
Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 1

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An Approach fo r High -Level Multi -Robot Mission
Verification in UPPAAL

Uma abordagem para verificação de missões
multi -robôs em alto nível no UPPAAL

Danilo B. Galvão

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Orientador

Prof.a Dr.a Genaina Nunes Rodrigues

Brasília

2023

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 2

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Uma abordagem para verificação de missões
multi -robôs em alto nível no UPPAAL

Danilo B. Galvão

Dissertação apresentada como requisito parcial para

conclusão do Mestrado em Informática

Prof.a Dr.a Genaina Nunes Rodrigues (Orientador)

CIC/UnB

Prof. Dr. Rodrigo Bonifácio Prof. Dr. Radu Calinescu

CIC/UnB University of York

Prof. Dr. Ricardo Jacobi

Coordenador do Programa de Pós-graduação em Informática

Brasília, 19 de janeiro de 2023

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 3

Dedicatória

Dedico esse a minha família: Maria Madalena, João Vitor e José Pereira. O apoio emo-

cional de alguns de vocês me deu energias quando eu não conseguia me levantar sozinho.

Dedico esse trabalho também à minha namorada e parceira de mestrado Helena Schubert,

que me consolou e me deu forças nos momentos mais difíceis.

iv

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 4

Agradecimentos

A pandemia de 2020 significou um aumento de dificuldades para muitos estudantes,

agravado por um governo dedicado a destruir muitas instituições vitais para o desen-

volvimento social. A educação foi uma de suas maiores vítimas por constantes cortes em

verbas do orçamento da educação. Como estudante, me senti diversas vezes desmotivado

e ameaçado durante o processo. Meu primeiro agradecimento é direcionado a todos os

acadêmicos que me mostraram que a verdadeira ciência sempre foi resistência em um país

onde nossos representantes estão mais preocupados em manuntenção do poder e sobre-

vivência própria. Alguns nomes mui to importantes são a minha orientadora, um exemplo

de pesquisadora, Genaina Nunes Rodrigues. Além de todos os outros professores que me

ensinaram algo durante a jornada como Raian Ali, Bozena Wozna-Szczesniak e vários

outros que não estão aqui nominalmente mas sempre farão parte das pessoas que fizeram

a diferença. Um agradecimento especial a alguns colegas de pesquisa como o Eric, Artur

e Gabriel que me ajudaram imensamente durante o desenvolvimento do trabalho. Em

segundo, agradeço a bolsa oferecida pela CAPES, que me permitiu fazer a compra do

computador onde eu fiz a maioria desse trabalho.

v

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 5

Abstract

The need to leverage means to specify robotic missions from a high abstraction level has

gained momentum due to the popularity growth of robotic applications. As such, it is

paramount to provide means to guarantee that not only the robotic mission is correctly

specified, but that it also guarantees degrees of safety given the growing complexit y of

tasks assigned to Multi-Robot System (MRS). Therefore, robot missions now need to be

specified and formally verified for both robots and other agents involved in the robotic

mission operation. However, many mission specifications lack a streamlined verification

process that ensures that all mission properties are thoroughly verified through model

checking. This work proposes a model checking process for mission specification and

decomposition of MRS in UPPAAL model checker. In particular, we present an automated

generation process containing hierarchical domain definition properties transformed into

UPPAAL templates and mission properties formalized into the U PPAAL timed automata

language TCTL. We have evaluated our approach in three robotic missions and results

show that the expected behaviour is correctly verified and the corresponding properties

satisfied in the UPPAAL model checking tool.

Keywords: Formal Verification, Model checking, Multi -Robot Systems

vi

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 6

Contents

1 Introduction 1

1.1 Motivation .. 1

1.2 Context ... 3

1.3 Problem Definition .. 4

1.4 Contributions .. 8

1.4.1 UPPAAL ... 8

1.5 Dissertation Outline .. 10

2 Theoretical background 11

2.1 Goal Model ... 11

2.2 HDDL .. 11

2.3 MutRoSe .. 13

2.4 The UPPAAL Model Checking Tool .. 13

3 Proposed solution 16

3.1 Process overview .. 16

3.2 MutRoSe execution stage and parsing stage.. 17

3.3 Generation stage .. 18

3.4 Mapping rules .. 19

3.4.1 Generation of TCTL verification properties .. 38

3.5 Verification stage ... 38

4 Experiments and results 40

4.1 Experiment settings... 40

4.1.1 Experimental setup ... 40

4.1.2 General hypothesis .. 40

4.2 Mission description ... 41

4.2.1 Food Logistics - Delivery .. 41

4.2.2 Food Logistics - Pickup .. 42

4.2.3 Deliver Goods - Equipment ... 43
vii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 7

4.3 Results ... 44

4.3.1 Profiling results .. 44

4.3.2 Food Logistics - Delivery .. 44

4.3.3 Food Logistics - Pickup .. 46

4.3.4 Deliver Goods - Equipment ... 47

4.3.5 Properties verification ... 48

4.4 Complexity issues .. 51

4.4.1 HDDL ... 52

4.4.2 GM ... 52

4.5 Discussion ... 53

4.5.1 Scalability issues .. 54

4.6 Threats to validity .. 55

5 Related works 57

5.1 Translating RoboSim models to UPPAAL ... 58

5.2 The Esterel framework ... 59

5.3 The BIP framework ... 60

5.4 MissionLab and VIPARS .. 61

5.5 vTSL ... 62

5.6 Translation of high-level models to SMV .. 64

5.7 Related works comparison ... 65

6 Conclusion and Future Work 68

6.1 Conclusion ... 68

6.2 Future works... 69

Referências 70

Appendix 76

A 77

A.1 Files derived from MutRoSe execution .. 77

A.2 Domain files .. 79

viii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 8

List of Figures

1.1 Software lifecycle and error introduction, detection and repair costs [1] . . . 6

1.2 Proposed contribution overview .. 9

2.1 Goal model example for a museumôs visitor assistance system [2] 12

2.2 MutRoSe process overview [3] ... 14

3.1 Process overview .. 17

3.2 Goal model example .. 18

3.3 UPPAAL generated template for method-1 .. 25

3.4 Method template with nested abstract task with two methods in UPPAAL . 26

3.5 Fallback runtime operator template pattern ..38

4.1 Food Logistics - Delivery goal model .. 41

4.2 Food logistics pickup mission goal model ...43

4.3 Goal model for Deliver Goods - Equipment mission .. 44

4.4 Goal model template for food logistics .. 45

4.5 Table deliver template generated in UPPAAL ... 46

4.6 Abstract task pattern in FetchMeal inside fetch-deliver method generated

for UPPAAL ... 46

4.7 Generated template for food logistics pickup mission in UPPAAL....................... 47

4.8 Generated template for deliver goods - equipment mission in UPPAAL 48

4.9 Best and worst case scenarios for generation of the goal model53

5.1 Overview of the architecture used in [4] ... 62

ix

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 9

List of Tables

2.1 Types of TCTL formulae supported by UPPAAL [5]. ... 14

3.1 Mapping rules ... 37

3.2 Properties verified in missions ... 39

4.1 Properties verification for Food Logistics Delivery mission 49

4.2 Properties verification for Food Logistics Pickup mission 50

4.3 Properties verification for Deliver Goods - Equipment mission51

4.4 Summary of MutRoSe elements generated to UPPAAL 54

5.1 Comparison chart of related works ... 66

x

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 10

Acronyms

BIP (Behavior, Interaction, Priority).

CNL Configuration Network Language.

CRGM Contextual Runtime Goal Model.

CTL Computational Tree Logic.

DSL Domain -Specific Language.

FSA Finite State Automata.

FSM Finite State Machine.

GM Goal Model.

HDDL Hierarchical Domain Definition Language.

HRI Human -Robot Interaction.

HTN Hierarchical Task Network.

iHTN instantiated HTN.

LTL Linear Temporal Logic.

MCMAS Model Checker for Multi -Agent Systems.

MDE Model-Driven Engineering.

MPL Model-Based Processing Language.

MRS Multi -Robot System.

MutRoSe Multi -Robot systems mission Specification and decomposition.

xi

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 11

NASA National Aeronautics and Space Administration.

NSHA Network of Stochastic and Hybrid Automata.

NTA Network of Timed Automata.

OBDD Ordered Binary Decision Diagrams.

PARS Process Algebra for Robot Schemas.

PCTL Probabilistic Computational Tree Logic.

PDDL Planning Domain Definition Language.

ROS Robot Operating System.

SAIT Samsung Advanced Institute of Technology.

SAS Self-Adaptive Systems.

SHR Samsung Home Robot.

SMC Statistical model checking.

TCTL Timed Computational Tree Logic.

TDL Task Description Language.

UML Unified Modeling Language.

VIPARS Verification in Process Algebra for Robot Schemas.

vTSL verifiable Task Specification Language.

WMTL Weigthed Metric Temporal Logic.

XML eXtensible Markup Language.

xii

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 12

Chapter 1

Introduction

1.1 Motivation

The Multi -Robot System (MRS) field has grown significantly in the past few years. From

task planning to control theory, this field holds many open challenges for researchers. Some

of the main reasons for that are the increasing complexity of tasks entrusted to robots,

robust collaboration between human and robots [6] and the need for unique domain -

specific restrictions for verificati on and certification of safety -critical MRSs [7]. Some of

those scenarios today include hospital robots [8], social robots [9] and robot assistants

[10]. Many of these systems share the similarity of directly or indirectly interacting with

humans during th eir operations, which, in turn, demand a more robust certification for

their safety [11] and mission correctness. Therefore, it is imperative that robot systems

must not contain any design flaws that could compromise the integrity of humans involved

in their operation.

Model checking techniques are formal techniques for verification of a given model of a

system through analysis of whether it satisfies specified properties or not [12]. The formal

verification of systems offers automatic and exhaustive verification of the state space in

finite state systems, assuring that any changes made to the specified model will not incur

in new unforeseen errors. These specifications can be evaluated in terms of properties,

such as safety, security, efficiency, reliability, dependability, etc. Model checking has been

used extensively in the MRS field [13, 14, 15] as it is quite useful for evaluating if multi -

robot models working in different settings are free of deadlocks and other design problems

overlooked during design.

Since many robot systems have completely different context settings and objectives,

their representation can be vastly different [16]. Therefore, several software engineer-

ing techniques are employed for designing robotic systems. Specifying behaviour can be

done through frameworks, in fact, a lot of middleware architectures and Model-Driven

1

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 13

Engineering (MDE) techniques have gained traction for their ability to engineer a MRS

with unique characteristics [17, 18]. Another famous approach is the use of graphical

notations, which can be used to depict systems with a large set of parallel and/or se-

quential actions. The graphical notation is most useful for its inherent characteristic of

visual representation, offeri ng a common ground for both stakeholders and engineers to

discuss specific implementation details with the aid of an illustrative system description.

Some of the most known approaches are Finite State Machine (FSM)s and flowcharts

such as RoboFlow [19]. On the other hand, one can also use Domain-Specific Language

(DSL) approaches to represent a MRS with textual language. DSLs have two central

characteristics: first, as the name suggests, their expressiveness must be directed to the

specific domain, i.e. the use of a specific language must be justified by a significant gain

in expressiveness during design. Second, the notation must be comprehensible for stake-

holders while also being machine tractable [20]. Therefore, it is highly recommended that

stakeholders decide which important features should be addressed in MRS due to scope

restrictions in certain DSLs.

Another important concern is at what level of abstraction the specification must be, i.e.

low-level specifications for MRSs would involve more detailed control over tasks, resulting

in a larger system [16]. On the other hand, this approach would require more granularity

and more thorough specification requirements for their inherent level of detail. Studies

have shown that large systems are better suited for statistical verification, since other

verification methods would often fail due to space state explosion errors [21]. Therefore, a

high-level abstraction MRS is often recommended for non-statistical verification methods

inside model checking. One other aspect that must be taken into consideration when

designing a high-level specification is defining predicates: statements that may change

during the course of a mission. They might be used to evaluate a certain universal state

during the missio n execution or simply checking if a robot state has changed while per-

forming an action when it is supposed to. Likewise, it is possible to use agent capabilities

working similarly as predicates to define if a certain agent has the capacity of carrying

out certain actions.

There are many aspects when it comes to designing high-level MRS missions accur-

ately. Some of them might be critical or not for mission success depending on the mission

scope and its complexity. It is important to periodically submit a mission description to

scrutiny (e.g. verification or testing) to ensure that all preliminary steps are being taken

to guarantee mission correctness.

2

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 14

1.2 Context

An important aspect of the MRS mission specification is describing the system operation

and its behaviour (also known as missions) [3]. Missions play an important role in defining

main goals and tasks that must be carried out in order to achieve mission success. Fur-

thermore, it is possible to create alternative mission paths should the main ones fail, this

adds more complexity to the mission design overall but also expands the list of possible

successful paths. Thus, regarding reachability, a mission is less prone to failure the more

alternative mission paths available it has.

Mission requirements include movement and manipulation as robot capabilities, i.e. if

a robot has some ability in order to carry out particular tasks. Robot capabilities are a

way to define MRSs heterogeneity, i.e. if a group of robots differ from each other in terms

of behaviour, equipment and abilities. Heterogeneity can make MRSs more complex as

they grow larger in size [22].

Other mission requirements include: predicates or statements concerning the mission

environment or the agents involved; and task ordering, as some tasks can be impossible to

perform in a particular order if a previous requirement was not met e.g. a robot must pick

a glass of water before delivering to its destination, this is usually considered under the

communication aspects of systems, as they often need to coordinate actions with other

robots in various missions.

Multi -Robot systems mission Specification and decomposition (MutRoSe) is a mission

modelling framework f or goal-oriented, high -level MRS specifications. It specialises in

decomposing its input files into hierarchical task plans and outputting valid combinations

of task instances as well as the execution constraints between them. In order to do so,

it needs a GM [23, 24, 25] with domain -specific contextual runtime additions to accom -

modate flexible and real-world scenarios and a Hierarchical Domain Definition Language

(HDDL) [26] file, which is responsible for describing hierarchical tasks pertinent to the

mission domain.

Similarly to specifying MRSs, verification formalisms are also a very complex issue in

MRS; it is possible to choose from a variety of different formal methods. Formal methods

are mathematical techniques for specification and verification of properties in systems.

They can be employed in MRS using formal verification tools for design, simulation,

verification and testing. Besides, they offer potential for automation in software systems

and MRS systems as well due to their re-usability feature. The survey in [16] identified and

classified formalisms used in MRS, some examples are set-based (such as the B-Method

[27]), state-transition systems [28] and temporal logics [29], for instance Linear Temporal

Logic (LTL), Computational Tree Logic (CTL), Probabilistic Computational Tree Logic

(PCTL) and Timed Computational Tree Logic (TCTL).

3

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 15

Among the verification tools, model checking is the most prominent and flexible verific -

ation approach due to its automatic nature and the ability to check for every combination

of states within a model [16]; these characteristics also guarantee that an inexperienced

user will be able to quickly design a specification then exhaustively check for safety, live-

ness and other properties within the model. This is not always true for other methods

such as theorem proving or simulation [30] which may require additional specification

(e.g. for the environment) for a thorough verification an d a more skilled user beforehand.

Within model checking, one can use one or more different formalisms to tackle a MRS

design, this is mostly done by using process algebras or temporal logics.

One of the direct advantages of using verification is because it is an effective technique

to outline potential design errors [12]. As shown in Fig 1.1, during a software lifecycle,

errors detected during the conceptual design stage are about 40% less costly to fix com-

pared to those detected in operation. Additionally, model checking verifies if important

properties are maintained throughout system operation.

UPPAAL [5] is an integrated tool environment used for the creation, verification and

validation o f timed automata networks, a subset of FSA systems. UPPAAL has three

main parts: a description language, a simulator and a model checker. These components

will be outlined thoroughly on Section 2. While UPPAAL has a great focus on task

synchronisation and model checking real-time systems (i.e. using TCTL), it can also

be used to CTL as well by simply omitting the timed properties in a model. It uses

locations as an abstraction for states and its transitions are defined by invariants, guards

and synchronisation channels. UPPAAL has been used extensively to model and verify

many MRSs [31, 32]. UPPAAL files are written in eXtensible Markup Language (XML).

1.3 Problem Definition

Demonstrating MRS specification correctness can be difficult without verification pro -

cesses in place due to their complexity, multiple robots configurations and unknown con -

text conditions, predicates, etc. might greatly increase the number of states inside a

mission specification. Therefore, a verification technique such as model checking applied

to MRSs specifications to identify potential inconsistencies would help mission designers

to reason about mission specifications during early stages.

Thus, verification directly generated from specification models in high -level specific-

ation would impact positively on the accuracy of properties being evaluated. Other im -

portant challenge is accurately describing all important aspects of a high-level mission

from the verification process, as other system properties may not be fully covered, even

4

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 16

if they are evaluated during verification. Defining the important aspects of a mission can

be quite complex as it varies significantly from one mission specification to another.

In this work, important characteristics are defined as several properties such as reach-

ability or mission correctness concerning predicates, capabilities and mission ordering

which could be facilitated if identified through model checking and its exhaust ive state

space exploration. For instance, assume that a predicate p would drive the mission to

failure every time it was set to true, hence indicating it must be either removed or safely

guarded for certain contexts of operation in the mission specification. Depending on

the mission complexity, the designer might not be able to identify this alone without a

verification process in place.

This work aims to automate the verification process of high -level MRSs mission spe-

cifications. Specifications can range from behavior, planning, robot capabilities and co-

ordination protocols between robots. This approach particularly focuses on MRS hetero-

geneous missions and how they can be verified through formal methods concerning the the

correctness and consistency of MRS specification model and its requirements expressed

in the form of temporal properties. In order to verify the MRS mission specifications,

the generated models will be submitted to verification using the U PPAAL tool and their

properties will be evaluated via TCTL formulas. UPPAAL was chosen for this work due to

being able to represent a system as a Network of Timed Automata (NTA), extended with

data types. It supports the system design as a collection of non-deterministic template

with control structures able to communicate with each other through the use of channels

or shared variables [33].

It is possible to evaluate MRS mission specification as verification properties as some

works already show [34, 13]. Other works in MRS formal verification follow a similar

workflow to provide a straightforward process when generating specification model then

offering a verification technique for the given model in order to evaluate its correctness

[35]. Therefore, an automated verification technique such as model checking applied to

the specification of multi -robot models are able to provide more degrees of safety when

compared to other verification techniques such as testing or simulation.

Concerning the properties that need verification, model checking already defines some

default properties such as safety (something bad will never happen), liveness (something

good will eventually happen), reliability, security, availability, survivability, maintainabil -

ity, dependability and others. This work aims to assure safety and liveness inside a MRS

specification, but also tries to guarantee mission reliability by ensuring to a certain level

that they are correctly specified and able to potentially show the presence of design flaws

in the MRS specification.

Although the mission describes the high-level tasks that the MRS must accomplish,

5

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 17

Figure 1.1. Software lifecycle and error introduction, detection and repair costs [1]

it is important to note that the mission specification must not necessarily explain how it

will be achieved. Instead, it shows what tasks may be executed in order to successfully

complete the mission [36]. In various MRS applications, this level of detail is crucial when

the scope of the specification is still being defined, for it will define what properties are

verifiable depending on the granularity of the system.

We should note that specification concerns such as mission layout (e.g. terrain char-

acteristics, wall positioning, etc.), physical, kinetic or environment properties are out of

this workôs scope. Therefore, our verification process does not include robot implement-

ation errors or mission environment problems due to the high -level perspective this work

focuses on.

In order to be able to verify mission specifications automatically, the generation process

must abide to rigid specification rules to attest that the output given by any of the

specification files created will always be the same for a given input model. Thus, it is

important to precisely outline how each member included in specification files relates to

the verifiable model e.g. how a mission goal would be represented in the generated file

and how the rule applied would be the same for every goal.

Robot swarms [34] are an example of homogeneous MRS due to no specialised robots.

By specifying different capabilities as one of the many high-level mission requirements

needed to be met by verification, it is possible to define if a predicate is fundamental for

the achievement of a certain mission or what are the possible execution paths to achieve

a certain goal. Which leads to the first research question:

6

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 18

The second research question emerges from the fact that the generated verifiable files

must retain important properties in order to assess the mission specification correctness.

Thus, the scope for the following research question needs to be defined regarding the first

one. For instance, if a given mission specification model is incorrectly specified, then the

generated model verification must output some error indicating that the properties are

not satisfied due to the inconsistency occurring in the model i.e. the properties specified

must conform to the original model in a comprehensible manner. Furthermore, the error

must relate to what problem exists in the specification and preferably suggest or give hints

to what are the possible alternatives to fix them in a way to help the mission designer.

Some of the relevant properties MRS mission specifications verify are safety, security,

correctness and others. As one might expect, it is important to assure to a certain level

that mission correctness is achieved. Likewise, one can verify safety by ensuring absence

of deadlocks. Other relevant characteristics such as reachability, i.e. being able to reach

a certain path during the mission, or liveness are also possible inside verification through

model checking.

The second research question aims to extract relevant characteristics as properties

and other domain-specific MRS properties relevant to the mission context as well as

verifiable in UPPAAL. One of its flaws is not allowing nested operators when writing

formula queries, thus some properties are automatically ruled out by the verifier or require

some modifications for further verification. Nonetheless, some characteristics must be

addressed when it comes to fully verifying robotic mission specifications that are not

common properties to all robot systems. For instance, if there is a mission path capable

of accomplishing the mission with a certain set of capabilities enabled or if the needed

preconditions are met before a certain goal or task. The relevant characteristics must

be extracted from the specification model as verifiable properties in a comprehensible

manner.

Another concern derived from the first question is the possible loss of meaning during

the verification stage i.e. the specification and the verification model do not have the same

implied properties or some properties are missing, and thus would render the verification

model partially or completely useless. Therefore, both generation of verifiable files and

verification properties processes must be sound and thoroughly specified to assure that

such properties were not ignored during the generation process.

7

Research Question 1. (RQ1) : How to automatically verify mission specifications

of heterogeneous MRS from a high-level perspective?

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 19

1.4 Contributions

The contributions for this work are twofold:

1. a verification process for high-level MRS mission specification to assure its correct-

ness and identify potential inconsistencies early in the MRS mission engineering

process. This is achieved through a strict set of mapping rules between mission

specification and UPPAAL elements;

2. We also propose a framework that automatically implements this translation into

UPPAAL models and properties. The output intended is as a set of verifiable TCTL

properties and UPPAAL models generated from MRS mission specification inputs

in the form of goal models and complex tasks expressed as Hierarchical Domain

Definition Language (HDDL).

Additionally, a case study verifying mission scenarios from RoboMAX will be used

for evaluation of this work. Figure 1.2 depicts the overview process for MutRoSe along

with a proposed contribution. The area circled in red depicts the proposed addition to

the current process. First, the mission specif ication elements are mapped and generated

as a UPPAAL NTA, then the model is verified using UPPAAL model checker verifier tool.

Should the specification verification be incorrect, the user is then able to correct the

specification files and submit them onc e again for verification, restarting the process, it is

important to stress that the restart is not automatic, however, given the arrow pointing

back to mission specification files. It only points out that the same file (now corrected)

is used once again as input. Note that the main contribution is an automated generation

process derived from the models. One should note that the world knowledge is excluded

from this verification process, that is due to the fact that the world knowledge if considered

in this approach, would instantiate variables inside the verification model, this is not the

best intended option since verification in U PPAAL is able to cover extensively multiple

paths of execution. Therefore, the world knowledge is not an input for this verification

process.

1.4.1 UPPAAL

UPPAAL is the model checking tool used in this project for specification and verification

of MRSs. Its 3 parts (Design, simulation and verification) consist in an integrated envir -

8

Research Question 2. (RQ2) : Is it possible to extract relevant characteristics

from MRS mission specification models as verifiable properties?

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 20

Figure 1.2. Proposed contribution overview

onment that will be used for designing and verification of properties. It uses TCTL as

formalism for verification. The designs are focused on channel communication between

timed transitions, but the latter can be omitted by the user if the system does not con-

tain any timed constraints. Additionally, UPPAAL verifies properties by using TCTL,

likewise, timed constraints can be also be omitted, allowing the verification of no n-timed

properties as well.

UPPAAL is a tool used in several works in the verification field [37, 38], thus establishing

its academical prominence, additionally, it provides a rich environment for verification of

its models. It was the chosen tool due to its ability of providing a comprehensive model

ordering through template graphs, moreover, its communication channels and variables

are useful to link and describe many templates as an unique system.

Additionally, UPPAAL has many industrial case studies [39, 40], which proves its re-

sourcefulness in both academic and business settings. This can be attributed to its re-

sponsive interactivity and friendly interface when designing templates. Arguably, U PPAAL

has MDE features as it is able to break down complex systems in separate templates de-

scribed as models, which helps to describe various systems timed scenarios.

9

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 21

1.5 Dissertation Outline

The remaining chapters of this document are structured as follows: Chapter 2 contains

the relevant theoretical background. Chapter 3 presents the solution proposed in this

approach. Chapter 4 displays experiments and their respective results, along with veri-

fication of properties. Chapter 5 approaches related works in MRS. Chapter 6 concludes

this document with final remarks and directions for future works.

10

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 22

Chapter 2

Theoretical background

2.1 Goal Model

In requirements engineering, it is often beneficial to describe a system as a set of object-

ives and the related steps towards their achievement. In goal-oriented approaches, goal

models are a popular way to graphically describe a tree structure containin g tasks and

goals performed by certain actors in a bottom-up fashion. They also provide a compre-

hensive and intuitive language, which is useful for quick visualisation of high-level mission

specifications.

In Fig 2.1, there is an example of a goal model. Goals are shaped as rectangular circles

and the tasks are represented by hexagons. The set of goals and tasks refer to the actor

responsible to enact them. The main task is the root node of the tree, if all sub-goals

and tasks are performed accordingly, then the root goal will be achieved. Usually, a goal

model has more than one way to achieve the main goal, justifying the need of a complex

diagram to represent.

In order to further improve the representation of goal models, CRGM adds runtime

annotations and contexts to the goal model. Contexts can be defined as a partial state of

the systemôs surrounding world that may impact it negatively or positively. The algorithm

which defines if the main goal is achieved, namely achievability [2], considers all possible

path branches instances of contextual settings in order to satisfy the root goal, similar to

the SAT problem. A similar process is done in CRGM missions by MutRoSe to derive all

possible mission decompositions and how they can be achieved.

2.2 HDDL

Hierarchical Domain Definition Language (HDDL) is a language extension of Planning

Domain Definition Language (PDDL) for hierarchical planning, the extension adds hier -

11

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 23

Figure 2.1. Goal model example for a museumôs visitor assistance system [2]

archical planning characteristics while trying to preserve all other aspects of the original

PDDL. The hierarchical language is responsible for representing a domain with abstract

tasks and its respective methods. This domain may also contain variables and predicates

related to them. A HDDL file may have the following elements:

Å types: the list of types allowed for variables;

Å constants: constants defined for the domain;

Å predicates: the possible predicates (preconditions and effects). Predicates may act

as constraints in the case of preconditions or as assignments in the case of effects;

Å task: abstract task with name and parameters containing one or more methods;

Å method: method with name, parameters and respective types, preconditions and

subtasks;

Å action: an atomic primitive task containing parameters, types and predicates

These elements are organised in tasks: they contain the different types involved in one

or more methods that can execute the task. A method contains the actions that must be

accomplished to finish the task and if their ordering is sequential or parallel. Addition -

ally, methods may have preconditions defined by predicates, which could constrain the

execution of the method due to preconditions not being met. Actions have parameters

containing the types involved, since this is done in an hierachical manner, the types in-

volved in an action also belong to the method. Actions also contain effects: they work as

statements which may update values of predicates in HDDL.

12

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 24

2.3 MutRoSe

MutRoSe [3] is a framework for hierarchical task planning with strict rules for system

description and world knowledge. Additionally, the project contains examples to help

beginners to understand the tool and design their own mission specifications and out put

their tasks decomposition provided that mission specifications and world knowledge are

made correctly. The output for MutRoSe are instantiated HTN (iHTN)s, which are the

valid mission decompositions based on specification constraints, also known as mission

plans. Hierarchical Task Network (HTN)s are task networks that represent possible de-

compositions given a HDDL specification and differ from iHTNs for their lack of concrete

variables instantiated. Thus, iHTNs are concrete instances of previously decomposed

HTNs inside MutRoSe. In other words, Multi -Robot systems mission Specification and

decomposition (MutRoSe) is a goal-oriented DSL framework used to specify multi -robot

mission plans. MutRoSe is concerned with the high-level task planning of multi -robot

missions and the allowed decompositions available given a specific state of the system

and its environment. After given the mission specification files, it runs an algorithm and

derives the valid mission decompositions as output.

An incorrect specification can compromise the entire decomposition process. The

reason is that MutRoSe cannot detect if a mission has valid decompositions up until its

execution, leaving the mission planner to discover what is the model error without any

assistance. Moreover, there is not a generation process for MutRoSe missions as veri-

fiable specification files. This process should be done automatically for valid MutRoSe

mission specifications, i.e. a specification syntactically correct, but not necessarily se-

mantically correct, as it could contain design errors. Therefore, model checking could be

greatly beneficial to MutRoSe specification files as they are not subjected to any verific-

ation techniques and these errors could impact a MRS mission performance or even its

achievement. Figure 2.2 shows MutRoSe process overview

2.4 The UPPAAL Model Checking Tool

Model checking is a formal verification method that ñexplores all possible system states

in a brute-force manner" [12] and can help to verify systems at an early stage of design.

A popular model checker to verify real-time systems is UPPAAL [5]. It is used for the

creation, verification and validation of networks of timed -automata (NTA), a subset of

FSA systems.

UPPAAL provides a graphical interface divided into three main parts: the editor, the

simulator, and the verifier [5]. In the editor, systems are modeled as networks of timed -

13

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 25

Ҷ

Figure 2.2. MutRoSe process overview [3]

automata inside template files. These networks are composed of locations connected by

edges that can execute functions, hold logical conditions, and synchronize with other auto-

mata in the system through channels [41]. UPPAAL uses locations as an abstraction for

states and its transitions are defined by invariants, guards and synchronisation channels.

UPPAAL has been used extensively to model and verify many MRSs [31, 32]. Finally, the

system defined in the editor can be executed in the simulator, which displays the state of

the automaton at every step.

Table 2.1. Types of TCTL formulae supported by UPPAAL [5].

TCTL
formula

UPPAAL
formula

Description

AG A[] should be true in all reachable states, i.e., for all paths is
always true.

EG E[] The should exist a maximal path for which is always true,
i.e., in every state of this path.

AF A<> For all paths, should be eventually true.

EF E<> There should exist at least one path, for which is eventually
true.

AG(AF)̞ ð> ̞ For all reachable states, whenever is true, then eventually ̞
 will be true.

According to several definitions in [5, 42, 43], a timed automaton is defined as a tuple

(L, l0, C,

A, E, I) where L is the set of available locations, l0 Ԝ L is the initial location, C is

the set of clocks, A is the set of actions, co-actions and the internal ̱-action, E ᴛ

14

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 26

0

L × × A × B(C) × 2C × L is a set of edges between locations with an action, a guard

and a set of clocks to be reset, and I : L Ҷ B(C) assigns invariant to locations. A

NTA is therefore, a network of n timed automata Ai = (Li, li , C, A, Ei, Ii). Since no

clock constraints are used in this generation (as MutRoSe itself does not contain timed

constraint properties), C = Ԛ. Templates automata are defined with a set of particular

parameters defined in our approach by the HDDL types used during task execution, these

parameters may be passed by value or by reference. Due to flexibility concerns, this work

uses pass by reference to define which variables will be passed as parameters.

Properties in UPPAAL are specified in Timed Computational Tree Logic (TCTL) lan-

guage [5], which has its syntax shown in Table 2.1. As TCTL implies, UPPAAL supports

verification of timed automata, such as real-time systems. Nevertheless, it can be used

for verifying untimed software by simply omitting the timed properties in a model[44].

15

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 27

Chapter 3

Proposed solution

This chapter contains a detailed explanation concerning the proposed solution discussed

in Section 1.3, comprising the stages of development necessary to achieve the solution.

This section is organised as follows: first, it will be discussed the overall proposed solution,

with a descriptive image showing what the intended contribution is. Next, another figure

will depict in details the process overview used in this work. The process is divided in

stages and the following sections are defined by each stage described in the figure. For

instance, the generation stage will cover the mapping rules used to map MutRoSe elements

to UPPAAL structures, alongside a general overview of how the main components of the

NTA interact. Finally, a more internal view of the parsing and generati on process is

depicted in order to give the reader a more concrete sense of what is happening inside the

automated process.

3.1 Process overview

The process uses MutRoSe execution to perform the creation of output files used for this

approach, from then on, it is in a separate program used for parsing and generation.

As of now, the verification process is not fully integrated with MutRoSe, as Figure 1.2

suggests, but it is possible to generate UPPAAL models by executing MutRoSe and then

the program with the output files.

An explanation of the process itself is available in Figure 3.1, which depicts the input

files and processes involved in the parsing and generation of UPPAAL models. The process

begins by executing the MutRoSe framework with input files derived from the specific -

ation files, namely, the MutRoSe execution stage. Next, the generated files are used as

input for the parsing stage, where they are parsed as data structures to be used in the

generation stage. Generation comprises the generation of domain, goal model templates

and verification queries. Lastly, the verification stage is responsible for evaluating TCTL

16

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 28

Figure 3.1. Process overview

queries designed to verify mission properties. As indicated in Figure 3.1, we further delve

into the sub-parts of our process in the forthcoming sections.

3.2 MutRoSe execution stage and parsing stage

The execution of this stage is necessary to extract information to parse it into data

structures afterwards during the parsing stage. The parsing stage is basically responsible

of reading and transforming the generated files in data structures responsible for the

actual generation process. During the execution stage, two main files are generated from

the goal model file and three from the domain definition input file. For the goal model,

these files are the goal nodes info file and the goal model order file. The goal nodes info

contains all information concerning a node (i.e. a task or a goal) inside the GM.

As for the domain definition, the main generated files are: the types and variables

information file, the available methods for abstract tasks and the m ethod ordering file.

The first one contains the listed variables in the HDDL file and their respective types.

Next, the available methods for an abstract task file contains the names of one or more

methods available in the domain definition. Lastly, the method orderings contains all

possible orderings for actions within a method.

Examples of generation files are shown in A.1 for both domains (i.e. GM and HDDL).

In the following sections, we will discuss the generation stage and the verification stage

in a high-level fashion, i.e. the sections will not concentrate on specifics of code. The

17

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 29

Figure 3.2. Goal model example

]

generation stage section will also contain the mapping rules needed to generate UPPAAL

templates and additional structures derived from MutRoSe elements.

3.3 Generation stage

The generation stage mainly consists in compiling the information available in the parsed

data structures and translating them to templates inside U PPAAL. The already parsed

data structures are sent to this stage where they are submitted divided into two main

processes: generation of domain methods templates and generation of goal model tem-

plates. The generation of domain methods is derived from files related to the HDDL whi le

the goal model templates derive from mission ordering and general goal model inform -

ation data structures. Both processes also comprise the global and system declarations

(textual structures) used for the templates. After the generation of templates, t emplates

are merged into the same NTA and some automatic verification queries such as deadlock

freedom are added to the verification queries automatically, since they follow the same

syntax in every NTA.

In order to do so, a strict translation process must be established to determine how

the elements of specification in MutRoSe will be adapted to a generated UPPAAL NTA for

verification while preserving the original semantics. Therefore, it is imperative to display

in a subsection, namely mapping rules section, to describe exactly how this process occurs.

18

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 30

Additionally, following subsections will also contain specifics of the generation process

itself with a breakdown of how mapping rule is applied during the generation.

3.4 Mapping rules

To generate a coherent generation, applicable to all missions designed in MutRoSe, one

must define how elements present in the original specification are translated to a verifica -

tion grammar (i.e. the UPPAAL NTA). Table 3.1 express the rules derived from elements

which are described in the GM or the HDDL input files and how they are created within

the generation process for the NTA. In addition, rules will be further elaborated in their

respective subsections. A UPPAAL timed automaton is defined as a non-deterministic

finite state machine enhanced with clock variables where the clock variables are evaluated

to real numbers during simulation. In the next subsection, we will use the semantics of the

definition present in [43, 5] as grounds t o establish the generation process, this semantics

will be used throughout this section.

NTA generation

Two main automata generated are defined as the goal model level template and the task

level template, note that templates and automata will be used interchangeably from now

on. The goal model level template is one automaton responsible for coordinating task and

method execution in the order defined by the CRGM tree, whereas the task level template

is a collection of m available task methods and templates responsible for execution of the

subtasks needed to achieve a particular abstract task, defined in the HDDL file.

When mentioning certain MutRoSe elements, it is worth noting that there is an input

file responsible for each rule ID. For instance, consider rule #1: for the goal model level

template, no particular types are necessary for its creation, therefore no parameters are

used in this template by default, while the task level template may use one or more types,

depending on the types used in the actions defined in their subtasks. Both levels have

their declarations stated in the global declarations, which, as the name suggests, is visible

to all other templates. It is beneficial for tasks to be able to check each other status during

mission simulation, such as capabilities, which are globally visible. This is justified by the

fact that types are elements originated from the HDDL inside MutRoSe. The following

rules try to divide template responsibi lities in order to clarify the generation process,

however, this is not possible at all times, since some interaction is needed for both levels

to cooperate inside the same network of automata.

The common flow between those two automata is as follows: the goal model template

triggers the execution of goals and tasks as described by the goal model input file, goals

19

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 31

may have runtime annotations which are critical to mission ordering, while tasks are used

as execution placeholders to their respective methods. Whenever a task is executed, the

goal model then triggers a channel to execute the particular method template for that

task. The method may finish with a successful or failure state, this indicates that the

task has finished in both cases. Next, a channel is triggered by the task method warning

the goal model template that its execution has ended, which delegates the simulation

execution back to the goal model level. This is done until the mission is fi nished or fails

by being unable to execute one or more tasks.

Therefore, one of the immediate advantages of using a verifiable model is to investigate

execution traces and how predicates or other mission parameters such as variables may

impact on their behaviour. Next subsections dwell deeper in how rules interact during

the model generation and how these constructions are helpful during mission simulation

and/or verification.

Rules #1 and #2

Types in HDDL are used to define allowed types for variables in the domain [3]. Types

may have predicates, which are more thoroughly defined in rule #3. In our generation

process, a type is mapped as a struct type with a particular method and variables are

instantiated according to the maximum number of pa rameter variables present in one

single task. Assuring that the number of instance variables will suffice the required amount

of variables associated with that type for the mission description.

A type is therefore a set of predicates T = [P] where V P ᴛ P is the subset of valid

predicates in P . As rule #2 states: types without preconditions or effects present in the

domain file (i.e. valid predicates) are discarded, as they are not present in the domain

definition. This is done inside the generation proce ss by evaluating the available methods,

their subtasks and actions and removing the types without valid predicates until only V P

are mapped in our approach. In MutRoSe semantics, types can also have their types

defined through the world knowledge, a secondary file which contains objects that will

replace variables with instances. In addition, the world knowledge contains definitions of

predicates and functions being initialised. Since the world knowledge is being discarded

for the sake of generality, some variables have no defined value and cannot be properly

taken into account without this file.

Rules #3, #4 and #5

Predicates are defined as boolean expressions which can be used as preconditions or effects

and are always defined inside a type. Consider the equation with the following semantic

20

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 32

of a transition [42]:
l ҶĪ

l , where

(3.1)

g = t.precondition == true

Equation 3.1 defines a transitio n from location l to l bounded by an guard g, which means

that the transition will only occur when the t.precondition is true. In this approach, the

start location is denoted by l of a method with a predicate precondition == true of

variable t from a type Type. The Figure in rule #4 row depicts a similar transition to

an action bounded by the same guard where l named as "action" for clarity purpose. In

other words, the action will only be performed if the precondition stands, as defined in

the domain specification.

This, however, raises a problem with preconditions defined as guards: if the precon-

dition is not met by some reason, this would result in a deadlock inside the model, as

there would be no other transition available for the template to go to. This was solved

in this approach by adding an extra location with two new transitions: one containing a

guard with negation of the predicate as shown in rule #5 to avoid deadlocks; the other

transition goes back to the initial node, triggering method failure with the assignment

of a boolean variable to true (namely method_0_failed) which denotes mission failure

in templates. The transitions are both represented in the Figure of rule #5 and in the

equation below:

l Ī¬Ҷg lfail,

lfail ҶĪ l, where (3.2)

¬ g = t.precondition == false (i.e. the negation of g),

u = method_0_ failed = true

Where lfail is the additional location created for failure and l remains the same location

from Equation 3.1, stressing that both must stem from the same initial location where the

precondition rule appears in order to prevent a deadlock condition. ¬ g is the negation of

the precondition generated simultaneously. In the case of having more than one predicate

in the same transition, UPPAAL is able to support n predicate clauses using boolean

algebra: consider P and ¬ P the set of n predicates in a transition, thus the following

equation depicts how predicates and their respective negations are generated:

P = p1 ֧p2 ֧p3 ֧... ֧pn

¬ P = ¬ p1 ֨¬ p2 ֨¬ p3 ֨... ֨¬ pn

(3.3)

Where p1, p2, ..., pn as well as their negated counterparts correspond to individual

predicates, such as g and ¬ g in Equation 3.1 and 3.2. It is also possible to note that

21

g

u

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 33

synchronisation issues are addressed by communication channels. While there are not

imperative mapping rules for them as they are not derived from MutRoSe elements, they

are present throughout implementation in order to guarantee execution in the correct

order of the NTA methods defined by the goal model template, which will be explained

in rules destined for the GM input file.

Rule #6

Predicates also come in the form of effects, which can be defined as the triggered predicate

after performing an action (i .e. a transition). Likewise, a similar pattern is found in rule

#6, where instead of being a guard, it takes form of a UPPAAL update. Updates are

used in UPPAAL to assign values to variables or invoke functions defined in declaration

templates. An update transition works similarly, where instead of being the target location

for a transition, it is its source location. However, they do not require a negation nor extra

transitions as preconditions do, this is due to the fact that they are only an assignment

to a variable which side effect is changing the system state, thus, they do not cause any

deadlocks. Referring to the rule #6 Figure in Table 3.1, an equation below depicts how

an effect could be generically expressed:

l ҶĪe l , where
(3.4)

e = t.ef fect = true

Where t.ef fect is another predicate from the same type struct variable t, location l

is the source location and l is the end node if the method does not contain any more

subtasks or a subsequent action. For reference, an example of the struct used can be seem

in Figures of rule #1 and #3.

Rules #7 and #8

Capabilities are one of MutRoSe particular additions to HDDL syntax and are used to

define capabilities necessary for mission achievement. As such, they work in a similar

manner as predicates, with the exception that capabilities are not assigned such as in rule

#6.

Capabilities have a global scope when mapped to UPPAAL as boolean variables but

do not possess any types and are individual instances. This however poses a limitation

to how these capabilities are used inside UPPAAL, since they are converted directly to

a variable during generation, it is not possible to have multiple instances of a given

capability, whereas predicates may have as many variables as possible. Capabilities are

mapped as such mostly because it is not possible to infer how many capabilities will be

22

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 34

needed using only the domain file. The following equation depicts the original capability

transition followed by the additional transitions and location added to prevent deadlocks:

l ҶĪc l , where

c = capability == true

l Ī¬Ҷc lfailc,

(3.5)

lfailc ҶĪ l, where

¬ c = capability == false

u = method_0_ failed = true

It is important to stress that while Equation 3.5 is very similar to equations regarding

preconditions (i.e. Equations 3.1, 3.2) l and l are different locations from the former

equations used here for clarity purposes. Furthermore, it is possible to define a set of

C capabilities for a given transitio n in which the generation process for l, l ,lfailc would

behave very similarly as Equation 3.3. Lastly, capabilities too might compromise the task

execution, therefore its transition also contains the update u.

Rules #9 and #10

1 (: task AbstractTask : parameters (? r 1 ? r 2 - robot ?p - person))

2 (: method method - 0

3 : parameters (? r 1 ? r 2 - robot ?p - person)

4 : task (AbstractTask ? r 1 ? r 2 ?p)

5 : p r e c o n d i t i o n (and

6 (p r e c o n d i t i o n ? r 2)

7)

8 : ordered - subtasks (and

9 (act ion - 0 ? r 1 ?p)

10 (act ion - 1 ? r 1 ?p)

11 (act ion - 2 ? r 1 ?p)

12)

13)

14 (: method method - 1

15 : parameters (? r 1 ? r 2 - robot ?p - person)

16 : task (AbstractTask ? r 1 ? r 2 ?p)

17 : ordered - subtasks (and

18 (act ion - 3 ? r 2 ?p)

19 (act ion - 4 ? r 2 ? r 1)

23

u

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 35

20

21

22

Listing 3.1. AbstractTask definition from domain file

Abstract tasks are used in HDDL to describe how they are achieved through the execution

of a method m contained in a set of methods M , which may contain sub-actions and sub-

methods. The domain file does not contain explicit instructions of which methods will

be needed for a particular mission setting, in fact, the method might not be used at all

for that MutRoSe instance should it not be included in M . Thus, the generation process

adopts the naive approach of generating all method templates. The generation process

adopts this behaviour since the abstract tasks which will be executed are only known

during the generation of the goal model template, where goal tasks are directly related

to abstract tasks from the HDDL file. Thus, it is safe to conclude that the collection of

UPPAAL template graphs related to a abstract task directly represents the said task.

In order to illustrate how the generation of task in HDDL to a U PPAAL template is

done, suppose we have an abstract task with two methods as in Listing 3.1. It depicts an

example of a HDDL abstract task composed by two methods, which are related to the task

due to the task attribute (lines 4 and 16). method-1 does not contain a precondition while

method-0 does (lines 5 through 7). method-1 contains an abstract task in its subtasks.

HDDL specification supports nested abstract tasks inside other tasks, the solution adopted

in this work is to use yet another synchronisation channel inside the method template

referring to the respective available methods for the abstract task in question. In an

UPPAAL template, this means that there will be a transition channel li nking the generated

template of method-1 to the available methods of AbstractTask-2 when transitioning

from action -4. Suppose that the only available method to execute AbstractTask-2 is

method_2 (since its definition is not shown in Listing 3.1). Whenever the task method

ends (succesfully or not), a channel triggered returns the simulation to the method. From

then on, there are two transitions from which the method continues its execution, one is the

remaining subtasks, where the underlying method has not failed and other where it has.

For the failed method transition, there is a specific location (namely failed_AT) where

the failure state is triggered, which has a transition going back to the end-method node,

which triggers the channel indicating that the m ethod has ended. Figure 3.3 illustrates

how the following output would be for this method. It is important to stress that the only

available method for AbstractTask-2 was method_2, thus, the synchronisation channels

used in this example coincide with the specification. If there was more than one method for

AbstractTask-2 to be achieved, this method would be included as an available transition

24

(AbstractTask - 2 ? r 2 ? r 1)

)

)

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 36

Figure 3.3. UPPAAL generated template for method-1

as well. Figure 3.4 displays an example for nested abstract tasks with two available

methods.

Abstract tasks and methods coincidentally have parameters, which are used to define

which parameter variables are used in their subtasks. Thus, the parameter generation

derives from the domain file specification. One important exception is that if the type is

removed due to not having valid predicates (as mentioned in 3.4), the type itself will be

removed from the parameters list. As mentioned before, the parameters are defined by

reference for two main reasons: one is that the domain file also does not instantiate vari-

ables, only defines which variables are used, thus it is possible to infer that the definition

uses call by reference in the domain file as well. The second reason is that by adopting

the call by reference approach when generating, it is possible for the end user to define

which variables are used for each method in system declarations. It is possible to identify

the parameters from the domain file in lines 15 and 3 in Listing 3.1, derived from the

parameters needed for the task (line 1).

Both tasks and parameters are directly involved in system declarations. UPPAAL uses

system declarations to define which templates will be instantiated as processes in that

system instance. In more concrete terms, if a template is not attached to the system

process, it will not be accounted for in simulation and verification stages. This allows

for more flexibility while using the templates as the end user is also able to define which

methods will be truly used in its system. For this generation approach, all methods are

included in the system declarations. In addition, variables of a same type can be switched

to evaluate new system configurations, this essentially means that if a variable r of type

Robot is defined in the template, that variable may be reassigned in system declarations

to another robot r2. In doing so, the end user may analyse the behaviour of a single robot

throughout the entire mission to see if the mission itself is compromised somehow. The

only pitfall for this approach is assigning variables not declared in the global declarations,

which will obviously output an error.

25

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 37

Figure 3.4. Method template with nested abstract task with two methods in UPPAAL

Rule #11

Actions (also known as primitive tasks) [3] are concrete tasks from the domain file which

belong to one or more methods and need to be carried out to achieve a certain task. Ac-

tions may have preconditions, effects and parameters, alongside their types (type instances

needed for that action to occur).

Aside from being mapped as locations and having transitions originating from or to

them with guards or updates, actions themselves do not hold much importance since they

do not go into details as how they are achieved. The reason is that actions should not be

specific by design, which overall contributes to the high-level approach MutRoSe has.

Rule #12

In a GM, a goal represents an objective achieved by carrying out its sub-goals and sub-

tasks. It is therefore the representation of a mission goal that is relevant to the mission

context. MutRoSe adds another layer for goals when adding runtime annotations that

may affect the order as well. The tree traversal in a goal model is done depth-first from

the leftmost position, also known as preorder traversal. This order can be changed if a

runtime operation takes place.

In UPPAAL NTA generation, Goals are the primary generated structure from the

goal model level template. As stated before, the goal model level template consists of

one template which replicates the ordering present in the CRGM file. Goals without

runtime operators are only added to the UPPAAL template graph if they contain a leaf

node containing a task in their traversal path, otherwise they are not generated. This is

done to reduce the state space complexity without loss of meaning for both the model

26

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 38

and MutRoSe specification as the actual execution is carried out by tasks, there is not

an issue in ignoring nodes which are not crucial for task achievement. Other goals that

possess runtime annotations will be discussed in other specific rules.

Rules #13 and #14

Tasks in the GM translate to abstract tasks (domain file) by name, which, in turn, rep -

resent one or more methods. Tasks are only descriptions of which steps must be taken

in a goal-oriented setting to achieve a particular objective, tasks only contain one id

(e.g. AT 1, AT 2, ..., ATn), namely task_ID, and a name which refers to the abstract task

method name.

In the generation process, whenever a task node is encountered, the goal model level

templat e creates two locations: one is the initial task location, named exec_[task_ID]

and other is the end task location, named f inish_[task_ID]. The initial task location

is responsible for being a transition target (i.e. an edge with an arrow pointed to in

the initial task location) for a synchronisation channel where it triggers the execution of

the method. The goal model level template is then halted at this location because the

next transition to the end task location contains a synchronisation channel waiting for

the task to be finished, thus it must wait for the channel trigger. The end task location

is responsible for analysing the result of the task execution after its end was triggered

and taking the correct deterministic transition afterwards. Similarly with preconditions,

where there is a failure and a successful state, the end task location has two branching

transitions to d ecide if the task has failed or not. This is decided by the triggering of

the previously discussed variables in guards which denote mission failure for a method.

Should the task fail and not inside a fallback operator, then this means that the mission

has failed and the execution stops abruptly followed by the triggering of a variable which

represents mission failure, named mission_ failed. Otherwise, the mission continues to

the next locations or to the location representing the end of the mission. Figures in rules

#13 and #14 depict how this pattern occurs in the goal model level template.

Rules #15 and #16

A fallback operator is a GM runtime annotation operator contained in goals inside the

CRGM. If a goal contains this operator, a very specific pattern both in MutRoSe and

in the generation process occurs. First, the rule for the fallback operator will be briefly

discussed, next, the generation rule will be explained to establish the relationship between

both representations.

27

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 39

A fallback runtime operator is one of the three runtime operators in MutRoSe. Having

a fallback annotation means that the goal has an alternative course of action should the

first one fail. The semantics for the fallback operator is:

FALLBACK(N 1, N 2) (3.6)

Where N 1 and N 2 are the first and second id node and may be a task or a goal inside the

goal model. What the fallback operator essentially does is: Should N 1" fail its execution,

then N 2 must execute correctly, or else the mission fails. The fallback operator has nodes

N 1 and N 2 as children and its execution pattern differs greatly from others. For instance,

if N 1 finishes successfully, then N 2 is not even executed. On the other hand, N 2 should

only be executed when a failure of N 1 is confirmed.

In UPPAAL, the generation rule takes into account all three possible outcomes.

Å If the first operand from fallback is successfully executed, then it transitions directly

for the next node available (i.e. the sibling node, if it exists) or;

Å if the first one fails, then the second operand is executed. If it also finishes with a

failure state, then it diverges to a failed mission state;

Å If the first one fails and the second one is executed successfully, then a transition is

made where to the next mission node available.

This is illustrated by Figure 3.5 where we have the generation of a fallback oper-

ator as part of a UPPAAL template in the following syntax: FALLBACK(AT 1, AT 2).

goal_G[previous] is the goal location where the pattern begins, as stated in rule #9 and

#10, it is possible to see the transition with a synchronisation channel triggering the ex -

ecution of the AT 1 task, executed by the method_0 template. Next, in the finish_AT 1

task, there are two transitions: one to the next goal goal_G[next] and other in the case

the method fails. In the failed method transition, it is possible to observe that the second

task AT 2 begins its execution, following the same pattern. After trying again with a

different task, the pattern ends in a successful state or a mission failed state, represented

by missionFailed location, if both tasks should fail.

Lastly, another modification is made inside methods involved in fallback operands,

stated by rule #16: if a template method is inside a fallback operator, a default failure

location is added to it. This is done to assure that all mission paths allowed are explored,

even if the method does not possess failure states defined by other conditions, such as

abstract tasks failing or preconditions or capabilities not being met.

28

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 40

Rule #17

A sequential operator is a runtime operator in the GM inside MutRoSe. It is a very

straightforward pattern: whenever a goal contains a sequential operator, all operands (i.e.

goals or tasks) involved must be executed in that strict order, establishing an execution

constraint. As opposed to a fallback operator, a sequential operator may have two or

more operands, while the fallback operator is binary.

In UPPAAL generation, this is done by an algorithm which "unwinds" the goal model

from the sequential root whenever a sequential operator is found. Unwinding the sequen-

tial root means that another generation process takes place to ensure that the tasks are

sequentially executed in the order stated by the operator. The result for one task is de-

picted in the Figure in rule #17. The sequential pattern can be extended to one or more

tasks,

Rules #18, #19 and #20

The rules #18 and #19 state that all generated NTA models possess boolean variables

used to indicate whether a mission has failed or not in the goal model level template.

Necessarily, one of them receives a true value after the end of an execution due to the fact

that they are linked to locations situated at the end of the template graph or in failure

locations. This value is used afterwards during simulations and verificat ion queries to

assert if a mission has ended successfully given a certain configuration.

After a mission has ended, it goes back to the initial node (beginMissionNode), where

it can begin its execution again. Since the values are still stored, the startM ission()

global function is used to flush these values whenever a new mission begins, this is done

in the first transition of the system.

Rules #21 and #22

The initial nodes in templates play a central role in triggering mission or method execution

but also pointing out that they have finished. In the goal model level template, aside from

starting the mission, the beginMissionNode is also responsible for being the location where

all final states concerning the previously executed mission can be seem during simulation.

As for the task level template, the init_node location is used to trigger execution

of the method, while the end_method is responsible for triggering the synchronisation

channel which warns the goal model level of its end. Both are generated for every NTA

and are used during generation process by linking of the dynamic parts of the template

(i.e. the mission specification).

29

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#1

Types

Structs inside the global

declaration if they have

predicates related to

methods used within the

mission

HDDL

#2

None

Types without valid

predicates (i.e. predicates

not used as precondition

or effects) are ignored in

the specification

Not applicable

HDDL

#3

Predicates

Boolean variables inside

their struct types which

denote the predicate

value for that instance.

HDDL

#4

Preconditions (Predicates)

Transition guards in

template graphs defined

by the HDDL task

description

30

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

1

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#5

None

A new location and

additional transitions are

added for the negation of

the guard in order to avoid

deadlocks, if a predicate

fails, the method itself fails

and the task triggers its

failure channel.task ends

prematurely

HDDL

#6

Effects (Predicates)

Transition updates in

template graphs defined by

the HDDL task description

which assigns a boolean

value inside a struct

variable

3
1

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

2

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#7

Capabilities

Boolean variables without

struct types which denote

the capability value for that

instance. For the template

graph, they are used as

guard conditions in

actions with required

capabilities

HDDL

#8

None

A new location and two

additional transitions are

added for the negation

of the guard condition in

order to avoid deadlocks,

if a capability fails, the

method itself fails and the

task triggers its failure

channel. The method ends

prematurely.

HDDL

#9

Tasks

A collection of UPPAAL

graphs containing one or

more methods related to

that task

Not applicable

3
2

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

3

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

HDDL

#10

Task parameters

Called by reference as

types displayed in the

specification

HDDL

#11

Actions

An atomic UPPAAL

location for each action

GM

#12

Goal

If a goal is within the subset

of nodes (i.e. sub-goals or

sub-tasks) that contain a task

as a leaf node, this goal is

included as a location in the

goal model template

 3
3

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

4

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#13

Task

Two subsequent locations are

added, one triggers the

channel execution for the one

or more methods available for

that task. The second one deals

with the end of task execution

and checks if the task has failed,

depending on the task parent

operations, this may trigger

mission failure inside the goal

model template

GM

#14

None

A transition activating the method

boolean variable indicating

method failure is added to the

goal model template. The mission

fails if the task does not belong to

a fallback runtime operator, where

it may have an alternative task to

execute afterwards.

3
4

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

5

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#15

Fallback runtime operator

Locations with additional transitions.

If the first operand finishes succesfully,

a transition links the last node of the

first operand to the next sibling (i.e. the

next task) or the end of the goal model

template. If not, it is directly linked to

the second fallback operator, where it

triggers i ts execution. If the second

operator also fails, the transition then

goes to a mission failure state, ending

the mission

See Figure 3.5

GM / HDDL

#16

Task / Fallback

Whenever a GM task is inside a

fallback operand (i.e. being a child

node), an additional failure location

and its respective transitions are added

by default in the method(s) template

graph due to the specification stating

that the particular method(s) may fail

3
5

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

6

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#17

Sequential runtime operator

Whenever a GM task is inside a

sequential operator (i.e. it is a child

node of the sequential operator), it is

generated and executed strictly in the

sequential order to prevent

specification violations.

GM

#18

None

A mission succesful node is added

alongside a global boolean variable

which denotes mission success

GM

#19

None

A mission failure location is added

alongside a global boolean variable

which denotes mission failure

GM

#20

None

A function named startMission()

containing all global variables and

struct variables being reset to false as

mission starts so that no previous values

are carried out to a

new mission execution.

They may be customised by the

end-user to test new

mission configurations

3
6

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

7

Table 3.1 continued from previous page

Input

file

Rule

ID

MutRoSe

element
mapped in UPPAAL as

Visual or Textual

Representation

GM

#21

None

In the goal model level template, a initial

node is always created to denote the

beginning of a new mission structure.

This node is called beginMissionNode

HDDL

#22

None

In each method template from the task

level there is a initial location called

init_node and another one called

end_method. These locations are used to

trigger the start and finish of method

executions, respectively

Table 3.1. Mapping rules

3
7

D
is

s
e
rta

ç
ã
o

(9

6
5
5

2
1
7
)

S
E

I 2
3

1
0
6
.1

4
1

8
0
6

/2
0

2
2

-9
8

 / p
g
. 4

8

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 49

Figure 3.5. Fallback runtime operator template pattern

3.4.1 Generation of TCTL verification properties

Many of UPPAAL TCTL verification queries properties could not be automatically gener-

ated for some cases as they are somehow dependent of the generation process itself. How-

ever, some properties were possible to generate automatically since their syntax would

not change from model to model and thus the generation was possible.

Some examples of automatically generated properties are deadlock freedom and reach-

ability, which is described as whether the mission root goal will eventually be successful,

this is also done with intermediary goals to show that ordering constraints still influence

in partial mission achievement. All properties are described in Table 3.2, where each row

represents a different property evaluated for this work: reachability evaluates if a mis-

sion can achieve its root goal given the correct configuration; mission ordering correctness

evaluates if a certain goal is achieved after the execution of its task methods, used in

this work to depict that mission ordering follow the same as the goal model, even sharing

the same mission constraints; predicate or capability reachability is used to verify if a

predicate or a capability with a certain value (i.e. true or false) might compromise the

execution of a method or the entire mission as well, the example for this row contains a

TCTL query where the left side of the formula is a capability and the right side is the

variable triggered if a particular method fails; last property states that the system is free

from deadlocks.

3.5 Verification stage

The verification of TCTL m ission properties is done after the generation using the already

completed NTA. Due to some of properties being boolean variables, it is also possible to

explore other mission configurations by changing predicates and capabilities. Additionally,

it is possible to test multiple configurations with different robots, this can be done by

38

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 50

Table 3.2. Properties verified in missions

changing system or global declarations depending on which one the end-user plans to

analyse. Once the model is completed after the generation, the verifier is used to assert

verification queries written in TCTL. One limitation is that UPPAAL does not accept

nested quantifiers. This limitation required some adjustments in following verification

queries, analysed in the next chapter. Note that Figure 3.1 outlines that the process of

generation ends the automated contribution. Therefore, the verification queries denoting

mission properties (both automatically and manually generated) must be verifie d by the

user inside the UPPAAL verifier tool.

39

Property Description Example

Reachability
If a root goal will be achieved

successfully or not
E<>mission_complete

Mission ordering correctness

or goal satisfiability

A goal is only reached if previous

task methods are completed correctly

A[] var_goal_model_template.goal_G8 imply

(not pickup_with_door_opening_0_failed or

not pickup_without_door_opening_0_failed)

Predicate or capability

reachability

A predicate and/or capability

leads eventually to a failure

state in a method

not manipulation - ->fetch_deliver_0_failed

Deadlock freedom The system contains no deadlocks A[] not deadlock

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 51

Chapter 4

Experiments and results

This chapter shows the results from the proposed methodology, how they were verified

and the results obtained from both the generation and verification. It is organised in

four sections: one for the experiment settings, containing the general hypothesis for our

experiments, the experimental setup and overall results. Next, one for each of the three

differ ent experiment scenarios, starting from generation results derived from mapping

rules to the verification queries analysed in each case.

Results are from three different RoboMAX [45] mission settings: Two missions from

the Food Logistics mission domain (i.e Pickup and Delivery scenarios) and one from the

Deliver Goods - Equipment. The food logistics missions share the same HDDL domain

file for both missions, but its GM input files are different. The last scenario is a mi ssion

about delivering equipment to agents.

4.1 Experiment settings

4.1.1 Experimental setup

The experiments were conducted in UPPAAL in version 4.1.26-1. The code used to generate

the NTA for missions was made in Python version 3.10.7, with the use of the uppaalpy

library [46, 47] is available at GitHub [48]. Another relevant project is a fork of the

original MutRoSe repository [49], modified to output relevant files, as stated in Section

3.2. Additionally, the experiments were conducted on AMD Ryzen 5 4600H with a total

of 16GB memory.

4.1.2 General hypothesis

For each of the three missions being analysed, it is intended to display generation results

when being compared to the original specification to show that both rules and specification

40

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 52

Figure 4.1. Food Logistics - Delivery goal model

adhere to each other. Additionally, we verify properties as queries to validate this ap-

proach, properties range from relevant characteristics, deadlock freedom and reachability

as defined in Table 3.2.

For RQ1, the hypothesis for this work is that the results yield the same specification

from MutRoSe as a NTA by following the mapping rules from 3.4 from MutRoSe and

that verification queries are fit for validating the previously stated properties. As for

RQ2, the hypothesis is that the verification such as mission correctness and predicates or

capabilities affect reachability properties.

4.2 Mission description

4.2.1 Food Logistics - Delivery

Goal Model

The food logistics is a mission used to analyse how robot cooperation can be used to

deliver meals to patients who are often unable to pick up a meal tray by themselves.

The scenario offers two alternatives to deliver food to those patients: either deliver them

directly to the patient, that is, if the patient is able to hold the tray; or deliver to another

robot that is capable of delivering the tray next to the patient.

The goal model starts searching for rooms which need delivering in G2. Next, the

model moves to goal G3 which contains two sub-goals: one for the robots to get the meals

41

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 53

in the kitchen (G4) and other for delivering them to the patient rooms (G7). A sequential

annotation in G3(i.e. G4; G7) already establishes that these tasks cannot be done in no

other order. The Figure 4.1 depicts the goal model of the food logistics mission.

During delivery, one important part of the goal model structure is the OR decom -

position present in goal G10, responsible for defining that either goal G11 or G12 are

executed, but not both. Although runtime operators are primarily associated with chan -

ging mission ordering, the OR decomposition plays a fundamental role in this mission to

establish which goal and subsequent task will be executed per mission configuration.

Domain definition

As stated before, the domain definition file is used for two separate missions with different

goal models. Thus, it contains a lot more method definitions than the ones used in a single

mission. The complete file is shown in Listing A.6. In essence, this file domain defines

a hospital with patients and robots interacting in methods for various reas ons such as

object manipulation, delivering and overall logistics inside a health setting.

The abstract tasks used for this mission are as follows: GetFood, DeliverToTable,

DeliverToFetch. The GetFood task, as the name suggests, contains the necessary subtasks

needed for the robot to get a food meal from a certain location. Then, as the food

is obtained, a robot may decide between tasks DeliverToTable and DeliverToFetch, the

first one requires no human interaction, but requires the robot to have the capability

manipulation to be able to deliver the meal correctly. DeliverToFetch needs human

interaction, however, it also requires that the predicate patientcanf etch is true for the

task to be accomplished.

4.2.2 Food Logistics - Pickup

Goal Model

The main goal of this mission is picking up dirty dishes from the rooms where patients

are residing in the hospital, in order to achieve that, it must first survey which rooms

require pickup of dishes. Next, the main mission is identifying and going through each

room to pickup the dirty plates. After dishes have been retrieved, they are delivered to

the kitchen.

This GM contains a slightly less complicated task ordering than the last one, where

two tasks must be executed in any mission path. This is shown in Figure 4.2, where it

is possible to deduct quickly from the CRGM that both tasks must be achieved for a

successful execution. This mission contains the remaining methods not used in the last

one.

42

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 54

Figure 4.2. Food logistics pickup mission goal model

4.2.3 Deliver Goods - Equipment

Goal Model

This mission scenario from RoboMAX illustrates robots delivering goods or equipment to

agents in an uncertain environment. As Figure 4.3 The main goal, of course, is assuring

that all the deliveries are made. Differently from the other two previous missions, this

one contains fallback operators in 3 goals. In this case, the output will follo w rules stated

in Section 3.4.

Domain definition

The domain definition file displayed in Listing A.7. Once again, the domain is still a

hospital, but storage, agent and obj types were added. Unfortunately, it is noticeable that

no predicates are used inside the method definitions, which leaves only action ordering to

be generated in the respective templates. This leads to the conclusion that this HDDL file

is much more simpler, which shifts the responsibility to the CRGM to deal with variable

instances.

43

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 55

Figure 4.3. Goal model for Deliver Goods - Equipment mission

4.3 Results

4.3.1 Profiling results

The generation program [48] took 0.434s for the food logistics mission (in both cases) and

0.433s for the deliver goods. With the cumulative time for the generation process being

0.319s for the food logistics missions and 0.302s to the deliver goods mission. This could be

attributed to many generation loops which traverse through the data structures and were

not optimised an d inner calls made by uppaalpy [46] to other libraries. Base generation

performance does not drastically change since most specifications go through the same

functions before being properly generated. With the exception of a few additional loops

for runtim e operators which do not change the general complexity, the overall performance

results are rather similar. This could be attributed to the specification and mission sizes

which are pretty similar as well. The profiling results were captured using snakeviz [50]

and cProfile [51].

4.3.2 Food Logistics - Delivery

On total, 14 templates were generated in UPPAAL, with 6 being directly associated with

this execution due to execution paths. The task methods contain many of the original

elements present in the original specification. The goal model, at this version, only sus-

tains the original ordering established by runtime and decomposition operators. The goal

model template for this specification is displayed in Figure 4.4 and clearly shows that

even the OR decomposition was generated correctly, which enables the user to correctly

44

Dissertação (9655217) SEI 23106.141806/2022-98 / pg. 56

Figure 4.4. Goal model template for food logistics

analyse all mission paths. It is also possible to see that tasks are strictly executed in one

of the following orders:

AT 1 ĪҶ AT 2 or

AT 1 ĪҶ AT 3
(4.1)

Where abstract tasks representation of execution are present in exec_AT and finish_AT

locations.

It is also important to discuss the declarations created by this generation, the variables

generated are in full conformity with what was expected, even the types for some were

derived correctly from specification. As stated before in the generation stage, capabilities

are defined in the domain definition without a specific type because the domain defini -

tion file does not express directly which robot needs to possess the capability, therefore

the addition of a type would imply that the generation knows wh ich robot possess the

capability in question, which is incorrect. One benefits in this specification from this fact

by not having the necessity to formally assigning another variable to the robot struct

every time it is used. This also helps reducing the state space without compromising the

specification, since the capability is modelled as a guard constraint in either scenario as

shown in Figure 4.5 which corresponds to the template generated for the table-deliver

method from the domain file in Listing A.6.

The list of task method templates related to this mission is described below:

1. Food pickup template (temp_food_pickup_0);

45

