84 0.97 1.13

homogeneous image, ECB should require at least 5 cuts (log(32)) while BRB could per-

form a single cut due to its decomposition of 32 into 2 × 2 × 2 × 2 × 2 and its hierarchical

partitioning. Finally, although the partitioning costs can be expensive for increasing

numbers of partitions, these algorithms still achieved positive overall makespan speedups.

However, further optimization these algorithms still remains and open problem.

6.3 Impact of Background Removal

It is important to evaluate the speedup impacts of using background removal. This, how-

ever, can mainly be done for ECB, since BRB performs fine-grain background removal

even after the coarse-grain removal. Alternatively, ECB’s background removal/partition-

ing step is fully executed before the actual balanced partitioning algorithm. This section

evaluates this impact.

After running both ECB an BRB without coarse-grain background removal both al-

gorithms worsen their performance. First, the overall speedups of ECB fell from the

max/avg/min values of 2.42/1.24/0.90× to 1.43/1.05/0.61×. For ECB, 38% of all speedups

are below 1×, compared with 18% when using coarse-grain background removal, shown

in the tables of Figure 6.16. When evaluating the balance efficiency, it becomes clear that

its worsening relates to some of the performance losses, as shown in tables of Figure 6.17

with the balance efficiency difference and speedups between/of both versions. One source

81

Figure 6.16: Speedups for ECB vs. KDT. ECB with and without coarse-grain background
removal shown.

 Original Speedups for ECB vs. KDT ECB w/o coarse-grain background removal vs. KDT

Image 1 2 4 8 16 32 Image 1 2 4 8 16 32

 LL-A8F5 1.03 1.12 1.10 1.22 1.26 1.30 LL-A8F5 1.00 1.09 1.15 1.02 1.22 1.32

which explains such worsening of balance efficiency is the quality of the partitioning. As

seen in Figure 6.18 the partitions generated for images B6-A0X1 and BR-8285 (images

with the worst results) by KDT are more reasonable than the ones generated by ECB.

This can be explained by (i) ECB low sensitivity to partitions’ sizes, which influence on

I/O times, and (ii) that ECB generation is not hierarchical, resulting in the long strips

shown in Figures 6.18a and 6.18c.

Further, there are still very few cases on which balance efficiency does not correlate

with improved performance, i.e., KDT manages to outperform ECB even with worse

balance efficiency. As mentioned on Section 5.2, one of the motivations of BRB was to

improve on the quality of the partitions as to generate more square-shaped partitions

(see Figure 6.18c), since the stripe-shaped partitions could increase the overall cost of

processing them due to IWPP. This effect can be seen on Figure 6.19, on which ECB

workers execution times are more balanced, but overall higher than the times of KDT. By

removing the coarse-grain background removal step the losses in performance were such

that improving load balance was not enough for ECB to still attain gains when compared

to KDT.

Figure 6.17: Comparative data of ECB with vs. without coarse-grain background removal.

ECB Balance eff. difference with-w/o background removal Speedup of ECB with vs. w/o background removal

 Image 2 4 8 16 32 Image 1 2 4 8 16 32

86-8668
86-8669

-0.46
4.84

2.29
1.54

-17.73
-17.52

1.31
4.61

6.13
-0.09

86-8668
86-8669

1.01
0.92

1.02
0.92

1.04
0.94

1.39
1.48

0.95
0.95

1.08
0.99

B6-A0RG 3.52 0.76 -23.94 -9.48 -9.99 B6-A0RG 1.04 0.97 1.04 1.63 1.21 0.93
B6-A0X1 2.34 -3.23 -33.05 -7.33 -2.70 B6-A0X1 1.31 1.26 1.29 2.29 1.49 1.18
BR-8285 -8.47 0.76 -8.97 -7.71 -12.91 BR-8285 1.63 1.64 1.34 1.49 1.55 1.47
BR-8296 -0.01 -1.65 -12.01 -4.12 1.47 BR-8296 1.00 1.01 0.97 1.34 0.88 0.79
BR-8361 0.30 -0.22 -24.49 -0.12 0.17 BR-8361 1.00 1.00 1.00 1.50 1.00 0.87
BR-8682 -0.71 -2.14 -20.64 -2.74 -22.02 BR-8682 1.02 1.04 1.04 1.45 1.06 1.05

FA-8693 0.05 -1.32 -27.58 -0.28 8.96 FA-8693 1.00 1.00 1.01 1.61 1.00 1.00

 LL-A8F5 0.04 5.34 -5.93 -0.90 0.47 LL-A8F5 1.03 1.03 1.00 1.27 1.08 1.01

86-8668 0.99 1.17 1.08 1.26 1.24 0.94 86-8668 0.99 1.16 1.03 0.89 1.27 0.83
86-8669 0.93 1.02 1.28 1.67 0.97 2.43 86-8669 1.02 1.10 1.36 1.12 1.01 0.99

B6-A0RG 1.02 1.03 1.26 1.50 1.72 1.19 B6-A0RG 0.98 1.05 1.21 0.91 1.39 1.30
B6-A0X1 1.29 1.26 1.41 1.42 1.57 2.21 B6-A0X1 0.99 0.99 1.09 0.62 1.06 0.84
BR-8285 1.97 1.86 1.57 1.19 1.62 1.27 BR-8285 1.21 1.13 1.18 0.80 0.88 0.86
BR-8296 1.00 1.18 1.34 0.97 1.08 1.02 BR-8296 1.00 1.16 1.39 0.72 1.22 1.43
BR-8361 1.01 1.03 1.14 0.98 0.98 0.90 BR-8361 1.02 1.03 1.14 0.64 0.95 1.06
BR-8682 1.04 1.06 1.25 1.01 1.26 1.43 BR-8682 1.02 1.01 1.19 1.11 1.05 0.87

FA-8693 0.96 1.16 1.30 1.53 0.98 0.98 FA-8693 0.96 1.16 1.29 0.94 0.96 0.95

82

(a) Partitioning of B6-A0X1 with ECB. (b) Partitioning of B6-A0X1 with KDT.

(c) Partitioning of BR-8285 with ECB. (d) Partitioning of BR-8285 with KDT.

Figure 6.18: Partitioning results for images B6-A0X1 and BR-8285 using algorithms ECB
and KDT. 16 partitions were generated for the execution with 4 nodes.

Figure 6.19: Workers workload for 32 CPU nodes configuration with ECB and KDT for
image B6-A0X1. Execution times are sorted for better visualization.

Table 6.4: Speedups of BRB with vs. without coarse-grain background removal.

 Image 1 2 4 8 16 32
86-8668 1.00 1.01 0.99 1.36 0.90 1.05
86-8669 0.95 0.97 0.97 1.04 0.95 1.01

B6-A0RG 1.38 1.84 1.81 1.76 1.46 1.00
B6-A0X1 1.23 1.27 1.33 1.55 1.58 1.12
BR-8285 1.19 1.30 1.45 1.64 0.92 1.15

BR-8296 1.01 1.02 1.01 1.22 0.95 1.09
BR-8361 1.00 0.92 0.96 1.01 0.99 1.00
BR-8682 1.00 1.01 0.99 1.38 1.02 0.90

FA-8693 1.00 1.06 0.91 1.31 0.90 0.98

 LL-A8F5 1.00 1.10 1.09 1.13 0.96 1.20

83

(a) Partitioning of B6-A0X1 using BRB

with coarse-grain background removal.

(b) Partitioning of B6-A0X1 using BRB

without coarse-grain background removal.

Figure 6.20: Partitioning results for image B6-A0X1 using algorithm BRB with and
without coarse-grain background removal. 16 partitions were generated for the execution
with 4 nodes.

At last, BRB performance is only slightly affected by the use of coarse-grain back-

ground removal, as seen on Table 6.4 which shows the speedups of using coarse-grain

background removal, ranging from 0.89-1.84×. Three images showed the highest discrep-

ancy of performance: B6-A0RG, B6-A0X1 and BR-8285, all being sparse images. As seen

on Figure 6.20b, although BRB is able to remove a significant amount of background

for Image B6-A0X1, it was not able to generate partitions which not include the back-

ground between dense regions. This happened due to the number of dense regions being

a multiple of 3 while the number of partitions is a multiple of 2.

6.4 Impact of Inaccurate Cost-Function Estimates

In this section, we evaluate the impact of errors or inaccuracy of the cost estimates pro-

vided to CADP to its performance. To evaluate this effect, we have intentionally inserted

errors to the estimated cost in a systematic manner. Our strategy consisted on defining

an X% error (positive or negative), in which a value between −X and +X (at random)

is added to the calculated value returned by the cost-function. The X% error is then

kept fixed within each experiment, and we varied this percentage and executed multiple

experiments to evaluate the systems performance. The experiments were executed using

16 nodes and ECB partitioning algorithm in order to avoid any performance impacts from

fine-grain background removal.

The performance of the application for CADP normalized by the case in which there

are no errors inserted in the cost-function are shown in Figure 6.21. As may be observed,

the usage of an error skewed cost-function for CADP only slightly impacts its performance

until 15% of inserted error. However, there is a more significant performance degradation

for error in the range of 30%. Higher error rates at the cost-function level may lead

the partitioning algorithms to lose the capacity to distinguish sparse from dense regions,

84

Figure 6.21: Normalized execution time of CADP using an error-prone cost-function
against regular CADP. KD-Tree performance added as a baseline.

required by the CADP. It is worth noting that KDT attained similar performance with

CADP for high added error values, over 30%.

85

Chapter 7

Conclusion

In this work, the use of distributed memory hybrid machines to efficiently execute histopathol-

ogy image analysis applications was studied. A runtime system that enables easy and

efficient application deployment on hybrid computing systems, while achieving high per-

formance and reasonable scalability was proposed. This runtime system enabled the

execution of general workflow implementations for both CPU and GPU using a high-level

DSL as an embedded solution to ease the implementation process for domain experts.

Histopathology image processing applications with irregular execution cost were the

focus of the solution proposed by this work. It was shown that large scale experimentation

using Whole-Slide Tissue Images (WSI) is a compute intensive task, for which High-

Performance Computing (HPC) solutions should be employed. Two main issues arise

from using HPC: (i) the ease of implementing a local analysis algorithm to large scale

distributed and sometimes hybrid compute environments, and (ii) the efficient distribution

of work among such distributed resources.

A straightforward runtime system was implemented, based on the Region Templates

Framework (RT), which allowed the execution of workflows on partitioned WSIs. Also,

this new system had the Halide DSL embedded as a way to ease the implementation

process for such workflows while allowing simple yet efficient implementations for both

CPU and GPU devices with the same code. Finally, many spatial partitioning algorithms

were developed to enable efficient distributed execution of these WSI workflows.

The Cost-Aware Data Partitioning (CADP), the solution used for smart partitioning

of WSIs, is comprised of two main steps. First, the dense regions of the image are

segmented, thus reducing the overall execution cost by not executing the workflow on

background regions. Then, the dense regions are partitioned for distributed execution.

This novel solution took into consideration the expected cost of a data/image partition

when splitting it for parallel processing.

Initially, the Expect-Cost Bisection (ECB) CADP algorithm was developed. While

86

ECB already showed significant gains compared to the KD-Tree (KDT) partitioning al-

gorithm, used as a baseline for comparison, it also showed some limitations. Although

ECB managed to produce load-balanced partitions, as the number of generated parti-

tions increased, the quality of the partitions decreased. These partitions would become

evermore stripe-shaped. Given the use of an Irregular Wavefront Propagation Pattern

algorithm (IWPP) by the motivating application, such stripe-shaped partitions would be

more expensive to execute than more square-shape partitions with the same area. This

behavior was later seen experimentally. Also, a study on further removing background

from the dense regions was done to assess how beneficial could the further removal of

them be. This study on a large set of WSIs showed that at least 16% of background area

could be removed from over half of all evaluated images.

With the limitations of ECB and a new goal of removing background even more a

new CADP algorithm was implemented. The Background Removal Bisection (BRB)

algorithm used a hierarchical partitioning method to avoid generating stripe-shaped par-

titions. Further each generated partition would undergo a fine-grain background removal

step to reduce even further the overall WSI execution cost. Both of these changes re-

sulted in an improved BRB performance when compared to ECB, while also reducing the

partitioning time.

The proposed CADP algorithm were evaluated experimentally on a distributed envi-

ronment of up to 32 CPU-only compute nodes and 4 GPUs on a single hybrid node. At

first, the use of Halide as a DSL for implementing the workflows was evaluated, showing

reasonable scaling efficiency (at least 76% for 28 CPU cores) and slight overall speedups.

These gains can be explained by data access patterns, which naturally arise on Halide

implementations, improving spatial data locality. Regarding the use of CADP, it has

shown significant improvements on the baseline KDT approach. When using the more

sophisticated BRB algorithm, speedups of up to 4.52× were achieved. The GPU-only and

hybrid executions have shown good scaling efficiency and balance efficiency, with the hy-

brid setting showing slight worse performance. Further, CADP was validated for a large

scale execution environment of up to 32 compute nodes, with a total of 896 CPU cores.

Compared to the hybrid execution results, at least 8 compute nodes would be necessary

to outperform a single hybrid node with 4 GPUs. Also, the large scale distributed study

better showed that CADP improved on KDT performance by (i) reducing workload im-

balance and (ii) smartly removing background. Although ECB managed to perform best

regarding balance efficiency, BRB managed to improve upon it by removing even more

background at the cost of some of the balance efficiency. It was also shown that BRB

improved on the problem of stripe-shaped partitions, which was shown to significantly

impact overall workflow performance. At last, it was shown CADP’s robustness to errors

87

added to the cost-function, an important section of the overall solution. CADP was shown

to still attain enough gains, even with an added random error of up to 30% to the cost

estimations.

Given the time complexity of CADP of O(t2 + t n log2(n)), with t as the number

of expected partitions and n as the number of pixels in the input image, attempts were

made to improve its partitioning cost. A caching system on which the full image was

partitioned into fixed-sized tiles was implemented. Each partition generated by CADP

would have its cost as the sum of the cost of tiles inside it. This solution, however, was

not able to improve the CADP performance. In order to return accurate cost values, the

number of tiles would need to be loo large, resulting in a higher cost to aggregate all of

the ones inside a partition. Further, experimentally, the tiles’ cost reuse rate was low.

As such, on this trade-off space between less tiles/quicker partitioning/worse quality and

more tiles/slower partitioning/better quality, a point on which CADP performance was

improved and its partitioning quality was still acceptable was not found.

Finally, there was an attempt at finding an improved cost-function. Since the cost-

function is executed multiple times throughout the CADP execution, it cannot be an

expensive function. Thus, the LightGBM framework was used to generate regression

models. As input, a set of over 20,000 partitions of different sizes were generated from 10

WSIs. Well known morphological features were used for training, such as: total area, dense

area, solidity, relative centroid, sum of perimeters, circularity, euler number, convexity,

and convex hull perimeter and area. Some feature selection algorithms were used, such as:

boruta, recursive feature elimination and addition. Also, a leave-one-image-out scheme

was used, as a regular train-test-validation data splitting. Finally, the input partitions

were balanced according to their sizes and execution costs. However, the best model

generated was still not able to outperform the simple threshold cost-function already in

use.

With the above considerations, there are still more directions to explore from the

current state of this work. The cost of partitioning, although having the CADP somewhat

optimized, was not fully addressed. Since the more complex task of performing cost-

function calls reuse though the combination of other calls did not perform well, perhaps

the calls themselves can be optimized. Currently, the cost-function is implemented on

Halide, and thus is executed in parallel using all CPU cores. It could then be moved to

the GPU for even better execution times. However, a study on the overheads of running

just the cost-function on a GPU should be done. The whole partitioning algorithm can also

be moved to the GPU, which could solve some of these overheads. A new implementation

a more parallel version of CADP can also be pursued, on which more than one partition

is generated at a time.

88

It is believed that the main reason that the regression models for calculating the cost-

function failed was that the chosen morphological features were not representative enough.

In theory, the regular computing section of the workflow could be estimated relatively well

since it only depends on the sizes of the inputs. This is not so simple for the irregular

computing section, the IWPP. Although some correlation to the ratio of height/width

exists (shown experimentally on Section 6.3), accurate cost estimation is still an open

problem. Given the inefficacy of more classical morphological features, using generative

deep learning solutions. Though them, a new set of non-trivial features that better relate

to the execution times could be found. However, by using such neural networks there is

the issue of input sizes, for which are fixed. Thus, a generative method would require a

solution for managing the execution of irregular sized partitions.

At last, this work was developed with irregular cost applications as the main motivat-

ing domain. More specifically, applications which use classical image processing workflows.

Although there are plenty of different applications with these features, a study on whether

other applications could benefit from the solutions presented on this work should be done.

For instance, among the many applications of histopathology, Content-Based Image Re-

trieval (CBIR) is a great candidate for such. CBIR applications may query partitions of

different sizes, thus adding a cost-awareness aspect to be observed. Another more present

class of applications on histopathology regards machine learning and deep and/or convo-

lutions neural networks. Although the computing patterns of such applications are more

regular, a study on the possible gains of using the solutions here proposed would also be

interesting.

89

References

[1]R. Duncan, “A survey of parallel computer architectures,” Computer, vol. 23, no. 2,

pp. 5–16, 1990. xix, 7, 8, 9

[2]NVIDIA, “Cuda refresher: The cuda programming model,” 2021. xix, 13

[3]P. Thoman, K. Dichev, T. Heller, R. Iakymchuk, X. Aguilar, K. Hasanov,
P. Gschwandtner, P. Lemarinier, S. Markidis, H. Jordan, et al., “A taxonomy of

task-based parallel programming technologies for high-performance computing,”
The Journal of Supercomputing, vol. 74, no. 4, pp. 1422–1434, 2018. xxiii, 34

[4]M. Peikari, S. Salama, S. Nofech-Mozes, and A. L. Martel, “A cluster-then-label
semi-supervised learning approach for pathology image classification,” Scientific

reports, vol. 8, no. 1, pp. 1–13, 2018. 1

[5]L. A. Cooper, D. A. Gutman, C. Chisolm, C. Appin, J. Kong, Y. Rong, T. Kurc,
E. G. V. Meir, J. H. Saltz, C. S. Moreno, and D. J. Brat, “The Tumor Microenvi-
ronment Strongly Impacts Master Transcriptional Regulators and Gene Expression
Class of Glioblastoma,” The American Journal of Pathology, vol. 180, no. 5, pp. 2108

– 2119, 2012. 1, 27, 28

[6]M. Graziani, I. Eggel, F. Deligand, M. Bobák, V. Andrearczyk, and H. Mueller,
“Breast histopathology with high-performance computing and deep learning.,”
Comput. Informatics, vol. 39, no. 4, pp. 780–807, 2020. 1, 2, 25, 26, 35

[7]J. Kong, L. A. D. Cooper, F. Wang, J. Gao, G. Teodoro, T. Mikkelsen, M. J.
Schniederjan, C. S. Moreno, J. H. Saltz, and D. J. Brat, “Machine-Based Mor-
phologic Analysis of Glioblastoma Using Whole-Slide Pathology Images Uncovers
Clinically Relevant Molecular Correlates,” PLoS ONE, 2013. 1, 2, 4, 26, 27, 28

[8]K.-H. Yu, C. Zhang, G. J. Berry, R. B. Altman, C. Ré, D. L. Rubin, and M. Snyder,
“Predicting non-small cell lung cancer prognosis by fully automated microscopic
pathology image features,” Nature communications, vol. 7, pp. 12474; 12474–12474,
08 2016. 2

[9]G. Teodoro, T. M. Kurç, L. F. R. Taveira, A. C. M. A. Melo, and Y. Gao, “Algorithm
sensitivity analysis and parameter tuning for tissue image segmentation pipelines,”
Bioinform., vol. 33, no. 7, pp. 1064–1072, 2017. 2, 4, 27

90

[10]J. Gomes, W. Barreiros Jr, T. Kurc, A. C. Melo, J. Kong, J. H. Saltz, and
G. Teodoro, “Sensitivity analysis in digital pathology: Handling large number of pa-
rameters with compute expensive workflows,” Computers in biology and medicine,
vol. 108, pp. 371–381, 2019. 2, 5

[11]X. Guo, F. Wang, G. Teodoro, A. B. Farris, and J. Kong, “Liver steatosis segmen-
tation with deep learning methods,” in 2019 IEEE 16th International Symposium

on Biomedical Imaging (ISBI 2019), pp. 24–27, IEEE, 2019. 2

[12]D. Tiwari, S. Gupta, J. Rogers, D. Maxwell, P. Rech, S. Vazhkudai, D. Oliveira,
D. Londo, N. DeBardeleben, P. Navaux, et al., “Understanding gpu errors on large-
scale hpc systems and the implications for system design and operation,” in 2015

IEEE 21st International Symposium on High Performance Computer Architecture

(HPCA), pp. 331–342, IEEE, 2015. 2

[13]Z. Li, X. Zhang, H. Müller, and S. Zhang, “Large-scale retrieval for medical image
analytics: A comprehensive review,” Medical image analysis, vol. 43, pp. 66–84,
2018. 2, 25, 26

[14]S. Dash, B. Hernández, A. Tsaris, F. T. Alamudun, H.-J. Yoon, and F. Wang, “A
scalable pipeline for gigapixel whole slide imaging analysis on leadership class hpc
systems,” in 2022 IEEE International Parallel and Distributed Processing Sympo-

sium Workshops (IPDPSW), pp. 1266–1274, IEEE, 2022. 2, 26, 35

[15]A. Chowdhury, H. Kassem, N. Padoy, R. Umeton, and A. Karargyris, “A review of
medical federated learning: Applications in oncology and cancer research,” in Brain-

lesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th Inter-

national Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Vir-

tual Event, September 27, 2021, Revised Selected Papers, Part I, pp. 3–24, Springer,
2022. 2, 26

[16]S. Mitra, N. Das, S. Dey, S. Chakraborty, M. Nasipuri, and M. K. Naskar, “Cytol-
ogy image analysis techniques toward automation: systematically revisited,” ACM

Computing Surveys (CSUR), vol. 54, no. 3, pp. 1–41, 2021. 2, 26

[17]C. Li, X. Li, X. Li, M. M. Rahaman, X. Li, J. Wu, Y. Yao, and M. Grzegorzek, “A
state-of-the-art survey of artificial neural networks for whole-slide image analysis:
from popular convolutional neural networks to potential visual transformers,” arXiv

preprint arXiv:2104.06243, 2021. 2, 26

[18]M. J. Berger and S. H. Bokhari, “A partitioning strategy for nonuniform problems
on multiprocessors,” IEEE Transactions on Computers, vol. 36, no. 05, pp. 570–580,
1987. 4, 29, 30, 31

[19]H. Samet, Foundations of multidimensional and metric data structures. Morgan

Kaufmann, 2006. 4, 29, 30

[20]J. Gomes, J. Kong, T. Kurc, A. C. Melo, R. Ferreira, J. H. Saltz, and G. Teodoro,
“Building robust pathology image analyses with uncertainty quantification,” Com-

puter Methods and Programs in Biomedicine, p. 106291, 2021. 4, 26, 27

91

[21]G. Teodoro, T. M. Kurc, T. Pan, L. A. Cooper, J. Kong, P. Widener, and J. H. Saltz,
“Accelerating large scale image analyses on parallel, cpu-gpu equipped systems,”
in 2012 IEEE 26th International Parallel and Distributed Processing Symposium,
pp. 1093–1104, IEEE, 2012. 4, 26, 27

[22]G. Teodoro, T. Pan, T. M. Kurc, J. Kong, L. A. Cooper, N. Podhorszki, S. Klasky,
and J. H. Saltz, “High-throughput analysis of large microscopy image datasets on
CPU-GPU cluster platforms,” in 2013 IEEE 27th International Symposium on Par-

allel and Distributed Processing, pp. 103–114, IEEE, 2013. 4, 26, 27, 67, 68

[23]W. Barreiros, G. Teodoro, T. Kurc, J. Kong, A. C. Melo, and J. Saltz, “Parallel
and efficient sensitivity analysis of microscopy image segmentation workflows in
hybrid systems,” in 2017 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 25–35, IEEE, 2017. 4, 26, 27

[24]W. Barreiros Jr, J. Moreira, T. Kurc, J. Kong, A. C. Melo, J. H. Saltz, and
G. Teodoro, “Optimizing parameter sensitivity analysis of large-scale microscopy
image analysis workflows with multilevel computation reuse,” Concurrency and

Computation: Practice and Experience, vol. 32, no. 2, p. e5403, 2020. 4, 5, 26

[25]W. Barreiros Jr, A. C. Melo, J. Kong, R. Ferreira, T. M. Kurc, J. H. Saltz, and
G. Teodoro, “Efficient microscopy image analysis on cpu-gpu systems with cost-
aware irregular data partitioning,” Journal of Parallel and Distributed Computing,
vol. 164, pp. 40–54, 2022. 5, 26, 27

[26]M. J. Flynn, “Very high-speed computing systems,” Proceedings of the IEEE, vol. 54,

no. 12, pp. 1901–1909, 1966. 7

[27]S. K. Raman, V. Pentkovski, and J. Keshava, “Implementing streaming simd ex-
tensions on the pentium iii processor,” IEEE micro, vol. 20, no. 4, pp. 47–57, 2000.
8

[28]C. Lomont, “Introduction to intel advanced vector extensions,” Intel white paper,

vol. 23, 2011. 8

[29]N. Wilt, The cuda handbook: A comprehensive guide to gpu programming. Pearson

Education, 2013. 8, 14, 20

[30]A. Krikelis and C. C. Weems, “Associative processing and processors,” Computer,

vol. 27, no. 11, pp. 12–17, 1994. 8

[31]M. C. Herbordt, Y. Gu, T. VanCourt, J. Model, B. Sukhwani, and M. Chiu, “Com-
puting models for fpga-based accelerators,” Computing in science & engineering,
vol. 10, no. 6, pp. 35–45, 2008. 8

[32]K. Sano, C. Takagi, R. Egawa, K.-i. Suzuki, and T. Nakamura, “A systolic memory
architecture for fast codebook design based on mmpdcl algorithm,” in International

Conference on Information Technology: Coding and Computing, 2004. Proceedings.

ITCC 2004., vol. 1, pp. 572–578, IEEE, 2004. 8

92

[33]Z. Yan and D. V. Sarwate, “New systolic architectures for inversion and division in
gf (2/sup m/),” IEEE Transactions on Computers, vol. 52, no. 11, pp. 1514–1519,

2003. 8

[34]Srini, “An architectural comparison of dataflow systems,” Computer, vol. 19, no. 3,

pp. 68–88, 1986. 10

[35]P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, “Data-driven and demand-
driven computer architecture,” ACM Computing Surveys (CSUR), vol. 14, no. 1,
pp. 93–143, 1982. 10

[36]S.-Y. Kung, S.-C. Lo, S.-N. Jean, and J.-N. Hwang, “Wavefront array processors-
concept to implementation,” Computer, vol. 20, no. 07, pp. 18–33, 1987. 10

[37]T. Blank and J. R. Nickolls, “A grimm collection of mimd fairy tales,” in The Fourth

Symposium on the Frontiers of Massively Parallel Computation, pp. 448–449, IEEE
Computer Society, 1992. 10

[38]F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-program-
multiple-data computational model for epex/fortran,” Parallel Computing, vol. 7,
no. 1, pp. 11–24, 1988. 10

[39]C. A. Navarro, N. Hitschfeld-Kahler, and L. Mateu, “A survey on parallel computing
and its applications in data-parallel problems using gpu architectures,” Communi-

cations in Computational Physics, vol. 15, no. 2, pp. 285–329, 2014. 10, 29, 30,

45

[40]J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker, “An introduction to the mpi
standard,” Communications of the ACM, vol. 18, 1995. 11

[41]L. Dagum and R. Menon, “Openmp: an industry standard api for shared-memory
programming,” IEEE computational science and engineering, vol. 5, no. 1, pp. 46–
55, 1998. 12

[42]R. Chandra, L. Dagum, D. Kohr, R. Menon, D. Maydan, and J. McDonald, Parallel

programming in OpenMP. Morgan kaufmann, 2001. 12

[43]M. Martineau, S. McIntosh-Smith, and W. Gaudin, “Evaluating openmp 4.0’s ef-
fectiveness as a heterogeneous parallel programming model,” in 2016 IEEE In-

ternational Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pp. 338–347, IEEE, 2016. 12

[44]E. Lindholm, M. J. Kilgard, and H. Moreton, “A user-programmable vertex engine,”
in Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, pp. 149–158, 2001. 12

[45]E. S. Larsen and D. McAllister, “Fast matrix multiplies using graphics hardware,”
in Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, pp. 55–55,
2001. 12

93

[46]P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From
cuda to opencl: Towards a performance-portable solution for multi-platform gpu
programming,” Parallel Computing, vol. 38, no. 8, pp. 391–407, 2012. 12

[47]Z. Fan, F. Qiu, A. Kaufman, and S. Yoakum-Stover, “Gpu cluster for high perfor-
mance computing,” in SC’04: Proceedings of the 2004 ACM/IEEE conference on

Supercomputing, pp. 47–47, IEEE, 2004. 12

[48]J. Krüger and R. Westermann, “Linear algebra operators for gpu implementation
of numerical algorithms,” in ACM SIGGRAPH 2005 Courses, pp. 234–es, 2005. 12

[49]N. Galoppo, N. K. Govindaraju, M. Henson, and D. Manocha, “Lu-gpu: Efficient
algorithms for solving dense linear systems on graphics hardware,” in SC’05: Pro-

ceedings of the 2005 ACM/IEEE Conference on Supercomputing, pp. 3–3, IEEE,
2005. 12

[50]D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: using data parallelism to program
gpus for general-purpose uses,” ACM SIGPLAN Notices, vol. 41, no. 11, pp. 325–
335, 2006. 12

[51]K. Group, “Opencl,” 2021. 12

[52]NVIDIA, “Cuda,” 2021. 12

[53]A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J. Barker, “Evaluat-
ing modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and gpudirect,” IEEE

Transactions on Parallel and Distributed Systems, vol. 31, no. 1, pp. 94–110, 2019.

14

[54]I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A brief introduction to
opencv,” in 2012 proceedings of the 35th international convention MIPRO, pp. 1725–
1730, IEEE, 2012. 14

[55]G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

15, 67

[56]J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and S. Amarasinghe,
“Halide: a language and compiler for optimizing parallelism, locality, and recompu-
tation in image processing pipelines,” Acm Sigplan Notices, vol. 48, no. 6, pp. 519–
530, 2013. 15, 34, 36, 38

[57]S. Sioutas, S. Stuijk, T. Basten, H. Corporaal, and L. Somers, “Schedule synthesis
for halide pipelines on gpus,” ACM Transactions on Architecture and Code Opti-

mization (TACO), vol. 17, no. 3, pp. 1–25, 2020. 15, 23, 39

[58]R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and K. Fatahalian, “Au-
tomatically scheduling halide image processing pipelines,” ACM Transactions on

Graphics (TOG), vol. 35, no. 4, pp. 1–11, 2016. 15, 23, 39

94

[59]A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi, B. Steiner,
S. Johnson, K. Fatahalian, F. Durand, et al., “Learning to optimize halide with tree
search and random programs,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, pp. 1–12, 2019. 15, 23, 39

[60]R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang, P. Suri-
ana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral compiler for express-
ing fast and portable code,” in 2019 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), pp. 193–205, IEEE, 2019. 16, 21, 23, 32, 34

[61]M. Jankowski, “Erosion, dilation and related operators,” Department of Electrical

EngineeringUniversity of Southern Maine Portland, Maine, USA, 2006. 16

[62]P. Hudak and J. H. Fasel, “A gentle introduction to haskell,” ACM Sigplan Notices,

vol. 27, no. 5, pp. 1–52, 1992. 17

[63]C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” in International Symposium on Code Generation and

Optimization, 2004. CGO 2004., pp. 75–86, IEEE, 2004. 19, 20

[64]C. Lattner, “Llvm and clang: Next generation compiler technology,” in The BSD

conference, vol. 5, 2008. 19

[65]A. W. Appel, “Ssa is functional programming,” ACM SIGPLAN Notices, vol. 33,

no. 4, pp. 17–20, 1998. 19

[66]D. Seal, ARM architecture reference manual. Pearson Education, 2001. 20

[67]G. Kane, mips RISC Architecture. Prentice-Hall, Inc., 1988. 20

[68]R. Johnson and J. Vlissides, “Design patterns,” Elements of Reusable Object-

Oriented Software Addison-Wesley, Reading, 1995. 20

[69]A. Graves, S. Fernández, and J. Schmidhuber, “Bidirectional lstm networks for
improved phoneme classification and recognition,” in International conference on

artificial neural networks, pp. 799–804, Springer, 2005. 20

[70]T. Denniston, S. Kamil, and S. Amarasinghe, “Distributed halide,” ACM SIGPLAN

Notices, vol. 51, no. 8, pp. 1–12, 2016. 21, 32, 34, 45

[71]S.-W. Liao, S.-Y. Kuang, C.-L. Kao, and C.-H. Tu, “A halide-based synergistic com-
puting framework for heterogeneous systems,” Journal of Signal Processing Systems,
vol. 91, no. 3, pp. 219–233, 2019. 21, 32, 34

[72]J. Meng and K. Skadron, “A Performance Study for Iterative Stencil Loops on GPUs
with Ghost Zone Optimizations,” International Journal of Parallel Programming,
vol. 39, no. 1, pp. 115–142, 2011. 23, 40

[73]M. B. S. Ahmad, J. Ragan-Kelley, A. Cheung, and S. Kamil, “Automatically trans-
lating image processing libraries to halide,” ACM Transactions on Graphics (TOG),
vol. 38, no. 6, pp. 1–13, 2019. 23, 38

95

[74]G. Teodoro, T. Pan, T. Kurc, J. Kong, L. Cooper, S. Klasky, and J. Saltz, “Re-
gion templates: Data representation and management for high-throughput image
analysis,” Parallel Computing, vol. 40, no. 10, pp. 589–610, 2014. 23, 26

[75]H. R. Tizhoosh and L. Pantanowitz, “Artificial intelligence and digital pathology:
challenges and opportunities,” Journal of pathology informatics, vol. 9, no. 1, p. 38,
2018. 25

[76]K. Doi, “Computer-aided diagnosis in medical imaging: historical review, current
status and future potential,” Computerized medical imaging and graphics, vol. 31,
no. 4-5, pp. 198–211, 2007. 25

[77]E. Yildirim, S. Duan, and X. Qi, “A distributed deep memory hierarchy sys-
tem for content-based image retrieval of big whole slide image datasets,” in
2019 IEEE/ACM Workshop on Memory Centric High Performance Computing

(MCHPC), pp. 43–49, IEEE, 2019. 25, 26

[78]M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot, and
B. Yener, “Histopathological image analysis: A review,” IEEE reviews in biomedical

engineering, vol. 2, pp. 147–171, 2009. 25

[79]J. Ye, Y. Luo, C. Zhu, F. Liu, and Y. Zhang, “Breast cancer image classification on
wsi with spatial correlations,” in ICASSP 2019-2019 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 1219–1223, IEEE, 2019.
25

[80]Y. Peng, Y. Chu, Z. Chen, W. Zhou, S. Wan, Y. Xiao, Y. Zhang, and J. Li,
“Combining texture features of whole slide images improves prognostic prediction of
recurrence-free survival for cutaneous melanoma patients,” World Journal of Surgi-

cal Oncology, vol. 18, no. 1, pp. 1–8, 2020. 25

[81]Z. Xu, Y. Li, Y. Wang, S. Zhang, Y. Huang, S. Yao, C. Han, X. Pan, Z. Shi,
Y. Mao, et al., “A deep learning quantified stroma-immune score to predict survival
of patients with stage ii–iii colorectal cancer,” Cancer Cell International, vol. 21,
pp. 1–12, 2021. 25

[82]K. Zhao, Z. Li, S. Yao, Y. Wang, X. Wu, Z. Xu, L. Wu, Y. Huang, C. Liang,
and Z. Liu, “Artificial intelligence quantified tumour-stroma ratio is an independent
predictor for overall survival in resectable colorectal cancer,” EBioMedicine, vol. 61,
p. 103054, 2020. 25

[83] NIH, “Genomic Data Commons Data Portal,” 2020. available at https://portal.
gdc.cancer.gov/. 26, 64

[84] NCI, “The Cancer Genome Atlas Project,” 2020. available at https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/tcga. 26,
64

[85]S. Ouyang, D. Dong, Y. Xu, and L. Xiao, “Communication optimization strategies
for distributed deep neural network training: A survey,” Journal of Parallel and

Distributed Computing, vol. 149, pp. 52–65, 2021. 26

96

[86]M. Andreux, J. O. du Terrail, C. Beguier, and E. W. Tramel, “Siloed federated
learning for multi-centric histopathology datasets,” in Domain Adaptation and Rep-

resentation Transfer, and Distributed and Collaborative Learning: Second MICCAI

Workshop, DART 2020, and First MICCAI Workshop, DCL 2020, Held in Conjunc-

tion with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings 2, pp. 129–
139, Springer, 2020. 26

[87]Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data silos: An
experimental study,” in 2022 IEEE 38th International Conference on Data Engi-

neering (ICDE), pp. 965–978, IEEE, 2022. 26

[88]M. Adnan, S. Kalra, J. C. Cresswell, G. W. Taylor, and H. R. Tizhoosh, “Feder-
ated learning and differential privacy for medical image analysis,” Scientific reports,
vol. 12, no. 1, p. 1953, 2022. 26

[89]“Diagnostic image analysis group. the camelyon16 challenge.” https://
camelyon16.grand-challenge.org/Data/. Accessed: 2023-2-02. 26

[90]L. Vincent, “Morphological grayscale reconstruction in image analysis: applications
and efficient algorithms,” IEEE transactions on image processing, vol. 2, no. 2,
pp. 176–201, 1993. 28

[91]J. D. Foley, F. D. Van, A. Van Dam, S. K. Feiner, J. F. Hughes, and J. Hughes,
Computer graphics: principles and practice, vol. 12110. Addison-Wesley Profes-
sional, 1996. 29

[92]E. Gafton and S. Rosswog, “A fast recursive coordinate bisection tree for neighbour
search and gravity,” Monthly Notices of the Royal Astronomical Society, vol. 418,

no. 2, pp. 770–781, 2011. 29

[93]R. Lubbe, W.-J. Xu, D. N. Wilke, P. Pizette, and N. Govender, “Analysis of parallel
spatial partitioning algorithms for gpu based dem,” Computers and Geotechnics,
vol. 125, p. 103708, 2020. 29

[94]G. CYBENKO and T. G. ALLEN, “Multidimensional binary partitions: distributed
data structures for spatial partitioning,” International Journal of Control, vol. 54,
no. 6, pp. 1335–1352, 1991. 29, 31

[95]M. Deveci, S. Rajamanickam, K. D. Devine, and Ü. V. Çatalyürek, “Multi-jagged:
A scalable parallel spatial partitioning algorithm,” IEEE Transactions on Parallel

and Distributed Systems, vol. 27, no. 3, pp. 803–817, 2015. 30

[96]A. Eldawy, L. Alarabi, and M. F. Mokbel, “Spatial partitioning techniques in spa-
tialhadoop,” Proceedings of the VLDB Endowment, vol. 8, no. 12, pp. 1602–1605,
2015. 30

[97]H. Vo, A. Aji, and F. Wang, “Sato: a spatial data partitioning framework for scalable
query processing,” in Proceedings of the 22nd ACM SIGSPATIAL international

conference on advances in geographic information systems, pp. 545–548, 2014. 30

97

[98]R. A. Finkel and J. L. Bentley, “Quad trees a data structure for retrieval on com-
posite keys,” Acta informatica, vol. 4, no. 1, pp. 1–9, 1974. 31

[99]R. T. Mullapudi, V. Vasista, and U. Bondhugula, “Polymage: Automatic optimiza-
tion for image processing pipelines,” ACM SIGARCH Computer Architecture News,
vol. 43, no. 1, pp. 429–443, 2015. 32, 34

[100]D. Wonnacott, “Using time skewing to eliminate idle time due to memory bandwidth
and network limitations,” in Proceedings 14th International Parallel and Distributed

Processing Symposium. IPDPS 2000, pp. 171–180, IEEE, 2000. 32

[101]T. Henretty, R. Veras, F. Franchetti, L.-N. Pouchet, J. Ramanujam, and P. Sadayap-
pan, “A stencil compiler for short-vector SIMD architectures,” in Proceedings of the

27th international ACM conference on International conference on supercomputing,
pp. 13–24, 2013. 33

[102]J. Holewinski, L.-N. Pouchet, and P. Sadayappan, “High-performance code gener-
ation for stencil computations on GPU architectures,” in Proceedings of the 26th

ACM international conference on Supercomputing, pp. 311–320, 2012. 33

[103]B. Hagedorn, A. S. Elliott, H. Barthels, R. Bodik, and V. Grover, “Fireiron: A Data-
Movement-Aware Scheduling Language for GPUs,” 29th International Conference

on Parallel Architectures and Compilation Techniques (PACT), 2020. 33, 34

[104]S. Memeti and S. Pllana, “HSTREAM: A directive-based language extension for
heterogeneous stream computing,” in 2018 IEEE International Conference on Com-

putational Science and Engineering (CSE), pp. 138–145, IEEE, 2018. 33, 34

[105]M. Sourouri, S. B. Baden, and X. Cai, “Panda: A Compiler Framework for Con-
current CPU + GPU Execution of 3D Stencil Computations on GPU-accelerated
Supercomputers,” International Journal of Parallel Programming, vol. 45, no. 3,
pp. 711–729, 2017. 33, 34

[106]P. Czarnul, J. Proficz, and K. Drypczewski, “Survey of methodologies, approaches,
and challenges in parallel programming using high-performance computing sys-
tems,” Scientific Programming, vol. 2020, 2020. 35

[107]Z. Li, “Geospatial big data handling with high performance computing: Current
approaches and future directions,” High Performance Computing for Geospatial Ap-

plications, pp. 53–76, 2020. 35

[108]A. Pupykina and G. Agosta, “Survey of memory management techniques for hpc
and cloud computing,” IEEE Access, vol. 7, pp. 167351–167373, 2019. 35, 36

[109]B. Kong, Z. Li, and S. Zhang, “Toward large-scale histopathological image analysis
via deep learning,” in Biomedical Information Technology, pp. 397–414, Elsevier,
2020. 36, 40, 64

[110]B. L. Chamberlain, D. Callahan, and H. P. Zima, “Parallel programmability and
the chapel language,” The International Journal of High Performance Computing

Applications, vol. 21, no. 3, pp. 291–312, 2007. 38

98

[111]C. Mendis, J. Bosboom, K. Wu, S. Kamil, J. Ragan-Kelley, S. Paris, Q. Zhao, and
S. Amarasinghe, “Helium: Lifting high-performance stencil kernels from stripped
x86 binaries to halide dsl code,” in Proceedings of the 36th ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, pp. 391–402, 2015.
38, 67

[112]S. Sioutas, S. Stuijk, L. Waeijen, T. Basten, H. Corporaal, and L. Somers, “Sched-
ule synthesis for halide pipelines through reuse analysis,” ACM Transactions on

Architecture and Code Optimization (TACO), vol. 16, no. 2, pp. 1–22, 2019. 38

[113]R. R. L. Machado, A. M. Maidl, and D. Weingaertner, “Profiling halide dsl with
cpu performance events for schedule optimization,” in Proceedings of the XXIII

Brazilian Symposium on Programming Languages, pp. 38–45, 2019. 38

[114]R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W. Eckert, “Hipa cc:
A domain-specific language and compiler for image processing,” IEEE Transactions

on Parallel and Distributed Systems, vol. 27, no. 1, pp. 210–224, 2015. 38

[115]J. Fang, C. Huang, T. Tang, and Z. Wang, “Parallel programming models for het-
erogeneous many-cores: a comprehensive survey,” CCF Transactions on High Per-

formance Computing, vol. 2, pp. 382–400, 2020. 38

[116]M. Kertész, F. Csillag, and A. Kummert, “Optimal tiling of heterogeneous images,”
International Journal of Remote Sensing, vol. 16, no. 8, pp. 1397–1415, 1995. 45

[117]X.-D. Liu, J.-Z. Wu, and C.-W. Zheng, “KD-tree based parallel adaptive rendering,”
The visual computer, vol. 28, no. 6, pp. 613–623, 2012. 45

[118]H. Wang and A. Chandramowlishwaran, “Pencil: a pipelined algorithm for dis-
tributed stencils,” in Proceedings of the International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis, pp. 1–16, 2020. 45

[119]M. Wang, C.-c. Huang, and J. Li, “Supporting very large models using automatic
dataflow graph partitioning,” in Proceedings of the Fourteenth EuroSys Conference

2019, pp. 1–17, 2019. 45

[120]I. Z. Reguly, G. R. Mudalige, and M. B. Giles, “Loop tiling in large-scale sten-
cil codes at run-time with OPS,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 4, pp. 873–886, 2017. 45

[121]K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-component la-
beling algorithms,” Pattern Analysis and Applications, vol. 12, no. 2, pp. 117–135,
2009. 62

[122]O. Pearce, T. Gamblin, B. R. De Supinski, M. Schulz, and N. M. Amato, “Quanti-
fying the effectiveness of load balance algorithms,” in Proceedings of the 26th ACM

international conference on Supercomputing, pp. 185–194, 2012. 65

[123]D. Matveev, “Opencv graph api,” Intel Corporation, vol. 1, 2018. 67

99

[124]OpenCV, “How to enable Halide backend for improve efficiency ,” 2021. available

at https://docs.opencv.org/3.4/de/d37/tutorial_dnn_halide.html. 67

[125]Y. Zhang and Y. Zhang, “Making Halide Efficient for Multicore Systems,” in 2018

4th International Conference on Big Data Computing and Communications (BIG-

COM), pp. 213–218, IEEE, 2018. 68

