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Abstract

In the last decade, we have witnessed a myriad of astonishing successes
in Deep Learning. Despite those many successes, we may again be
climbing a peak of inflated expectations. In the past, the false solution
was to "add computation power on problems’, today we try "piling
data”. Such behaviour has triggered a winner-takes-all rush for data
among a handful of large corporations, raising concerns about privacy
and concentration of power, It is a known fact, however, that learning
from way fewer samples is possible: humans show a much better gen-
eralisation ability than the current state of the art artificial intelligence.
T achieve such a feat, a better understanding of how generalisation
works is needed, in particular in deep neural networks. However, the
practice of modern machine learning has outpaced its theoretical
development. In particular, “traditional measures of model complexity
struggle to explain the generalization ability of large artificial neural
networks” [Zha+16]. There is yet no established new general theory of
learning which handles this pseudo-paradox. In 2015, Naftali Tishby
and Noga Zaslavsky published a seminal theory of learning based
on the information-theoretical concept of the bottleneck principle
with the potential of filling this gap. This dissertation aims to investig-
ate the efforts using the information bottleneck principle to explain
the generalisation capabilities of deep neural networks, consolidate
them into a comprehensive digest and analyse its relation to current
machine learning theory.

|#ha+i6] Thang ot al, Understamding deep
lewrning requires rethinking generafization,






Resumo Extendido

Na ultima década, assistimos estupefatos uma miriade de sucessos em
Aprendizagem Profunda (Deep Learning (DL)). Apesar de tamanho
sucesso, talvez estejamos subindo um pico de expectativas infladas.
No passado, incorremos no erro de tentar resolver problemas com
maior poder computacional, hoje estamos fazendo o mesmo tent-
ando usar cada vez mais dados. Tal comportamento desencadeou
uma corrida por bases de dados de treinamento entre grandes cor-
poracdes, suscitando preocupagoes sobre privacidade e concentragio
de poder. E fato, entretanto, que aprender com muito menos dados
¢ possivel: humanos demonstram uma habilidade de generalizacio
muito superior ao estado-da-arte atual em Inteligéncia Artificial.

Para atingir tal capacidade, precisamos entender melhor como
o aprendizado ocorre em Deep Learning. A pratica tem se desen-
volvido mais rapidamente que a teoria na area. Em particular, Zhang
et al. demonstraram que modelos de deep learning sdo capazes de
memaorizar rotulos aleatorios, ainda assim apresentam alto poder de
generalizacio [Zha+16). A atual teoria de aprendizado de maquinas
nao explica tal poder de generalizacio em modelos superparametriz-
ados,

Em 20135, Naftali Tishby e Noga Zaslavsky publicaram uma teoria
de aprendizado baseado no principio do gargalo de informacao (in-
formation bottleneck) ['1'Z1sa). Tal teora sucitou interesse e descon-
fianca pela academia, tendo varios de seus artigos primordiais sido
contestados em artigos posteriores. Esta dissertacio visa investigar
esforcos esparcos do uso do principio do gargalo para explicar a ca-
pacidade de generalizagio de redes neurais profundas e consolidar
tal conhecimento em um compéndio deste novo desenvolvimento
teorico denominado Teoria do Gargalo de Informacio (Information
Bottleneck ‘Theory (1BT)) que mostre seus pontos [ortes e fracos e
oportunidades de pesquisa.

A BUSCA DOS FUNDAMENTOS

Nesta investigacio, partimos de uma discussio hlosofica sobre o que
¢ inteligéncia e o que significa aprender (Capitulo 2) e, passo a passo
(Capitulos 3 a 5), mostramos em que fundamentos a teoria vingente de
aprendizado de maquinas (Machine Learning Theory (MLT)), assim

[#hat16] Fhang et al, Understonding deep
lrarning requives rebhising penerulization.

[T#54| Tishby snd Lastavaly, Deep leaming
and the information bottieneck principle’.



|Ristt| Rissanen, Stechostic complexity and
madeling

[H¥ g3 Hinton sngd Van Camp, "Keeping
thie npnral networks simple by minimizing
the description kength of the weights”

como a emergente (Information Bottleneck Theory (IBT)) se apoiam.
Pudemos assim perceber que ambas teorias se baseiam em um con-
junto muito similar de premissas. A maior diferenca é que Information
Bottleneck Theory (18T) assume o uso de variaveis aleatorias discretas
de espagos hinitos. Entretanto, tal limitacio nao € significativa, uma vez
que pesquisas ja demonstraram que é possivel tornar o erro de quant-
izacao arbitrariamente pequeno conguanto haja memoria para tanto
[Ris86; HVCo3]. Além disso, Information Bottleneck Theory (I8T)
ndo invalida nenhum resultado de Machine Learning Theory (MLT),
pelo contrario, apresenta uma nova narrativa que nos permite con-
ciliar os resultados teoricos com os fendmenos observados, quando
medimos complexidade como a quantidade de informacio nos pesos
de um modelo, e nio a sua quantidade de parametros.

Essa investigacio nos permitiu sintetizar o desenvolvimento tedrico
em leoria da Informacio (Information Theory (IT)) e Machine Learn-
ing Theory (MLT) em uma abodagem que denominamos PAC-Shannon
(Capitulo 6) em que partimos dos teoremas fundamentais de Shan-
non em Information Theory (IT) e provamos limites para erro de
generalizacao em aprendizade.

EXPLICANDO A NOVA TEORIA
Tishby propds que vejamos aprendizado como um problema de codi-
ficagao (Capitulo 7). Nessa perspectiva, os dados de entrada contém
informacao de um alve, uma variavel rotulo, a qual ndo temos acesso;
o problema de aprendizado & encontrar o codificador-decodificador
que expligue nossos nossos dados de treinamento; o conjunto de da-
dos (dataset) de treinamento ¢ a definicio da tarefa (padronagem
estrutural dos dados) que se quer aprender. Em Information Bottle-
neck Theory (IBT), generalizagao nao depende do espaco de hipoteses
do modelo, mas apenas dos limites de compressibilidade do data-
set. Limites esses definidos pelos teoremas de Shannon (Capitulo 5).
Engquante Teoria do Aprendizado de Maguina (MLT) ¢ agnostica a
distribuicio dos dados e modelo-dependente, Information Bottleneck
Theory (1BT) € agnastica ao modelo e distribuicio-dependente. Esta
perspectiva, se relaciona perfeitamente com a teoria algoritimica da
informacao (complexidade de Kolmogorov-Chaitin) (Secio 5.8a).
Essa visdo de informacio como medida de complexidade, nos
permite analisar o treinamento enquanto ele acontece. Ou seja, para
aqgueles que se sentem desconfotaveis com o fato da teoria corrente ver
modelos como uma caixa-preta, onde 56 se analisa a entrada e a saida,
medidas de informagdo nos permitem entender o que ocorre durante



o treinamento. Essa analise leva a surpreendente conclusao de que o
aprendizado tem duas fases distintas: uma fase de ajuste e outra de
compressio. Primeiro, na fase de ajuste, 0 modelo memoriza os dados,
minimizando rapidamente o erro e usando muita informacao que
¢ peculiar apenas ao dataset utilizado e nao a variavel-alvo; na fase
posterior de compressio, 0 modelo tenta esquecer o maximo possivel
sobre os dados de entrada enguanto mantém a informagao sobre o
alvo, reduzindo a quantidade de informacio no modela.

PONTOS FORTES E FRACOS E DE OPORTUNIDADE EM IBT
Partinde do principio do gargalo de Teoria da Informacio demen-
stramos a coesao interna desta narrativa alternativa (Capitulo 8), e
mostramos o embasamento tedrico de praticas em Aprendizagem
Profunda, come o uso de Entropia Cruzada como fungio custo na
otimizacio de modelos; e seus fenémenos, como a generalizacio
de modelos superparametrizados ¢ periodos criticos de aprendiz-
ado [ARS17|(Capitulo 9).

A Information Bottleneck Theory (IBT), entretanto, estd longe de
ser um desenvolvimento tedrico completo. Falta de rigor, definicio
e objetivos claros em alguns dos seus artigos cientificos primeiros
deram razdo ao ceticismo e até discreédito em qgue a teoria passou a
ser vista. O trabalho de Achille e Soatto (Capitulos 8 e ¢) foi menos
ambicioso em suas alegagoes e mais rigoroso, resolvendo alguns dos
problemas da apresentacao inicial da teoria, mas nao se propoe a ser
completo. A presente dissertacio tambem presta a esse papel de dar
um pouco mais de rigor € clareza aos principios assumidos, mas ha
ainda muito o que se desenvolver:

Formulacio PAC: seria possivel criar uma formulacao PAC gue de-
penda apenas de 3, uma vez que esse pardmetro representa um
unico limite (e, 8).

Novas estrategias de otimizacao: se o treinamento tem duas fases
como preconiza Information Bottleneck Theory (IBT), 1ss0 nos
permite usar estratégias de otimizacao diferenciadas para cada
uma.

Transferéncia de Aprendizado: se, em Information Bottleneck The-
ory (IBT), complexidade depende apenas da compressibilidade
do dataset e de um nivel desejado de performance e gener-
alizacdo (fi), podemos analisar a complexidade de datasets e
montar uma topologia de tarefas com a predicao da similar-

xiil

[ARS] Achille et al, Critical Learming
Perinds tn Deep Meurml Nistworks,



Xiv

|[Famaid] Famir et al, “Taskonomy:
Disentnngling tesk transfer learming'.

(58] Chavdhard snd Soatto, Stochastic
Gradient Descent Performe  Variational
Inference, Converges to Limit Cycles for
Dicep Netwnrks'.

|Cha+iga| Chandhari ot sl “Entropy-SGLE
Blasing gradient descent info wide valleys’.

iedade (distancia) entre dafasets e relacionar tais resultados
teoricos com resultados empiricos como os obtidos por Zamir
etal [Zam+18].

Processos ergodicos: os principios de teoria da informacio ndo requerem
amostragem independentes ¢ identicamente distribuidas, mas

apenas que sejam processos ergodicos.

Conexio com mecinica estatistica: a area de Mecanica Estatistica
ji se desenvolve em Fisica ha mais de um século. A conexao
de aprendizado de maquina com teoria da informagio permite
a exploracio de resultados nessa area de Fisica (como fizeram
| CS18; Chatigal).

Em resumo, a presente dissertacio foi capaz de estabelecer que
Information Bottleneck Theory (I1BT) esta longe de ser uma teoria
rigorosa ¢ completa, mas que ¢ uma interessante teoria emergente que

apresenta ainda muitas oportunidades de pesquisa e merece atengao.
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Notation

‘This section provides a concise reference describing notation used throughout this document.

NUMBERS AND ARRAYS

a-a
ab
A
In

INDEXING

i

Ay

A scalar (integer or real) or, in most cases, a vector
a concatenated with b
A matrix

Identity matrix with n rows and n columns

Element i of vector a , with indexing starting at 1

Element ij of matrix A

LINEAR ALGEBRA OPERATIONS

A T
det(A)
CALCULUS

V¥

dy

ax
[ (x)dx
j; flx)dx

Transpose of matrix A

Determinant of A

Gradient of y with respect to x

Derivative or partial derivative of y with respect to x
Definite integral over the entire domain of x

Dehinite integral with respect to x over the set 5



XX CONTENTS

SETS
A A set
F(A) 'The powerset (the set of subsets) of A
{o,1}" The set containing n 0 or 1s
{0,...,n} The set of all integers between 0 and n
ach d is a member of the set A
BchA B isasubset of the set A
AnB 'The intersection of A and B
AuB The union of & and B
A The complement of A&
[ A The cardinality of A

DATASETS AND DISTRIBUTIONS
We use the word example for an outcome drawn from a distribution and the word sample for a
set of such examples. A dataset is a sample.

Paana The data generating distribution

Paana The empirical distribution defined by the training set
8 A sample, i.e. a set of training examples
X The i-th example (input) from a dataset

wii) The matrix W of weights in the i-th layer of a network

¥i The target associated with x; for supervised learning



FUNCTIONS
f:A B
feg
f(x:8) = fo(x)
log, x
logx = log, x
ofx)

X

licunm’rian]

CONTENTS

'The function f with domain A and range B
Composition of the functions f and g, f(g(-))
A tunction of x parametrised by 8

'The logarithm base b of x

If no base is specified, the base 2 is assumed

A nonlinear activation function

Positive part of x , Le,, max(0, x)

is the indicator function and is 1 if the condition is true, 0 other-

wise

PROBARILITY THEORY

Q

w

A
ALB

X
XLy
P(A | B)

P(X=a;)=Px=
pla)=pi=p

a~p

Ex..P[I] = EP':( =
(X)s

a'(f(x))
Nz p,0%)

A experiment or sample space

An outcome (an example)

An event

The events A and B are independent

A random variable

'The random variables X and ¥ are independent

'The probability of an event A given the event B happened

A probability distribution over a random variable (discrete or
continuous defined by the context)

An example a drawn from distribution p

Expectation of x wrt, p(x).ie. XX, x pr = xupit xapa - xu Py

Variance of f(x) under p(x)

Gaussian distribution over x with mean p and variance o?

XK1
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H[X] The entropy of a random process X (bits)

D (pla) Kullback-Leibler divergence of distribution p and g

H[X|Y] The conditional entropy of a random process X given Y. (bits)

R[X] = Rate[X] The rate of a transmission of X (bits)
Hpq[X] The cross-entropy of X between its true distribution p and a
modelled distribution q (bits)
ClX: Y] ‘The capacity of a channel between X and Y (bits)
I[X;¥Y] "The mutual information between X and Y (bits)

Ts(X) = T.(X) = A% ‘The typical set of X
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Introduction

In his acceptance speech for the lest-of-Time award in NeurlPS 2017,

Ali Rahimi® started a controversy by frankly declaring ‘Machine learn-
ing has become alchemy' |Rah18, 12"10"|. His concerns on the lack of
theoretical understanding of machine learning for critical decision-
making are rightful: “We are building systems that govern healthcare
and mediate our civic dialogue. We would influence elections. I would
like to live in a society whose systems are built on top of verifiable,
rigorous, thorough knowledge and not on alchemy.

‘lhe next day, Yann LeCun® responded: ‘Criticising an entire com-
munity (.. .) for practising "alchemy”, simply because our current theor-
etical tools have not caught up with our practice is dangerous.

Both researchers, at least, agree upon one thing: the practice of
machine learning has outpaced its theoretical development. That is

certainly a research opportunity.

1.1.1 A Tale of Babylonians and Greeks

Richard Feynman (Figure 1.1) used to lecture this story |Feygq|: Baby-
lonians were pioneers in mathematics; Yet, the Greeks took the credit.
We are used to the Greek way of doing Math: start from the most basic
axioms and build up a knowledge system. Babylonians were quite the
opposite; they were pragmatic. No knowledge was considered more
fundamental than others, and there was no urge to derive proofsin a
particular order. Babylonians were concerned with the phenomena,
Greeks with the ordinance. In Feynman's view, science is construc-
ted in the Babylonian way. 'There is no fundamental truth. ‘Theories
try to connect dots from different pieces of knowledge. Only as sci-

ence advances, one can worry about reformulation, simplification and

‘As far as the laws of math-
emalics refer lo realily,
they are not certain, and
as far as they are cerlain,
they do not refer to real-
ity

—Albert Einstein

‘Conference an Neural Information Pro-
cessing.

*Rescarch Scismtist, (Google

[Rabu] Rabimi, Ali Rabirei NIFS a0y Tet-of-
Tone Award Presentation Sprech.
LIHL b tpss £y, bey s dpstlgat i

"Deep Learning pioncer ood 2008 Thr-
Lng.lw-.uﬂ Winner bt tpe o F fee. Forstmak . com
yann. Lecury poots/ 101549781 HA02 142

Frovsy 11 Richard Foynman, Mobel laureate
physicist *

*Except when vtherwise stated, all imags
were created by the author.

[Feyas| Feynman, The (hardcier of Plysica
Law,
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ordering. Scientists are Babylonians; mathematicians are Greeks.

Mathematics and science are both tools for knowledge acquisition.
‘They are also social constructs that rely on peer-reviewing. They are
somewhat different, however.

Science is empiric, based on facts collected from experience.
When physicists around the world measured events that corrobor-
ated Newton's “Law of Universal Gravitation”, they did not prove it
carrect; they just made his theory more and more plausible. $till, only
one experiment was needed to show that Einstein’s Relativity Theory
was even more believable. In contrast, we can and do prove things in
mathematics.

In mathematics, knowledge is absolute truth, and the way one
builds new knowledge with it, its inference method, is deduction.
Mathematics is a language, a formal one, a tool to precisely commu-
nicate some kinds of thoughts. As it happens with natural languages,
there is beauty in it. 'The mathematician expands the boundaries of
expression in this language.

In science, there are no axioms: a falsifiable hypothesis/theory is
proposed, and logical conclusions (predictions) from the theory are
empirically tested. Despite inferring hypotheses by induction, there
is no influence of psychology in the process. A tested hypothesis is
not absolute truth. A hypothesis is never verified, only falsified by

[Popa4] Popper, A Ligica da Pesquisa experiments |Popog, p. 31-50]. Scientific knowledge is belief justified
e by experience; there are degrees of plausibility.

Understanding the epistemic contrast between mathematics and
science will help us understand the past of Artificial Intelligence (A1)
and avoid some perils in its future.

1.1.2 The importance of theoretical narratives

[€i518] Gleiser and Sowinskd, “The Map and Science is a narrative of how we understand Nature | G518]. In science,
aai—. we collect facts, but they need interpretation. The logical conclusion
from the hypothesis that predicts some behaviour in nature gives a
plausible meaning to what we observed.

To illustrate, take the ancient human desire of flying. 'There have
always been stories of men strapping wings to themselves and attempt-
ing to fly by jumping from a tower and flapping those wings like birds
|Fan6| Furrington, The blitzed city - the (see Figure 1.2) [Fari6]. While concepts like lift, stability, and control
S S were poorly understood, most human flight attempts ended in severe
injury or even death. It did not matter how much evidence, how many

hours of seeing different animals flying, those ludicrous brave men



experienced; the meaning they took from what they saw was wrong,
and their predictions incorrect.

'They did not die in vain™; Science advances when scientists are
wrong. Theories must be [alsihable, and scientists cheer for their fail-
ure. When it fails, there is room for new approaches. Only when we
understood the observations in animal flight from the aerodynamics
perspective, we learned to fly better than any other animal before.
Science works by a "natural selection” of ideas, where only the fittest
ones survive until a better one is born. Chaitin also points out that an
idea has “fertility” to the extent to which it "illuminates us, inspires
us with other ideas, and suggests unsuspected connections and new
viewpeints” |Chaos, p. 9].

Being a Babylonian enterprise, science has no clear path. One of
the exciting facts one can learn by studying its history is that robust
discoveries have arisen through the study of phenomena in human-
made devices [Pie|. For instance, Carnot’s hrst and only scientific
work [Klez4| gave birth to thermodynamics: the study of energy, the
conversion between its different forms, and the ability of energy to do
work; i.e. the science that explains how steam engines work. However,
steam engines came before Carnot’s work and were studied by him.
Such human-made devices may present a simplified instance of more
complex natural phenomena.

Another example is Information Theory. Several insights of Shan-
non’s theory of communication were generalisations of ideas already
present in Telegraphy [Sha48]. New theories in artificial intelligence

CONTEXT 3

Fromem e.2= A way of fiying”, Francisco Cova,
15— 18z0, Amsterdam, Rijkemmoscnm.

"Those “researchers” deserved. ot beast, a Diar
win Award of Science. The Darwin Award is
satirical honours that recognise individuals
who have unwillingly contributed to hpman
evolution by sebecting themsehves out of the
grine pool

[Chaos| Chaiting Metie Math! The Cuest for
Crrega.

| Bie] Pierce, An letrowduction to nfermsution

Theory: Syrbols. Signals and Noise

|Kliezg| KElein, 'Camot's contribution o
thermodynamics

|5hay8| Shannan, ‘A mathematical theory ol
communication’,
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“Understanding hnman intelligence piing ar
tificial Intelligence s o field of study called
Compitational Nenrscience

[t5:6] Lipton and Steinhardt, Trowbiing
Trends in Machine Learmivg Scholarship.

“Ihis seems fo be Yann LeCun's opinion: Wy
[Reshimys position s dangerows? It is exactly
this- dornd of attitude thar feod the MI. com
eunity b abandon mewnal nets for over o
pears. despite weiple empirical evidence thar

they worked very well in many situitions.” How-

ever, doe to 8l possible alternative explang
tinns {lack of computational power, no avail
ability of massive annotated datsscts), it seems
karsh or simply wrong to blame therists.

"Herbert Simon {1906-2001) received the Tor-

ing Award in 1975, and the Nobel Prize in Eco
namics in 1978,

[RNDwo) Russell of al, Artificial intedfipence.

can, therefore, be developed from insights in the study of deep learn-
ing phenomena.*

1.1.3 Bringing science to Computer Science

Despite the name, Computer Science has been more mathematics than
science. We, computer scientists, are very comfortable with theorems
and proofs, not much with theories.

Nevertheless, Al has essentially become a Babylonian enterprise, a
scientific endeavour. Thus, there is no surprise when some computer
scientists still see Al with some distrust and even disdain, despite its
undeniable usefulness:

« Even among Al researchers, there is a trend of "mathiness”
and speculation disguised as explanations in conference pa-

pers |LS18).

« 'There are few venues for papers that describe surprising phe-
nomena without trying to come up with an explanation. As if
the mere inconsistency of the current theoretical framework
was unworthy of publication.

While physicists rejoice in finding phenomena that contradict
current theories, computer scientists get baffled. In Natural Sciences,
unexplained phenomena lead to theoretical development. Some be-
lieve they bring winters, periods of progress stagnation and lack of
funding in AL”

Artificial Intelligence has been through several of the aforemen-
tioned “winters”. In 1957, Herbert Simon" famously predicted that
within ten years, a computer would be a chess champion [RNDig,
section 1.3]. It took around 4o years, in any case. Computer scientists
lacked understanding of the exponential nature of the problems they
were trying to solve: Computational Complexity Theory had yet to be
invented.

Machine Learning Theory (computational and statistical) tries to
avoid a similar trap by analysing and classifying learning problems ac-
cording to the number of samples required to learn them (besides the
number of steps). The matter of concern is that it currently predicts
that generalisation requires simpler models in terms of parameters. In
total disregard to the theory, deep learning models have shown spec-
tacular generalisation power with hundreds of millions of parameters
(and even more impressive overfitting capacity [Zha+16]).



1.2 PROBLEM

1.2.1

In the last decade, we have witnessed a myriad of astonishing suc-
cesses in Deep Learning. Despite those many successes in research and
industry applications, we may again be climbing a peak of inflated
expectations. If in the past, the false solution was to "add compu-
tation power on problems, today we try to solve them by “piling
data”(Figure 1.3). Such behaviour has triggered a winner-takes-all
competition for who owns more data (our data) amidst a handful of
large corporations, raising ethical concerns about privacy and con-
centration of power [(O'N16].

Nevertheless, we know that learning from way fewer samples is
possible: humans show a much better generalisation ability than our
current state-of-the-art artificial intelligence. To achieve such needed
generalisation power, we may need to understand better how learning
happens in deep learning. Rethinking generalisation might reshape
the foundations of machine learning theory [Zha+16].

Possible new explanation in the horizon

In 2015, 'lishby and Zaslavsky proposed a theory of deep learning
['TZ15b] based on the information-theoretical concept of the bot-
tleneck principle, of which Tishby is one of the authors. Later, in
2017, Shwartz-Ziv and Tishby followed up on the Infermation Bottle-
neck Theory (181) with the paper "Opening the Black Box of Deep
Neural Networks via Information’, which was presented in a well-
attended workshop”, with appealing visuals that clearly showed a

“phase transition” happening during training. The video posted on

Youtube |1is17a] became a “sensation™’, and received a wealth of
publicity when well-known researchers like Geoffrey Hinton"', Samy
Bengio (Apple) and Alex Alemi (Google Research) have expressed

interest in Tishby’s ideas | Woh7|. they are called formal languages.

I believe that the information bollleneck idea could be very
important in future deep neural network research.

— Alex Alemi

Andrew Saxe (Harvard University) rebutted Shwartz-Ziv and
Tishby claims in 'On the Information Bottleneck Theory of Deep
Learning” and was followed by other critics. According to Saxe, it was
impaossible to reproduce [5117]s experiments with different paramet-

€rs,
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Has the initial enthusiasm on the IBT been unfounded? Have we let

us “fool ourselves” by beautiful charts and a good story?

1.2.2 Problem statement

The practice of modern machine learning has outpaced its the-

oretical development. In particular, deep learning models present

generalisation capabilities unpredicted by the current machine learn-

ing theory. There is yet no established new general theory of learning

which handles this problem.

LET was proposed as a possible new theory with the potential of

filling the theory-practice gap. Unfortunately, to the extent of our

knowledge, there is still no comprehensive digest of IBT nor an ana-
Iysis of how it relates to current Machine Learning Theory (MLT).

1.3 OBJECTIVE
This dissertation aims to investigate to what extent can the emer-

gent Information Bottleneck Theory help us better understand Deep

Learning and its phenomena, especially generalisation, presenting its

strengths, weaknesses and research opportunities.

1.3.1 Research Questions

L

What are the fundamentals of IBT? How do they differ from the
ones from MLT?

What is the relationship between IBT and current MLT? How
different or similar they are?

Is IBT capable of explaining the phenomena MLT already ex-

plains?
Does IBT invalidate results in MLT?

Is IBT capable of explaining phenomena still not well under-
stood by MLT?

What are Information Bottleneck Theory's (1BT) strengths?
What are Information Bottleneck Theory’s (IET) weaknesses?
What has been already developed in 1BT?

What are Information Bottleneck Theory’s (I8T) research op-
portunities?
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1.4 METHODOLOGY
Scope: Given that [BT is yet not a well-established learning theory,
there were two difhiculties that the research had to address:

a) 'There is a growing interest in the subject, and new papers are
published every day. It was essential to select literature and
restrain the analysis.

b) Early on, the marks of an emergent theory in its infancy mani-
fested in the form of missing assumptions, inconsistent nota-
tion, borrowed jargon, and seeming missing steps. Foremost,
it was unclear what was missing from the theory and what
was missing in our understanding.

An initial literature review on BT was conducted to define the
scope.'” We then chose to narrow the research to Information Bot- *2Not even the term 1B is universally adopied.
tleneck Theory's (1BT) theoretical perspective on generalisation,
where we considered that it could bring fundamental advances. We
made the deliberate choice of going deeper in a limited area of 1BT
and not broad, leaving out a deeper experimental and application

analysis, all the work on Information-Theoretic Learning (rr1.)" "FTL makes the opposite path we are taking,
4 4 . - e bringi of machine learni in-

|Priro] and statistical-mechanics-based analysis of SGD [CS18; mmfﬁrﬁpmmmf g

Cha+1gb]. From this set of constraints, we chose a list of pieces of

IET literature to go deeper (Appendix A). Peiso] Prineine, Aofamation teamelic legry:

vt Renwi’s eatropy and kersel perspectives,

Background analysis: In order to answer research questions 1 to 4,

= * . gl + [(%e8] Chavndhari and Soatto, Stochastic
we discuss the epistemology of Artificial Intelligence to choose Gradiont Descent. Pesforms Variational
fundamental axioms (definition of intelligence and the definition Inference. Converges to Limit Cycles for

- . Diecp Metwiorks.
of knowledge) with which we deduced from the ground up MILT,

l_n_t_orr_nalmn l_he?r:.r_[_n'j and II%T, revealing hld.l_:lf!‘ﬂ assmnptlmjjs, it G i pecsl e
pointing out similarities and differences. By doing that, we built Bising gradicnt descent into wide valleys'
a “genealogy” of these research fields. This comparative study was

essential for identifying missing gaps and research opportunities.

IBT lLiterature digest: n order to answer research questions 5 to 9, we
first dissected the selected literature (Appendix A) and organised
scattered topics in a comprehensive sequence of subjects.

IBT analysis: In the process of the literature digest, we identified res-
ults, strengths, weaknesses and research opportunities.

1.5 CONTRIBUTIONS
In the research conducted, we produced three main results that, to
the extent of our knowledge, are original:
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[H¥ g3 Hinton sngd Van Camp, "Keeping
thie npnral networks simple by minimizing
the description kength of the weights”

| Achag] Achille. ‘Emergent Properties of Deep
Newral Networks'.

UL https o/ f eacholorship . org f o /i
(TR

[ASida] Achille and Sostto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

IBT Digest and Analysis: ‘The dissertation itself is the main expected
result: a comprehensive digest of the 187 literature and a snap-
shot analysis of the field in its current form, focusing on its
theoretical implications for generalisation.

PAC-Shannon: We propose an Information-Theoretical learning prob-
lem different from Minimum Description Length (MDL) pro-
posed by [HV(Cq3] for which we derived bounds using Shan-
nons Theorems 6.3 to 6.6. These results, however, are only in-
dicative as they lack peer review to be validated.

Layers reduce the effective hypothesis space: We present a critique
on Achille’s explanation [Achig; ASi8a] for the role of layers
in Deep Representation in the IBT perspective (Section ¢.5.2),
pointing out a weakness in the argument that, as far as we know,
has not yet been presented. We then propose a counter-intuitive
hypothesis that layers reduce the model’s “effective” hypothesis
space. 'This hypothesis is not formally proven in the present
work, but we try to give the intuition behind it (Section g.5.2).
‘I his result has not yet been validated as well.

1.6 DISSERTATION PREVIEW AND OUTLINE
The dissertation is divided into two main parts (Part ! and Part 111),
with a break in the middle (Part 11).

1. Background (Part )

» Chapter 2-Artificial Intelligence: 'The chapter defines what
artificial intelligence is, presents the epistemological dif-
ferences of intelligent agents in history, and discusses their
consequences to machine learning theory.

« Chapter 3 — Probability Theory: 'The chapter derives pro-
positional calculus and probability theory from a list of de-
sired characteristics for epistemic agents. It also presents
basic Probability Theory concepts.

» Chapter 4 — Machine Learning Theory: The chapter presents
the theoretical framework of Machine Learning, the PAC
model, theoretical guarantees for generalisation, and ex-
pose its weaknesses concerning Deep Learning phenom-
ena.

« Chapter 5 — Information Theory: 'The chapter derives
Shannon Information from Probability Theory, explicates
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some implicit assumptions, and explains basic Informa-
tion Theory concepts.

2, Intermezzo [(Part 1)

« Chapter 6 — Information-Theoretical Epistemology: This
chapter closes the background part and opens the IBT
part of the dissertation. It shows the connection of 1T
and MLT in the learning problem, proves that Shannon
theorems can be used to prove PAC bounds and present
the Minimum Description Length (MDL) Principle, an
earlier example of this kind of connection.

3. 'The emergence of a theory (Part 111)

« Chapter 7 — IB Principle: Explains the IB method and
its tools: Kullback-Leibler divergence (Dy,) as a natural
distortion (loss) measure, the 1B Lagrangian and the In-
formation Plane.

Chapter 8 — 1B and Representation Learning: Presents
the learning problem in the IET perspective (not specific
to Deep Learning (DL)). [t shows how some usual choices
of the practice of DL emerge naturally from a list of de-
sired properties of representations. It also shows that the
information in the weights bounds the information in the
activations.

Chapter g — IB and Deep Learning: 'This chapter presents
the IBT perspective specific to Deep Learning. It presents
IET analysis of Deep Learning training, some examples of
applications of 18T to improve or create algorithms; and
the 1571 learning theory of Deep Learning. We also explain
Deep Learning phenomena in the IB1 perspective.

Chapter 10 — Conclusion: In this chapter, we present a

summary of the indings, answer the research questions,
and present suggestions for future work.

{3 and DL
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We found out that 18T does not invalidate MLT; it just interprets
complexity not as a function of the data (number of parameters) but
as a function of the information contained in the data. With this
interpretation, there is no paradox in improving generalisation by
adding layers.
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Furthermore, they both share more or less the same "genealogy”
of assumptions. [ET can be seen as particular case of MLT. Never-
theless, IBT allows us to better understand the training process and
provide a different narrative that helps us comprehend Deep Learning

phenomena in a more general way.
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‘I visualise a lime when we
will be to robots what dogs
are lo humans, . . .

... and I am rooting for
the machines.’

Artificial Intelligence _Claude Shannon

‘This chapter defines artificial intelligence, presents the epistemolo-
gical differences of intelligent agents in history, and discusses their
consequences to machine learning theory.

2.1 ARTIFICIAL INTELLIGENCE
Definition 2.1. Al is the branch of Computer Science that studies gen-
eral principles of intelligent agents and how to construct them [RNDho|. [RNDho)] Russell et ul., Artificial bntelligence.

'This definition uses the terms infelligence and intelligent agents, so
let us start from them.

2.1.1 What is intelligence?

Despite a long history of research, there is still no consensual defini-
tion of intelligence.” Whatever it is, though, humans are particularly *For a list with 7o definitions of intelligence,
o B B i F see | LHo7 |,
proud of it. We even call our species homo sapiens. as intelligence was
an intrinsic human characteristic,
In this dissertation:

Definition 2.2. Intelligence is the ability to predict a course of action
to-achieve success in specific goals.

13
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2.1.2 Intelligent Agents

Under our generous definition, intelligence is not limited to humans.
*An agent is anything that perceives its cowis [tapplies to any agent™: animal or machine. For example, a bacteria can
onment and acts on i 5 ... & 4 2 A
perceive its environment through chemical signals, process them, and
then produce chemicals to signal other bacteria. An air-conditioning
can observe temperature changes, know its state, and adapt its func-
tioning, turning off if it is cold or on if it is hot — infelligence exempts
understanding. 'The air-conditioning does not comprehend what it is
doing. The same way a calculator does not know arithmetics.

2.1.3 A strange inversion of reasoning

‘This competence without comprehension is what the philosopher

*In his work, Taring discosses if computers Daniel Dennett calls Turing’s strange inversion of reasoning”. 'The idea
can “think meaning to examine i they . . al3 th o
s perkatru Suudlsinguishably-fiov the wrey of a strange inversion comes from one of Darwin’s 19" -century critics
e ( MacKenzie as cited by Dennett):

In the theory with which we have (o deal, Absolule lgnorance is
the artificer; so that we may enunciate as the fundamental prin-
ciple of the whole system, that, in order to make a perfect and
beautiful machine, it is not requisite to know how lo make it.
This proposition will be found, on careful examinalion, (o express,
in condensed form, the essential purport of the [Evolution| The-
ory, and lo express in a few words all Mr Darwins nieaning; who,
by a strange inversion of réasoning, seems o think Absolule
lymorance fully qualified to take the place of Absolute Wisdom
in all of the achievements of creative skill.

— Robert MacKenzie

Counterintuitively to MacKenzie and many others to this date, intelli-
gence can emerge from absolute ignorance. Turings strange inversion
of reasoning comes from the realisation that his automata can perform
calculations by symbol manipulation, proving that it is possible to
build agents that behave intelligently, even if they are entirely ignorant
ETﬁN Tu;ing. ‘Computing Machinery and of the meaning of what they are doing [ Turoz].
ntelligence
2.2 DREAMING OF ROBOTS
2.2.1 From mythology to Logic

'The idea of creating an intelligent agent is perhaps as old as humans.
There are accounts of artificial intelligence in almost any ancient myth-
|Miay i8] Mayar, Gods and Robots: Miths, ology: Greek, Etruscan, Egyptian; Hindu, Chinese [ May18]. For ex-
Niaetonss L Ancient Drommr o Tehmilogs ample, in Greek mythology, the story of the bronze automaton of
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Talos built by Hephaestus, the god of invention and blacksmithing,
first mentioned around 700 B(..

'This interest may explain why, since ancient times, philosophers
have looked for mechanical methods of reasoning. Chinese, Indian
and Greek philosophers all developed formal deduction in the first
millennium BC. In particular, Aristotelian syllogism, laws of thought,
provided patterns for argument structures to yield irrefutable conclu-
sions, given correct premises. These ancient developments were the

beginning of the field we now call Logic.

2.2.2 Rationalism: lhe Cartesian view of Nature

In the 13" century, the Catalan philosopher Ramon Lull wanted to
produce all statements the human mind can think. For this task, he
developed logic paper machines, dises of paper filled with esoteric
coloured diagrams that connected symbols representing statements.
Unfortunately, according to Gardner, in a modern reassessment of
his work, it is impossible, perhaps, to avoid a strong sense of anti-
climax” |Garsg]. With megalomaniac self-esteem that suggests psy-
chosis, his delusional sense of importance is more characteristic of
cult founders. On the bright side, his ideas and books exerted some
magic appeal that helped them be rapidly disseminated through all
Europe [Garsg).

Lull's work greatly influenced Leibniz and Descartes, who, in the
17" century, believed that all rational thought could be mechanised. R iR
‘This belief was the basis of rationalism, the epistemic view of the Magna's paper disés.

Enlightenment that regarded reason as the sole source of knowledge.
In other words, they believed that reality has a logical structure and }:u;:ﬂ,, s Lowle A 094
that certain truths are self-evident, and all truths can be derived from
them.
'There was considerable interest in developing artificial languages

during this period. Nowadays, they are called formal languages.

If coniroversies were 1o arise, there would be no more need
Jor dispuiation belween lwo philosophers than between 1wo ac-
countants. For it would suffice to take their pencils in their hands,
{0 sil down to their slales, and o say fo each other: Let us calcu-
late.

— Gottfried Leibniz

‘The rationalist view of the world has had an enduring impact
on society until today. In the 19"century, George Boole and others
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developed a precise notation for statements about all kinds of objects
in Nature and their relations. Before them, Logic was philosophical
rather than mathematical. The name of Boole's masterpiece, “The Laws
of Thought”, is an excellent indicator of his Cartesian worldview.

At the beginning of the 20™ century, some of the most famous
mathematicians, David Hilbert, Bertrand Russel, Alfred Whitehead,
were still interested in formalism: they wanted mathematics to be
formulated on a solid and complete logical foundation. In particular,
Hilbert's Entscheidungs Problem (decision problem) asked if there

[Chaos] Choitin, Meta Mith! The Quést for were limits to mechanical Logic proofs |Chaoé|.

e Kurt Gidel’s incompleteness theorem (1931) proved that any lan-
guage expressive enough to describe arithmetics of the natural num-
bers is either incomplete or inconsistent. This theorem imposes a limit
on logic systems. There will always be truths that will not be provable
from within such languages: i.e. there are "true” statements that are
undecidable.

Alan Turing brought a new perspective to the Entscheidungs Prob-
lem: a function on natural numbers that an algorithm in a formal
language cannot represent cannot be computable |Chaoé). Godels
limit appears in this context as functions that are not computable, e
no algorithm can decide whether another algorithm will stop or not
(the halting problem). le prove that, Turing developed a whole new

general theory of computation: what is computable and how to com-

pute it, laying out a blueprint to build computers, and making possible
Artificial Intelligence research as we know it. An area in which Turing

FrowEr 1.3 Pavid Hume, Scottish Enfighten- himself was very much invested.
ment philosopher, historian, economist, lib
parian and exsayist

2.2.3 Empiricism: The sceptical view of Nature

The response to rationalism was empiricism, the epistemological
view that knowledge comes from sensory experience, our perceptions

“This citation is the principle from the Peripat- of the world. Locke explains this with the peripatetic axiom™: “there is
ic school of Greek ity and is d N, s ; % n
RS :[‘]1;;‘:3 ﬂw‘ﬂr g nothing in the inteflect that was not previously in the senses” [Uzgao].
Bacon, Locke and Hume were great exponents of this movement,
[Usgaa] Urgalis. ohn Locke. : - . G
E‘umﬁ i — which established the grounds of the scientific method.
ST feam i/ Lpckes/ David Hume, in particular, presented in the 18™ century a radical

Ry s i empiricist view: reason only does not lead to knowledge. In |Humog],

LTRSSt ] TIMEE, Fi [ [ [ PR e T I -

husmana. Hume distinguishes relations of ideas, propositions that derive from
deduction and matters of facts, which rely on the connection of cause

and effect through experience (induction). Humes critiques, known



as the Problem of Induction, added a new slant on the debate of the
emerging scientific method.

From Humes own words:

The bread, which 1 formerly eal, nourished me; thal is, a
body of such sensible qualities was, al thal lime, endued with
such secret powers: bui does it follow, that other bread must also
nourish me at another time, and that like sensible gualities must
always be attended with like secrel powers? The consequence
SEENIS NOWISE Necessary,

— David Hiume

There is no logic to deduce that the future will resemble the past.
Still, we expect uniformity in Nature. As we see more examples of
something happening, it is wise to expect that it will happen in the
future just as it did in the past. There is, however, no rationality’ in
this expectation.

Hume explains that we see conjunction repeatedly, e g. “bread” and
“nourish’, and we expect uniformity in Nature; we hope that “nourish”
will always follow “eating bread™; When we fulfil this expectancy, we
misinterpret it as causation. In other words, we project causation into
phenomena. Hume explained that this connection does not exist in
Nature. We do not “see causation”™ we create it

'This projection is Hume’s strange inversion of reasoning |Huei7]:
We do not like sugar because it is sweel; sweetness exists because
we like (or need) it. There is no sweetness in honey. We wire our
brain so that glucose triggers a labelled desire we call sweetness. As
we will see later, sweetness is information. This insight shows the
pattern matching nature of humans. Musicians have relied on this for
centuries. Music is a sequence of sounds in which we expect a pattern.
'The expectancy is the tension we feel while the chords progress. When
the progression finally resolves, forming a pattern, we release the
tension. We feel pattern matching in our core. It is very human, it can
be benehcial and wise, but it is, stricto sensu, frrational.

The epistemology of the sceptical view of Nature is science: to
weigh one’s beliefs to the evidence. Knowledge is not absolute truth
but justified belief. It is a Babylonian epistemology.

In rationalism, Logic connects knowledge and good actions. In
empiricism, the connection between knowledge and justifiable actions
is determined by probability. More specifically, Bayes’ theorem. As
Jaynes puts it, probability theory is the “Logic of Science” | Jayos]. *

DREAMING OF ROBOTS 17

*In the philosophical sense.

[Hzeyy]| Hucboer, The Phifooopfiy. of Damis
Denmett.

"The Bayes’ thearem is attributed to the Rever-
end Thomas Bayes after the posthuomaons pokb-
lication of his work By the publication time,
it was an already known theorem, derived by

Laplace.
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Frovme 2.3 Clande Shannon; father of “in
formation theory™

|RMChe| Boesscell ot ol Artificial fetelirence.

|MPga] MoCulloch snd Pitts, A logical
calcnli of the ideas immanent in orevous
activity’.

2.2.4 The birth of Al as a research field

In 1943, McCulloch and Pitts, a neurophysiologist and a logician,
demonstrated that neuron-like electronic units could be wired to-
gether, act and interact by physiologically plausible principles and per-
form complex logical calculations | RNDho|. Moreover, they showed
that any computable function could be computed by some network of
connected neurons | MP.43]. Their work marks the birth of Artificial
Neural Networks ( ANNs), even before the field of Al had this name. It
was also the birth of Connectionism, using artificial neural networks,
loosely inspired by biology, to explain mental phenomena and imitate
intelligence.

Their work inspired John von Neumann’s demonstration of how
to create a universal Turing machine out of electronic components,
which lead to the advent of computers and programming languages.
Ironically, these advents hastened the ascent of the formal logicist
approach called Symbaolism, disregarding Connectionism.

In 1956, John McCarthy, Claude Shannon (who invented Inform-
ation 'Theory, Figure 2.3}, Marvin Minsky and Nathaniel Rochester
organised a 2-month summer workshop in Dartmouth College to
bring researchers of different fields concerned with “thinking machines”
(cybernetics, information theory, automata theory). The workshop
attendees became a community of researchers and chose the term
“artificial intelligence™ for the field.
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Fuapme 2 4- The Blind Men and the Flephant

1 was six men of Indostan
1o learning much mclined,
Who wenl Lo see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind
—John Godfrey Saxe,

‘The Blind Men and the Elephant [Saxio]
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Froome 2 5; Anatoany of an Intellipent Agent
Inspired by wrt in [RN o]

2.3 BUILDING INTELLIGENT AGENTS
2.3.1 Anatomy of intelligent agenis

Like the blind men in the parable, an intelligent agent shall model her
understanding of Nature from limited sensory data.

Neture
- Agent
RERLars FI— FRECSITIN —
Facts
v
L]
I
Decitioes
»
Aetuators AZEEI —

Thus, an agent perceives her environment with sensars, treat sens-
ory data as facts and use these [acts to possibly update her model
of Nature, use the model to decide her actions, and acts via her ac-
tuators. In a way, agents continually communicate with Nature in a
perception/action conversation (Figure 2.5).

The expected result of this conversation is a change in the agent’s
Knowledge Base (KB), therefore in her model and, more importantly,
her future decisions. 'The model is an abstraction of how the agent
“thinks” the world 1s (her “mental picture” of the environment). ‘There-
fore, it should be consistent with it: if something is true in Nature,
it is equally valid, mutatis mutandis, in the model. A Model should
also be as simple as possible so that the agent can make decisions that
maximise a chosen performance measure, but not simpler. As the
agent knows more about Nature, less it gets surprised by it

This rudimentary anatomy is flexible enough to entail different
epistemic views, like the rationalist (mathematical) and the empiricist
(scientific); different approaches to how to implement the knowledge
base (it can be learned, therefore updatable, or it can be set in stone
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from an expert prior knowledge); and also from how to implement it
{a robot or software).

Notewaorthy, though, is that the model that transforms input data
into decisions should be the target of our focus.

2.3.2 Symbolism

Symbolism is the pinnacle of rationalism. In the words of Thomas
Hobbes, one of the forerunners of rationalism, “thinking is the manip-
ulation of symbols and reasoning is computation”, Symbolism is the
approach to building intelligent agents that does just that. It attempts
to represent knowledge with a formal language and explicitly connects
the knowledge with actions. It is competence from comprehension. In
other words, it is programmed.

Even though McCulloch and Pitts work on artificial neural net-
works predates Von Neumanns computers, Symbolism dominated Al
until the 1980s. It was so ubiquitous that symbeolic Al is even called
“good old fashioned AI" [RNDo]. |RNDa] Russell et ul | Artificial Intelligence.

‘The symbolic approach can be traced back to Nichomachean
Ethics [Arioo]:

|Arida| Aristotle, Aristetle  Nicomacleon

Ethics,
We deliberate not aboul ends but means. For a doctor does

riod deliberale whether he shall heal, nor an oralor whether he

shall persuade, nor a stalesman whether he shall produce law

and order, nor does anyone else deliberate about his end. They

assume the end and consider how and by what means il is 1o be

altained: and if it seems (o be produced by several means, they

consider by which il is most easily and best produced, while if it

is achieved by one only they consider how it will be achieved by

this and by what means this will be achieved, till they come to

the first cause, which in the order of discovery is last.

— Aristatle

'This perspective is so entrenched that Russell et al., p. 7 still says:
“(...) Only by understanding how actions can be justified can we under-
stand how to build an agent whose actions are justifiable”; even though,
in the same book, they cover machine learning {which we will address
later in this chapter) without noticing it is proof that there are other
ways to build intelligent agents. Moreover, it is also a negation of com-
petence without comprehension. It seems that even for Al researchers,
the strange inversion of reasoning is uncomf{ortable {Chapter 1).

All humans, even those in prisons and under mental health care,
think their actions are justifiable. Is that not an indication that we
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| Sy Soni und Goodman, A mind ar pliye
Mot Cleaseade Shovemoet iversted the information

age.

“Manmy Al students will rocognise in Thesens
the inspiration to Russsl md Norvigs Wam
prus World [ENTha).

[ Klenst| Klmin, Mighty mouse.
ITHE: fityes o f S . Lochnologyrivios . oonf 5
B ferighl - mouses

| RN | Russell ot ol Areificind Innelfigence.

*Marvin Minsky, head of the artificial intelll
gence laboratory at MIT (1967)

YSometimes called winters.

rationalise our actions ex post facto? We humans tend to think our
rational assessments lead to actions, but it is also likely possible that
we act and then rationalise afterwards to justify what we have done,
fullheartedly believing that the rationalisation came first.

Claude Shannon's Theseus

After writing what is probably the most important master’s disserta-
tion of the 20™ century and “inventing” Information ‘Theory, what
made possible the Information Age we live in today, Claude Shannan
enjoyed the freedom to pursue any interest to which his curious mind
led him [SGay]. In the 1950s, his interest shifted to building artificial
intelligence. He was not a typical academic, in any case. A lifelong
tinkerer, he liked to “"think”™ with his hand as muoch as with his mind.
Besides developing an algorithm to play chess (when he even did not
have a computer to run it), one of his most outstanding achievements
in Al was Theseus, a robotic maze-solving mouse.”

'To be more accurate, Theseus was just a bar magnet covered with

a sculpted wooden mouse with copper whiskers; the maze was the
“brain” that solved itself | Klei8].

“Under the maze, an electromagnet mounted on a molor-powered
carrigge can move north, south, easi, and west; as il moves, o0
does Theseus. Each time ils copper whiskers louch one of the
metal walls and complete the electric circuil, two things happen.
First, the corresponding relay circwit’s switch [lips from “on” 1o
“off” recording thal space as having a wall on that side. Then
Theseus rotates 90° dockwise and maoves forward. In this way, it
systematically moves through the maze until it reaches the larget,
recording the exils and walls for each square it passes through”

— Klein.

Symbeolic Al problems

Several symbolic Al projects sought to hard-code knowledge about
domains in formal languages, but it has always been a costly, slow
process that could not scale.

Anyhow, by 1965, there were already programs that could solve any
solvable problem described in logical notation | RNDho, p.4). However,
hubris and lack of philosophical perspective made computer scientists
believe that “intelligence was a problem about to be solved"”

Those inflated expectations lead to disillusionment and funding
cuts” [RN Dio). They failed to estimate the inherent difficulty in slating
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informal knowledge in formal terms: the world has many shades of
grey. Besides, complexity theory had yet to be developed: they did not

count on the exponential explosion of their problems.

Connectionism: a different approach

‘The fundamental idea in Connectionism is that intelligent behaviour
emerges from a large number of simple computational units when
networked together [GBCi6].

It was pioneered by McCulloch and Pitts in 1943 [MP43]. One
of Connectionismys first wave developments was Frank Rosenblatt’s
Perceptron; an algorithm for learning binary classifiers, or more spe-
cifically threshold functions:

1ifWxt+b>0
= (2.1)
0 otherwise
where W is the vector of weights, x is the input vector, b is a bias, and
y is the classification. In neural networks, a perceptron is an artificial

neuron using a step function as the activation function.

(e} Building in Harmre, Zinvhabwe, ks nand- () Cathedral termite monnd, Austrafin.

elled after termite mounds, Phote by Mike Phaoto by Awoisoak Kaociows, 3008:
Paaroe

See Figure 2.6b, termites self-cooling mounds keep the temper-
ature inside at exactly 31°C, ideal for their fungus-farming; while
the temperatures outside range from 2 to 40°C throughout the day.
Such building techniques inspired architect Mike Pearce to design a
shopping mall that uses a tenth of the energy used by a conventional
building of the same size.

[GECs | Coondlellow ef al | Deep Learning.

[MP43] McCulloch and Pitts. ‘A logical
calculus of the ideas immanent in nervous
activity'

Frorme 26; Biomimicry ol termite lechnlqoe
schicves superior energy officiency in build-
ings.
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[Maria] Margorielll, Coflecitie Mind in the
Mowad: How Do Termites Build Their Huge

Struchures?.

ETRLE frbbyes o f e . pabionalpoocgraphic - comy

newe f M4 F 0 148031 0 bermites
imsectE - entmmology: sciencef

Froovme 2.8: |s thisa cat?

From where does termites intelligence come?

Individual termiles react rather than think, but at a group
level, they exhibit a kind of cognition and awareness of their
surroundings. Similarly, in the brain, individual neurons do not
think, but thinking arises in their connections.

— Radhika Nagpal, Harvard University [Man6).

Such collective intellizgence happens in groups of just a couple of
million termites. 'There are around %o to go billion neurons in the
human brain, each less capable than a termite, but collectively they
show incomparable intelligence capabilities.

Minsky & Fapert Yagnik
T970: ANN discredited 1972 5Yis

S S

1963 UM inverrad 1986 Backpropagsten 200%, Deny Lasrreny

MeCulloch & Piits. Eumelhart, Hinfon Himten
& Wikams

Froome = 7; A brief history of connectionism. Adspred from | Tieo)].

In contrast with the symbaolic approach, in neural networks, the
knowledge is not explicit in symbols but implicit in the strength of
the connections between the neurons. Besides, it is a very general and
flexible approach since these connections can be updated algorithmic-
ally: they are algorithms that learn: the connectionist approach is an
example of what we now call Machine Learning.

2.3.4 Machine Learning

Look at Figure 2.8. Is this a picture of a cat? How to write a program
to do such a simple classihication task (cat/no cat)? One could develop
clever ways to use feafures from the input picture and process them
to guess. Though, it is nat an easy program to design. Worse, even if
one manages to program such a task, how much would it worth to
accomplish a related task, to recognise a dog, for example? For long,
this was the problem of researchers in many areas of interest of Al:
Computer Vision (CV), Natural Language Processing (NLP), Speech
Recognition Speech Recognition (SR); much mental effort was put,
with inferior results, in problems that we humans solve with apparent
ease.

‘The solution is an entirely different approach for building artificial
intelligence: instead of making the program do the task, build the
program that outputs the program that does the fask. In other words,
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learning algorithms use “training data” to infer the transformations
to the input that generates the desired output.

Types of learning

Machine Learning can happen in different scenarios, which differ in
the availability of training data, how training data is received, and
how the test data is used to evaluate the learning. Here, we describe

the most typical of them [MRT12]: [MICTi2| Mohri et al, Fiundations of Machine
Learning.

= Supervised learning: The most successtul scenario. The learner
receives a set of labelled examples as training data and makes
predictions for unseen data.

« Unsupervised learning: 'The learner receives unlabelled train-

ing data and makes predictions for unseen instances.

« Semi-supervised learning: The learner receives a training sample
consisting of labelled and unlabelled data and makes predic-
tions for unseen examples. Semi-supervised learning is usual in
settings where unlabelled data is easily accessible, but labelling
is too costly.

« Reinforcement learning: 'The learner actively interacts with the
environment and receives an immediate reward for her actions.

‘The training and testing phases are intermixed.

2.3.5 Deep Learning

'The 20105 have been an Al Renaissance not only in academia but also
in the industry. Such successes are mostly due to Deep Learning (DL),
in particular, supervised deep learning with vast amounts of data
trained in Graphical Processor Units (GPUs). It was the decade of DL

“Deep learning algorithms seek (o explont the unknown siruc-
ture in the inpul distribution lo discover good representations,
ofien al multiple levels, with higher-level learned features defined
in lerms of lower-level fealures”

— Joshua Bengio [Benis| [Benia| Bengin, ‘Deep learning of representa-
tices fir unsupervised and tronster leaming -

The name is explained by Goodfellow etal.: “A graph showing the

concepts being built on top of each other is a deep graph. Therefore the
name, deep learning” [GBCa6]. Although it is a direct descendant of [GBC18| Guodicllow <1 al, Heep Learming.



26 ARTIFICIAL INTELLIGENCE

| RN | Russell ot ol Areificind Innelfigence.

the connectionist movement, it goes beyond the neuroscientific per-
spective in its modern form. It is more a general principle of learning
multiple levels of compositions.

‘The quintessential example of a deep learning model is the deep
feedforward network or Multilayer Perceptron (MLP) [RN o],

Input Hidden Hidden Output
layer layer 1 layer 2 layer
i ' ;.Ef}'
: 7 v, \ :~ hsﬂ
S SBS e

e

X3 ——F hiﬂ' e
- :&;1)

Definition 2.3. Let,
x be the input vector {xi,...,Xm }
k be the layer index, such that k € [1, 1],

WEP be the matrix of weights in the k-th layer, where
i € [0ydia], je[) di] and Wélf] are the biases

o bea nonlinear function,

a Multilayer Perceptrons (MLPs) is a neural network where the input
is defined by:

B =17, {z.2)
a hidden layer is defined by:
BB = gUO (WO T D), (23)
The output is defined by:
= Rt (2.4)

Deep Learning is usually associated with Deep Neural Networks
(DNNs), but the network architecture is only one of its components:

1. DNN architecture
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2. Stochastic Gradient Descent (SGD) — the optimiser
3. Dataset
4. Loss function

'The architecture is not the sole component essential to current
Deep Learning success. The SGD plays a crucial role, and so does the
usage of large datasets.

A known problem, though, is that DNNs are prone to overfit-
ting (Section 4.3). Zhang et al. show state-of-the-art convolutional
deep neural networks can easily fit a random labelling of training
data | Zha+16]. [Zha+i6] Zhang et al. Understanding deep

lewrming requires retlinking generalization.
2.4 CONCLUDING REMARKS
'This chapter derived the need for a language from the defitions of

Sumbolism || Conmpattionizm |
b

intelligence and intelligent agents. An intelligent agent needs language ——
to store her knowledge (what she has learned) and with that to com-
municate/share this knowledge with its future self and with other | Language |
agents. 1 T
We claim (without proving) that a language can be derived froma Math | ]EI
defmition of knowledge: an epistemic choice. We claim that mathem- i Fs
atics and science can be seen as languages that differ in consequence of o Knowlsdge 5
different views on what knowledge is and gave historical background
on two epistemic views, Rationalism and Empiricism (Sections 2.2.2 Py
and l.]..j.:l. Froome 29: In this chapter we derived the
We gave historical background on Artificial Intelligence (Al) and ﬂdm Lu;fz:::f b

showed that different epistemic views relate to Al movements: Symbaol-
ism and Connectionism. We gave some background on basic Al con-
cepts: intelligent agents, machine learning, types of learning, neural

networks and deep learning, showing that DL relates to Connection-
ism and, hence, to science and an empiricist epistemology. Previously
(Section 1.1.3), we have discussed that Computer Scence generally
relates to the rationalist epistemology. We hope this can help us better
understand our research community.

2.4.1 Assumptions

1. A definition of intelligence (Section 2.1.1)

2, Anepistemic choice on the definition of Knowledge (Sections 2.2.2

and 2.2.3)






3.1
3.1.1

Probability Theory

In this chapter, propositional calculus and probability theory are de-

rived from a list of desired characteristics for sceptical agents.

FROM LANGUAGE TO PROBABILITY
Formal Languages

We, as intelligent agents, do not know how Nature is; we only know
how we perceive it. Qur ideas are mental pictures of how we imagine
Nature, Like in the story of the blind men and the elephant (Sec-
tion 2.2.4), how do we know that our model is the same as someone
else’s? Communicating. We need to communicate with each other to
check if our mental picture of Nature, our model, is consistent with
the experience of others.

We use language to describe Nature. However, natural langunages,
like English, German, Portuguese, are ambiguous, and we need con-
textual clues and other information to more clearly communicate
meaning. To avoid this, an intelligent agent uses formal language.

A formal language is a mathematical tool created for precise com-
munication about a specific subject. For example, arithmetic is a
language for calculations. Chemists have a language that represents
the chemical structures of molecules. Programming languages are
formal languages that express computations. In a nutshell, a formal
language is a set of words (strings) whose letters (symbols) are taken
from an alphabet and are well-formed according to a specific set of
rules, grammar. Let L =< X, @ > be a formal language where:

¥ = {S;,82,---, 54} is an alphabet, (3.1)

& =D udy U D is a set of operations, the grammar, (3.2)

‘A wise man proportions

his belief to the evidence.’
—David Hume

"W can take thisidea furthir snd think that st
any moment, we ecd 1o eommunioe with
our past selvies o check if new evidince =
consistent with aur prior misdel
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* Aninference method defines the mles for
updating knowledge.

Strings, wonds, scnlences, propositions,
formulie are tames wsed imterchangeably
through the literature.

and:

@, is the set of unary operations,

@ is the set of binary operations,

@, is the set of k-ary operations.

A formal language allows a quantitative description of a state of know-
ledge and defines how this state can be updated on new evidence.’

With this definition, we can also think that a formal language
is what Sowinski calls a realm of discourse, i.e. all the valid formed
strings” that one can derive; everything one can say about Nature.

Interestingly, formal languages allow us to manipulate representa-
tions of the environment without dealing with their semantics. They
are the basis of “Turings strange inversion’, (see Section 2.1.3) by doing
allowed operations on strings, computers can compute at a superhu-
man speed and accuracy without ever comprehending what they are
doing.

3.1.2 From Rationalism to Propesitional Calculus

4 A sentence can be cither a single symbol or o
string formed with several symbsols scoording
to the grammar.

Rarionar AGenTs can form representations of a complex world, use

deduction as the inference process to derive updated representations,
and use these new representations to decide what to do. In other
words, rational agents are the consequence of the epistemological

view of rationalism.

When a rational agent establishes a particular statement’s truth

value, all statements formed in her knowledge base from that state-
ment instantly feel that update. Therefore, a rational agent cannot

hold contradictions.

DESIDERATA FOR A RATIONAL LANGUAGE Wewant to build alanguage
for rational agents with the following desired characteristics:

I. knowledge is absolute; a sentence” can be either true or false;

Il. unambiguous, a constructed sentence can only have one mean-
ng;
[1l. consistent; a language without paradoxes, i.e. whatever path

chosen to derive a sentence truth value will lead to the same

assignment;
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IV. minimal; uses the most reduced set of symbols possible.

Let Ly =< Xg, @y > be the formal language built from these con-
straints, where sentences are either axiom symbols or compounded
sentences formed using special symbols called operators, each oper-

ator denoting one operation, ¢ € Oy.

It is possible to prove that Lg only needs one operator |Sow16; {Sows} Sowinski, Tomplexity and smbility
' & . .o cpistemic The foundati d
Javoz]: NAND (or XOR), and it is also equivalent to Propositional ?;’nnmmﬁinﬁngh :Eﬂ;

Calculus.” In other words, Logic is the language that emerges from our
desiderata, from rationalism. Logic is the langnage of mathematics. syos] Jaynes, Probability ‘Theary: The Logie
A point worth mentioning is that using Logic as an agent formal af Science.

language means the implicit acceptance of the constraints above.

SPropodition i3 synoym 1o sentence and Pro-
peositinna] Caleubos isalio knowe as Sentential
3.1.3 From Empiricism to Probability Theory Galexmi:

"The constraints that lead to Logic are very restrictive to use in the real-
world; rational language has a comparatively small realm of discourse.
Hume would say that it is only helpful for relations of ideas, talking in
the abstract, and not for matters of facts, talking about reality.

A realm of discourse to talk about reality needs at least the em-
piricist perspective where knowledge is justified belief, and that one
should weigh her beliefs to the evidence. The quantity that specifies to
what degree we believe a proposition is true is constrained by other

beliefs, i.e., previous experience and evidence gathered.

ScepricAL AcenTs In the sceptical agent, the one derived from the

empiricist epistemology (authors have called these agents epistemic

agents [Catoli], idealised epistemic agents |Sowné | or robots | |ayos]), [Camnk] Caticha, Lectures on Probubsility,
beliefs are not independent of each other [Cato$], they form an inter- Eviropy e Ssisaroal Phpis:
connected web that is the agent’s knewledge base. The update mech-

anism, its inference method, follows the principle of minimality, Le it

tries to minimise the change in the knowledge base.

DESIDERATA POR A SCEPTICAL LANGUAGE As we did for rational

agents, let us state a set of desired characteristics for the language of

SCIence, L}: =< Eg. ‘135 o * [Sewid; Catod; Javes] also present thiz same

iden of deriving probabifity theory from de-

. Knowledge is a set of beliefs, quantifiable by real numbers —
and dependent on prior evidence [ Sow16; Cato8; Jayos]: Let
S, € X be sentences about the world. Given any two statements
Si, 82, the agent must be able to say that 8, is more plausible
than 5, or that 5; is more plausible than §; or that 5, and §; are

equally plausible. 'Thus we can list statements in an increasing
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plausibility order. Real numbers can represent this transitive

Wi are implicitly assuming thot the language nrdering. :
we are building has infinite statements. A fur-
ther discussian on this continuity assunption Let b be a measure of degrees of belief in § given some previous

can be foond in [Sowsé, p. 256].

knowledge (or axiom) K:*
® Using (S[K ) ini s function &3 notation sbuse

that we accept to cxplain the idea better, b 2,5 » B [_;3]

Here we capture that plausibility (degrees of belief) is not a
function of a sentence, but a relation between a sentence and a
given assumed prior knowledge K.

[I. “Common sense:™

'The plausibility of compound sentences should be related by
some logical function to the plausibility of the sentences that
form them. We already showed that a minimal rational language
has only one operator. Here, instead of using the NAND operator,
for a matter of familiarity, let us use the almost minimal language
with the operators NOT () and AND (a). In this setting, we are

[Sowss] Sowinski, ‘Complexity and stability saying there are such functions f and ¢ that [Sowis|:
for epistemic apents: The foundations and
phienomenalogy of configurational Eniropy’. fH: _|‘;| K:l - Jlr[.i.'-'(ﬂ K}I (NOT)

b{:’h A 53[[’(] = g[bfﬂllﬂ}. flfﬁllh't;], b{ﬂllﬁ}, bfﬂg}:‘i[” (AN

[1l. Consistency: The functions f and g must be consistent with
the grammar @ (production rules). Consistency guarantees that
whatever path used to compute the plausibility of a statement
in the context of the same knowledge web (the same set of con-
straints) must lead to the same degree of belief.

(a) beliefs that depend on multiple propositions cannot depend
on the order in which they are presented.

(b) No proposition can be arbitrarily ignored.

(c) Propositions that are identical must be assigned the same

Frouee 400 Andrey Kofmogonow, Sovie! math dEgI-EE of belief.
emuticign.

Such desiderata have a name; it is known as Cox's axioms, and one
can derive the Sum Rule and the Product Rule (see Section 3.4) from
them, therefore, also the Bayes' Theorem (5ection 3.9), and reverse-
engineer Kolmogorovs Axioms of Probability Theory (that will be

|Tayei] Jaynes, Probabilite Thears: The Logic seen in Section 3.4, Figure 3.1) [Sow6; Jayos; Cato8; TIhas].
of Science

In other words, Probability Theory is the language that emerges

from our desiderata, from empiricism. 'Probability theory is the
[Catal] Caticha, Lectwres on  Probalulity,
Entropy, sl Stafistical Phypsirs.

| TDs| Terenin and Drraper, 'Cox's Theorem
anid the Joynesian Interpretation of Probahil
ity
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Logic of Science’ [Jayo3|, and our measure b is usually called probab-
ility P.

Again, here we explicit that by using Bayesian inference to build
and communicate concepts of the world (models), we are assuming
(Cox’s axioms above,

3.1.4 Assumptions and their consequences

Let us take this opportunity to explore what some assumptions mean
to human intelligence in particular. It is indisputable” that humans are *Uinless you are an economist.
not rational, neither sceptical agents. The whole idea of imagining an
epistemic agent is a consequence of addressing intelligence without
human complexities.
However, are humans irrational because of biology or psychology?
Are we irrational for lack of will, or could it be that Nature wires the
human brain in a way that prevents us from following these axioms?
Here we argue that biology has an important role. Researchers have
found, for instance, that visual acuity can be permanently impaired if

there is a sensory deficit during early post-natal development [ Wie8z]. |Wiciz| Wicsel, ‘Posnatal Development
. ; Fa 8 __— of the Visual Conex and the Influence of
Futhermaore, if the human brain is not exposed to some samples in its v frnmment’

infancy, it will never achieve the accuracy level if it had experienced
them, regardless of experiencing those examples later. In other words,
human beliefs depend on the order in which pieces of evidence are
presented, contradicting Cox's axiom [11a.

3.2 FORMALIZING PROBABILITY THEORY
We derived Cox’s axioms from a list of desired properties of the lan-
guage for sceptical agents. We also know that it is possible to derive
Kolmogorovs Axioms (which will be defined soon in Section 3.4)
from those axioms. In the next sections, we will use the Kolmogorov
Axioms to formalise Probability theory:

Several concepts in the following sections are relations of ideas.
not matters of fact. For example, the probability of an event E, P(E),
can be computed by marginalisation (as we will show in Section 3.8),
but as discussed before, there are no beliefs in a vacuum. In reality,
there is only the probability of an event E given some background
knowledge K. This change of epistemological perspective is essential
to be remembered now that we will expose the idealised development
of Probability Theory.
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3.3 EXPERIMENTS, SAMPLE SPACES AND EVENTS
The set of possible outcomes of an experiment is the sample space (1.
Let us use the canonical experiment of rolling a dice. In this experi-
ment, the sample space is:

0 = {6,0,5, 5,2, 0)

An outcome or realisation 15 a point w ¢ {):

iy :IH_':l

0 = [ =61, wg =0} .

An Event is something that can be said about the experiment, e.g. “The
dice rolled to an odd number”. It is a true propesition. Nevertheless,
easier than writing so much, we denote events with letters. Events are
subsets of () (see Figure 3.2a).

Ac()

We say that A, Ay, --- are mutually exclusive or disjoint events if
AinA; =@, Yi + j. For example, A is the event “the dice rolled to the
value 5” and B is the event “the dice rolled to an even number”. In this

case, A and B are disjoint (see Figure 3.2b).

1l by I
A
A=
Fumme v Events, disjoint events ] parti-
tia
Aa
B
. ] 1
[} An event A, (b) Disjoint cvents A and B: (e} A partition of £1-

AnB=g Lin; =11
1

A partition of £} is a sequence of disjoint events (sets) A; (see Fig-

ure 3.2c), where:

ﬂi"‘ ﬁz,"'ﬁi 5.1 (ﬁ: L .!ﬂh‘!_ L .EI"LE"' = Uﬁ’] =£] [:,"I-Ii]
i=|

3.4 KOLMOGOROV'S DEFINITION OF PROBABILITY
Definition 3.1 (Kolmogorov’s Axioms). A function P: f(02) - R
that maps any event A toa real number P{A) is called the probability
measure or a probability distribution if it satisfies Kolmogorov's

[Wass3] Wasserman, All of statistics: & concise axioms | Wasi3]:
cotrse i st istical inference.



Axiom 1. P(A)20,VA
Axiom z. P({1) =1
Axiom 3. If A and B are disjoint, Le. A B,
P(AvB)=P(A)+ P(B) (Sum Rule)

Visually, we can represent the probability of an event A, P(A), as
the proportion of the sample space the event occupies. To differentiate
events from their probabilities; we will shade the area of the event.

iy iy
P(A) A
B
. .
(&) Axvom (¢} Axdom = A B =
PAYZ0 P =L & == PAWVE) =
P{A) + F{B),
Il

[d} M@)= . fc) B C A - IPAY=1-P(A).
P{B) < P{A)

Directly from the Kolmogorov Axioms, one can derive [|ayos]

other properties (see Figures 3.3a to 3.3E):

P(&)=0 (3.6)
BcA — P(B)<P(A) (3.7)

0<P(A)<1 (3.8)
P(A)=1- P(A). (3.9)

3.5 JOINT EVENT
Definition 3.2. A joint event (A, B) is the set of outcomes where:

(AB)=well:(wecAnB)
Therefore,

P(A,B)=Plwe:(we AnB))

When talking about events as propositions, it is straightforward to
use logic notation P A A B ), but when we start to use random variables
(Section 3.10), we will adopt the shorthand notation P(A, B).

JOINT EVENT 35

Froome 3.3: Kelmopgorovs Axioms and their
direct CORSeqUENCes.

[Fayer) Taynis, Probability Theary: The Logic
of Science

P(A.B)

FrooeEe 3.4 joint cvent (A, B).
P(A,B) =P(B,A) -
P{AAB) =P(AnB).
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3f‘l INDEPENDENT EVENTS
Definition 3.3. Events A and B are independent (A L B) if:

A+@,Bz@ = P(A)>0,P(B)>0 (3.10)
P(A,B)=P(AAB)=P(A)-P(B) (3.11)
{Product Rule)

Disjoint events cannot be independent, since (from (3.10)) P(A )-
P(B) > 0, but as disjoint events (Figure 3.2b) P(A A B) = P(@) = 0,
leading to contradiction.

Independence can be assumed or derived by verifying:

P(AnB)=P(A)-P(B). (3.12)
(Independent variables)

3.7 CONDITIONAL PROBABILITY
As we have explained before (Section 3.1.3), the plausibility of an
outcome or a set of outcomes depends on a web of interconnected
prior beliefs. So, what exists are probabilities conditional to a given
prior assumption.

im Definition 3.4. If P(B) > 0 then the conditional probability of A

P(A|B) =
given B is:
P[MB]EPE,?&?) (3.13)
P(A, B)=P(A[B) - P(B) )

Exceptif P(A) = P(B), P(A[B) # P(BJA). Also, P(A|B) = P(A) —

"Yenn disgrams are pot helpiul to sce that the ALB™
gvents are independent, a= it all dopends on

the areas of intersection and the sives of A

and B, which arr tricky (0 cstimate withoo 38 MARGINAL PROBABILITY
computational help,

Theorem 3.1. Let Ay, -+, Ay be a partition of £). Then, for any event B,

&
P{H) = E F(EME) ! P(ﬁi] (3.15)
i=l

IS
"Remprnber: (B, A) = (B A). Proof. "' Define C; = (B, A,). Let Cy,---C; be disjointand B = U C,.
i=1
Therefore:



p(B) 2 P(LJC) 2 Y p(C) (316)

k
2 ) P(B,A) = ) P(BJA:) - P(A))
I =i
{Law of Total Probability)

Ol

3.9 BAYES THEOREM
Theorem 3.2 (Bayes theorem). Let A, -+, Ay be a partition of {1 5.1,
P(A)>0,Vithen, Vi=1,--- k:

P(BjA;) - P(A)

PAB) =55 eAn) - P(A) 527
Proof. From equations 3.13, 3.14 and 3.15:
g I3 P{ﬂ”ﬂ} A ] P(Hlﬂ‘}-l’{ﬁ,)

P{_-“Lr[B} = P(B) = P(B} (3.18)

11§ P(HME] x P{ﬁi)
= (3.19)

Y P(BJA) - P(A))

Ll

We call P(A;) the prior of A, and P(A,;|B) the posterior probab-
ility of A.

3.10 RANDOM VARIABLES
Definition 3.5. A random variable is a mapping X : 1 » R that
assigns a real number X{w) to each outcome w, w > X{w).

Given a random variable X, the probability of an outcome x can

be expressed as:

P(X=x)=P(X!(x))=P({weQ:X(w)=x}) (3.20)

BAYES THEOREM 37

Frioume 3.5 An -t B, a partition Ay over £,
and g = (B, A

0

X

w ;u_‘,,

el m
El-—TR

Frmme 3.6 Random variakle.
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3.10.1

“An event can be seen as a special kind of sen-

dom variahle [ e, 2 random variable [ is the
truth fonction (alse known a2 the indicstor
function) ever an event D:

=1,

That is the resson one can say that "randowm
varriables define events”

Several works on Probability Theory choose to start by defining
random variables, rarely mentioning sample spaces, events or the
connection with logical propositions.

'This usual approach is, nevertheless, confusing. Beyond the fact
that random variables are not variables, but functions, nor random,
they model uncertain events; it is hard to grasp what random variables
are without understanding their reasons for being.

The difference between a random variable X and its “realisation”
is the difference between a distribution and a sample from that dis-
tribution. In particular, a random variable X is “formalised” in terms
of a function from the sample space to some result space, typically
E. The realisation of a random variable is “what you get” when an

experiment is run, and you apply X to events that happened.

Notation abuse

If a random variable is a function, how can we write P(X = 4) or
P(X > 7)? Such confusion is due to some notation abuse that became
standard in works on probability theory. It is not easy to grasp it
initially, but the explanation was already stated at (3.20). P(X =x) is
a shorthand for P{X(x)).

Technically, a random variable is a function. In practice, it is just
a mathematical tool to help us associate propositions with numbers.
It is called a random variable because the notation abuse treats the
function as a variable.

To help clear up such confusion, let us recap a little the notation
we have established before:

In the canonical experiment of rolling a dice, instead of writing
the proposition “The dice will roll to number 4." plausibility is 2, it is
easier to assign a letter to the proposition, or as we called the event.
Let us use event D to represent the proposition. 'Then, we can use
P(D) = :. Now, we are going one step further; instead of using the
event D) we use the random variable D, in italic, and say P(D=4) = L.

Notice the difference between a random variable and an event:'?
D could assume any value (even D = 7, which is outside of our sample
space). Would it not be easier then to use an index to the event letters,
t.e. Dy to value 4, and D, to value 1, etc? Not really.

Besides providing this shorter notation, the mapping of the ran-
dom varniable allows us to manipulate events as numbers: for example,
we can chart probability distributions using random variables, which
we cannot cope with events.
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3.11 PROBABILITY DISTRIBUTIONS
Definition 3.6. A probability distribution of a discrete random wari-
able X or probability mass function (pmf) is a function p: {2 » [0,1]
that provides the probabilities of occurrence of different possible out-

comes in an experiment (sample space):

pix) = P{X B x)’ (pmi) 1.0

If X is continuous, P(X = x) 0, therefore we need to use inter- g 0

vals in this case. o=l
Definition 3.7. A probability distribution of a countinous random )

variable X in an interval A, or probability density function (pdf) is
a function p(x) that measures the probability of randomly selecting

Fioiune 1.7 Probability mass function, prot-
abifity density function, and probability of an

a value within the interval A = [a, b], as the area under its curve for inteeval (hutched area)
the interval A:
b
P(A)=PlagX<h]= f p(x)dx, and: (3.21)
p(x)=20,Vx
- (pdf)
S p(x)dx =1
'
Now that we explained what distributions are,'” here we highlight "in this dissertation, we will use P{X) 10 cx-
spme uscful distributions: preas the prohahility of o mndom varishie. and

plx) torepresent a peaf o pelf of the random
variahle outcomes.

3.11.1 Statistical model
A statistical model is a function py(x) = p(x|0) representing the
relationship between a parameter'* 8 and potential outcomes x of a “in this dissertstion we' are interested in
random variable X. In practice, we usually define a statistical model T A,

of a stochastic process for which we do not know the real distribution.
'Therefore, the parameter 8 has to be inferred from the observed data.

3.11.2 Uniform distribution

X ~ Uniform(a, b), if:

{,,_1; x¢[a,b]
0 x¢|a,b]
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3.11.3 Normal distribution

jomi

X ~ N(u,0%),if

51 = I;.‘l'l L% el
1 1
Frovee 18 Uniform distribution. plx) = == Erp[ : Et-_j—l{x I.l:ll],
xeR
2. " where p € R (mean) and o > 0 (standard deviation)., We say that X
= has a standard Normal distribution if p =0, 0 = L
fdl 1% i!i" 2% Sl

3.11.4 Exponential distribution

Ficame 3.9 Gaussian distribution, also known

as the Howmrial X MJ:.)EP'EL}. if:
?ﬁf_u X 2 '}:
0k =
F{' } [ﬂ x <.
il — it
5 ot where A > 0 is the rate parameter of the distribution.

3.12 JOINT DISTRIBUTIONS
. P e . Definition 3.8. Given a pair of discrete random variables X and Y,
Frcrme 3.10: Exponential distribution. we define the joint mass function by p(x, y) = P(X =x,Y = y).

Definition 3.9. Given a pair of continuous random variables X and
Y, we define the joint density function by p(x, v), where:

i plx,y)20
i I, plx, y)dxdy =1
i VAcR=<R,P((X,Y)eA) =_£f&p[x,y]dxd}*.

3.13 EXPECTANCY, VARIANCE AND COVARIANCE
Definition 3.10. ‘The expected value or mean of X is:

o ot e o e g e E{X}:{X}:ﬁxp{x}dx=p=px (3.22)

Fuoome pue A -chart of a joint distriborion.

Theorem 3.3. Let X,,---, X,, be random variables and ay, ---, a, be con-
stants, then from the Sum Rule:

E(Er_: an;) = E’: a,(E(X,)) (3.23)
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Theorem 3.4. Let X,,---, X, be independent random variables, then
from the Product Rule:

E( HX--'} T H E(X:) (3.24)

Definition 3.11. Let X be a random variable with mean p. 'The vari-
ance of X is defined by:

o’ =ox =E(X - p)’ (3.25)
assumming this expectation exists. The standard deviation is o.

Definition 3.12. Let X and Y be random variables with means py and
Wy, and with standard deviations oy and oy. 'lhe covariance between

X and Y is defined as [Wasi3, p.74]: | W3] Wassicrman, Alf of stutistics: a concise
corrse i Statistical deference.

Cov(X,Y)=E{{X — px ) (Y —puy)) (3.26)

and the correlation as:
Cov( X, Y
p=pxy=p(X,Y) = # (3-27)
Oy Oy

Theorem 3.5. lhe covariance satisfies:

Cov(X,Y) =E(XY) - E(X)E(Y). (3.28)

3.14 INDEPENDENT SAMPLING

5 i e & Fipune 302 An iid sample {left) amd o hinsed
e L. = i sample (eight). Adapred from M)

i~y 6 R L‘Lﬁ"kﬁ
A 1. of i
HOR %C&;g’ iy

‘{;l

A sample is a set of examples'” drawn from a distribution. One Sin this dissertation, an element of a sampling
common assumption in Machine Learning ‘Theory is that examples aatamcme.
are identically and independently distributed — i.i.d. 'This means that
the probability of obtaining a first training example. (x, ¥, ) does not
affect which (x,, y;) will be drawn in the following observation.

‘The i.i.d. assumption is useful wherever a census of the population
of interest, knowing all possible values, is unfeasible. In this usual case,
data analysis is carried out using a sample to represent the population.

When the sample is Li.d., each example in the population has the same
chance of being observed (Figure 3.12 — left).

If there is a constraint on which examples of the population are
sampled, we say that the sample is bigsed (Figure 3.12 — right).
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3.15 CONCLUDING REMARKS
This chapter derived Logic from the definition of knowledge as abso-
lute truth and Probability Theory from knowledge as justified beliefs
(Sections 3.1.2 and 3.1.3). To remind that our definition of knowledge
is the basis for the Bayesian perspective of probability and that infer-
ence methods are languages, we can say (and prefer) that we derived
Bayesian inference as the language of science. We proved what we
claimed in the previous chapter (Chapter z2).
We needed to define formal languages (Section 3.1.1) and assume
desiderata for the languages we wanted to build formally (Sections 3.1.2
and 3.1.3). We called rational agents the epistemic agents that use Logic
as its inference method, and sceptical agents use Bayesian inference.
We found out that the desiderata for the sceptical language are
equivalent to Cox’s axioms {Section 3.1.3). From Cox's axioms, it is
possible to derive Kolmogorov's axioms of Probability Theory. Which
“Our definition of knowledge hinted at a made us conclude that Bayesian inference is the language of science.'®
Rpeim pumpprcive ftiaiodgy, From the derivation, we did a basic Statistics review (influenced
[Wiasis} Wasserman, Al of statistics: @ camcise by | Wasi3]). Many essential topics were left out from this short review
course in statistical injerence.

chapter, where the focus was to present the concepts that we will use

later on in this dissertation.

3.15.1 Assumptions

Lﬂg}i] lBay.':‘;.'mn Inference | 1. A defimition of intelligence (Section 2.1.1);

- 2. A epistemic choice on the definition of Knowledge (Sections2.2.2

i m Sefenge and 2.2.3);

SIS Enowledge ST 3. A definition of formal language;
fi 4. Common assumptions of the epistemic agent language:
Fugumz: 313 This chapter derives Logic a4 the a) consistency (Section 3.1.3, ltem 1] and Section 3.1.2, Item [11);

langrmge of Mathematics, in which knowledge

s ahaolute; and Hayestan fnference as the lan-
puage of Science, in which knowledge s jfusti-
fied bolied.

b) minimality (Section 3.1.2, [tem IV).
5. Assumption of the rational agent language:

a) knowledge is absolute, a set of true or false sentences (Sec-
tion 3.1.2, ltem 1);

b) the langnage must be unambigucus (Section 3.1.2, ltem 11).

6. Assumption of the sceptical agent language:
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a) Knowledge is a set of beliefs, quantifiable by real numbers
and dependent on prior evidence (Section 3.1.3, ltem 1);

b) Common sense: The plausibility of compound sentences
should be related by some logical function to the plausibil-
ity of the sentences that form them (Section 3.1.3, ltem 11).

As we have settled that our focus is Deep Learning, which relates to
the sceptical agent, we will abstain from keeping the rational language

assumptions in our analysis and assume an epistemic agent is sceptical.






4.1

Machine Learning Theory

In which we present the theoretical framework of Machine Learning,
the PAC model, theoretical guarantees for generalisation, and expose
criticism due to its lack of explanation on Deep Learning phenomena.

‘This chapter is influenced by the online lecture Statistical Learning
Theory - a Hitchhikers Guide (NeurlPS5 2018) [STR18], the online lec-
ture series Statistical Learning Theory | Mehis] and the book Machine
learning: a practical approach on the statistical learning theory |MP18].

MOTIVATION

As already discussed, learning is inferring general rules to perform a
specific task by observing limited examples. 'Therefore, the learning
algorithm must perform well in the sample already seen and, more
importantly, in previously unseen examples.

How can we prove that an algorithm learned? We may know its
performance in the given sample, but does it translate to any sample?
(Can we guarantee bounds to the error in an unknown distribution of
examples even if we have just a limited sample of it? Can we bound the
number of samples needed (sample complexity) to ensure accuracy
on unseen examples? How does the sample complexity grow? 'lhese
are the kind of guestions that motivated the development of Machine
Learning Theory (MLT). This research field started in Russia by the
name of Statistical Learning Theory (SLT), during the late 1960s, with
the work of Vapnik and Chervonenkis (see Figure 4.1). In 1984, Leslie
Valiant proposed the Probably Approximately Correct (PAC) frame-
work to bring ideas from the Computational Complexity ‘Theory to
learning problems, giving birth to the field of Computational Learn-
ing 'Theory (CoLTl). We will also limit our overview of MLT to the

‘Mathematics operates in-
side the thin layer between
the trivial and the intract-

able.’
—Andrey Kolmogorov

[STR1E] Shawe-Taykor and Rivaspinta, Shatist-
il Learming Theory - o Hitchhikers Cuide
[MenrIPS 3058 ),

IFRLL Mt/ fwusto, e/ nBEL odin 1Y

[Melis] Mello, Sustfatical Learning Theory,
L Bl yoi bl e T Ailepdh ol

[ MPeE| Mello-and Pont, Mochine leerming: &
practical approach on the statistical larntng
thepry.

Frrpoe 4.0 Chervonienkis {Left) and Vapnil:
{Right)
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B8
L

Froume 420 A comcept 15 an idealised input

to output mapping, A~ M.

Froome 4.3 Learning problem setting.

‘In Chapter 5, we will nse Ay to represent the
domain of X to emphasise that the dooain i
timite; it is an alphsbet. Here we use X to e
premvbier that this domain possibly is infinite.

PIX = _-|,-I} = Fx{-tg:l = EJPIrtIh)'_J--
Py ls just s comequence of P(X,¥F) ~x -
Py =x="Pry.

context of supervised binary classification problems. This limitation
is not a deficiency of the theory but a mere choice of scope for this
dissertation.

4.2 THE LEARNING PROBLEM

The goal of learning is to understand Nature from experience, coming
up with a theory, a tested hypothesis. A concept ¢ 1s an idealised
function that maps an instance of the problem x; from the input space
A" (also known as problem space) to a solution y; of the output space
V (also known as label space). 'The convention is that labels are binary,
Y ={-,+}, therefore, we can assign the true label to the presence of
the element, ¢ ¢ A"

We imagine there is a particular distribution D = P(X,Y) in
nature, from which P(X), the distribution of examples, and P( Y|X),
the learning task, derive. Then, even knowing nothing about D, we
want to discover P{ Y|X), given a sample of (x, y) ~ P(X, Y).

4.2.1 The learning problem setting

Supervised learning has three main components (see Figure 4.3):

Netura
PLLY)
Propiem Gerarator - Task Supsrisor
xi‘
PCX) J POX) o
Xy
*
xP Learning Algorithm v | Training Time
AXTXY"= 8
A e R s
X
hix, 8)
i
Hypstirasis :

L. A generator of vectors randomly draw from a probability dis-
tribution P(X), x ~ P(X), x ¢ X," which represent instances of
the problem’;
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2. Atask supervisor that knows the concept and returns an output
vector y; for every input vector x;:

yi=clx:), yi ~P(Y | X = x;)- (4.1)

3. A learning algorithm .4, which is the functional that given a
sample of n inputs and n outputs of a task { (x1, y1 ). (X, ¥ ) |5
selects a hypothesis h from the hypothests space” M:

A: (X =Y)" + H. (4.2)
s
g
'The problem of learning is choosing from the hypothesis space the
one hypothesis that best approximates the concept, 'Lhe selection is
based on a training set of n Li.d. observations drawn according to the
unknown distribution D = P(X, Y).

4.2.2 Assumptions
'The commen assumptions are as follows [MP18; VLSn|:
i. There is no assumption on D = P(X, Y): it can be any arbitrary
joint probability distribution on &' = ).
i. D=P({X,Y) is unknown at the training stage: learning would
be trivial if not.
iii. D =P(X,Y)is fixed: There is no "ime” parameter, meaning that

the ordering of examples in the sample is irrelevant.

iv. Li.d. sampling: examples must be sampled in an identically in-
dependent manner.

v. Labels may assume non-deterministic values: due to noise or

label overlap.

4.2.3 Hypothesis spaces

'The problem setting relies on the idea of a hvpothesis space (also known
as a hypothesis class). A hypothesis space is the set of all hypotheses® a
functional learning algorithm A can generate. In the same hypothesis
space M, hypotheses differ by their parameter vector 8. Choosing a
hypothesis k; is choosing its parameter 0.

h:Xx© ), (4.3)
h(x) = ply| x70), B, (4-4)

VHypothesis spaces will be explained i Sec-
it FESN

[P | Mello and Ponti, Machine ferming: o
practical approach on the statistical fearning
theary.

[VISu] Voo Loxborg and  Schillopf,
“Sratistical learning théory: Modeds, concepes,
and results’

*We can alsn sy that the thesis space in
the languzpe defined by the er.
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Fioume 4.4 Difficrent hypothesds spaces solo-

timns far the same sample.

"W alao use the lerm capdrity to describe
this characteristic of learning algnrithms to
generaie more comples ypotheses.

“F. R{f1) and R{h) are used interchangeably
inn this dissertation.

Different learners will constraint the input space /X’ differently (see
Figure 4.4). Some algorithms are more complex than others, meaning
they can express more different functions.”

We usually call #,y the hypothesis space of all possible functions.
However, generalisation only happens if a learner chooses a subset of
#H,y where to search for the hypothesis. ‘The need for this constraint
in generalisation, a bias, was proved by Mitchell: “biases are [... ]
critical to the ability to classify instances that are not identical to the
training instances”. An intoitive argument for this is straightforward;
if any function were allowed, the learner would be able to choose
the function that “memorises” the sample, which would certainly not
generalise to other cases.

4.2.4 Learning as error minimisation

Choosing from the hypothesis space, the one hypothesis h that best
approximates the concept, which we will call hy,,., can be seen as an
optimisation problem where we want to minimise the error of the
approximation:

AssoLutre grror Letloss £1: 3V x ¥V —+ B be a measure of the error
between the perfect output y of the supervisor and the obtained output
¥ of the hypothesis. The risk is the expected loss. Find 0, which
minimises the risk.

Ro(0) =E(f(x, 5. h(x.0)),(x,y) ~D,Bec®  (45)

0, = argmin R(H) (4.6)
et
h(x,0.) = hpayes = argmin R(h) (4:7)
heHy

The risk Rp, is also called the absolute {(or out-of-sample or theoretical)
error of the hypothesis.® Nevertheless, there is one crucial caveat: the
choice of the loss metric is arbitrary, which curbs any objective,
metric independent, interpretation of the results.
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EmpiricaL ERrOR 'The underlying difficulty of risk minimisation
is that we are trying to minimise a quantity we cannot evaluate; if
P(X, Y ) is unknown, we cannot directly compute the risk R(k ) (ab-
solute error). However, we can compute the risk of the hypothesis on
the training sample:

H

Rs(h) = i Y (E(xi, v h(x)) (x,9) ~ S (4.8)

I=J

With this empirical risk R that we can evaluate, we find the hy-
pothesis that minimises it. Given a sample 8 = {(x1, y1). - (%0, W) |+
a hypothesis space , and a loss function £, we define hy; as the func-
tion:

hy = argmin Rg(h) (4-9)
heH
According to the law of large numbers (Section 4.5.3), if the sample
is large enough, by induction, a hypothesis generated optimising Ry
is close to K. However, it is essential to notice that we still have to
discuss at which rate does Ry converge to R with regards to the the
sample size.

4.3 BIAS-VARIANCE TRADE-OFF
When we define a subset of H ¢ H,y where to look for our hypothesis,
we impose a constraint to the choice, a bias. Besides, the subset H
can be larger or smaller; for example, the hypothesis space of Neural

Networks is much larger than the one of Perceptrons and also covers

it .HNN = Hl"ﬁc{:pl.mn-

Froues 4.5: Biss and variance crrors.

FPerceptron Newral Netwerk

Accordingly, we can distinguish two kinds of errors due to this
constraint:
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« Variance error: represents how far a classifier h; is from the
best classifier in H, hz. With a strong bias (small hypothesis
space), any hypothesis h; is expected to be closer to hy, there is
less variance in the hypothesis space (see Figure 4.5 Perceptron).
Finding the best hypothesis in a larger hypothesis space is more
laborious and, therefore, takes more resources (Hme and ex-
amples) than in a smaller one (see Figure 4.5 Neural Network).

« Bias error: represents how far the classifier hi;, is from the best
classifier hy,,... With larger, more complex, higher-order, hypo-
thesis spaces we expect hy to be closer to e (see Figure 4.5
Neural Network).

These two errors compound the generalisation gap, A(h; ):

A(h;) = R(h;) - R(hgye.) (4.10)
= (R(k) - R(x) + (R(hr) - R () (4.11)

Machine learning practitioners will recognise here what is called

overfitting and underfitting:
Underfitting Truth Chverfitling
Froume 4 6 Example of underfiting and aver- e = -
fitting in a regression problem ] # ] " - -
L 5 L 5y L] L
1 1

« Overfitting: bias error is small, but variance error is large; High
variance is a consequence of fitting to random noise in the
training data, rather than the intended outputs.

« Underfitting: bias error is significant, but variance error is
small; 'The bias error comes from wrong assumptions in the
learning algorithm. Strong bias can cause an algorithm to miss

relevant relations between inputs and outputs.

It is easy to notice that these two errors are conflicting: the more
substancial the bias, the smaller is the H ¢ ‘H.y, smaller is the vari-
ance error, but the more significant is the bias error; and vice-versa
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THE PAC LEARNING MODEL =

(Figure 4.7). This trade-off is the central paradigm of Machine Learn-

ing 'Theory |Sloo2), its crucial challenge, and has different names {Slonz] Slonim, “The information bottleneck:
underfitting-overhtting, precision-complexity, and performance-prediction oy et
trade-off. The goal of machine learning algorithms is to come up

with the simplest model that explains the data, but not simpler.

There are many more complicaled explanations possible than
simple ones. Therefore, if a simple explanation happens to fil
your data, it is much less likely this is happening just by chance.

— Avrim Blum |[Bluoz|

4.4 THE PAC LEARNING MODEL
Up to this point in the chapter, we have described MLT following
Statistical Learning Theory (SLT). Now we will revisit some of what
we already explained with the formalism of the PAC model. The PAC
model was proposed by Leslie Valiant (see Figure 4.8) in 1984 [Val84].
"The lack of citation to Vapnik and Chervonenkis literature is an indic-
ation that the overlap of CoLl' and STL was reinvented. As expected,
ColLT looks at the learning problem from a computational perspective,
while SLT" from a statistical one.
“The PAC framework deals with the question of learnability for a
concept class C and not a particular concept” [ MRT12], where a concept
class is a set of concepts ¢;. The PAC model classifies concept classes
in terms of their complexities to achieve an approximate solution; Pitru 4.8 Loilia ValExst seceived the Tririg
sample complexity, the number of examples needed, computation Awysnd b ai,
complexity, the number of iterations needed. [Voln Valion : thouey o the lesriable
In the PAC framewaork, a concept class € is learnable if there is an
algorithm cap-a_b]e of genemting,_wiﬂl pclyifnmif!l time and examples, i . B i
a general function (the hypothesis h) that with high confidence (1- 6), Learning,

has an arbitrarily small error € in any given instance of the problem.

Probably  Aproximately Correct

——" —

confidence = 1-&) toderance £ & h{)=c{-)

If with absolute certainty, the hypothesis “imitates” the concept,
i.e. there is no error; we can say that there was learning:

JheH: Prople(x) £ h(x)] =0 —» learning. (4.22)
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Fiume 4.9: The concept versus the hypo
thesia

| #iRT1z| Mohri et ol Foundations of Sadiine
Learming.

Nevertheless, this definition is too restrictive. For instance, if ¢ ¢ H,
there is no way for any h to perfectly imitate c. So let us redefine
learning with new relaxed constraints to the absolute error:

P p i (x)ehx)] = Bo(h) (4.13)
JheH: Ro(h)<e, 0<e<] > learning. (4.14)

Allowing some tolerance to error, however, is still not sufficient. On
one side, a hypothesis does not need to be equal to the concept to be
consistent to the sample, i.e. to correctly predict every example of
the sample. In the figure Figure 4.9, the hypothesis was lucky, and
there is no difference between the hypothesis and the concept for the
particular sample, even though they are different maps of A"

On the other side, it is possible that the sample:

Se = {{x, 1) (Xn yu )} ~ D° (4-15)

1s unlucky, and is a set of bad examples for the learning algorithm,
an uninformative sample, making it impossible for the hypothesis to
imitate the concept for all x € &', In this unlucky case, learning would

be impaossible. Hence, we relax the constraints once more:

dheH,0<e<s, 0<8<3:
Pro.ps|Rn(h) > €] <8 -+ learning. (4.16)

Nevertheless, if achieving such thresholds demands an unreasonable
amount of data and time, can we say that learning has happened?
What is a reasonable amount of time and examples?

Let d be a number such that representing any vector x € X' costs
at most O(d) (e.g. X = R¥), and size(c) the computational cost of
representing a concept ¢ € .

Definition 4.1. A concept class T is PAC-learnable il there is a learn-
ing algorithm A and a polynomial function poly(-, -, -, -, ) such that
forany 0 < € < § and any 0 < & < {, for any distribution D on X and
for any target coneept ¢ ¢ C, the following holds for any sample size
n > poly(+, 1, d,size(c)) [MRT12);

Pl’ﬁ..nl[ﬂn{h] £ E] = I:l. II'S} {-1*1}']

If A further runs in poly(?, §,d,size(c)), then C is said to be effi-
ciently PAC-learnable. When such an algorithm A exists, it is called
a PAC-learning algorithm for C [MRT12].



PAC BOUNDS 53

4.5 PAC BOUNDS
As we stated before, one of the main goals of MLT is to guarantee
bounds to the error and the number of samples needed (sample com-
plexity) in learning problems. Here we present some of these guar-
antees as examples of how this theoretical development allows us to
make claims on unknown distributions and unseen examples.

4.5.1 Guarantees for finite hypothesis spaces — consistent case

Theorem 4.1 (|Hau88], finite space, consistent case). Let H be a fi-
nite hypothesis space, A a learning algorithm that returns a consistent
hypothesis h, i.e. Rs(h) = 0, for any hypothesis h ¢ H and unknown
distribution D = P(X, Y).
Let |S| = n, then, Vn 2 1:

Pri3he H:Rp(h) >e] <|H|le™ (4.18)

Proof. Let hy.d(bad =1, ..., k) be all hypotheses in the space Hyaa © H
where Vhgag € Hiad : Ro(hiaa) > €, then:

The chance of a bad hypothesis to correctly predict an example is:

Pry s { L (e yehmaatzyy) = @1 < (1 - €) (4.19)

PI.‘I’j—SI_Rfj U‘hud) = ﬂl 63 (I' E} [..1.2!]:!

‘Therefore, the probability that a bad hypothesis will predict all
examples correctly in the training sample §,, is:

Pro [ Ry, (hpsa) = 0]A (4.21)

Pre s[ Ry, (ipaa) = 0] A (4.22)

Pry,s[Ry, (hpaa) =0] € (1 €)1 €) (4.23)

— —

Pri(Rs(h) =0) A (Rp(h) > €)] < (1 €)” (4:24)

We said there are k bad hypotheses, then, the probability of any of
these bad hypothesis predicting all the training sample correctly is:

Prhy € Hisa: (Rs(h) =0) A (Rp(h) > €)]v (4.25)
Pr [y € Hyg : (Re(hy) =0) A (Rp(h) > €)]v (4.26)

VPr [l € Hiat : (Rs(f1x) =0) A (Rp(h) > €)] < ZL:{I e)" (4.27)

Pr{3he H: (Rs(h) =0) A (Rp(h) > €)] <k(1 - €)"  (4.28)
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[Houkf] Hamssler, ‘Cuantifying inductive
bizs: Al learning alporithms and Valiants
letrning framework”.

Finally, as these bad hypotheses belong to Hy.g © H, k < |H|, therefore,
we get the theoretical error of h given a precision tolerance of €, and
sample complexity of n examples:

Pr{3hcH:Rp(h) >e] <|H|(1-€)" (4-20)
(1-x)<e™0<x<l —

Pr{3heH:Ry(h)>e] € [Hle™

From the PAC framework:
PridheH:Rp(h) >e]< 8 (4.30)
‘Therefore, Haussler theorem gives us a lower bound on the confidence:
8> [Hle™ zPr[Ih e H :Rp(h) > €] (4.31)

We can rewrite the Haussler theorem to bound the number of
examples needed for learning:

Theorem 4.2 ([Hau88|, finite space, consistent case: sample complex-
ity). A learning algorithm A can learn a concept ¢ from a class of
concepts C with n < L(In|H| + In }) training examples.

Proaf.

8> |Hle ™ (from (4.31))
o g (4-32)

H ‘
en < (Ind - In|H|) (4.33)
en < (In|H| - In6) (4.34)
n< é (In [#] + In é} (4.35)
nc D(é(lﬂ || 1 1n%]) (sample complexity)
O

Strangely, the sample complexity upper bound does nat depend
on C or D but depends logarithmically on the size of i [Hau88].
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4.5.2 No free lunch theorem

IS A UNIVERSAL CONCEPT CLASS LEARNABLE? Let X = {0,1}4, the
space of Boolean vectors of size d. A universal concept class I{; has
all subsets of X', Le. contains all possible classifications for a given
instance space A’

(L] = 21 = 209 (4.36)
[H] 2 Ul (4-37)
[H| 2 2(9 (4.38)

From ‘lheorem 4.2 (|Hau88], finite space, consistent case: sample

complexity):

1 |
c(Of -(1 +In= L
n (E(HI'Hi ﬂﬁ)) (4-39)
ne? : (2‘! In(2) +In l) (4.40)
e & i
W S
nel2%:=In- {4-41)
e O
Therefore, the sample complexity is not polynomial to d, and I is
not PAC Learnable. Moreover, the “no free lunch” theorem | WMao7]| | Whaz] Walpert and Macready. "No frec
lunch thenrems for optimization’

states there is no universal concept, therefore, no universal learning
algorithm for all tasks. Specifically, averaged over all possible data
generating distributions, every classification algorithm achieves the
same error when classifying previously unknown points.

4.5.3 Guarantees for finite hypothesis spaces — inconsistent case

Usually, there is no hypothesis in M consistent with the traming sample
due to the stochastic nature of the supervisor or due to the concept
class being more complex than the hypothesis class used by the learn-
ing algorithm.

'To derive bounds for this inconsistent case, we will use the “law
of large numbers”.

Law oF LarGeE NumBers The law of large numbers states that the
mean of random variables ;, drawn Li.d. from some probability dis-
tribution P, converges to the mean of P itself when the sample size
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goes to infinity.

forn —» oo,
I A
=Y E > EQE).E~P (4-42)
LA
TRemember: A statistic is 2 function of ran Based on the fact that a statistic” of random variables can be
ﬂ;ﬂ::r hiblet ettt peffendion iy treated itself as a random variable, we can make the loss function

£(x, y, h(x)) be the random variable £ from above. From what we
can conclude that for a fixed h, the empirical risk converges to the
theoretical risk as the sample size goes to infinity:

forn —» oo,

Rs(h) = i i;{f{x;, yi h(x:)) = E(&(x, v, h(x)) = R(h). (4.43)

Cuepnorb-HOEFFDING INEQUALTTY Moreover, we can use the fam-
ous Chernaff-Hoeffding’s inequality to bound the approximation of

the risk:
1 M
Pr||=S & - E(£)|>e) <2602
r(ugi, (8) e)ﬁ €
(Chernoff-Hoeffding’s inequality)
Pr(|Rs(h) - R(h)| > €) < 22 (4.44)

Unfortunately, this bound only holds for a fixed-function h which
does not depend on the training data, but our hypothesis certainly
does depend. The reason for such constraint is intuitive. If we let the
hypothesis space convey all possible functions and do not restrict
our hypothesis to be independent of the training data, we can always
generate a function that “memorises” the given sample and has no
empirical error. Such function will mest certainly not generalise well
and invalidate the bound.

Vapnik and Chervonenkis solved this conundrum by using the
Union bound.

Unton sounn Even if we are not allowed to select a hypothesis from
the space using training data, the bound still holds for any hypothesis
took at random. Alse, if we enumerate all the functions in H, using
the fact that it is finite, the bound still holds for each hypothesis:
Pr(|Rs(h) — R(My)| >e v
lﬁq{hz] Rfﬁz” FEW -

_ [y )
= [Rs (i) — R{Apy) >€) < Y 2e02) (4.45)



[#] :
~Pr[3h e : [Rs(h) - R(k)|> €] € 3 202 (4-46)
Pr [Elh cH: [Rs(h) - R(h)| > 1—:] < 2.[?{]5‘_2""‘3) (4.47)

Theorem 4.3 (|[Hau88|, finite space, inconsistent case). Let H be a
finite hypothesis class. Then, for any 0 < § < 3, with a probability at
least | - &, the following inequality holds [MRT1z|:

VheH, R{h)< Re(h) + €
In|H]| + In2/8

R(h) < Re(h) + o (4-48)
Proof.
Pr[3heH: |Re(h) - R(h)|>e]<b (from PAC)
Pr[3he H: |Re(h) — R(W)| > €] € 2/H[e™  (from (4.47))
s8> EI'HEEI_Z”E“ (4.49)
Assuming § = .?.]'Hief‘l"'s!j, we have:
O
(et} 2
3l (4.50)
Ine’ =Ind - In2iH| (4.51)
1 In2 - Ind
e n [H| f..,n (452)
N
SE>D >e=+ I +1029 (4.53)
2n
By definition, R(h) > Rs(h), thus:
Pr[3heH: (R(h) - Re(h)) > €] <86 (4.54)
PrvVheHM: (R(R)  Rs(h))<e]=z1-8 (4.55)
'Therefore, with probability at least 1 - &:
VheH,R(h) < Rs(h) + & (4-56)
VheH,R(h) < Re(h) + M (from (4.53))
Vi e H,R(h) < Ro(hr) + O /log j?{|, 1/m\/log1/5)
O

We can rewrite ‘Theorem 4.3 ([Hau88|, finite space, inconsistent
case) to bound the sample complexity:
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[ METz| Mobri et ol , Fouwndations of Maching
Learning.



58 MACHINE LEARNING THEQRY

Theorem 4.4 (|Hau#8], hinite space, inconsistent case: sample com-
plexity). A learning algorithm A can learn a concept ¢ from a class of

; I In 7 5z
concepts C withn < LF;E;—'* training examples.

Proof. from (4.53),

In|H| + In2/& In|H| + In2/8
e\ —— g —
2n et

4.5.4 Guarantees for infinite hypothesis space — inconsistent case

It can be argued that for our use in machine learning, there is no need
for guarantees for infinite H due to the nature of computer hardware
and their memory limitations, which already discretise the hypothesis
spaces. Anyway, we will give a general idea of this case.

One of the most striking insights of Vapnik and Chervonenkis
is the idea of the shattering coefficient (N). Let us take a look at the
bound from ‘Theorem 4.3 ([Hau88|, finite space, inconsistent case):

YheH,

In[H| + In2/8
n
(finite hypothesis space, inconsistent case)

R(k) < Re(h) 4

The In |H| relates to d, the size of the representation of the hypothesis
space. Another remark worth mentioning is that in the union bound,
we just added the probabilities of each h; ¢ H without considering
where P(h;) n P(hs), j 2 k.

Froume ga0: Pr{dy ) 0 Pef ) & summed twice in the union boond.

In reality, there are several different h € H that provide the same
map x ¢ 8 » y ¢ { -, +}. Therefore, the effective size of H is smaller

[VLSi:| Vo Lusburg and Schilkept, than [H|. Using a symmetrisation trick | VLS11, section 5.2|, Vapnik
“Statistical learning theory: Modds. concepis, 3 3 : .
e pesali® and Chervonenkis showed that there are at most 2°" effectively dif-

ferent hypotheses. In the PAC framework, |Y| =2, so if a patternis a
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set { yi, =+, ¥n ). there are |H| = 2* different patterns, thus, effectively
different hypotheses.This number, however, can be even smaller; for
example, a certain y, k < n can, for example, only accept a specific
value, y, = +.

'The shattering coefficient is a growth function, i.e. it measures the
number of effectively distinct hypotheses as the sample size n grows.
It is a capacity measure of a hypothesis class. Whenever N(#,n) =27,
there exists a sample of size n on which all possible separations of the
patterns can be achieved by some h ¢ H.

We can now rewrite 'Theorem 4.3 (| Hau88], finite space, incon-

sistent case) as:

YheH,

(4.57)

R(H) < Rs(h) + Jlnﬁ-"’{?i n) 1+ In2/8

Another capacity measure is the famous VC dimension.”
VC(H) = max{n c NN (H,n) =2" for some 5, } (4.58)

A combinatorial result relates the growth behaviour of the shattering
coefficient with the VC dimension:

Theorem 4.5 (Vapnik, Chervonenkis, Sauer, Shelah bound).

IfVC(A)=d,V¥n =1, N(H,n) < é(z) s (?)d

4.6 MINIMUM DESCRIPTION LENGTH
Minimum Description Length (MDL) is an MLT principle proposed by
Hinton and Van Camp |HVCag3). It will be presented later (Section 6.5)
as it relates to Information Theory.

4.7 PAC-BAYES
For a long time, MLT was divided between Bayesian inference and
PAC learning. In 1997, Shawe-laylor and Williamson first presented
a theorem of PAC guarantees for Bayesian algorithms (algorithms
that minimise the risk using a prior probability for the data and hypo-
thesis) [51'Wa7]. This bridge allowed tighter PAC bounds for learning
algorithms that take advantage of informative priors. Here we give
PAC Bayes bounds for finite hypothesis spaces (for more, see | McAoy]
and [McAiz]).

FMamed after Vapnik and Chervonenkis

[HVUg3] Hinton and Van Camp, Kecping
the neural petworks simple by mininising
the description kength of the weights'

[5TWaop| Shawe Taylor and Williamson, "A
PAC amalysis of 2 Bayesian estimator”.

[MeAge| MeAllester, “Stme PAC-Bayesion
Thearems'

[McAn] MoAllester, ‘A PAC-Bayesian
Titorial with A Dropout Bound'.
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4.7.1 PAC Bayes Guarantees for finite hypothesis spaces — consistent case

Theorem 4.6 (Preliminary Theorem 1 [McAga]). Let M be a finite
hypothesis space, A a learning algorithm that returns a consistent hypo-
thesis h, i.e. Re(h) = 0, for any hypothesis h and unknown distribution
D = P(X.,Y), any |S| = n : n 2 1. For any probability distribution P
assigning a nonzero probability to every hypothesis in the finite hypo-
thesis space M, with confidence 1 - 8 over the selection of the sample of
n instances the following holds true:

. In gy +Ing
Prihc H: (Rg(h) =0) A (Rp(h) >€)] e (4:59)

Proof. 'This proof is very similar to the one in Theorem 4.1 (|Hau#s8],
finite space, consistent case). From (4.28):

Prihe H:(Rg(h) =0) A (Rp(h) > €)]< (1 -€)", (4.60)

But we alsp know that:
PrlheH:(Rg(h)=0)a(Rp(h)>e)] <P(h)S (4.61)
(1 x)<e™ 0£x5]1 —

e < P(h)b (4.62)

In s +In 2

e L (et

n

=

4.7.2 PAC Bayes Guarantees for finite hypothesis spaces — inconsistent case

Theorem 4.7 (Preliminary Theorem 2 [McAgg|). Let H be a finite hy-
pothesis space, A a learning algorithm that returns a hypothesis h given
asample |S| = n 2 n 21 from the unknown distribution D = P(X, Y).
Given a probability distribution P assigning nonzero probability Vh ¢ H,
with confidence (1 - 8) the following holds:

i 2
I.[]m'j 1 |.{13

“ (4.63)

YheHM, R(h) < Rs(h) 4

Proof. Asin 'Theorem 4.3 (|HauB8|, finite space, inconsistent case),
we need to apply the union bound over the Chernoff bound:

PrihcH:(Rs(h)=0) A (Rp(h) > €)] <257, (4.64)



4.8

4.8.1

But we also know that:

PrheH: (Rs(h) =0) A (Rp(k) > €)] £ P(h)S (4.65)
2602 < ()& (4.66)

In—L. +In2

o P{ﬁzjn 5
O

CRITIQUES ON MLT

‘This dissertation aims to present an emergent new theory for under-
standing Deep Learning. In this context, we should first ask ourselves:
Is anything wrong with the current MLT? Do we really need a new
theory?

Truth be told: we did not cover current MLT in this chapter which
aimed to be an introductory overview of the subject. There are many
topics in active development beyond what was presented here: Struc-
tural Risk Minimisation, Rademacher complexity, Uniform Stability,
for example.

With this caveat, here we digest some of the critiques on the cur-
rent state of MLT in two parts, one for general critiques and another
for critiques specific to the case of Deep Learning.

General critiques

No assumerion oN D = P(X, Y) (seE 72.1, assumpTION 1): One
of the assumptions of classical learning theory is that “there are no
assumptions on D = P(X, Y)" Although this assumption means that
MLT bounds guarantee approximation to any arbitrary distribution;
distributions of practical interest are the ones found in Nature. These
practical distributions have some peculiar characteristics that physi-
cists know about [LTR17|: Low polynomial order, locality, symmetry,

among others.

ABSENCE OF THE NOTION OF "TIME"(SEE 7.2.1, ASSUMPTION U1): One
of MLT assumptions on P(X, Y) is that it is fixed; there is no “time”
parameter. Several practical uses of machine learning are in data
streams where it is common to have one observation affecting the
probability of the future ones [MP18].

IDENTICALLY INDEPENDENT SAMPLING (SEE 7.2.1, ASSUMPTION 1V );
One of the assumptions of Machine Learning is that the datasets are

CRITIQUES ON MLT &

[LTRay] Lin et al, “Why docs deep and cheap
learning work so weil?’

[MPi8] Mello and Panti. Mackhine latraing: a
pructical approgch o the statistical arning
theory.
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sampled 1.1.d. This sampling assumption 1s often violated in practice;
for example, a machine learning medical application may use data
from one hospital to train a model that will be applied worldwide.
‘The violations are, of course, of practical reasons. However, up to
what point can we say that a particular dataset is i.i.d.? Let us think
over the problem of facial recognition. Taking photos at random in a
university is not Li.d because the people that goes to the university is
a limited set of the whole population. If we use random images on the
Internet, we may only get the kind of picture people chose to display, a
bias of intention. There is always some bias in any dataset: a selection,
intention bias or technical bias (due to the image capture device).

ArBITRARY LOss METRICS In MLT learning setting, the choice of the
loss function is arbitrary, which curbs any objective, metric-independent
interpretation of the results.

Brack-pox anavysis In MLT, the model is treated as a black-box

[AB16] Alnin and Bengin. Understanding [AB16] (as cited by [ST17]), i.e. the analysis is based only on the input
intermediate |.:11I.l|:n using finear classifier
oz and the output of the model.

STy Shwarte Ziv and Tishby, ‘Gpening 4-8.2 In specific for Deep Learning
the Black Box of Decp Nearal Metworks vis
Information’ Vacvous sounns Machine Learning Theory cannot explain deep
neural networks generalisation performance. According to MLT, the
deep learning generalisation gap is in O(|0]log|0]), where |0| is the

[KTow| Kakade and Tewari, VIC Dinsensiont of number of parameters of the network [K'To8). 'These bounds are vacu-
Mudidlapér Newral Networks, Rasge Queries
IMmE: fittps : o Fitic. echicoge - ado / =towerd /
lectures fMlectureld  pdf

ous by orders of magnitudes | Zhot19; Zha+16]. However, deeper and
larger networks consistently show better generalisation performance

[Zhavigl Zhow «a al, ‘Mob-vacuos than smaller ones.
Generalivation Bounds ot the ImapeMNet Scale

PAC- Bayesian Compressio k. = a : .
! a s » Appime InexpLICABLE” PHENOMENA Deep Learning (DL) has several phe-

nomena with no definitive explanation, stemming from a single nar-
L’:‘,h,:,:: 1;‘2;2? ﬁ_,ﬂ#:h-”, mm fmiw rative. For example:
« Generalisation with the addition of layers: as we explained in
this chapter, the current MLT expects models with fewer para-
meters to generalise better; that is not what happens in DL
Moreover, Zhang et al. showed that the hypothesis space of DNN
is large enough to allow convergence to random labels [Zha +16].

« Disentanglement of semantic factors: the representation of the

input in deep layers usually disentangle semantic factors, i.e.
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different semantic factors are not strongly correlated in the
representation;

» Superconvergence: Smith and Topin present that overall train-
ing time can be shortened and better accuracy achieved by
cyclical learning rates [STig]. Howard and Ruoder propose a
slight variation of the method, slanted triangular learning rates,
and achieve even better performance | HR18). This supercon-
vergence phenomenon is not well studied, and there are only a
few conjectures on why it does happen.

« Critical Learning Periods: Achille et al. show that “similar to
humans and animals, deep artificial neural networks exhibit
critical periods during which a temporary stimulus deficit can
impair the development of a skill" [ ARS17]. This finding ques-
tions the assumption that the order in which a model experi-
ences evidence does not affect learning.

4.9 CONCLUDING REMARKS
‘This chapter summarises basic concepts from Machine Learning The-
ory (MLT). We derived some fundamental theorems of classic MLT
and PAC-Bayes (Section 4.7). We tormalised the learning problem
setting and made explicit its assumptions (Section 4.2.2), which we
will add to our list:

4.9.1 Assumptions

1. A definition of intelligence (Section 2.1.1)

2. Knowledge is a set of beliefs, quantifiable by real numbers and
dependent on prior evidence (Section 3.1.3, ltem 1);

3. Assumption of the sceptical agent language (Bayesian infer-

encel:

a) Common sense: The plausibility of compound sentences
should be related by some logical function to the plausibil-
ity of the sentences that form them (Section 3.1.3, ltem 11).

b) consistency (Section 3:1.3, ltem [l and Section 3.1.2, Item 111}

c) minimality (Section 3.1.2, ltem IV)

4. MLT specific assumptions for the learning problem:

[5Tg| Smith and Topin, Super-convérgenoe
Very fust training of neural networks using
large learning rates’.

[HEH | Howard and Roder, "Universal Lan-
puage Maodel Fine-tuning for Text Clagsifica:
it

DRLE biLgi: Sl arms v aorgSabs / THBL 66 144

[ARSry| Achille et al, Critivel Learuing
Periods in Deep Nearal Networks,

Machine | zsrmmg Ehery

FAL-Bages i«—
2

| Bayesian (rference |
.

T

St
gw

Enawlegps

hiteliipence
—

Fiione gu1: In this chapier we show how
MULT 35 built from & st of specific sesnmp-
thns [ 4) wsing the Bayesian inference

language.
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a) Noassumptionon D= P(X,Y);

b) D= P(X,Y) is unknown;

c) D=P(X,Y) is fixed: no “time” parameter.
d) Independent sampling;

e) Labels may assume non-deterministic values (h can be
stochastic, bul can also be deterministic);

f) Learning is an optimisation problem in the hypothesis
space.

4.9.2 Revealing the implicit assumpfions

Our derivation allowed us to expose implicit assumptions of MLT.
For example, although some may argue that ML1' is agnostic of a fre-
quentist or Bayesian view, we disagree. We claim that MLT requires a
Bayesian view and refer to the fact that we derived it from a Bayesian
definition of Knowledge. Another point we would like to highlight is
that MLT assumes that there is no importance of the order of experi-
ences, i.e. it assumes consistency (ltems 3b and 4d):

i Abeliefin a statement can not depend on the path used to arrive at
it. In other words, it does not matter the order in which evidence

is presented.
ii. No evidence can be arbitrarily ignored.

iil. Statements known to be identical must be assigned the same
degree of belief.

Symbolic Al guarantees that their agents follow such assumptions
by censtruction. However, on the other hand, we know humans do
not follow these assumptions, and the whole point of conceptualising
rational agents was to study a simplified form of intelligence.

For humans,

i. the order in which we experience pieces of evidence matter. Hu-

| Wichz} Wicsel, ‘Postnatal Dievelopment mans and other animals have critical learning periods | Wie8z2];
of the Visual Cortex and the Influence of
Environment', v P
ii. we forget or suppress past experiences;

iil. we can change our mind even in the absence of new evidence.
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Wuaar asour Deep Neurar Nerworks? There is nothing by con-

struction that forces DNNs to be consistent. Recently, Achille et al.

observed critical learning period phenomena in DNNsas well [ARS17]. [ARSt7| Achille et al, Critical Learsing
- B Perinds in Deep’ Neuml Networks.
lherefore, we conjecture:

Conjecture 1. A complete learning theory of Deep Learning (DL) has

to address time and its effect on the cost of changing a belief.

4.9.3 On the critiques

Most of the general critiques in Section 4.8.1 are not problems of
current MLT but choices.
Specific to Deep Learning, Zhang et al. challenge current MLT
concept of generalisation based on the expressivity of the model [Zhat16].  [#hatis] Zhang @t al, Understanding deep
They show that the expressivity of neural networks is sufhcient to fit ferning roquires rethinking genemicution.
random labels easily and even memorise an entire dataset. Random-
ising labels is a data transformation that does not affect the general-
isation performance in current MLT generalisation bounds.
Current MLT sample complexity and generalisation bounds, based
on the size of the hypothesis space, focus research attention on models
architectures. One of the strongest critiques to the theory has for a
long time been the lack of non-vacuous bounds for DNNs. Recently,

however, Dziugaite and Roy proved such bounds | DRuiy]. They did | Diey] Diiugaite snd Roy, 'Computing Not-
B “ = E: - . varuous Generalivotion Bounds foer Deep
s0, however, using PAC-Bayes and exploring the "flatness”/location (Stochastic) Newral Networks with Many

More Parameters than Training Data’
UL http: /oo _orgfuzi2@) )/ procesdings

a role in DL generalisation. Besides, we will show that there is an papeTR i ptf

of minima found by 5GUD, proving that at least the optimiser has

information-theoretical interpretation for the “flatness” of 5GD local
minima.

Nevertheless, without disregarding the immense contribution of
‘Computing Nonvacuous Generalization Bounds for Deep (Stochastic)
Neural Networks with Many More Parameters than Iraining Data),
the paper does not pretend to solve conceptual problems in MLT.

Understanding Deep Learning, indeed, requires rethinking gen-
eralisation. A new learning theory may make different choices and
bring a new narrative that unifies explanations for Deep Learning
phenomena. We will show that, despite its weaknesses, Information
Bottleneck Theory (IB8T) presents a new narrative worth exploring.






5.1

Information Theory

‘This chapter derives Shannen Information from Probability Theory,
explicates some implicit assumptions in the usage of Shannon Inform-
ation, and explains basic Information Theory concepts.

FROM PROBABILITY TO INFORMATION

In Section 2.3.1, we exposed that an agent updates its model of the
environment from sensory data, experience. We have also shown how
this update happens; a sceptical agent proportions her beliefs to the
evidence according to Bayes” theorem.

'The amount of this update on knowledge is not uniform. Some
experiences are more valuable than others, i.e. some evidence will
produce a more considerable change in the agent’s knowledge, leading
to a greater impact in her future actions. We say that those experiences
are more informative.

Definition 5.1. Information is what changes belief [Sow16; Cato8).

Let us say thatan agent’s prior belief in a statement S is P(S)." After
experiencing some evidence e, her posterior set of beliefs is updated
to incorporate the evidence, P(S|e).” The prior and the posterior are
related by the product rule (Section 3.6) [Sowi6]:

P(Sle) = P}EEE? - P(8) (5.1)

We shall call this ratio by which prior and posterior are related as
the likelihood (LC):

‘Only through communic-
ation can human life hold
meaning.’

—Paulo Freire

[Sowia] Sowinzki, Complexity and stability
for epistemic agentx The foondations and
phenemenalogy of configurational Entropy’.

[Caro®| Caticha, Lectures om Probabifity,
Esitrogy, and Statistical Phisics,

'P(5) iz in fact P{SK), bt 'we supress it o
rediee the cluiier.

*Here we are talking about events: P{5]e) ina
short hand for P(5][2) & KL
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[Bowat] Sowinsk, 'Complexity and stability
foer cpistemnic- ppents: The: foundsticns nnd
phenomennlogy of conhgurational Entrapy”.

Wi harve already | Section 3.0 debved 5 little
an the implications of the indifference to the
order of evidence which isalso an indifference
In sequential versos simnltaneous updating.

[Catel] Caticha, Lectures o Probability,
Htrapy, anaid Statistical Pliysics.

‘This update procedure can be generalised to a set of experiences.
Consider a sequence of experiences: E = {¢;}

p(Sles) - p(Slea ner) » - > p(Slea A ey A~ A er)

But according to the Cox axiom Section 3.1.3 and Item I1l, an agent
may partition her experiences in any way she chooses, and this does
not affect her final belief [Sow16]. Therefore’:

Posterior  P(S|e)  P(e[S)
Prior  P(S)  P(e)
P(Sle) = L(e;8) - P(S). (5.3)

L{e;8) = (5-2)

Simply by observing equation 5.2, we can conclude that if information
(i) is what changes belief, information and likelihood must be related
to one another:

is(e) = f(L{esS)). (5.4)

Moreover, if an experience does not change a belief (L(e;5) =1),
it contains no information: f(1) = 0.

We also hope that when the likelihood changes by an infinites-
imal amount, information does not change discontinuously, so f is
continuous.

The information gathered from independent events must reflect
the commutativity of Cox’s axiom I11 [1la.

Let £; = L(e;S) and £, = £(e,; S), information must satisfy the
functional constraints |Sow16]:

JLinLy) = f(L)+ (L)
1) =0
f 15 continous.

This functional form can be solved, and its solution is |Cato8|:

f=A-InLe;S)..
is(e) = A-InL(e:S). (s5)

From equations 5.5 and 5.2,

P(Sle)
p(s)
is(e)=A-InP(Sle)  A-lnp(S). (5.7)

is(e)=A:In

(5.6)
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The constant A allows us to use any base b in the logarithm:

1
A= T is(e) = log, P(Sle) - log, P(S). (5.8)

We can argue that the amount of information gained by the agent
about the world is equivalent to some amount of hidden information
h that was revealed to the agent by the event e.

Hence, is(e) = -Ah(e), from eq. 5.7

is(e) = log P(Sle) - log P(S) (5.9)

is(e) = ( lngl"{ﬂ[e:[) ( lug.P{S}J (5.10)

h(5e) h{s)
is(e) = Ah(e). (511)

Delightfully, our definition of hidden information that reduces
the uncertainty of the agent, and emerged from our definition of
information,

h(S) = logP(S) (512)

is equivalent to Shannon’s self information™: * lso known as the Shannon information con-
terd ul..m ouicome [Maced] or Hartley's in-
1[$1= - logp(s) Gw) T

In Information Theory (IT), self-information is defined as the
entropy contribution of an individual message (or symbol); in other
words, how much an individual evenf can attain uncertainty reduction.
'This uncertainty reduction is what we derived.

Shannon’s information can be derived from probability theory.

5.2 SHANNON'S MATHEMATICAL THEORY OF COMMUNICATION
Information "Theory (I1T) has an identifiable beginning: Shannon’s
1948 paper ‘A mathematical theory of communication’ was a giant
leap towards understanding communication and defining informa-

tion.” Despite his acknowledging of the influence from previous works 3 a rare piece of collaboration, Shannon

F : 4 " 3 keeed s lunchrom table col at Bell
by pioneers such Harry Nyquist and Ralph Hartley, it was Shannon's sha w0 u;::m, 2 M:wa than
unifying vision that revolutionised communication and provided a g’ﬁ?ﬁfﬁiﬁﬁﬂ&%tﬁﬂmn
blueprint for the information age |Aft4o1]. His theory defines un-

breachable limits, the laws of information |Stois|: Jll_;'mﬂ?] ﬂ;ﬂ et -!J;I I;ngf;tt}ﬂﬂimw -
+ =5 FrrudirT e Y i £ ..

L hitp - 4 Fweb . milb , cda #0950 7wl
i. 'There is an upper limit, the channel capacity, to the amount of Sk LN ieinsd

information that can be communicated through a channel; s S, A b AR

trdrodie tiow.
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ii. Noise reduces the channel capacity;

iii. There is an encoding that allows lossless communication trough
a noisy channel.

The idea of transmitting information with zero error through a
noisy channel is not intuitive, and its theoretical proof was an unex-
pected result. In the following sections, we will explain the concepts

of 1T that allow us to comprehend these laws of information.

5.2.1 The communication problem setting

Shannon deliberately chose not to deal with fuzzy concepts as intelli-
gence or meaning:

1he fundamental problem of communication is that of repro-
ducing at one point either exactly or approximately a message
selected at another poinl. Frequenily, the messages have mean-
ing; that s, they refer to or are correlaled according Lo some sys-
tem with certain physical or conceptual enlities. These semantic
aspects of communicafion are irrelevant fo the engineering
problem. The significant aspect is thal the actual message is one
selected from a set of possible messages.

[Shaqs] Shannon, ‘A mathematical theory of — Claude Shannon, [Shaq8]
communication’, . ) - ‘ )
Conceptually, this setting can be explained as follows (Figure 5.1):
L]
*s is the intended message. One can think
aboul it a5 the menning or the semantics. Source Destination
o)
S S
Froome 512 The communication problem set-
ting.
Encoder Pecoder
The Source 5:
Ay in the alphabet or the set of possible out- L. selects a message s from a set of possible messages A;.”

comes of the random variable 5
2. 'The encoder x encodes the message s into a string of symbols
x, the signal; and
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5.3.1

3. transmits this string of inputs x through a noisy channel p( y[x, n).

In the Destination:
1. ‘The decoder Y = p(y|x, n) receives a string of symbols y,

2. decodes the string y into the most probable message 5.

INFOBRMATION

'The reason for communication is to change another agent’s beha-
viour. In other words, communication either affects the conduct of the
recipient, or it is like it has never happened [Shaq8, paoo]. We have
already established (Section 5.1, definition 5.1) that information is what
changes belief; thus, changes an agent’s conduct. So, communication
is transmitting information.

Noteworthy, information is independent of the encoding or the
chosen channel. Thus, one can use any language (English, Portuguese,
music, images, dance) and any transmission medium (letter, tele-
graphy, microwaves) that the transmitted information remains the
same.

To simplify, Shannon constrained semantics to the act of choosing
a message from a set of finite possibilities. A source (a person, a
machine or a phenomenon) that always sends the same message never
surprises the receiver, and the message carries no information. On
the contrary, a source that sends symbols at random is impossible to
predict, and, therefore, every message carries maximal information.

Therefore, information is a measure of freedom of choice in selecting
the message |SW 49, p.1oo|. In other words, it is a measure of surprisal
or uncertainty reduction.

In the aforementioned famous paper, Shannon limited to say that
mathematically, if the set of possible messages A is finite, any function
of the size of this set f(|As]|) is a measure of information and that the

logarithmic function is a natural choice. We shall expand on this idea.

A guessing game

Imagine a number from 1 to 1000. Let us assume that you picked the

number at random. Thus, each number in the range had the same

chance of being chosen, ﬁ How many questions are needed to

guess the number correctly? Well, it depends on what are the allowed
answers, One could ask:

= How many hundreds the number have?

INFORMATION

[SWea| Shannon and Weaver, The Meabléemat
ol Hreory of Corrrgmnication.

F ol
01@__3455?119
. 1 I-._ :ﬂ}

BERIOITEAL

o1z3a4as(s)7an

Frune 5.2 Branching factor of 1o to find 146,
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« ‘Then, how many tens the number have?

+ Then, how many umnits?

In this case, the number of questions needed is three, the height
of the tree in Figure 5.2, because we allowed each answer to be a digit;
therefore, the branching factor b of the decision tree was 10. It is easy
to notice that the tree’s height is log, (1000).

It is now clear what Shannon meant by saying that the logarithmic
function was the natural measure of information. The logarithm will
give the decision tree’s height (number of guestions) based on the
number of possible answers (the logarithm base). The branching factor
is just a measurement unit and can be chosen arbitrarily.

The smallest branching factor is 2, a bit. So, one bit is the amount
of information that resulted from choosing between two equally likely
options.

To solve the same guessing game with bits, i.e. with yes or no
questions, one proceeds with a binary search, and in the worse case it
will need log,(1000) = L5 (1000) ., .96, 10 questions.

logy, {2}
How about if the choice was among not equally likely options?

Let us examine the simplest case of an unfair coin, which turns heads
X7 75% of the time.
: Here, we expect the outcome to be heads, so if it turns fails, we
PIX=H)=75% P(X=T)=25% get surprised. Before the coin flip, we were 25% certain (our belief
measure) that the experiment would turn tails. If it turns fails, our
certainty reaches 100%, growing by a factor of ﬁ =4, So it is reason-
able to think that our uncertainty of the fails outcome decreased by
a factor of 4 as well. We were 75% certain that the experiment would
turn heads. 1f it in fact turns heads, our uncertainty of the heads out-
come decreased by a factor of T;E = 1.3. How do we transform this
* MacKay call this factor Ccands uncertainty reduction factor” to a measure in bits? In other words,
i how do we measure in bits the information gained by unveiling an
outcome?

Motice that 1 kit is the amount of information that reduces uncer-
tainty from 2 possible states to 1, a factor of 2. Also, 2 bits of informa-
tion reduce the uncertainty from the 4 possible representable states
with 2 bits to 1, a factor of 4. So, if an outcome has probability p(x):

2 factor = 1 hit

S o P(IJ factor — log, —— { bits = - log, p(x) bits

)

2" factor = n bits If the factor is a measure of the reduction in freedom of choice, the
% faenor = lng () ki factor is the information gained by knowing the experiment s outcome.



Thus, this factor 1s known as self-information or information content
of an outcome”;

Definition 5.2. lhe information content, self-information, sur-

prisal, or Shannon information of a particular outcome x of an
experiment is defined as:

I[x] = h[x] = - log p(x) (5.14)

{information content of outcome)

As we already had derived in Section 5.1

5.3.2 Entropy

In practice, however, we are not usually interested in the information
of a particular outcome, but in how surprised, on average, we will
expect to be with the entire set of possible outcomes.

Definition 5.3. The entropy H| X ] of a random variable X is defined to
be the average Shannon information content of its possible outcomes:

H[X] 3" p(x)log p(x) bits/symbol.  (5a5)

g e
7 ]DE P {_I ) zehy
Entropy can be seen in two ways':

1. as the quantity of information “produced” by the source [SW 49,
pa8|.

2. as a measure of uncertainty or lack of pattern.

Average information shares the same definition as Entropy; therefore,
to know whether a quantity is information or Entropy depends on
whether it is given or taken |5to1s]. In other words, uncertainty re-
duced is information gained, and vice-versa. If a random variable X is
very uncertain, it has high Entropy. If we are told the outcome of the
variable X = x;, we have been given information equal to the uncer-
tainty we had. Thus, receiving an amount of information is equivalent
to having the same amount of Entropy taken away.

5.4 THE SOURCE

In the problem setting proposed by Shannon, the source generates
a message, symbol by symbol. The choice of each symbol depends
on the “preceding choices as well as the particular symbols in ques-
tion” [SW4g, p.1o].

THE SOURCE 73

*Information theory megnitndes are func-
thona of the probahitities random variahles and
not divectly of a random variable To address
this diflerence. we opt to use square brackets
instead of parcnthesis.

"W will constrain oor cxplanations of Inform-

ation Theory to the discrete case. I8 can be ar-
gued that & we are interested in modets that
cornputers will wse, some quantization will al-
wiiys happen.

|5Win| Shannon and Weaver, The Mathermiat-
il Thewry of Commusnication,

{5eois] Stosne, Imfarmation theory: o futorial
Enbrodiction.
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|5W 4o | Shannon and Weaver, The Matlemar -
fcal Theary af Comeertication.

5.4.1

A mathematical model that follows this description is known as
a stochastic process. A stochastic process can represent any discrete
source. "Conversely, any stochastic process may be considered a dis-
crete source” |[SWaol.

Definition 5.4. A stochastic (or random) process is a set of random
variables indexed by a variable i € M (usually representing time):

S, icH (5.16)

{Stochastic Process)

In the original formulation, Shannon modelled the source as a
stochastic process indexed by time. He thought the source as an entity
that emits a specific rate, amount of information (bits) per period
{seconds):

H[S] bits

T second

R, (5-17)

where ‘I is the average time in seconds of transmitting a symbol. For
simplification sake, from now on we will just say that the source rate
18t

Rg = H|S] bits/symbol or H[S] bits/transmission (5.18)

Markov chains

More specifically, Shannon proposed using a special kind of stochastic
process called an ergodic Markov chain to model the source.

Definition 5.5. An order-k Markov chain is a stochastic process that
satishes the following property:

P{Sffsi-n 51-1:“': Sj-k} = P{Sflsi-]: S:'—Zh'"? 5:] l'ﬁJSI;

Ihe ergodic property means statistical homogeneity [SW 49 : its statist-
ical properties can be deduced from a single, sufficiently long, random
sample of the process.

An order-k ergodic Markov chain is a process with a memory of k
states. By modelling the source as an ergodic Markov chain, Shannon
showed that his theory not only works for phenomena that can be
modelled as i.i.d. random variables. The source can behave like a chain
of random variables { S}, each representing an outcome s ¢ A that
are dependent on each other, as long as the sequence produced is
longer than the number of symbols needed to the Markovian process
achieve its stability.
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5.5 DATA COMPRESSION: ENCODER/DECODER

An encoder transforms information into data. For example, the same
information can be transformed into an audio file with spoken English,
a piece of writing in Portuguese, or even an image. These encodings

represent the information uniguely and differ in the amount of data

(bits) they use (Figures 5.3a to 5.3¢).

{c} A 4.0 kB S¥T: duntone im-
age of a cat

(2} A 360 kB PNG colored - {b) A 27 KB PG groyscale im-
age of & cat apeod s cat

An analogy with natural languages can better explain this idea.
Languages encode ideas into words in different ways. For example,
while in English "to be” is universal, Portuguese has two different verbs:
“ser” and “estar”; the first for permanent, unchanging cases; the second
for temporary situations such as moed or weather. At the same time,
similar or identical meanings appear in unrelated languages [Zas+18].

'Thus, a message in a natural language can be translated (encoded)
to another language, and both messages will hardly have the same
number of words, characters, or size in bits;

encoding: X(5)

5" = {8, 5,} = { Xy, Xy} = X5 (5.20)

Xk = (X X,) Aecating X XY (S, 8.} =8". (5:21)
Besides, some symbols are more important in a message: “Mst
nglsh spkrs wil ndrstnd ths phrs wtht vwls''". Here we created code-
words for words in English that a receiver can understand by the
context (and certainly if she has a codebpok™”).
Shannon’s source coding theorem is about encoding messages
efliciently, a form of data compression |Stois]. Here we present some
defimitions that will help us understand the theorem later.

Definition 5.6. A (n, k) block code, also known as a codebook, isa
set of n codewords represented by a sequence of k bits:

{X*(1), X*(2), ..., X (n)}, X*(i) € AX, ne M. (5.22)

Fioume 5.3- Different representations of a.cat
and their encoding sives in bits.

* What's in & namnie?
That which we call a rose,
by any other word

would smell 5 sweet
— William Shakespeare,

Romeo and Julict {act 2. sce.a)

[#as+a8] Faslaveky ot ol ‘Etficient compres-
sion in color seming end its evolution’.

*““Muost English speakers will anderstand this
phraze witheout vowels”

A endebook s a dictionary that nelates words
in the source alphabet, &y 1o wonds, codes, in
the encoder alphabet Ay

{5eois] Stosne, Imfarmation theory: o futorial
introduction.
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"hie redationship between nformatinn (en
tropy ) and the shape of the distribution s oa-
cial for the IBT perspective

|Stins] Steene, nformution. theory: 4 tutarial
irtroductio.

Frosume 5.4 Entropy af the sonrce va ending
capacity,

5.5.1

“This examiple i5 inspired by A Short fntro-
duction o Entrapy, Cross-Entropy and KL
Divergence ||

Definition 5.7. Let 5" be a block of # random variables, representing
consecutive symbols §; € Ay emitted by the source. A binary block
encoder X is a function:

X: A (0,1} (5.23)

that “translates” the block of source symbols (the message) into a code
X* of k bits, using a (|Af], k) code:

X(8") = {xy, -2} =x € {0,1}F (5.24)

Definition 5.8, The rate ®y of a binary block encoder is:

log|Ag| n bits
e s

shannon’s source coding theorem (Section 5.5.6) is essentially

By =R5y= (5.25)

about data compression. 'The encoding process vields inputs with a
specific distribution P(X). The shape of this distribution'* determines
its entropy H[X] and, therefore, how much information each input
carries | Stois].

— N
EJ im=x} 1 ¢ |

(2} Loes of information. (b} Waste of Fesonrces (bits}.

A= =7T
}

Shannen proved a relation between the source’s entropy and its
optimal encoding (this relation will be shown in Section 5.5.6). 'The
source’s entropy is a lower bound on the minimum bits/symbol needed
to encode it. The intnition is simple, imagine the Entropy of the source
as a "tube "{see Section 5.5). 'The capacity of the tube is the rate of
bits/symbol we expect from the source. The encoder is a connection
to the tube.

If we use fewer bits than the entropy to encode it, we lose informa-
tion (see Figure 5.4a). Conversely, if we use more bits than the entropy,
we are wasting resources (see Figure 5.4b).

An encoding example

Let us use an example to illustrate better this crucial concept in IT",



DATA COMPRESSION: ENCODER/DECODER 77

Imagine building a weather station that sends the moment weather
condition to a distant control room. Also, there are eight weather
conditions in which we are interested. In this case, a message transmits
one symbol from Ag.

As = {wg, Wi, Wi, Wa, W, Ws, We, Wy | (5.26)

How can we encode these weather conditions?

Wo W

Fuovne 55 & weather station. Inspired by
pds)

5.5.2 Raw bit content

"The first idea is to enumerate Ay in binary, using 3 bits/symbol.

AI = {xﬂ. = ﬂﬂﬂ-_,.x| = '[I'BI,IZ = ﬂlﬂ,)&‘s = IJ']!.,
x4 = 100, 25 = 101, x5 = 110, x7 = 111} {5.27)

‘This encoding provides a model of the source that has maximum
entropy (all outcomes are equiprobable, thus have the same encoding

size)'™:
(x:) ! Vie[D,7] (5.28)
Xi) =51 s 52
PR A
HIX]=- 3" L log ) (5.29) |
X]= — log —— 5.29 { '
2 1] B A Y
=log|Ay|. (5.30) 7 T )
{IH "F\. AL _;T\.
Is this a good encoding? I 4 S S
Fioume 5.6: Largest encoding = Maximum en-

tropy.

"*Ihe probahility distribution that produces
maximnm entropy is the waiform digtrilntion
[Section y.11.1)
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5.5.3 Maximum Entropy Principle

1f all information we have is how many weather conditions are there,
the size of the source alphabet, the best model is the one that conveys
this information and has maximum Entropy, i.e. it makes no turther
assumptions. This maximally entropic model has the worst-case scen-
ario for the average number of questions needed to find out which
outcome is the right one:

1
—

3

P(S)={pa=tspri=isP2=%: 3
! } (5.31)

F-t:]i.-PE— !Pi!: é‘:,ﬁ?z

0 =

In this case, that encoding (5.27) is indeed a good option. Notice
that the encoding process yields a specific distribution P( X ), which de-
termines its entropy H[X| and, therefore, how much information per

|Stois] Stone, Inforwmation theary: a tutorial symbol it carries |Stois]. The maximum entropy is obtained with this
Intoeibation, equiprobable distribution, the uniform distribution (Section 3.11.2).

Let us assume now that another information about the source is
given. The weather station is in the Atacama desert,and P(8') = {py =
75%, py = 10%, py = 5%, Py = 1%, py = 1%, ps = 19%, ps = 1%, p; = 1%}
With this new information about the source. Can we do better? Sure.

Pa=Th

4 ddd

p=1% Pa=1% Pe=1%

(K‘ bits/message 7 un
-

ol

First, let us calculate the lower bound (maximum efficiency) of
the bits/symbaol rate of the source encoding, Ry = H[8']:

1 1 1 1
H[S']=0. ?Elug— b0, 15103— |ﬂ[}5]u-g~— i 5 D{]llngﬁ

bits

N
symbol

(5.32)



DATA COMPRESSION: ENCODER/DECODER 749

We know that theoretically we cannot have an encoding with less
than 1 bit/symbol in average. But we can improve from 3 bits/symbol

(see Figure 5.6)"*'" 18 5y distribmtion that is not umiferm will lead
tir a0 average tree height that is smaller- tha

T f ¥ " the pniform distribition. The wniform disiri-
A‘K’ = {xﬁ = ‘}JII =10, X3 =Ilﬂ?x3 = 111400, bartion is the worst case.

x} = 11010, x! = 1101L, ! = 11110, x, = 111} (5.33) N Y
dnrn.t.in-nttx.b;cu wi s Ay {0 represent the
'The average encoding size per message symbol in X' is: same domain to emphasise that the domain
is fimite; it i am alphabet
0.75-1+0.15-2+0.05-3 4 0.03-5+0.02.6

bits

1.5 :
# b (5:34)

5.5.4 Cross-Entropy / //

l'his average encoding size per message symbol has a special name:
the Cross-Entropy. It is evident the similarity of the definition of o e probabiity distrikition ofthe
Cross-Entropy and Entropy. If our model g of the real distribution p source determines an cncoding.

is absolute right (p = g), the Cross-Entropy is equal to the Entropy

{ \IH lfl il

A = Ll

Hyy = Hp. Ifnot (as it is in most cases), H,, > Hp.

In our the Atacama weather station example, the cross-entropy
between the real distribution p = p(s) and the encoding distribution
q = p(x) was 1.5 bits/symbol. So, we can say the efficiency of the
encoding X(s) is m;f:m = HI;'EL] = I_lﬁ # 67%. We calculated H,
knowing the sizes of each possible s;.

Let us use another example, imagine that we transport the weather
station from the Atacama to London, where the probability distribu-
tion of the weather is P(S8") = {pa = 3%, pr = 3%, p2 = 10%, ps =
15%, py = I5%, ps = 20%, ps = 20%, p; = 10%} .~ H[S"] = 2.8, and
keep using the same encoding. 'The encoding will be much less eth-
cient. ‘The average size of a message symbol in this situation is:

Hpy[8"] p=P(8"), g = P(X') (5:35)
=0.05-1+0.05-210.1-3+045-54+035-6
L L (5.36)
symbaol

The efficiency of the encoding is 2.8/4.8 = 58.33%.

Definition 5.9. Cross-entropy is the average number of bits needed
to encode data coming from a source § with distribution p(s) when

using model g(s).
Hpy[S]= - 3 pls)logg(s) (5.37)
iEfhy
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FI:I=E= F,=51 F;:'l:m P;.:‘I.E!
Fioome 5.9: The the Alncama’ weather station (‘{::3
inn London. Inspired by [Glis)

d 44 dyd

pa=15% P=20% pe=20% p=T10%

(K\ nsimessage?  [T0

goli

5.5.5 KL Divergence (or Relative Entropy)

‘The amount by which the Cross-Entropy and the Entropy diverge is
the KL Divergence:

Definition 5.10. 'lhe relative entropy or Kullback-1eibler diver-
gence between two probability distributions p(s) and g(s) that are
defined over the same alphabet A; is:

. . p(s) P
13 = log —— =K:log — a8
xu(pllq) Z___,P(S] %8 (5) - LSloB (53
Dia(pllg) = Hpq[S] - Hp[S] (5.39)
In our example:
f T bits
DK‘I.(PIht :‘l.t.m:arru”ﬂl.nﬂdnn} = Hpq[slr] Hp[b ] L 25}'1‘]‘!".‘![‘]1 l:‘iﬂ"ln}'

md B =28

5.5.0 Shannons source encoding theorem

Now that we understand how the source encoding works, let us take
a moment to appreciate the geniality of Shannon. Here, we show
how he demonstrated the size of the optimal encoding without ever
explaining which encoding is that in the first place.

Theorem 5.1 (Shannon’s I* Law). The optimal binary encoding X* =
(X X)), X, € {0, 1}, of a n-symbols message S* = (8, ---, 8, ), where
Si € As are i.id. ~ p(s) has an expected size k = nH|S] for sufficiently
large n.
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Proof. A one-to-one mapping S" > X* is invertible. If we enumerate
all elements of 8" in binary, we will need k bits. Thus, with absolute
certainty:

k < log[|8"|] = log[2"*144] = mlog|Af + 1 bits (5.41)

Can we do better? We know from statistics that most possible out-
comes are unlikely. In other words, there is a small set of very likely
outcomes that are most probable. So let us use this property of Nature.

We will divide all sequences §" into two sets: the typical set {']I'E"}}
and its complement, the atypical set ( ']I',E.”:'}, which can be seen in
Figure 5.10.

Definition 5.11. ‘The typical set T with respect to p(s) is the subset
of sequences §" = (8§,,--- 5, ). S; € &g, where:

[P(T!,"}} =¥ aept P(8") > 1 - e, for sufficiently large n i
it 5.42

PS8 € TEY = p(s;), Vi,

In other words, for a sequence of n i.i.d. random variables § =
(5,,--+ 8, ), each drawn from p(s), the outcome m = (s;,---,5,) is
almost sure to belong to the typical set 'JI'E"], if nu is large, and the
probability of any outcome is almost the same.

Let us put aside that we do not know the size of the typical set,

7).
We know that:
T << [T < |57, (5.43)
p(T") 5> (-T), (5.44)

E(k) = [P(T) log[T] + P(-TI) log |-TEV[]. (5.45)
Therefore, from (s.41) we can predict that:
E(k) << nlog|As| + 1 bits (5.46)

Now, we need to find |']I'E"‘ | For this, we will use the Asymptotic
Equipartition Property (AEP), formalised bellow [Cl'os]:

Theorem 5.2 (AEP). If 8, -, 8, are Lid sampled from the same distri-
bution p(s), then:

l;iug P(Sy,---,8.) » H[S8] in probability. (5.47)

An ebsessive observant reader may have no-
ticed that we are here considering the source
4z an iid stochastic proceds, instead of 4 sta-
thnnary orgodic process. This 15 the sume proaf
etatedd by Shannon [Shags| and others [CToé;
Macna | A proof for ergodic finite alphabet
sonrces can be found in' “The Basic Theorems
of Information Theory | Mo ).

i

5
(n

17T

Froure sao; The typical set of srqoences 5%

[CTo6] Cover and Thomas, Elemwats of
Information Theory.
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[CTos| Cover and Thomus, Flements of
Information Teary.

Proof. From the theorem definition, §; are independent. Then from
the Product Rule (eq. 3.11):

I: i i I H
;ZIngP{SJ,---,Sn} = EIGE[H_E{STWP{S} (5:48)
i=l —— i=1
q'ﬂ
l n
=—). logp(s) (5.49)
=1
From the weak law of large numbers:
n-—» oo, ;:-EE. » E(E) (5.50)
i=1

‘Therefore, using the fact that a statistic of a random variable is a ran-

dom variable, let § = - log P(S;) [Cl'o6] and using (5.15) and (5.50):

n -» co,
l "
;E( log P(8:)) > E,( logp(s)) (5.51)
i=l i
H{s]

1
~logP(S*) > H[S] [ (5.52)
Cl

Now that we proved 'Theorem 5.2 (AEP), let us use it to define
{n)
T

;‘1{,5 P($*) » H[S] in probability (5.53)
P(8") > 2 (HEED (5:54)
2-(HISke) ¢ p(§7) < 272(HISHe) i probability (5.55)

We also know that:
1= %: P(S") (5:56)
1z Y p(s) (5.57)

sert
12T p(s") (5.58)
From (5.55):

1> [T 21 (5:59)

. |.-[[.£rﬂ| < 2!1UI[."1'J+£'| {E*ﬁ‘n}
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This upper bound to ETE"}E is all we need to prove ‘Theorem 5.1 (Shan-
nons 1™ Law).
E(k) = [P(TC") log| T2
|87 = nlog | As|

§ BT Loght | e
~[(1-€) lﬂgznfl-lfﬂlﬂ:’ i _E'J-lﬂﬁ‘fﬁﬂrﬁ "] (5.62)
= [(1- €)[n(HIS] + €)] + e/n] (5.6
= [n(H[S] + €  enH[S§] —€*) + n(e")] (5.64)
= [n(H[S] + € _eHISTTE )in(e)] (569
= [n{H[S] + €" 1+ €")] = [n(H[S] + £)] (5.66)
E(k) = nH[S] O

We proved that the average information per symbol of the coding
generated by the optimum encoder has the same average information

per symbol as the source, H[S] WEEDJ . Due to this property, it is quite

common to talk about H[X] as the entropy of the source.

5.5.7 Typical Set

We defined the typical set and discovered some of its properties in
the proof of the source coding theorem, but we left one behind. We
only needed the upper bound for [T!"’, let us now derive its lower
bound. From (5.55) and the typical set definition (5.42):

P S B (5.67)

.‘i“eT’f':'

[T |p-ntilsl-e) 5 | - ¢ (5.68)
T > (1 - €)2nBlsi=) (5.69)

'Therefore, from (5.69) and (5.60) we can derive:
{l E}En{l‘liﬁj—f‘; < ]-I[-EH'i' < 1n{H[.!i|+ﬁ] {5_?_3}
[T -+ 27811 (5.71)
With that, we can list some useful properties of 'I['EM:

1. almost all probability is concentrated in the typical set, by defin-

ition (5.42) ;
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Whis insight reminds s af the sample com
plexity, discusasd in Chapter 4

5.6

NIH}.

*rThis definition of a discrete channel covers
the deterministic case where v = f(x).
In most cases, the wsage of o channd is de-
termimed by the peried in which it is being
uscd. This, some prefer to define the capacity
in bitsfsecond.

5.6.1

5.0.2

[Btous] Stone, Information theory: @ tutorial
imtrodiction

2. elements in the typical set are nearly equiprobable (s5.55);
3. the number of elements in the typical set is nearly 25151 (5.71).

Going back to 'Theorem 5.2 (AEP):

| 1
= Ing(rsﬂ) » H[S]
H[S] €< _ﬁrlr Iug(P{;“)) < H[S] t & (5.72)

We can think of the middle term as the Entropy of a sample size

n. ‘Thus a typical sample gives us an amount of information close to
the average information from the source, H[S]"".

THE CHANNEL: DATA TRANSMISSION

The channel is simply the medium used to transmit the signal x from
the encoder to the decoder™. It may be anything from a band of radio
frequencies, an electrical wire, a beam of light, or a postal service. As
we did before, we can also think the channel as a “tube” which carries

information (see Section 5.5).”"

Definition 5.12. Mathematically, a discrete channel is the conditional
probability

plylx)s y € Ay, x € Ay, (5.73)

Noiseless Channel Capacity

Definition 5.13. 'Lhe operational capacity of a channel is the max-
imum rate of bits per transmission that the medium is physically
capable of transmitting, It is, in fact, just a number of bits per trans-
mission. We can think of it as the maximum entropy it is capable of
transmitting in the absence of noise:

Copetust =R= n}a_;c log |4+| bits/usage. (5.74)
_FI‘ X

The noisy channel

All practical communications, however, are noisy [Stoi5]. Noise re-
duces the rate at which information can be communicated reliably.
Shannon proved that information could be communicated, with ar-
bitrarily small error, at a rate limited only by the channel capacity.

To understand how noise affects the channel capacity, we need to
understand the concepts of conditional entropy, joint entropy and
mutual information.
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N3

Mz
M1
H[N]=— = Frouke 5.0 A noisy channel.
e Kot K X2 X4 H[K] wYa e Y'Yz
] \
xlﬂ

5.6.3 Conditional Entropy

The residual uncertainty we have about a random variable given that

we already know the outcome of another random variable is the con-
ditional EIIIIDP}'H: “In the communication setting, we nsmally
wand to know the residoal infarmation in ¥
aice o - : " ; hat | X, H| Y|X], which we call
Definition 5.14. 'The conditional entropy or equivocation H[ X|Y] ha o X ELIED "

of X given Y is:

H[X]Y]= E p()| Y plxfy)log—— pe | ) (5.75)

Ty

= . plx,y)logp(x]y) (5.76)

xyefady

5.6.4 Joint Entropy

We have defined the entropy of a single random variable in (5.15).
Now, we extend the definition to a pair of random variables. As the
pair can be seen as a single vector-valued random variable, there is

nothing new in this definition [Cl'o6, pas). [{Tof] Cover and Thomas, Elemsents of
Information Theory.

Definition 5.15. The joint entropy H[X, Y| of a pair of discrete ran-
dom variables (X, Y) with joint distribution p(x, y) is defined as:

H[X.Y] £ -ElogP(X,Y) 67
=3 3 plx,y)logp(x, y). (5.78)
e, vk,

5.6.5 Mutual Information

Definition 5.16. 'The mutual information [[X; Y| between two vari-
ables, such as a channel input X and output Y, is the amount of in-
formation obtained about one random variable through observing
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Hx]

HIX] 250

HIxiv]

H[X] H[¥]
Hf Vx|
% 5.6.6
12 ¥] = 1[y:x]
3

- — =

LE iy il.“”
L
Wy ¢

L iEr

Fioume 5.3 Relationship between informs
tion measures in 8 channel

|CTo6] Cover and Thomas, Hiements of
Inforrmation Theory,

the other random variable.

X Y] = EEP{IJ:MJ log P‘EI(:JP{J::] bits (5.79)
:H{J{] H[X|Y] (5.80)
= H[Y] - H[Y|X] (5:81)
= H[X] + H[Y] - H[X, Y] (5.82)

= H[X, Y] [H[X|Y] + H[Y|X]] bits (5.83)

For a visual understanding of these measures, see Figure 5.12. The
mutual information can also be seen as a measure of the mutual
dependence between the two variables, as the mutual information
is the same as the Kullback-Leibler divergence between the joint
distribution and the product of the variables marginal distributions:

X Y] = Dwe(p(x, p)llp(x) p(3)). (5-84)

Data Processing Inequality

We cannot increase information by applying a deterministic function
to the data, nor decrease information if the deterministic function is
imvertible,

Theorem 5.3 (DP1). Let three random variables form the Markov chain
X Y » Z implying:
p(x,3-2) = plely) p(ylx)p(x). (5.85)

No processing of Y, deterministic or random, can increase the informa-
tion that Y contains about X:

11X Y] = 1[X; Z] (5.86)
Proaf. We refer to [CT'o6, th.2.8.1] for proof. L

Theorem 5.4 (reparametrisation invariance (R1)). Let X » Y » Z
form a Markov Chain, then functions of the data Y cannot increase the
information about X, i.e. I[X; Y] 2 [[X; g(Y)].

Proof. Z = g(Y) . 1[X;g(Y)] = I[X;Z]. By the Data Processing
Inequality (DPf) property:

I[X: ¥] 2 1[X: 2] (5.87)
1[X:Y] 2 1[X;e(Y)] (5.88)
O
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5.6.7 Noisy channel capacity

Given that in a noisy channel Y = X + n, where n is the noise in the
channel, from the mutual information definition:

[[X; Y] =H[Y] - H[Y|X] (5.89)
= H[Y] - H[(X + )|X]. (5.90)
If X is known, the uncertainty from X is none:
I[X; Y] =H[Y]  H[nlx] (5.01)
By definition, i and X are independent, therefore:

I[X; ¥]=H]Y] - H[n] (from (5.89))
~ H[Y|X]=H][q] (5.92)

Definition 5.17. 'lhe information capacity or effective capacity of a
noisy channel is defined as:

C= t;}af I[X; Y] (5-93)
= “}a;‘{Hl Y] - H[Y|X]) bits/transmission. (5.94)

P X
= 1;{133}:(1-[{}.] H[X|Y]) bits/transmission. (5-95)

The information capacity can be derived theorem from Shannons
noisy channel theorem (5.7).

5.7 SHANNON'S NOISY CHANNEL THEOREM
In his second and, perhaps, most crucial theorem, Shannon proved
that provided H[X] £ (., the average error (&), when averaged over
all possible encoders approaches to zero (€ —+ 0} as the length of the
input x increases. Therefore, there must exist at least one encoder that
produces an error as small as & [(C1'o6, p. 198].

Theorem 5.5 (Shannon’s 2° Law). All rates below capacity C are achiev-
ahle. Specifically, for every rate R < C, there exists a sequence of (2"%, n)
codes with maximum probability of error A7) 0. Conversely, any
sequence of (2"8, n) codes with M) s 0 pmust have R < C.

Once again, Shannon proved with a counterintuitive argument.
He demonstrates there is an encoder that produces an arbitrarily small
error without showing how to find this encoder.

Instead of proving the theorem (for which we refer to [Macoz]

[Macoz| MacKay, Inforsaiion Theory,
Inference. and Learnisg Algorithms
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[CTos| Cover and Thomas, Flemwnts of
Infarmation Theory.
Dty
Tagts :
E} "

2 —_— .

E: — I 1719l
—— £l

; el O )] J
Fiooms 13 The need o restrict 1o the subset
o typical inputs.

5.8

5.8.1

and [(CT'o6]), let us give an intuitive explanation of the proof.

Consider n uses of the channel as our block usage. There are |Ax|*
possible inputs x and |A|" possible outputs y in the block usage. We
want to prove that for any y, it is possible to derive an unique message
that generated it.

If n is large, any particular x ¢ X" is very likely to produce an
output in a small subspace of the output alphabet, the typical output
sel, given x. So, it is possible to find a non-confusable subset of the
input sequences that produce disjoint output sequences.

Take x ~ p(X"). Recall Theorem 5.1 (Shannon’s 1* Law), the total
number of typical output sequences y is 277" (see Figure 5.13 (B)),
all sequences being almost equiprobable. For any sequence x, there
are about 2*H1"¥] probable sequences (see Figure 5.13 (A)).

Now we restrict ourselves to the subset of the typical inputs, such
that the corresponding typical output sets are disjoint. We can expect
the number of non-confusable inputs to be:

pnH(Y]
2HH[YIX]

The maximum value of this bound is achieved by the process X
that maximises 1[X; Y |. Therefore, n max;(y) 1] X; Y ] is the maximum

_ n(H{Y]-H[Y[X]) _ pulfx:v] (5.96)

| A% .yv] €

amount of bits that can be transmitted in n usages of the channel,
which proves the first law of information (see Section 5.2):
Cnoisy channel = [;}3.;: 1[X; Y]. (5.97)
We can rewrite (5.97) as:
Copisy channel = rﬁi_'ir{ H[X] - H[n]), (5.98)

which states that noise reduces channel capacity. So, this is also a proof
for the second law of information (Section 5.2).

BEYOND SHANNON'S INFORMATION

Even before Shannon's ‘A mathematical theory of communication’,
other information measures have been defined and studied. In this
section we will expose two other notions of information that we will
use further in the dissertation: Algorithmic information and Fisher

information.

Algorithmic information (Kolmogorov-Chaitin complexity)

Developed independently by Chaitin, Solomoneoff, and Kelmogorov

in the 1960s, algorithmic information (most commonly known as
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Kolmogorov complexity) of an object (e.g. a message) is the length
of the shortest program capable of producing the object as an out-

Pllt [Sh‘lli!. [Stos] Stone, Infarmation theory: @ tutorial

q - 5 e - irtrod st
For example, in this definition the string: it

"Toucknd KEj TyglGYuX UKglefJe HBRL

is more complex than

‘abeabcabeabcabcabeabeabeabeabe. We can express both in the Py-
thon programming language as an example:

“TeuckndKEjTyqlGYuXUKql6f]6 HBRL’
VETSLS
*‘abec " "™10

If the object is compressable (shorter program), it has more regularity.
Thus, there is a relation between complexity and compressibility.
5.8.2 Fisher Information

Let Py denote a family of parametric distributions on a space A" with
probability mass or density function given by py.

Definition 5.18 (Fisher information). The Fisher information 1y (0)
of a random variable X wr.t. the parameter # is the matrix:

[1x(0)]ij == Eo [ Vo, log po(X) - Vo, log pa(X)] (5.99)
ae ap’
=K [aa 2, |’ (5:100)

where £{x|0) = log p(x|8) is often called the score function.

'The Fisher information measures the overall sensitivity of the

functional relationship p to changes of 6 by weighting the sensitivity

at each potential outcome x w.rt pa(x) [Ly+i7] {Ly+17] Iy & al, A Tuterial on Fisher
A common simplification of the Fisher Information Matrix (FIM) Ffrmatiar.

is to reduce it to the diagonal:
[Lx(0)]: :=Eq [ Vg, log pu(X)’] (5.101)

5.8.3 Occam factor

'There are countless problems in science that require that given a
limited dataset, preferences be assigned to alternative hypotheses of
different complexities. The Occam’s razor is the principle that states a



go INFORMATION THEORY

preference for simple theories. Although it is often advocated for aes-
thetic reasons, MacKay gave a Bayesian explanation for its empirical

[Macos| MacKay, Information Theory, success that does not depend on any bias towards beauty [Macoz].

ference, and Learning Algorithnes. Consider evaluating the plausibility of two alternative theories
#H, and 3, in the light of given evidence C (Figure 5.14). Simple
models make precise predictions, while complex models are capable of
making a greater variety of predictions. Hence, if H, is more complex,
it must spread its predictive capability more thinly over the data space
D than H,. 'Thus, where the gathered data C is compatible with both
theories, the simpler H; will be more probable than ;.

P(M)|D)  P(H,) P(D[M))

B(H:{D) ~ P(Ha) P(D|Ho) )
< B(Hy) = P(HL), (5.103)
P(H,[D) _ P(D[#H,)

Fraums 514 Comparing models #Hi and Ha. P[.H_l'[)} - P(IJFH;} {5‘194}

QuanTieyInG Occam’s raAzor We already established that we can
rank models based by evaluating the evidence P(D|H,) (5.104):

P(DIH,) = fP(Diw,Hr)P{w[Hr}dw (5.105)
‘Taking for simplicity the one-dimensional case and applying Laplace’s

method, we can approximate the evidence by multiplying the peak of
P(D|H;) by o,,n (approximating the shaded areas in Figure 5.14) [ Maco2|:

P(D[H,) = P(Djwyp, H,) x P(wy|H; )owp (5.106)
P M R = PR " e
Evidence Best-fit fikelihoad (cam's faciar

The Occam'’s factor is the amount by which the accessible volume of
H;’s hypothesis space collapses when data arrive. This relates to how
we measure information (Section 5.3.1). The Occam’s factor logis a
measure of the amount of information we gain about the model’s
parameters when data arrive.

The Occams factor is the basis of MacKay’s Evidence Framework.
1he connection was no surprise given that we derived Information
from the Bayesian interpretation of Probability (Section 5.1).

5.9 CONCLUDING REMARKS
This chapter derived the information measure from its definition and
then summarised information-theoretical concepts.
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5.9.1 Assumptions

1. A dehnition of intelligence (Section 2.1.1)

2. Knowledge is a set of beliels, quantifiable by real numbers and
dependent on prior evidence (Section 3.1.3, ltem 1);

3. Bayesian inference assumptions:

a) Common sense (Section 3.1.3, ltem L1);
b) Consistency (Section 3.1.3, ltem 111);
c) Minimality (Section 3.1.2, Item [V).

4. MLT specific assumptions for the learning problem:

a) Noassumpltionon D = P(X, Y);

b) D =P(X,Y) is unknown;

c) D =P(X,Y)is fixed: no "time” parameter.

d) Independent sampling;

¢) Labels may assume non-deterministic values (h can be
stochastic, but can also be deterministic);

f) Learning is an optimisation problem in the hypothesis
space.

5. IT-specific assumptions:

a) Information is what changes belief;

b) Aqand Ay are finite sets;

¢) Sampling from an ergodic stochastic process and sampled
data is typical;

d) Labels may assume non-deterministic values (an encoder-
/decoder can be stochastic or deterministic).

5.9.2 The first comparison between MLT and IT

At this point, we have not yet expressed the Machine Learning Prob-
lem as an Information ‘Theory problem. $till, as MLT and 1T both share
Bayesian inference as the basis they do not invalidate each other. Both
may have found the same truths by different paths.

‘The main differences in IT from MLT assumptions are Items sb
and sc. In Chapter 6, we will see that the first is not a problem at
all. 'The ergodic process sampling, in its turn, is a less constrained

Ervformisiton Theesy
I Shannpn's 2= Law |4—

[ Shannon's = Law |‘.._

[ Eogestan Inferencs |

Zelopee
T

StEsh
Wi

Langruoage

Eangwledge

Intelligenze
Episiemoksy

Fioime 5.15: In this chapter we show bow 1T
in built from a st of specfic asumpiion.
{ e 5) using the Bayesian inference langusge.
Simitarly to what was done with MIT in the
Last chapter.
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assumption than the i.i.d. sampling in MLT. For simplification sake,
we may assume that both sample Li.d.
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Information-Theoretical Machine
Learning: An Epistemology

This chapter discusses an Information-Theoretical Machine Learning
(ITML)' perspective not specific to the Information Bottleneck (18)
Principle.

6.1 LEARNING AS A CONVERSATION WITH NATURE

Nature Epistemic Agent

O—0 o

“Low of Natore™ Shssrmtions Undsrstanding

Imagine some “Law of Nature” (T)"” an epistemic agent can com-
prehend.” T explains the relationship among observations in D, We
can think of learning as communication between Nature and the
epistemic agent,

We assume learning is possible, i.e. T'1s encoded in the observed
data D. T is what the epistemic agent understand about I’ through

D, i.e. a representation of T in the agent’s "mind”. T is the agent’s

‘Understanding is Com-
pression’
—Gregory Chailin,

Matia Mintha! The Chuest for Omega, pas

"We call ITML to differentiaie from 1BT and
ITL

Froae 6.1z An understanding for a fow of
P,

T for Tineth or Theorem,

¥Thin chapter expands the idea of science an a
canversation with Nature from | GS158]

*H the cpistemic agent can comprehend T,
H[T] can fit in the finite epistemic agent
“eivimd’

95
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*A lossy encoder or noisy channel are In prac-

tice the same.

lossless — F = X "(X(T)). Therefore, by
RI H[X(T)] = H[T] md for all practical
purposcs i = T

Fioume 6.2 A hypothesis is the encoded on
derstanding of o law of mature.

“In Machine Loarning, the understonding hap-
pens doring training and the expression in test
timwe

understanding.
T=U(D) (T is an understanding of T through D)
In this scenario, D is an expression of 1.
E(T)=D (D is an expression of T)

As we do not know the smallest representation size of T, H[ 1],
we do not know if the T -+ D channel capacity (Cp = [ T]), is
enough to noiseless transmit 1" through 1. "Therefore, we have to
admit that the encoding of 1" into D is lossy.” Thus, E is stechastic,
and the understanding of the agent shall be stochastic as well:

E(T) = P(D|T), (6.1)
U(D) =Q(TD). (6.2)

While T'is only in the epistemic agent mind, it has no practical
importance for other agents. The agent will need to encode T into an
agreed (n, k) language/code to communicate with other agents.

A hypothesis h is the epistemic agent’s attempt to represent the
compressed description of the observation in her mind into the agreed
language X, h := X(T). Without loss of generality, we can assume that
any agent mind has the same size in bits and, as a consequence, X( T )

is a lossless encoding. Therefore,” h := T

Episteric Agent

|
]
P ) QR LR}
@ 2 1) ©

Thearem Drats hyprthesis Prediction

Moreover, h is falsifiable, as any agent can use h to predict D=
Q(Dlh). The Q(h, D) distribution contains the understanding of the
epistemic agent of the “Law of Nature” (Q( h|D) ) and the expression of
this understanding (the prediction Q(D}h)). In other words, Q(D, H)
defines an encoder (understanding) - decoder (expression).”

If other epistemic agents have competing hypothesis (h;, by, ...},
how should we select the best hypothesis?

‘The best hypothesis is the one that on average describes D with
H[ D] bits. Any hypothesis that take less bits than H[ D] cannot per-
fectly reconstruct D (underfitting). Any hypothesis that uses more
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Nature i Epistemic Agent
i Fioume & 3 A theory isa tesied hypothesis that
WOfT) QUi QLT predicts the fow of nature within 2 margin of
@ ('E;\i r-|:::"i @ error and o level of confideice.
Themrzm Dara Thezny Prediction

than H| D] bits is adding spurious correlations to the data (overfitting)
and might not generalise well.

Besides selecting the best model among the available competitors,
the epistemic agent wants to transform her winning hypothesis into
a theory that works within a tolerance of error (&) and margin of
confidence (8):

Pr [lt-_ a(D)er(p) € E] z(1-8). {6.3)

In reality, unfortunately, she can access only a sample 5" of the
true distribution of the data P(D|T). How confident can agents be in
the performance of h in future data if they can only access the error
of h in the sample (past) data?

6.2 PAC-SHANNON
‘This section will use Shannon’s theorems to give PAC bounds to the
information-theoretical learning setting presented in the previous
section.
We recognise that:

1. ITML setting is equivalent to MDL (which will be described in
Section 6.3);

2. using information in the weights as a measure of complexity

was already discussed by other authors ( | Tis20; Achig; S5Tho|); [Tisan| Tishby, The Information Bortleneck
: ing: Wity do it?.
and also that E:{;Tfaﬁﬁmﬂﬁwﬂ

3. Shamir et al. has presented the first PAC formulation of IBT [SST10].  [Adus) Achille, ‘Enserpent Propertics of Decp
Neural Networks'.
UL hbtps : / f excholarship . arg £ ucf it

Yet, to the extent of our knowledge, the specific PAC formulation we -
are about to describe is an original contribution of this dissertation.”
Recall Theorem 5.1 (Shannon's 1 Law): ﬂ:ﬂ;‘:ﬂ gﬁ;ﬁiﬂi‘“ﬂ"’”d iy
Theorem 5.1 (Shannon’s 1* Law). The optimal binary encoding X k=
(Xis-+= Xi )y Xi € {0,1}, of a n-symbols message " = (81,---, S» ), where :,E”m: taok the Hherty el naming it
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*Remember that the Shannon thearem only
shutes there exists such éncoder. buk nothing
has to say about how to find it

" Wense the word Rate for mie here to differen -

tiate fronm the visk B spmbol, which s already
widespsead in the MIT commummnity.

Si € Ag are idd. ~ p(s) has an expected size k = nH[S] for sufficiently
large n.

We can rewrite it as:

Theorem 6.1 (1* Shannon PAC formulation). Let X = x ~ P(X) and
S = {xp.uxatox ~ P(X),

Pr [(H[:H] H[X]] > :—:] <8 (6.4)

'lhe same for ‘Theorem 5.5 (Shannon’s 2% Law):

Theorem 5.5 (Shannon's 2™ Law). All rates below capacity Care achiey-
able. Specifically, for every rate R < C, there exists a sequence of (2"%, n)
codes with maximum probability of error X"} » 0. Comversely, any
sequence of (2%, n) codes with A} —» 0 must have R < C.

Let us rewrite this theorem in parts. First, we use (Q to denote our
hypothesis Q = h : X' x @ —» ). We also assume that A" = Ay and
¥ = Ay are hnite. In Information-theoreical terms, Q is an encoder
of the alphabet Ay to the alphabet A,. If all rates bellow capacity
C = I[ X; Y] are achievable™'’,

3Q : Rate(Q) < I[X; Y]

‘The theorem also says that this encoder has maximum probability
of error A(*? -+ (). From that we can infer that the expected error of
Q, R(Q), is arbitrarily small.

3Q : Rate(Q) < 1[X; Y], R(Q) <€
Now we can summarize this in a theorem statement:

Theorem 6.2 (2™ Shannon PAC formulation). Let two discrete ran-
dom variables ( from finite spaces) represent X, the input, and Y, the out-
put of a stochastic mapping Q(X, Y) (lossy encoder/channel). (X,Y) ~
P(X,Y), P isunknown and let r represent the information rate of Q (the
expected number of bits it needs to represent a symbol of the alphabet
Ay)

VrorgI[X; Y], (6.5)
3Q : Rate(Q) =r,R(Q) <& (6.6)
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6.2.1 Shannon guarantees

Let D ~ P( D) represent observable data and $* a sample of n obser-
vations from D. We assume that the hypothesis h is parametrised
by W. Let a learning algorithm A : D + W, A := Q(W, D) gen-
erate the hypothesis via W. By reparametrisation invariance (RI),

H[h(W)] = H[W]. If h trained with the sample S* achieves training

error gg4 (/). What is the expected out-of-sample error of h, £,,(h)? WD)y UBM)_ g
For simplification sake, let us assume the supervised case where bypothesis
D=(X,Y)and ¥ ¢ {0,1}." By 'Theorem 6.2 (2* Shannon PAC (X, Y) - W - (X, ¥)

formulation),
* Similar to MILT probiem setting,

Elhﬁlmnmn = Q( L}[H-‘*} ¥ Rale{hshmmun} = lF(D][ W;D]: and (6.7)

Eﬂ(l‘!ﬂ::mnnu] = RD(h!‘ThmmuJ < E [ﬁs}

Let us remember that Aspsanen € Ho is the theoretical optimal Q* (X|W) —
Y. Also, in Section 5.7, we saw that the channel capacity 1| W; D]
defines the number of non-confusable inputs/mappings (or the num-
ber of confused mappings limited to a certain € margin), 21[¥=1
Eq. (571). We then call ) the typical hypothesis space of h and
we know that its cardinality can be computed:

Rate(Q") = 1| W; D] (6.9)
3] = AT =2 (6.10)

Serendipitously, we purposely did not restrict our hypothesis, but
Eq. (6.10) produced for us the cardinality of the hypothesis space of
the solutions within a tolerance error and conhdence.

Using ‘Theorem 4.3 (| Hau88], finite space, inconsistent case), we
can already give an upper bound to the out-of-sample error of h:

21 W]
e(h) < \/m b In2/8 !

2n
1] Wi
. \/., i const. + In2/8 (612)
2n
21w:D] 4 In2/f6
on g et a3 (613

262

We get a non-vacuous bound as long as O (1[W;D]) < O(logn).
Unfortunately, we cannot access the true 1| W; D]; we only access its
empirical approximation I[w; D].
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“Far reasons that will be clear in the next

chapters.

[Houkf] Hamssler, ‘Cuantifying inductive
bizs: Al learning alporithms and Valiants
letrning framework”.

Let us see if we can at least bound the true mutnal information
between W and D. Let us choose the Dy, as a loss function.”

Rp(h) =E(e(h)) (614)
= Euo [Dx(P(W, D)|Q(W, D))] (6.15)
P(W.D
=Ewp [Iug ﬁ (6.16)
=-Ewp iﬂﬁ%l (6.17)
COnst.

= Ew,n[]DEQ{W:-D) log P(W.D) (6.18)
#-Ewp[logQ(W,D)] + k=1[W;D] + k (6.19)

Ro = Ew e [logQ(W, 5] = [[w; D] (6.20)

O (IRgu(h) - Ro(m)]) = O ([i[w:D] - {WiD]) (620
From ‘Theorem 6. (1 Shannon PAC formulation),
Pr(|ifw; D] - 1[W;D]| >€) <& (6.22)
Now we can follow [Hau88] steps as we did in Section 4.7.

Theorem 6.3 (PAC Shannon, finite space, consistent case). Let A bea
learning algorithm that returns a consistent hypothesis h, i.e. Rg(h) =
0, for any hypothesis h and unknown distribution D = P(X, Y). Let
IS| = n, then, ¥n = Ny:

Prlhc H:Rp(h) > €] < aentTben] (6.23)

Proof. Let h be parametrised by W and the empirical mutual inform-
ation of the weights w.rt the available sample $” be [[w; D]. From

Eqg. (6.22), let us call fip.g a consistent hypothesis that does not gener-
alises and H}.a the space of all possible bad hypotheses.

Pr (Ji[w; D] - I[W;D]|>€) < § - (6.24)
PriR(h)=0Al[w; D] - I[W;D]|>€¢]=1& (6.25)
Es[R(h) =0 ll[ws D] - [W;D]] > e]=(1-8)" (6.26)
Eo[R(h) =0 |[[w; D] - 1[W;D]| > €] = [Huaal(1- 8)"  (6.:27)

(6.28)

Fortunately, we know how to find the cardinality of Hy.. [[w; D] is
our channel capacity, i.e. the number of typical different encodings



(or transformations) we can have. Every transformation of an input
X can lead to |Ay| values. Therefore, |'HE,] P UL P [H5.] = ot

_ pafilnt il

Consequently, [Hpaq/ . From where we follow:

Ep[R(h) =0 [i[w; D] - {W;D]|> €] = [Hpaal(1 - 8)"  (6.29)
o i?{lhld| E—i!ﬂ '[fL:]D}
(6.31)

quamMMuww

As we already said, I[ W; D] is intractable, but we still can get a bound:

_epeailein]

E<e (6.32)

O

Theorem 6.4 (PAC Shannon, finite space, consistent case: sample

complexity). A learning algorithm A can learn task with:

l /- 1
| [ws; D] + In—
n(E([w]rnﬁ)

training examples.
Proof.
& > gmemr2™ (6.33)
Ing > —en + 210 (6.34)
en <210 |n§ (6.35)
1
n<—(2'""1 _1n5) (6.36)
€
1 ;
" cﬂ(— (z’l‘”ﬂl ma]) (6.37)
E
[l

Theorem 6.5 (PAC Shannon, finite space, inconsistent case). Let
A be a learning algorithm that returns an inconsistent hypothesis h,
ie ﬁ_q{h) > 0, for any hypothesis h and unknown distribution D =
P{X,Y). Let S| = n, then, ¥n 2 Ng:

2
zl[w;u] ln=
b in 5

E< {6.38)

2n

PAC-SHANNON

1o
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Proof. Using the Chernoff-Hoeffding inequality and the union bound
as Theorem 4.1 and Section 4.7, we have:

Prlw e W :|[[w; D] - I[W:D]| > €] <2e7% (6.39)
Prlwe W :|[[w; D] - 1[W;D]| > €] :|'HL'5|5 (6.4D)
L&)
2 ¢ [HYI'8 (6.41)
In2 - 2ne’ < In|Hy| + Ind (6.42)
In|Hg| +Ing
e M (6.43)
2n
In 22" 4 In }
e<\| ———  (6.44)
2n
d 2wl d” | In 2
€< £ (6.45)
2n
O

Theorem 6.6 (PAC Shannon, finite space, inconsistent case: sample

complexity). A learning algorithm A can learn task with:

2 {wtd] 4 h%
n < — (6.46)
training examples.
Proof.
2w 4 1“.%
et < - (6.47)
2w0] 4 In =
n < —= (6.48)

.

6.3 “REALS” ARE NOT REALLY A PROBLEM
A possible weakness of the proposed ITML perspective is that we lim-
ited the space of the data D to a finite set (discrete random variable).

|Chans] Chaitin, Meta Math! The Quest for Foremaost, there is a mathematical argument |Chao#é, pp. 99-116]

Chregi.

against the physical existence of a “continuum”; after all, some real
numbers are uncomputable [Turz6]."* Similarly, in Section 6.1, we

| Turys] Toaring, "On Compotable Nombers,
with an Application o the Entechridungs-
prrchlem.

"Another remark is that oo physical quan-
ity has ever been measured with more than
twenty digits of precision |Chaoe, pga].
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argued that there was no pointing in learning a concept that could
not fit the finite epistemic agents’ minds.
MLT, however, is agnostic to the unknown distribution, hence, it
can be a continuous function. Bayes’ rule is the same for probability
mass functions (pmfs) and probability density functions (pdfs) after
all [Macoz; Valoo|. However, when models use continuous random [Macoa| MacKay, Inforsuation  Theory,
variables, there is no sense in choosing “the most probable model™: the R Ly A
probability of a continuous random variable tends to zero at any single
point. Only a nonzero range has a nonzero probability. As |Valoo] Ef:.ﬂg f;“:f;“l?m:?:ﬁ:mwlmu
puts it: “(---) a high density per se is not important, but the overall
probability mass in the vicinity of a model is.”
Rissanen gave a more formal version of this justification. He no-
ticed that we could always choose a (n, k) code such that the quantisa-
tion error of the real distribution is within a margin of error. Imagine
the dataset §{") is sampled from a continuous distribution D = f(x)
and there is a uniform distribution encoder (raw bit encoder) U( D)

that encodes D into a code of k bits.

f(l)

Ulx) =
H[U(SW}] = ZIng

H{U(§")]
Pr [ ( —-ﬂ

(6.49)

f( }— n(log f(x) - log2*) (6.50)

H[U(;r]]) < Iug% o E‘.] <f (6.51)

‘This is Shannon’s argument that for sufficiently large n and we
can always digitise the sample to a desired small tolerance of error €,
Theorem 6.1 (1 Shannon PAC formulation).

6.4 INFORMATION MEASURES THE COMPLEXITY OF TASKS

In Section 6.2, we proved that information measures the complexity
of a task. 'The information-complexity relation, however, was already
presented in |RisB6; HVCy3], and goes back to [WB68] (according [Rishs| Rissanen, ‘Stochastic complexity and
to [Macoz; Valoo]). modeing-

In our setting, Nature is a “supervisor who knows the true distri-
bution of the data P(D) and send us a message D (the observations).
The message D implicitly carries the intrinsic pattern P(D) that gov-

[HVTg3] Hinton and Van Camp, ‘Kecping
the nearal networks simple by minimizing
the description bength of the weights”,

erns it. Our epistemic agent comes up with an hypothesis h; that

predicts observations Q( Dk, ). E;’:;““I [J W“'”::: E’:"h':&ﬁﬁ‘;“n:_““ Informy:
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|Ristt| Rissanen, Stechostic complexity and
maodeling’-

“Mow we give the proper attribution to this
idea already presented in Sectinas 6.3 and 6.2

Frimme &.4: Comparing hypotheses with the
minimum description length principle. Adsp
ted trom [Macoa].

"*Also known as Stochastic Comphenity.

[Macoz| MacKay, Information  Theory,
Inferénce. and Learning Alguerifhems,

6.4.1 Minimal Description Length Principle

Supose there is a supervisor (sender) who wants to transmit a given
data (D) to a receiver. The supervisor will use a model to compress the
data, but will also need to send the misfit bits of the model prediction
to the data.

The Minimum Description Length Principle [Ris86]| asserts that
the best model for a data distribution minimises the combined cost of
describing the model and describing the misfit between the model and
the data.™ Py(D) = P(D|8) determines the probability of the observa-
tion D. Imagine there a statistical model of the real P parametrised
by w, P(w|®). ‘The supervisor send a message with:

1. L(8) bits pertaining which model ii(w) to use;

2. L(D|8) bits corresponding to the data D predicted by the model,
which can be further subdivided onto:

a) Parameter block: L{w|8) = —log P(w|8)8w;
b) Data misfit block: L(D|w, 8) = - log P(Djw, 8)8D.

Id Parameters Block Misfit Block
[ L(h) | | Liwil) | [ L(D]wi. k) |
L LRz} | [ L(wilha) | [A(D]wi, ha) |
[ L{hs) | | L{wilha) | | L{D] w3, ha) I

There is a clear tradeoff between the parameter block and the
data mishit (see Figure 6.4): models with fewer parameters (large
8w) have smaller parameter blocks but do not fit the data as well
and therefore have larger misfit blocks; conversely, over parametrised
models (small §w) have larger parameter blocks, but smaller misfit
blocks. 'The optimal description minimises the combined length of
the parameter and data misfit blocks (Figure 6.4, hs).

Correspondence to Bayesian inference

Thus, Rissanen’s complexityis™ L{D,0) = L(8) + L(D|@). In a Bayesian
interpretation, the length L(0) for different h defines an implicit prior
P(8) over alternative hypotheses | Macoz|. If there is no bias towards
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one or another hypothesis, P{8) = 2-1{%) is uniform and the identifier
for the model has the same “cost™ L(8). Likewise, L{D|0) defines the
density P(D|8) that relates to the evidence for each hypothesis.
In other words, message lengths can be mapped onto posterior
probabilities:
L(D,8) = logP(0) - log(P(D|0)6D) (6.52)

log P(DIB) + const. (6.53)

As a consequence, MDL has always a Bayesian model comparison

interpretation, and vice-versa.

6.5 MINIMUM DESCRIPTION LENGTH LEARNING

Using the MDL principle, |HVCo3] proposed an information-theoretical [HVCg3) Hinton and Vin Camp, ‘Keeping
i i the nearal networks simple by minimizing
machine learning framework. the description length of the weights”

Notice that in the MDL coding scheme (Section 6.4.1), to send the
value of d4w which is arbitrarily small, we will need an encoding that
can lead to arbitrarily long messages.

The bits-back argument

T avoid this potential peril, Hinton and Van Camp propose the
following coding scheme where a decodable message is obtained

without encoding dw:

1. 'The sender computes a distribution Q( W|D, 8) based on ob-

servations of D.'® W will cxplain how to compate this distri-
brtion later.

2. 'lhe sender draws a random sample w from Q( W|D, 8) and
encode it with P(w|0).

3. ‘The sender encodes D using P(D|w, ).

The trick is that in the second step, instead of using random bits to
choose w from Q{ W|D, B), the sender can use a secondary message
as the random bits. So, a long communication, we can say that on

average the cost (or length) of the messages are:

L{w|0) t L{D}w, B) - "bits back’ (6.54)
L{w|8) tL{D}w,8) - L{w|D,8) (6.55)
logP(w[B)dw log P(D|w,8)86D - logP(w|D.0)dw (6:56)
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|HVC93] Hinton and Van Camp, "Keeping
thie neurnl petworks simple by minimizing
the description lenpth of the weights'

log P(w|B).6w P(D|w, 8)8D
P(w|D, 0) 5w (6.57)
log P(D|8)8D (6.58)
log P(D[6) _logap™ """ (69
(6.60)

‘Thus the proposed coding scheme yields the optimal description
length. 'lhe only missing step is how the sender computes the distri-
bution ().

For that, [HVCag3] proposes using the Kullback-Leibler diver-
gence (D ) as a loss function:

f— UKI{Q“F} {ﬁ‘ﬁl]

to approximate the parametric Q to the real P. This method for para-
metric approximation of posterior pdfs was called ensemble learning
and is more commonly known as variational learning.

6.5.1 Shannon, Kolmogorov-Chaitin and Rissanen complexities

Let us remind ourselves that Shannon’s information measures the
expected number of bits needed for encoding a random variable D,
i.e. the entropy H,[D] is the expected length of D in bits using the
optimal encoder p.

From Eq. {5.55):

2-n(H[Dle) < p ( sl.’,ml] < 7-n(H[D]-¢) (6.62)
27HID] g-HIPl9e) ¢ p(D) g27HIPHR 2P (663)
2 <P(D) <2V (6.64)

However, one can use a non-optimal encoder g for which the
expected length is H, (D). Each encoder/decoder g can be seenas a
“program” that ouputs an average number of bits L(D|g) = L (D) =
H; (D). The minimum program that outputs ) or minimum descrip-
tion length of D is L* (D) = Lo(D) = Hp 5 (D) = Hp (D).

In Section 5.8.1, we mentioned the algorithmic information per-
spective where Kolmogorov-Chaitin complexity (KC) measures the
length of the shortest computer program P which is capable of produ-
cing the data D. Therefore,

p(D) = 27KC(D) (6.65)
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A well-known algorithmic information result is that KC is not
computable due to the halting problem [ lurs6; Chaoe|. Therefore, we
cannot know if a learning algorithm that halts when finding the best
B(D) = 27%°D) will ever halt. This relates to the fact that the Shan-
non information needed to describe a continuous random variable is
infinite.

Confirming Mitchel's theorem [Mit8o], a bias on P is needed.
Either P(1?) is binned into a probability mass function (therefore,
biased by its precision 8D), or P(D) is a statistical model, i.e.itisa
“family” of functions identified by a parameter vector 8, P(D|8)."
‘The first case leads to Shannon Information as a complexity meas-
ure {where the prediction should ensemble all encoder/decoders g;
weighted by their posterior probabilities P(Dlg,)). The second case,
to the idea of stochastic complexity developed by Rissanen |[Ris86]
(where instead of averaging over all possible programs, the prediction
assumes the best encoder/decoder P(D) = P{D]|q")).

Shannon’s entropy, Kolmogorov-Chaitins complexity, and Ris-
sanens Stochastic complexity are different but related task complexity

measires.

CONCLUDING REMARKS

'This chapter presented the information-theoretical perspective of
learning and provided a bridge of this perspective to Machine Learn-
ing Theory (MLT).

‘The previous chapter (Chapter 5) had already shown that inform-
ation is a measure of change in belief which is also the description
length of the data (using the expected negative logarithm of its distri-
bution); therefore, a measure of the data structure or lack of pattern.
Any learning method derived from 1T can be translated to a Bayesian
interpretation by a change of scale |Valoo]. Prior probabilities trans-
late to a coding scheme that is needed to "decode” the data. In other
words, information is a measure of complexity of a task. We related
this Shannon Information complexity to Kelmogorov-Chaitin com-
plexity and Rissanen’s Stochastic complexity.*”

In the context where learning is a conversation with Nature (Sec-
tion 6.1}, we used Shannon's theorems to demonstrate that information
measures the complexity of the task. MLT and ITML are two sides of the
same coin. If in MLT we make no assumptions on the task and depend
on the hypothesis space, ITML does not assume any hypothesis space
but is task-dependent. Either way, learning is about inding patterns
in data, and the best hypothesis to describe the data regularities 1s
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with an Application to the Entscheidungs-
problem’.

[Chat| Cheitin, Meta Math! The Quest for
Oriega.
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Learning Cenenulization
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108 INFORMATION-THEQRETICAL MACHINE LEARNING

"*This relation was expected since we already
had shown the correspondesce of T and
Bayesian mierence:

|Macez| MacKay, Informafisn  Theory,
Irference. and Learning Algorithms,

* Rementber thal Shannon decided not1o'ad
driss mesning in his theory,

HLorenty cther theory describesa universe in
which light mowves throngh a mediom called
ether. The problem b5 that the ether can be
seen a5 4 muthematical constroct that can et
be measured or ohserved. Hris msed to facilitate
predictinns calculations. Thase predictions in
the movement of ight can be measured Ein
stein’s Special Belativity describves a new geo
metry of 8 universe that has no ether. However,
it wses Lorente mathemstics] construct to do
s,

|Szant] Seabth, ‘Lorentzian Theories wa
Emstcinian Special Relagivity — A Logico-
empiricist Reconstroction’.

[Doal| Prale, Are Livenrr aether theory and spe-
ciaf retativity fulfy equivalomt?.

UL ks o f physics . stackrschange . com)f g/
SrhiEE

also the one that compresses it the most.
We presented the MDL framework which was the first Information-

‘Theoretical Machine Learning (I'TML) proposed method. And showed

from the correspondence of MDL with Bayesian inference."”

‘Therefore, even before introducing IET, we can conclude that any-
thing that is explainable by it can be explained in current MLT. If so,
what is the purpose of IBT? After all, according to [Macoz|, MDL “has
no apparent advantage” beyond as a “pedagogical tool”. Why would
IET be any different?

‘The purpose of IBT (and MDL) is to bring a new narrative. Take a
look at the transition from Figure 6.1 to Figure 6.2. If two hypotheses
generate the same result, do they represent the same understanding?
In practice, yes, they do and we can address them mathematically. ™
But if we think of understanding as meaning, not necessarily.

This other “philosophical” interpretation is understandingly not
addressed by the literature. We will, nevertheless, indulge ourselves
with some digression. 'lake, for example, the Lorenz’ Ether 'Theory
(LET) and Einstein's Special Relativity Theory (SR).*' 'There is simply
no way of distinguishing LET or SR experimentally, but there is a
philosophical distinction between the two [Szau| (as cited by [Dal]).
In this example, we can return the same question: What is the purpose
of Special Relativity Theory?

Meanings are not part of the truth we find in Nature but represent
the ideally noiseless encoding of our understanding that we create for
other epistemic agents to decode. In this sense, just as the sweetness
in honey (Section 2.2.3), meaning is projected. It is improbable that
the decoded understanding in two “epistemic minds” are the same
and different narratives are capable of sparking different analogies

and connections,
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THE EMERGENCE OF A THEORY






The Information Bottleneck
Principle

As we already discussed (Section 5.2.1), Shannon intentionally left out

from information theory' issues of meaning or relevance, and focused "Which Shannon has always referenced 2
it i i L ication Theory,
on the problem of transmitting information. Mt o Ty
Contrarily, Tishby et al. argue in [TPBgg] that lossy source com- [TPRoo| Tishby et al. “The Information
Bottlencek Method”

pression provides a natural quantitative approach to the matter of
relevance and, therefore, they use Information Theory itself to address
relevance.

'This chapter will present the Information Bottleneck Principle,
the foundation of the emergent theory subject of this dissertation.
‘The 1B principle approach is related to Rate-Distortion Theory (RDT).
Hence, first we will briefly overview RD'T" as Tishby et al. describe
it [ 'PBog; Slooz]. Then, we will formally present the 1B Principle, its
problem setting and analytical solution, and show how it can be seen

as a particular case of Rate-Distortion Theory.

1 RATE-DISTORTION THEORY: RELEVANCE THROUGH A DIS-

TORTION FUNCTION
We know from Eq. (5.97) that for any rate R < H| X ] there will be a loss

in the reconstructed signal. Rate-Distortion Theory (RDT) addresses [Shion] Slnnim, “The information bottlneck:
Theory and applicationg.

Froume 7.4 Naftali Tishby,

the problem of determining the rate R that should be communicated

111
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“Thin compressed representation of X is uso-

ally denoted by 2, T or X

channel
X512

'First definied by Shannon [Shagk).

over a channel so that the source (input signal X) can be approximately
reconstructed without exceeding an expected distortion.

7.1.1 The Rate-Distortion ‘Theory (RDT) problem

Problem setting

Let the discrete random variable X denote the source of vectors

randomly drawn from a probability distribution p{x);

Each vector x ~ p(x) is a message (signal) you want to transmit
among a set of possible messages Ay, i.e. x € Ay ;

Let another discrete random variable Z denote” a compressed

representation of X ;

. 'This representation is defined by a channel p(z{x), a stochastic

mapping between each message x € Ay to each code z € Ay;

. 'lhe rate R is the channel capacity, i.e. the average number of

bits per element x € Ay needed to specify a compressed element
[code) z ¢ A

letd : Ay = & » B* be a lonction that denotes the distor-
tion measure between X and its representation Z. Examples
of distortion measures are the mean square error, dyss(x;2) =
((x — z)?) or the Hamming distortion (probability of error)
dul(x,z) = § s S

Problem Statement

Given the problem setting above, the RDT problem’ is to find the
minimal number of bits per symbol (rate R) that should be commu-

nicated over a channel so that the source X can be approximately

reconstructed via a representation £ without exceeding an expected
distortion D, defined by the distortion function d(x;z).

7.1.2 Understanding the RDT problem

'The core of the RDT problem is the need for a good compressed rep-

resentation of a message. From Eq. (5.97), any rate 1[Z; X] < H[X]
will imply a loss in the reconstructed signal, an expected distortion,

(d(x;z)).
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As we have seen in Section 5.7, low values of 1[£; X], calculated
based on the joint distribution p(x,z) = p(x)p(z|x), imply compact
representations, ie. |Az| is small. In the extreme, all messages are
translated to the same code: |A;| = | and 1[Z; X] = 0. Contrastingly,
high values of [[Z; X ] imply low compression. In the extreme, Z simply
copies X: 1[Z; X] = H[X] and |&,| = [Ax|.

Suppose we can compress the input data to any amount of inform-
ation from 0 to H[X]. What will define the relevance of information
is the additional constraint of the problem: the distortion measure.
Given such function, the partitioning of X defined by p(zlx) has the
expected distortion:

(dlx:2]) gy = EE p(x)p(zx)d]x: 2] (7:1)

Consequently, we are assuming that the definition of relevance
is part of the problem setting. In other words, RDT is agnostic on
any arbitrary choice of the distortion function. This choice, never-
theless, determines the relevant features of the signal® and should be
somehow related to the task we want to perform with the input. Thus,
an arbitrary distortion function is, in fact, an arbitrary feature
selection [ 1'PBgg].

As we will see further (Section 7.2), Tishby et al. [TPBog| propose
a way to cope with this potential pitfall.

7.1.3 RDT as a variational problem

Definition 7.1. 'The rate-distortion function, denoted by R(D) is
defmed as:

R(D) = min 1[Z; X]. {7.2)
plebx): {d(x=)) < D
‘Therefore, R( D) is the minimum achievable rate among all nor-
malised conditional distributions, p(z|x), for which the distortion
constraint is satished. The rate-distortion function is a non-increasing
convex function of D in the distortion-compression plane |Clog] (see
Figure 7.2).°
The region above the curve corresponds to all achievable distortion-
compression pairs, while below the curve is the non-achievable region.
Let { D, 1x } be a distortion-compression pair, if it is in the achievable re-
gion, there is a representation £ with a compression level 1[2; X] = I«
and an expected distortion of at most D. If it is in the non-achievable

#The samie can be said of & kearning algorithm
Ipaz fonction in' MIT, which determines what
ie redevant (o be fearned.

[TPBas] Tishby et al, “The Information
Bottleneck Method”.

[CTof| Cover and Thomas, Elements of
Injormution Theory,

We will explain what [} means later.
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Fumune 72 The rle-distortion  function
R{D} in the distortion-compression ploe

[TPByg] Tishby e sl “The Infornoation
Eottleneck Method”.

“Imiplicit solution means & solotion in which
dependent vartable is not separated.

ple) =2, pl=]x) pl=)

Rate-distortion
region

]
4

\R(D)

[[ZX

R-

Non-achievable
region

<d(xz) > p—=0

region, there is no such representation Z. ‘This limit on the achievabil-
ity of representations is a direct consequence of Shannon’s laws (5.2).

Instead of solving the minimisation problem in (7.2) exactly, the
problem is usually approximated by the following Lagrangian relaxa-
tion functional:

Flp(zlx)]=1[Z: X] + Pld(x:2)} p(e)s (73)
under the normalisation constraint ¥_ p(z]x) =1, Vx € Ay

Theorem 7.1. The solution of the variational problem [TPBgg]

dF
— =1, .
Ip(el) )
for normalised distributions p(z|x) is given by the exponential form
__p(2) .
P(Z[.I] T fo,. E}) ﬂp( 'B dflrz})- [?-'i]

where Z is the normalisation factor (partition function). The Lagrange
multiplier P is positive and
dR
ap = P
This is an implicit solution® as p(z) on the right-hand side of

Eg. (75) depends on p(z|x)".

(7.6)

7.2 THE IB PRINCIPLE: RELEVANCE THROUGH A TARGET VARI-

ABLE
The problem of extracting what is relevant from data depends on a
suitable definition of relevance. The main weakness of the RDT ap-
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proach is that it addresses relevance through a distortion function
that is not related to a specifc task at hand.

'The 1B Principle, suggested by Tishby et al. [TPBgg| introduces
an alternative approach: defining a “target” variable is simpler and
more direct than defining a distortion measure.

For example, in speech compression®, any compression beyond %Ry the time of [TPBoa| publication, Tishby
the signal’s entropy cannot be perfectly reconstructed; it is a lossy was working on speech: elated probicms.
compression. On the other hand, a transcript has orders of magnitude
lower entropy than the acoustic waveform, which means that for the
task of understanding what has been transmitted, it is possible to
compress the signal much further without losing any information
about meaning [TPByg].

Frorme z3: The I problem setting

In many situations, we have access to an additional variable that
determines what is relevant. lf we want to recognize cats in pictures,
maybe we do not need a 360 kb picture as depicted on the left in
Figure 7.3; the 5 kb representation on the right may suffice. The exact
representation would not be sufficient for the task of recognizing the
breed of the cat, in any case. Relevance is task-dependent.

7.2.1 'lhe IB Problem Setting

Definitions
1. Let X be a random variable that denotes the Source * of mes- *Ihe 1B problemisa one-shat coding problem,
the operation are performed letierwise [ZE
sages x € Ay ASSzal,

2. Let Y be a random relevant variable (or Target) that defines
the intended meaning p( y|x) of the message x;

3. LetZ beaninformation bottleneck variable, the representation,
that obeys the Markov chain ¥ <+ X «» Z;

4. Let the conditional p.d.f p(z|x) be the encoder, i.e. a stochastic
mapping from each value of x € Ay to a codeword z € A,
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"“The erpodic property means statistical homn
gencity [SWagl: its siutistical propertiss can

b dedwced from 2 single, sutficiently long,

random sampl of the process

“Motice thar given the Markov chain ¥ s

X «= X due to reparemetrisation imvari-
ance { Theorem 5.4 (reparametrisaton myarn-

ance (R11)}, a deterministic mapping of the
dara docs not throw oot infermation, Lo let
_,f 1 Ay —= Ay be deterministic, |[_f|:x}: \"i =
1[X;Y)

|#FEASS D) Fakdi et sl "(n the Information
Bottlencck Problems: Models, Connections,
Applications and  Imformation  Theoretic
Views'.

5. 1[Z; X] 1s the rate (or compression level) of the encoder, and
reflects how much the bottleneck representation Z compresses
X;

6. Let the conditional p.d.f p( y|z) be the decoder, i.c. a stochastic
mapping from each value of z € A, to a prediction y € Ay;

7. 1[Z; Y] is the relevant information that the compressed repres-
entation £ keeps from the label variable Y;

Assumptions
i. 'The random variables X, Y and Z, are discrete;
ii. Ay, &y and A are finite sets;

ii. X and Y are dependent, and the joint distribution P(X = x, ¥ =
¥) = p(x,y) is known;

iv. The source X is an ergodic process'”; therefore x ~ p(x) are not
necessarily mutually independent.

v. The encoder and the decoder are stochastic mappings. Henee, act
like noisy channels."’

Problem statement

‘The infermation bottleneck problem consists of finding an encoder
p(z|x) that produces a codebook Z that compress X as much as pos-
sible, i.e. 1 [Z; X | is minimal, while keeping the relevant information
of X for predicting Y, [[Z; Y|. In other words, the representation £
acts like a bottleneck that "squeezes” the relevant information that X
contains about the target Y in a compressed torm, hence the name
"information bottleneck”.

7-2.2 Relation to other Information Theory Problems

Connections between problems allow extending ideas from one setup
to another. In this regard, the IB problem is closely related to other
coding problems like the Indirect or the Remote Source-coding problem,
also known as the CEO Problem, and the privacy funnel problem |ZE-
ASSan].
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7.2.3 Relation to Minimum Sufficient Stafistics

In the IB problem, the target variable is what we want to predict. Y acts
as a parameter of X and Z1 Y. Thus, the representation Z is a statistic
af X.

For Z to be a sufhicient statistic of X w.rt Y, it must preserve all
relevant information in X, 1] Y; X] = 1] Z; X]. In other words, no other
statistic of X can provide any additional information as to the value
of Y then Z does.

‘The representation is minimal if it is the smallest among all pos-
sible representations.

‘Therefore, we can say that the information bottleneck is the prob-
lem of finding the minimum sufficient statistics of the random variable
X wrlt Y, and therefore, IB Lagrangian gives the minimum approxim-
ately sufficient statistic.

7.3 THE IB CURVE
As in RDT, the compactness of the representation is measured by
1[Z; X]. The distortion upper bound constraint, however, 1s replaced

by a lower bound constraint over the relevant information, 1] Z; Y ] [S5T10].  |55Tio| Shamir et al,, ‘Learning and general-
ixation with the inlermation bottleneck’.

Definition 7.2. 'The IB Curve or relevance-compression function is the

functional that expresses the [B problem [GENTo3): [GENTr) Ciled-Bachrach ot sl ‘An
Information Theoretic Tradeofl between

H“B} I =£ 1 1 z]x 3 - Complezity and Accuracy’,
() plafe) T[] 21 [ZX] (77)
or alternatively:
(™(R)=  max 1[ZY], (78)

plzlx) 1l4X] = R
where the random variables form a Markov chain ¥ «» X «» Z and

the minimisation s over all the normalised conditional distributions
plzlx)| ¥ p(zlx) = | for which the constraint is satisfied.

A straightforward observation is that the Markovian relation char-

acterises p(z) and p(y|z) through [Slooz] {Slocs| Slonim, “The information bottleneck:
Theary and applications,

[P{E} = Yoy P(x3:2) = X, p(x) p(zlx) (7:9)

p(¥z) = 75 Ze p(x. 352) = 55 Zs pla, y) p(afx).

7.3.1 The information plane

Moreover, the plane where the horizontal axis corresponds to 1| Z; X|
and the vertical axis to 1[Z; Y], named information plane (see Fig-
ure 7.4) is the natural equivalent to the distortion-compression plane
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Freanie zq: The 1B Corve, R DY, In the in-
formation plane. lnspined by ‘An Informaticn
‘Theoretic Tradeotf between Complexity and
Accurary’ |GBNTo3).

[TPBag] Tiskby et al, “The Information
Botticneck Method',

in Rate-Distortion Theory (Figure 7.2). Let the pair R, 1y denote some
levels of compression and relevant information, respectively. If this
pair is located below the curve, some compressed representation /£ has
a compression level R = 1[Z; X ] and relevant information |y = I[Z; Y].
The points laying on the 1B Curve are the optimal representations for
a certain level of relevant-information (or precision) ly or a certain
level of compression (or complexity) R.
Compression Complexity

%

—_——

Unachievable )
region Z*=(R, max I1[Z;Y])
or (min I[X;T], 1)

HoISidedd —

1, =1[Z:Y]

Rate-distortion
region

R=1[XZ]

7.4 THE IB LAGRANGIAN

'The Lagrangian relaxation of the IB functional is also a variational

problem:

£ p(zf)] = 1[Z:X] - IfZ Y], (710)

where [ is the Lagrangian multiplier attached to the constrained
relevant information | 1'PBga).

At b = 0, no feature of the signal is relevant, and all messages are
quantised (compressed) to a single point. At = oo, the solution is
pushed toward arbitrarily detailed quantisation (no compression). ‘By
varying the (only) parameter, P, one can explore the tradeoff between
the preserved meaningful information and compression at various
resolutions’ ['TPBog|.

Unlike the RDT problem (Section 7.1.3), in the IB problem, the
constraint on the meaningful information is nonlinear in the mapping
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plz|x), and it is a much harder variational problem. Notably, there
is an analytical solution for |B Lagrangian (Eq. (710)). However, for
the sake of darity, before deriving this exact solution, we will show
how 1B can be seen as a particular case of RDT. This development will
further help us to derive the analytical solution more directly.

7.5 IB PROBLEM A5 A PARTICULAR CASE OF THE RDT PROBLEM

From the Data Processing Inequality (DP1) (Section 5.6.6),
1X;: Y] 21[Z Y] (711)

Therefore, we can consider that the relevant information of X not
captured by the representation Z is a natural choice for the expected
distortion, as it represents a distortion in bits,

(dlx;z]) =1[X; Y] 1[Z: Y] =20 (7.12)
From this definition, we can derive the following theorem:

Theorem 7.2. If (d[x;2]) pey = 1K Y] - 1[Z4 Y], then
d[x;z] = D (p(ylx) || p(yiz))-

Proof.

(dlxs2])pixey = X Y] - 1[Z Y]
5 p(x y) log L5 Y) + Viow PBY) 1
z‘u( M8 () p(x)p(y) 2P "”lgpfz]p{ﬂ‘ @9

Ly

Since p(a,b) = p(bla)p(a), we have:

PORIPET v (k) ple)
salnly) L PORREE

(714)

=Y p(ylx)p(x)log
X,y

From Eq. (7.9) :

plyix) )3 p(ylx)p(zlx)p(x) plz] log plylz)
ply) 5% ) p(y)

(7.15)

= E pylx)p(x) log ===

_ZP{”J*}F{*}I"E P(fl )) 2. plyk)p(z,x) log (51?
e

(716)

119
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From the normalisation constraint, 3., p(zjx) = I:

-p(2x)
o Y Pyl log U 5 plyie)pz. ) 1og 2212

rly) 5% r(y)
(717)
=X p(eb)p(e) | 2 ke 10g 20 )] it z)[z (x)tog 212
EuX y
(718)
5 0|5 ptsle) [10g 2O 10 2O 1
—;pfx, )[Z!IPU'E l(ing R )I (719)
- < 1. 2O) 247 ] o
—;pfx, )[Z!IPU'E l(ing p{fﬁp(yirl) (7.20)
=B D p(ylx) || p(¥i2) ). (7.21)

Therefore

(dlxz])pay = (Dr( O | POV2) Dpeey - (722)
dlx;z] = D p(yix) [l p(¥12) ) (723)
]
7.6 INFORMATION BOTTLENECK SOLUTION
‘Theorem 7.1 characterises the general form of the optimal solution to
the rate-distortion problem. As we showed that the 1B problem could

be seen as a particular case of the RD'l" problem, the 1B solution is

“The analytical solution o the I8 problem S'r.Tﬂightfﬂl’W
ia sometimes called the seif-consistent equa-
il TR

Theorem 7.3. The analytical solution of the variational problem

oL lp(e)]
ap(zlx) '
for normalised distributions p(z|x) is given by the exponential form
plalx) = £ exp(- B Dia( p(yix) | p(¥I2) ))s
plz) =X, plx.pz) =2, px)p(zx) (7:25)
P(Mz) =55 Tap(% 3, 2) = 55 Ea p(x, y)p(2]).

where 2 is the normalisation factor (partition function). The Lagrange
multiplier B is positive and

(7.24)

Al[Z; Y]
P= Sz

Proof. Apply d|x:z]=Dw( p(ylx) || p(y]z) ) to Theoremz1. O

(7.26)
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7.7 CONCLUDING REMARKS
In this section, we presented the Information Bottleneck (18) Problem Insrmation Theary
(Section 7.2.1) and the IB Lagrangian (Section 7.4), with its correspond-
ing analytical companion, the information plane (Section 7.3.1).

'The exciting aspect of the 1B Problem is that it uses the “help” of a [ Shenhan's 2= Law |<—|
relevant variable to define the distortion measure. Therefore, we have
a task-specific distortion measure (loss function). In opposition to

|B-methed

| Shopngn's = Low ].._.

MLT and RDT, which are loss-function-agnostic, in the IB method, the I e e ]
Kullback- Leibler divergence (Dy, ) of the true distribution p and the — ¥
model g emerges as the natural choice (Section 7.5).

Despite the similarities with the supervised learning problem Arence
(Section 4.2.1), the IB Problem assumes knowledge of the distribution Voouladas: :iﬁ-
P(X,Y), and it is not yet in the realm of Information-Theoretical S
Machine Learning. i

Fruune 7.5 The IH method vses Shannon Lows
to-define-an unreacheabie compression region
in the information-plune.






8.1

Information Bottleneck and
Representation Learning

This chapter presents the idea of using the IB principle for representa-
tion learning in general, not specific for Deep Learning, which will
be the subject of Chapter g.

In Section 8.1, we show why to learn representations. In Section 8.2,
we discuss hiow to characterise a good representation. Section 8.6
presents the two levels of representation in learning, which will help
us understand what to represent.

In Section 8.3, we finally present the IB Learning problem, its dif-
ference to the 1B method, how to find good representations with it, and
its strengths and weaknesses as a representation learning framework.
Finally, we close the chapter with Section 8.0 that brings evidence

that the 1B framework can predict bounds on human learning.

REPRESENTATION LEARNING

In our human experience, we know that a good representation of data
is crucial for accomplishing tasks. The Hindu-Arabic numeral system
advantages, for example, are so manifest that it has been adopted
almost everywhere.

In the history of Machine Learning, good representations have
always played a central role. In its first years, before trying to solve a
task, researchers would feature engineer: use their knowledge of the
problem in hand to encode the data into a representation easier for
computers to learn the task.

'The goal of designing features is to separate explanatory factors of
variation behind the high dimensional observed data. The challenge

is that many of the "factors of variation™ influence every piece of data

“We know the past, but can-

not control il.

We control the future, but

cannot know il.’
—Claude Shannon



124

[GBC6] Goodfellow et al., Deep Learming.

=Wt obfect does this picture nepreesent?" Ob-
ject Classification i the task of assipning a
category (a label) for an imoage.

encoder = diecoder
—_— % ‘é —_— %
{npu {eatnres

Fromae 810 Alessand o Achille:

[ASida] Achille and Sostto, ‘Emergence
of Invariance and Disentangling in Deep
Representations’.

“Note that ¥ = ¥ Here, the Markov ¢hain
is from the unknown target variabie ¥ to the
representation £ through the inpot. See Fig
e e

"Minimal representutions - are  peoceatly

equated o low-dimensional dsta. However,

as we have cxposed in Chapter 5, a high
dimensional represeatation con have litle
informaticn.  Thos, for example, sparse
represcntatinns that foece most of its bits 1o be
rera dre hiph-dimensional low informational
FEPTCSeTiAtng,

aut FII.I.1.

INFORMATION BOTTLENECEK AND REPRESENTATION LEARNING

we can observe |GBCi6].

Consider the problem of Object Classification'; each pixel depends
on different factors: the viewing angle of the picture, the object’s pose,
the quality and calibration of the lens, the conditions of lightning,
unrelated background objects.

Ower time, it became clear that the success of machine learning
was so heavily dependent on appropriate features that iinding them
should also be part of the process of learning itself. Therefore, rep-
resentation learning or feature learning is a set of techniques that
allows a machine to learn features and use them to perform a specific
task. Learned representations often result in better performance and
flexibility, allowing a more straightforward adaptation of an Al system
to new tasks, with the minimal human intervention |GBCi6]. Further-
more, the recent success of Deep Learning, which is one of many ways
to learn representations, has shown the power of this encoder-decoder

scheme.

8.2 DESIDERATA FOR REPRESENTATIONS

Whalt are good representations of the data? A good representation
makes a subsequent learning task easier |GBCi6]. Achille and Soatto [AS:8a]
present @ mathematical definition using information theory.

task : In supervised learning, we want to find the stochastic condi-
tional distribution p( y|x) of a target variable Y that we refer as
the task:

Y:=P(Y|X=x)
representation : Z is a representation of X if it can be fully described
by the stochastic conditional p(zlx):
Z:=P(ZIX =x)
sufficient: Z is a sufhcient representation f X wrt Y'if ¥ - X + &£
form a Markov chain® and:
IZ; ¥]=1[X;Y].
minimal: Z has the smallest amount of information among all the

sufficient representations of X. This means there is an encoding
from X to Z that keeps only relevant information™

IX - Z| [[Z:X]=1]Z; Y] = [[X: Y] (8.1)
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invariant: to the effect of nuisances (noise).” Let 1 be a nuisance for
the task Y. If n does not have information about Y, there should
not be information of nj in the representation £ , the classihier
could fit spurious correlations:

nLY=1mp¥]=0
= 1[Z;n]=0 (8.2)

maximally disentangled: information lies on components of the
representation £ and not in the correlations of them. 'Then,
mathematically, let I'C denote the total correlation, a.k.a. multi-
information.

TC(2) =Dia(p(2)|| [ p(z))- (8.3)
TC(Z)=0 == Lz L | zn. (8.4)

This desiderata for representations corresponds directly with our
goals for learning algorithms. We want our models to predict the task
correctly (suthciency). Simultaneously, we want them to generalise to
out-of-sample examples (invariance to nuisance factors).

accuracy <» sufficiency
generalisation <» invariance/minimality

explainability <> disentanglement

Frizume & = Correspondence of desired properties of learming algorithms and representations,

Another desired characteristic, albeit often forgotten, is that we
want our models to be explainable.” This characteristic relates to dis-
entangling the underlying causes (factors) of the observed data (max-
imally disentangled) |GBCi6].

Although disentanglement may be an abstract characteristic not
very well defined, Achille and Soatto | ASi8a] propose a simplification
by defining it as the total correlation of the representation features,

'The only property of the desiderata that still does not correspond
with learning algorithms is minimality. However, it 1s straightforward
that a small sufficient representation has a smaller chance of con-
taining spurious correlations, and it is more likely to generalise well.
Minimal sufficient representations have no spurious factors that do
not explain the variability of the observed data. As we will show, a
representation is invariant only if it is also minimal.

“MNudsances are fectors of vanation that affect
datn, bot are ctherwise irrelevant for the task.

IMMsentanglement and minimality also sim-
plify the subsequent inference (decoding).
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8.2.1 Invariant if minimal

Theorem 8.1 ( [Achig], Proposition 2.4.1). Let i be a nuisance for the
target Y and let Z be a sufficient representation of the input X wart Y.
Suppose that Z depends on nonly through X (ie.,nq - X - Z). We
also consider that X has all information about Y; therefore, we can say
that it is a deterministic function of Y and nuisances X = f(Y;n).

1o say that Z is invariant if and only if it is minimal implies that
1 Z;n] =1[2;X] - 1{X; Y]:

vV Z|1[Z Y] =X Y],
I[Z: X]=1[X; Y] = 1| Zn] =0,
Zn]=1[ZX] - 1[X: Y]

This equality holds up to a small residual e:
[[Zin] =14 X] - 1[X;Y] - & 0 e< H[Y|]X] (85)
Proof.

YnoX £ (by definition)
I[Z:Y,n] £1[%X] (DPI)
Z: Y, q]=1]Zn] +1]Z; Y]n] (chain rule)

RS

Zn]+ UZ¥ T <1[ZX] (ni¥)
I[Zn] < 1[ZX] - Yz ( sufficiency)
[[Zin]=1]Z;X] - 1[X;Y] €20 (€ lower bound)

Now we only need to prove the upper bound for «:

e=1[Z:X] - 1[Zn] - 1[X;Y]

=1[Z;Y.n] - lZin] - [[X: Y] (X :=f(Yin))

= &) + 1[Z Yn] - &a] - 10X Y] (chain rule)

= BT B[V 2] - HIY]HQYIYD ()

= HPYT - H[YIn:Z] - HPYT + H[Y|X]

< H|YIX] (€ upper bound)
UZn]=1[ZX] - 1[X; Y] e 0<e< HIY|X] 0

As a consequence of this proposition, it is possible to construct
invariant representations, which will generalise well, by reducing the
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amount of information the representation Z contains about the input
X while keeping 1[Z; Y], the amount of information we need for the
task. As H[ Y] <« H|[X] the compressibility of the input determines
generalisation. Thus, it is independent on the hypothesis space of the
learning algorithm.

8.3 IBT LEARNING PROBLEM: LEARNING APPROXIMATELY MIN-
IMAL SUFFICIENT DISENTANGLED REPRESENTATIONS
We have discussed what constitutes a good representation. This sec-
tion is about finding such representations. For that, we will adjust the

IB Problem Setting (Section 7.2.1) for supervised learning.® #For consistency with Chapter 4, we will re-
peat some definitions in this section.

Frmmmn 8,3 The IET Leaming Problem isthe
adaptation of the T8 Problem o the learming

seiting.

8.3.1 Definitions

1. Let X be the random variable that denotes the generator (or
source) of instance vectors x of the learning problem (messages),
randomly drawn from a probability distribution P(X),
x~P(X), xeAyg

2, Let Y bea random relevant variable (the Target) which repres-
ents the solution y for the problem x, i.e. the intended meaning
p( y|x) of the message x,
D b p(Y), Yy €Ay

3. A task supervisor knows the task distribution P(Y|X) and

returns an output vector y; for every input vecior .t,-?: " Motice that here ¥ i not the Libed but o vec-
. i tisr that represents the probabitity of each la-
yi=plylx);
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Wk conld use an ergodic process, but lor sim-

plification we will mse Lid sampling.

*Motice that given the Markov chain ¥+

X o= Z due o repaemetrization invari-
ance { Theorem 5.4 (reparametrisation invar -

ance (R1)}), 2 deterministic mapping of the
data docs ot throw oot infirmation, Lo let
_]'. 1Ay —= Ay be dcl.ﬂ'l!li.lli.'u'liﬂ. |I H:X }; f] =
x:y]

*This gssumption is nst strictly requined, o
it can be derived. The only resson to keep it
here is to make the comparizen of different
prrohlem seftings casicr,

|ASi8h| Achiile and Seatto, “Information

Dropout: Learning Optimal Representatinns
Throngh Neisy Computation’

4. Let £ be a bottleneck random vanable that denotes a com-
pressed representation of the input X that is sufficient wrt. ¥
and obeys the Markov chain ¥ < X «» Z;

5. Let the stochastic conditional distribution g(z]x) be an en-
coderof input instances into representations,

z :=g(z}x).

6. Let the stechastic conditional distribution g( ¥|z) be a decoder
of representations into solutions of the problem,

= q(ylz).

7. A learning algorithm A, which is the functional that given
a dataset D, = {{xy, 1), - (x5, ¥») } of n inputs and outputs
of the task, selects a hypothesis h = g(y¥|z) o g(z|x) from the

docider

encider

hypothesis space H:

A (X xY) > H. (8.6)

b,

8.3.2 Assumptions

i. The random variables X, Y and Z, are discrete;
i. ¥ » X » Z forma Markov-chain;
iii. Ay, &, and A, are finite sets;

iv. Noassumption on D = P(X,Y).

v. D =P(X,Y)is unknown at the training stage.

vi. D =P(X,Y) is fixed: the ordering of examples in the sample is
irrelevant.

vii. X isiid. sampled.”
viil. The encoder and the decoder are stochastic mappings.”

ix. the distortion measure between X and its representation £ is
X Y] 1z Y] = Dalp(ylx)llp(ylz))-"

x. the entanglement of a random variable £ is defined as total cor-
relation of its components [AN8b].



IBT LEARNING PROBLEM 129

8.3.3 Problem statement

Given the problem setting above, the 151 learning problem is to find
the encoder p(z|x) and decoder p(y|z) such that:

1. the encoder maximises the compression of the input X into the
representation £ while preserving the maximum information
about the "meaning” Y. In other words, the encoder that gen-
erates minimal sufficient disentangled representations of the
input.

the decoder is trivial as a result of the characteristics of the

I

representation.

3. 'The selection is based on a training set of n Li.d. observations
drawn from the distribution P(X, Y).

8.3.4 IBT learning as a variational problem

Finding the encoder for minimal sufficient disentangled represent-
ations is equivalent to finding a distribution p(z|x) that solves the
following constrained optimisation problem:
g{z|x) ;=argmin 1[Z; X] (8.7)
plslx)
st 0K Y] 12 Y]
0<TC(Z).

‘lhis nonlinearly constrained optimisation problem'" is very similar “Prior to the publishing of |Ale+16], there
to the IB Problem (Section 7.2). It just adds the total correlation con- ﬁﬁﬁﬁrﬂfﬁﬁf ;n.:ﬂ—m:mu:,—ﬁ
straint and assumes no knowledge over P( X, Y ). Tishbyetal. [1PBgg| mﬁ;ﬂ“ﬂ_” ke neRan Rt JosiL
proposed solving the IB problem using a relaxed minimisation, the
1B Lﬂg!'ﬂllgiﬂﬂt LZI:EJ&T;:ﬁlet al, "The Information
g HZx] _ minl[ZX] BRG] - 1[£4Y]),
st. 1[ZY]<1XY] min [[Z; X] - BI[Z; Y].
(8.8)

Let us also apply a Lagrangian relaxation to our representation
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“pa(yle) =T polzlx)pel¥iz)
plvle.0%) = pl =)

|ASikh] Achille and Soatto, “Information
Drropnut: Learning Optimal Representations
Throwgh Nobsy Computation’.

learning problem:

£=1ZX]+ pO[X: Y] - U2 ¥Y]) + yIC(2), (8.9)
1

Let p't=—, a1o)
tf i (8.0

Fl - I i
V=3 (8.11)

e

L= I':F[_[X,_}i}r"l'['z, Y]) FPU[ZX] +y'TC(2), (8a2)
L=H[Y|Z] + B[Z: X] + Y'TC(2). (8.13)

Let us denote py(z|x) (encoder) and py( v|z) (decoder) the unknown
conditional distributions we want to estimate'’, parametrised by 8.

Then, rewriting the Lagrangian as a per sample loss function, we
have:

H I. Fizl = EEI.;’J-F{:,.&} [Ezupn[:[r} lngpu[}'ﬁz)] (8.14)
I{Z:XI :Ex—p{xJDKL{PH(z|x)HP{Z)J (8.5)
TC(2) = D (P21 T, 4(2)) (8.16)

O -
L= '?; L]E:ﬁpuf!hu} lﬂgf?ﬂ{}‘r[z}

+ B Dya( po(zlx)llp(2))
FY' Dia(p(2)|[ TT; pel(z;)). (8.17)

‘The second and third terms of the loss are intractable, as we need to
know p(z) to compute, which is an unknown of our problem. Achille
and Soatto, however, prove that if ' = y', and we assume a factorised
unknown distribution, the Lagrangian can be solved [ ASi8b].

L= i iEp.mp,} log po(y:lz) +B7' Dy (polzlx)llpa(z)), (8.18)

Hip.pg)
polz) = H Palz;). (8.19)
1

£=H(p.ps) + B Dl polzx)lpe(2)) Activations IB (8.20)

Where H(p, py) is the cross-entropy, and the second term is a
regulariser that penalises the transfer of information from X to Z.
In other words, the regulariser penalises complexity measured as
[[Z; X]. The usage of cross-entropy loss and this kind of regularisers is



THE IB ACHILLE'S HEEL 131

widespread in practice. Nevertheless, Achille gave theoretical ground
for such choices™ |Achig].

Minimising the standard IB Lagrangian assuming the activations
are independent, i.e. g(z) = [], g(z;) is equivalent to enforcing disen-
tanglement. Practitioners already adopt this independence assump-
tion on the grounds of simplicity since the actual marginal p(z) is
incomputable. Higgins et al. also empirically observed that using a
factorised model results in "disentanglement” [Hig+17]. Because of
the previous propositions, we can assume the activations are indeed
independent and ignore the TC term."

Corollary 1. Any learning algorithm that:
« assumes a stochastic p( y|x);

« uses a Dy, -equivalent loss (for example the cross-entropy loss or
the logistic loss);

« and a regularisation term that penalises the amount of informa-
tion of the input stored in the model,

is learning a minimal sufficient disentangled representation and, in fact,
solving the IB learning problem.

8.4 THE IB ACHILLE'S HEEL

Achille and Soatto noticed a problem with the Activations 1B, it is
incomputable:

« 7 is a representation of yet not observed future data;

» During training, a valid minimisation of 1{Z;X] would be to

memorise the indexes of each label;

» During testing, once the weights are fixed, the network is not a
stochastic mapping;

+ ‘Lhe only other way to compute 1B would be with the true dis-
tribution P(X,Y), but that is unknown in our problem setting.

'This realisation is very important. Many of the critiques on IBT (that
we will see in Section 9.3.4) are due to not addressing it. Achille
and Soatto not only acknowledged the problem but also proposed a
solution (Section 8.6). To explain how they arrive on that, we first need
to explain how they analised the cross-entropy loss in an information-
theoretical perspective.

*The referenor constraint their findings o
DNNs optimized with SGD. We regard the
resnlt maore general than that

[Achng | Achille, Emergent Propertics of Deep
Meural Mebworks'

VL hittpn © f f escholarship . org i ucf item J
Drplib s brede

|Hig+17| Higgins et al., "beta-VAE: Leaming
Hasic Vismal Concepts with a Constrained
Variaticnal Framework'.

“Thix insight allowed Adeoni ef al: Achille
and Soatto independently develop  basic-
ally the samye algorithm for estimating mu-
tunl oformstion for any distribsution using
DNNg [ Ale+i6: ASigb].
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|#ha+16] Fhang et al, Understanding deep
(earning requires rethinking gesneraltmation.

" Achille defrnes the task as-the daotaset
distributinn for which we only have one
anmpe {Achia ).

|ASi8a] Achille and Soatto, “Emergence
of Imvariance and Discotangling in Deep
Reprosemtations’

8.5 RETHINKING GENERALISATION: CROSS-ENTROPY AND OVER-

FITTING

In previous sections, we derived the cross-entropy loss (Eq. (8.20))
from a list of desired properties for representations(Section 8.2). We
also showed that generalisation relates to the compressibility of the
input(Section 8.2.1).

Zhang et al. demonstrates that the expressivity of DNNs is enough
to fit random labels | Zha +16]. Thus, at least for DNNs, generalisation is
more not overfitting than not underfitting. This characteristic may be
the case for other learning techniques as well. In this section, we will
keep rethinking generalisation on this new information-theoretical
perspective and (ry to elucidate how cross-entropy loss relates to
overfitting and memorisation.

Classical MLT assumes that we select a hypothesis h parametrised
by 8. Conceptually, we already rethought generalisation as determined
only by the compressibility of the input (Section 8.2.1). In this sense,
the task is determined by the training dataset only."” Thus, instead
of a parametrised model, we will assume a parametrised unknown
distribution P(D|8). In this context | AS:18a]:

Theorem 8.2. Given D = (X, Y), D~ P(X, Y|0), and a representation
Wof b, s.t. Y|X «<» W «» 8 form a Markov-chain [AS18a]:

H,[DIW] = H,[D, 8] + 1I[0; D|W] + Do(p || @) — 1[; W6]

Proof. Notice that the output weight W of the training process can
be seen as a random variable (that depends on the stochasticity of the
initialisation, training steps, and the data); i.e. W is a representation
of the dataset D and we can talk about [[ W; D].

First, we show that minimising H, [ v|x] is equivalent to minim-
ising Hp [, y]

minH, [ y|x,w]=minH, [D|W]. (8.21)
When a learning algorithm optimises the cross-entropy loss, it is effect-

ively just minimising the KL-divergence, as the first term (entropy) is
a constant:

from (5.39)

mintlyy[ybe.w] = min (Holpbew] + EDe (p(yix. 0)[la(ylx.w)).
{8.22)
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‘The same happens in the minimisation of the cross-entropy of the
joint dataset:

from (5.39)
minHy q[x, yiw] = min (Huleyw] + D (p(x,,0)la(x, 3, w)))
(8.23)

Here, we show that the divergence of y|x is the same as the divergence

of joint distribution x, y, a step that was assumed by Achille and

Soatto:
Dy (p(x, ¥)llq(x, y)) = Eglog : Exi i (8.24)
pUylx)p(x)

=E;lo AP E; [logp(ylx)p(x) logq(ylx)p(x)]
(8.25)

= E; [log p(y|x) + logp{x] - (logg(yx) + logp{£])] (8.26)

-, llog pylx) - loga(ylx)] - log 22 (827

= D (p(y]x)llg(y|x)) (8.28)

'Therefore we can say that a learning algorithm minimises H, 5] D|W].

from (5.39)
Hpg[ DIW] = Hy[D, W] + Do (P(D,0) | Q(D, W))  (8.29)

To prove that:
H, [DIW] = H,[DI0] + 1[0 D[W] + EDyy(p || 4) - 1[5 W6,
we just need to prove that:
Hp[D|W]=H,[D, 0] + I[Djw: 8] - 1[D; wia]. (8.30)

'This equivalence is clear with the help of the following Venn dia-

18

grams S 0ur assumptions guearantee that all inform-
atinn measures in the disgram are positive,
thios there i='no protlem in using the Venn

! % dizgram in this case

umr] = H,[DIA] + L[D|W; B] 1[D; W|0]

Ol
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It relates to generalisation, as additicenal bits
ol information can correlate 1 noise

[ASita] Achille and Soastto, ‘Emergence
of Inwariance and Disentangiing in- Deep
Representatings

[Achito] Achille. ‘Emergent Propertics of Dieep
Heural Metworks'.

Imi: fttps ©Jf F encholorship . om oo/ itee f
b sy

Let us examine the cross-entropy decomposition:

Hpo[D|W] = Hp[D[O] + 1[8; DIW] + Der(p || g) - 1[D; W]O]
5 Pl . A & B} i o L .
intrinsic error sufficiency etficiency mermorisation

intrinsic error: H,[D|0] relates to the intrinsic error that we would

find even if we knew pu;

sufficiency: 1[8; D|W ] measures how much information of 8 was

compressed in the weights;

efficiency: Dy (p || q) measures the efficiency’” of the representa-
tion, i.e. the number of additional bits we need to represent the
input with g(w|D) instead of using py (see Section 5.5.4);

memorisation: 1[1; W|0] is the last and only negative term. It relates
to overfitting and measures how much information about the
dataset unrelated to 6 is memorised in the weights.

The optimiser will try to increase memorisation because it is the only
negative term. Thus, Achille and Soatto propose a naive method to
eliminate this proneness to overfitting: adding back the memorisation
term in the lossThus, [ASi8a).

L(W)=H,, [D|W] + 1[D; W|0] (8.31)

To calculate 1] 1% W|0] true distribution, p; is needed. Nevertheless,

we are just trying to approximate py with g during training. Hence
we are presented with the chicken-egg problem. Rather, one can add a
Lagrangian multiplier to upper bound 1] D; W|8]:

L{W)=H, [DIW]+ p'1[D; W] Weights |B (8.32)

Remarkably, this has the same form as the 1B Lagrangian, Lq. (710).
When P =1, (8.32) reduces to the Evidence Lower Bound (ELBO) loss

used in variational inference [Achig, p. 53]

8.6 TWO LEVELS OF REPRESENTATION

Some criticism on 18T derive from a lack of rigour in explaining the
fundamentals (see Section 9.3.4).

The crucial problem in MLT is that we want to predict the beha-
viour (bound) of learning algorithms in future data while we can only
access past performance.

This dichotomy translates to representation learning by two inter-
twined but different representations:
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1. the representation of a dataset (past data), a function that can
be stored in memory for the later accomplishment of the task.
It needs to keep useful information for future decisions without
squandering resources in remembering spurious correlations

or one-time events,

2, the representation of an input example (current data); which
need to keep the essence of the scene at hand;

Borrowing the terminology of Deep Learning, Achille; Achille
and Soatto call these two levels of representation of information in the
weights and information in the activations, respectively [Achig; ASig).

Several IBT papers do not address this difference. In particular,
some of the seminal work | 1Zi5a; ST17; Tisizb]. How can we minimise
the information in the activations while we cannot access future data?
There is a missing step.

Notice that we now have two Lagrangians. The original (Sec-
tion 8.3.4) and this new Lagrangian emerged from eliminating over-
fitting.

X — » 7 — I 4
inpit activatinme Labsel
min L(W) = H, o[ ¥1Z] + p1[Z; X] Activations B
g{2px)
D — » W — » P(Y|X)
ubises weights rea! distribution

min (W) = HPJ,[D]W] i [’."I[W;,[J] Weights [B
g{ojw)

Frrae #.4: Two levels of representation in
the hearning setting.

[AStn)] Achille and Soatto, Whee & the
Injirrmation in @ Deep Neural Network?.

[TFa5a| Tishby and Fastevsly, Therp lcaming
aned the information battheneck principle’,

[5Ti7| Shwartz-Ziv amd Tishby, ‘Cpening
the Black Box of Deep Newral Networks via
Indoermation.

| Tizizh| Tishby, Information Theory of Deep
Liearning.
ERLE B tgia o/ Syoato. be T S DS RI0
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|ASish]| Achille and Soatto, “Infnrmation
Drropoot Learning Optimal Representationg
Throegh Notsy Computation’

Intuitively, there is a strong connection between information in the
weights and information in the activations. 1| Z; X ], which measures
the complexity of the activations representation, can be defined by
the amount of weight in the network: low or zero weights will connect
to the activations that are not in the optimal activation representation
z*, which minimises 1[Z; X].

In "Emergence of Invariance and Disentangling in Deep Repres-
entations’, Corollary .8, Achille and Soatto have proved that indeed
there is a bound:

Z;X] < I[W;D] (8.33)

As i[w; D] can be calculated, this development allows one to regularise
the training explicitly. ‘This explicit regularisation is what “Inform-
ation Dropout: Learning Optimal Representations Through Noisy
Computation’, Information Dropout proposes [ AS18b].

Besides, even without calculating the information in the weights
one can control it by injecting noise, which can be modulated from
zero, no effect in the rate of the encoder, to the capacity of the channel,
which leaves the encoder with no information left.

We know the past but cannot control it.
We control the future but cannot know it.

— Claude Shannon

3.? SHANNON VS, FISHER INFORMATION
We still have the problem that to calculate I[X; Y |, we need to know

P(X, Y). We can, however, bound the amount of information using
Fisher Information Section 5.5.2. We use:

L[X: Y] =Dya (P(X, Y)[P(Y)P(X)) (8.34)
=Ex D (P(Y|X)[P(Y)), (8.35)

to rewrite Eq. (8.32)( Weights 1B) as:

L{W) = Hpa(D]W) + B'Die | Q(WID) | P(W)

— e

training vetput feed prior
In other words, I[ W; D] is the divergence of the encoder Q(W|D)
and the expected prior averaging all possible datasets, i.e. the un-
known distribution. [f we change the assumption Section 8.3.2, Item iv,
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and assume that the unknown distribution is an isotropic Gaussian'®,
the information in the weights when W, is minimal, is given by:

Dy Q(WID)P(W) = é (lug]Fn] + logA*T 4 ;{)

where the cancelled terms are the ones that do not depend on Q(W|D)
and can be ignored, log |F| is the log-determinant of Fisher Inform-
ation Matrix of the weights, and n is the number of samples in the
dataset.

'This assumption is guite interesting as it gives us an analytical and
fast calculation of a bound to 1| W; D]:

1[2:X] € 1I[W; D] < log|E(W")| (8.36)

Even if the unknown distribution P(1) is not an isotropic gaussian,
we can think that near optima, it approximates one. We can arrive at
the same result by approximating the Hessian with a Taylor expansion.

CONNECTION TO VARIATIONAL AUTOENCODERS

Achille and Soatto show how the previous development relates with
Variational Auto-encoders (VAEs) |ASi8b]. Variational Auto-encoders
(VAEs) [KWi4] aim to reconstruct, given a training dataset D = x;,
a latent variable z. 'The paper proposes that this can be thought as
generating z through some unknown generative process p,(x|z). In
practice, this is done by minimising:

1 N
L= N 3 By eln) — log pa(yilz) + Dia(po(zlxi)|| TTi polz:))-

This minimisation is performed through sampling using SVGB [KW14].

It is clear by the formulation that VAE is equal to Eq. (8.32)(Weights
IB) where f= L

CONNECTION TO PAC-BAYES
Achille and Soatto also relate their work with PAC-Bayes [AS:18b].
From |McAaz, Thrm 2|,

V(fixed)A > 1/2, p(w), g(w|D),
Ep[L*g(w]D)] <

:;,“:ll—ﬁ] (Hpy(plx.w) + Al En [ Dia [q{w|D)[[p(w)]) (8.37)

" An isctropic Cianssian i one where the cov:
ariance matrix is represented by ¥ = ML

| KW 4] Kingros and Welling, ‘Auto-Encoding
Varistinnal Buyes',
i W LR BT [ S R T

[McAry| McAllester, A PAC-Bayesion
Tutorial with A Dirapont Bound',
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A e srrogate loss s the Iogistic loss, which
s differentiable.

where L., i1s the maximum per-sample loss function. ‘The right-hand
side (RHS) coincides, modulo a constant, with Eq. (8.32) if we use
g(w) instead of p(w). Since

En[Dxc[q(w]D)llq(w)]]
=Ep[ Dy [g(w|D)llp(w)]] - Dy [g(w)][p(w)] (8.38)
< Ep[Dia(q(w[D)llp(w))], (PAC-Bayes)

the sharpest PAC-Bayes upper bound to the test error is obtained
when p(w) = g(w), in which case, Eq. (PAC-Bayes) reduces (modulo
a constant) to the 1B Lagrangian of the weights. Unfortunately, the
marginal g(w) of the weights is not tractable, as already stated. 'lo
circumvent this problem, we consider instead thal the sharpest PAC-
Bayes upper bound that can be obtained using a tractable factorised

prior p(w) = §(w) =TT, q(w,)."”

8.9.1 Relation to Dziugaite and Roy bounds

We notice that this relation was independently explored by Dziugaite
and Roy, who worked on the hypothesis that SGD finds good solutions
only if they are surrounded by a large volume of good solutions | DRi7|,
if so, the expected error rate of a classifier drawn at random from this
volume should match that of the SGD solution. Theorem 4.7 (Prelim-
inary ‘Theorem 2 [McAgo]) bounds the expected error of a dassifier
chosen from a distribution Q in terms of the Dy divergence from a
prior P, and if the volume of good solutions is large, and not too far
from the mass of P, we obtain a good bound.

They use 5GD to optimise the PAC-Bayes bound on the error rate
of a stochastic neural network; i.e. a DNN that represents a stochastic
mapping p(y|x). The objective function is the sum of

» the empirical surrogate™ loss averaged over a random pertuba-

tion of the SG1 solution;
« a generalisation error bound that acts as a regulariser.
Recall Corollary 1:
Corollary 1. Any learning algorithm that:
« assumes a stochastic p(y|x);

« uses a Dyg-equivalent loss (for example the cross-entropy loss or
the logistic loss);
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« and a regularisation term that penalises the amount of informa-
tion of the input stored in the model,

is learning @ minimal sufficient disentangled representation and, in fact,
solving the 1B learning problem.

From this, we can say that Dziugaite and Roy are solving an in-
stance of the IB learning problem.
Moreover, their objective can be written as |DRi7, sec. 6]

min Ew_xL(W,8) + [w - wy|" diag(s)[w - wq] (8.39)

where s is the score function. In other words, they are calculating the
diagonal of the Fisher Information Matrix as a regularizer.

EVIDENCE OF THE IB LIMIT IN A HUMAN LEARNED TASK
Zaslavsky etal. | Zas 18] had the sagacious idea of using the B method
to analyse anthropological evidence.

We have already established that intelligent agents, whether artifi-
cial or biological, need language to represent a complex environment.
Natural languages reflect different solutions to this problem. "The cur-
rent most accepted theory in Anthropology and Linguistics suggest
that while langunages vary to accommodate language-specific needs
(due, for example, to variations in the environment), they evolve into
efficient representations [ Zas+18]. Although not explicit in [Zas+18],
it is evident that the evolution of natural languages can beseenasa
learning process for the task of efhicient communication by a society.

'The paper analyses natural languages in the context of colour
naming, It is based on the World colour Survey (WCS), “a large colour-
naming database obtained from informants of mostly unwritten lan-
guages spoken in pre industrialised cultures that have had limited con-
tact with modern, industrialised society” |LBog]. Assuming that each
colour of WCS corresponds to a specific meaning; it formulates the
problem of colour naming in an information-theoretical perspective
analogous to the 1B problem setting [TPByy]:

With that formulation, it is possible to calculate the 1B limits
and analyse the different languages colour-naming solutions in this
framework:

In Figure 8.6, it is possible to see evidence that languages effi-
ciently compress ideas into words by optimising the tradeoff between

complexity and accuracy of the lexicon according to the [B principle.

[#as+a8] Faslaveky ot ol ‘Etficient compres-
sion in color seming end its evolution’.

|LEnog| Lindscy and Brown, “World Color Sue-
vy color faming reveals universs | motifs and
their within-langoage diversity”,

TIEE htdpa o/ /e . poas - org/comd ent £ 106 52T
15 1KS

[TPBgy| Tishly ot al, “The Information
Bottbrmeck Mothod .
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This analysis corroborates the current theory on human language
evolution. Furthermore, the drive for information-theoretical effi-
ciency explains why human languages categorise colour as they do
and may also apply to learning in general.

‘Ihe hypothesis is that languages evolve to become more efhcient
in a tradeoft between conciseness (complexity, generalisation) and
precision. 'The prediction capability is just an expected consequence
of an efhcient representation of meaning. The conciseness of the rep-
resentation of knowledge, given an acceptable error margin, is a proxy
of the agent’s intelligence. The IB limit is an epistemic limit that is
valid for machines, humans and aliens.

8.11 CONCLUDING REMAREKS

1his chapter presented the IBT as a general representation learning
theory (not specific to Deep Learning). The bulk of this chapter is
based on works by Stefano Soatto and Alessandro Achille and their
prolific research group |ASi8a; Achig; ASig; ASi8b]. ‘Emergence of
Invariance and Disentangling in Deep Representations), in particular,
has been one of the biggest influences in this dissertation. It was
presented in the same workshop™ where Tishby presented (BT for the
first time.

Achilleand Soatto accomplishments in this chapter were threefold:
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1. It explained the emergence of invariance (generalisation) and
disentanglement in the proposed learning setting.

2. It addressed one of the weaknesses of IBT: the confusion about
past and future data. MLT provides rigorous guarantees for fu-
ture performance (test time) based on the past data (training
time), Conversely, several of the initial IBT papers were not clear
with what is happening during training and how it is different
im test time.

3. lt showed the crucial role of noise and how it can be controlled

in favour of generalisation.

4. It demonstrated that the information in the weights, despite
being difficult to measure, can be bounded by the Fisher in-
formation Matrix:

1[Z; X] < 1[W; D] < log|F(W*)| € log|F(W)|

Notewaorthy, the Deep Learning setting does not seem to corres-
pond to the conditions of Corollary 1, as [£hat16] has shown that
Deep Learning converges even in the absence of a regulariser in the
loss function.

8.11.1 Assumptions

1. MLT assumptions
2, Information is what changes belief.
3. IBT for Representation Learning assumptions;

I. The random wvariables X, Y and £ are discrete;
il. ¥ —» X + Zform a Markov-chain;
iil. Ay, &y and A are finite sets;
iv. No assumption on D = P(X, Y).

v. D =P(X,Y)is unknown at the training stage.

vii D = P(X,Y) is fixed: the ordering of examples in the
sample is irrelevant.

vii. X isis Lid. sampled.

viil. ‘The encoder and the decoder are stochastic mappings.

1
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ix. the loss function is in the form of a 18 Lagrangian ( Corol-
lary 1), iie. (W) = Hy,[D|W] + B[ D; W] has a regular-
iser term that penalises the memorisation of the dataset.

We took the liberty to add the assumption that constrains the problem
to finite alphabets (discrete random variables). Unfortunately, with few
exceptions, the literature on IBT does not underscore this constraint

“For example, Alem et ol use differential nor, alternatively, demonstrate why one can use differential entropy.™
entropy but do not address the fact tha the

IB Principle restrain itseff to discrete random

variahles [Alcsis],



The Information Bottleneck and
Deep Learning

‘This chapter presents IBT for Deep Learning, the context where all
I87 papers focus. All previous chapters brought concepts needed to
understand this chapter. In chronological order, the research from
which Chapter 7 is based was published almost 20 years earlier than
the contents presented in Chapter 8, which were published more or

less simultaneously as the contents of this chapter.

9.1 DEEP LEARNING IN THE IBT PERSPECTIVE

9.L1

In MLT, the analysis of learning algorithms 1s based on a hypothesis
space. 'lhis choice may have biased the Deep Learning community fo-
cus on architectures. For many, Deep Learning (DL) and Deep Neural
Networks (DNNs) are interchangeable names.

'The 1ET perspective has a holistic view of Deep Learning (DL)

where each of its components has a role.

Degp Neural Network in [BT

IBT assumes that DNN layers are random variables that form a Markov
chain from the target variable to the prediction. Each layer is a rep-
resentation Z, of the input at a different “resolution”/abstraction (Sec-
tion 7.4). These representations act like bottlenecks in the input-output
channel. Thus, each bottleneck defines a unique encoder/decoder

scheme.

‘Great claims require great
evidence.’
—Carl Sagan

channel

Vias X upoet o degine o
bottleneck
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9.1.2 SGD in IBT

One of the most contentious topics in 1BT is the assumption that
q(z|x) and g( ¥|z) are stochastic. Noise plays a very important role in
training |HVCag3; ASi18a; KSWis). In IBT, noise reduces capacity and,
therefore, the size of the typical hypothesis space (as it will be shown
in Section 9.5.2).

Counter-intuitively, Chaudhari and Soatto prove (with theory and
extensive empirical evidence) that SGD performs variational inference
for a different loss than the one used to compute the gradients and that
this loss has a regulariser term that is equivalent to the information
bottleneck principle (Corollary 1) [CSi18].

9.1.3 Loss function in IBT

The 18 Principle {Chapter 7) provides compelling grounds for the use
of the Kullback-Leibler divergence (D, ) as the canonical loss function.
It is equivalent by a constant to the cross-entropy loss, which became
ubiquitous in DL (as shown in Section 8.5).

0.2 LITERATURE

We are using the name Information Bottleneck Theory (IBT) as an
“umbrella” to designate the work that relates to our selected literat-
ure (Appendix A). Frankly, the designation has not been adopted
consistently. Nonetheless, we can identify three kinds of literature:

1. [B-based analysis of Deep Learning
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2. IB-Deep Learning applications
3. IB-based theory of Deep Learning

We will detail each kind of literature in the following sections.

9.3 IB-BASED ANALYSIS OF DEEP LEARNING
9.3.1 Opening the black-box: the information plane

One of the critigues on current MLT is on its choice of treating the
models as black-boxes (Section 4.8.1). This choice allows MLT to be
more general, independent of the class of hypothesis. At the same time,
the current theory provides little guidance for what happens during
training, letting the community figure out many possible competing
explanations.

'There is nothing wrong with the choice. It may be an advantage
in most cases. But in the case of Deep Learning, where there are still
many phenomena with no clear winner explanation and where there
is a growing demand for understanding why DNNs make this or that
choice, a different choice may help.

This is what motivated Shwartz-Ziv and Tishby [ST17], according
to Tishby himself [liszo|. Shwartz-Ziv and Tishby propose using the
mutual information between the activations in different layers and
the input. Despite being a measure difficult to calculate, it has the
potential of "opening the black-box”, i.e. it allows in Tishby’s words to

see training with an “X-Ray” [Tis20]

9.3.2 Information Plane and Deep Learning

Shwartz-Ziv and Tishby hypothesis was that the information-plane
(Section 7.3.1) could be their "X-Ray” [ST17]. To overcome the diffi-

Fsaial T'H

feaiih gl i

Normakred Mesn and 5TD

culty of calculating the mutual information’, they created a synthetic

[5Tip] Shwarte-Ziv -and Tiskby, ‘Opening
the Black Box of Deep Neural Networks via
Infrermation’.

[Tisan| Tishby, The Information Bortlenack
View of Deep Learning: Wiy do we need it
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dataset for which they knew in advance the usually unknown distribu-
tion P(X, Y ), added a noisy layer to guarantee the stochastic mapping’
and calculated the mutual information during training with a binning
strategy.

The result was visually appealing (Figure 9.2). It clearly shows a
phase transition during training (Figure 9.3).

Faur fidden bayers

Fitde Miklen (e

S Fedden lavers

e

R

9.3.3 IBT's main thesis

In Tishby’s words, IBT main thesis can be summed up as "learning is
forgetting™. More specifically, deep learning has two distinct training
phases:

Fitting Phase: When the DNN rapidly (in terms of epochs) everfits to
the training data;

Compression Phase: When the DNN compresses the amount of in-
formation, forgetting as much it can about the input, while
keeping the relevant information about the target;

In statistical mechanics, phase transitions relate to abrupt changes
in the properties of a system at the macroscopic level, in the same
way as seen in Figure 9.2, With that in mind, Shwartz-Ziv and Tishby
claim that the compression phase can be described by Focker-Plank
diffusion equations from Physics. This was indeed later corrobored by
Chaudhari and Seatto [C5:18; Cha+1ga|, but Shwartz-Ziv and Tishby
failed to support the claim that DNNs can be seen as physical systems.

0.3.4 Criticism to IB1's main thesis

Shortly after its publication, Shwartz-Ziv and Tishby [ST17] were
challenged by Saxe et al. |Sax+18], who claimed that they could not
replicate the experiment and argued that the binning procedure to
estimate mutual information was inexact. Due to the fact that the




IB-BASED ANATYSIS OF DEEP LEARNING 147

activation function can be an invertible transformation (determin-
istic mapping) of the input, by reparametrisation invariance (&1}, the
true mutual information between 1[X; Z; | is provably infinite for con-
tinuous distributions and constant (i.e. equal to H[X]) for discrete
ones. They also point out that a user-selected binning strategy leads to
arbitrary values of mutual information in the plotted results. Overall,
Saxe et al. refute Shwartz-Ziv and Tishby results.

Other authors followed their reservations in different degrees:
Goldfeld et al. [Gol+19] agree that Shwartz-Ziv and Tishby's 1[X; Z; |
estimates do not directly measure compression of the true mutual
information. Chelombiev et al. [CHO1g] explore several estimation
schemes and were able to measure compression but with several
caveats.

This relates to one of the weaknesses of 1BT: lack of rigour that
even Tishby admits [Tiszo|: T would not call [IBT] a proven rigorous
theory. If, on one hand, their spectacular claims have driven much
interest to the subject, on the other it generated an equivalent dose of
suspicion and scrutiny. As Carl Sagan once said, great daims require
great evidence'.

Some |BT papers failed to point out that the IB Principle is ill-posed
for deterministic functions. Therefore, there is a missing argument
of why and in which conditions we can see the function of the activ-
ations as a stochastic mapping. Bayesian interpretations may justify

parameter noise, but activation noise has no such theoretical ground.

Fisher Information vs. deficit sensitivity
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In time, Tishby's conjectures and intuitions were corroborated by
others findings. In special, Stefano Soatto and his research group not
only observed the fitting-compression phases (Figure 9.4) but also
proved a crucial missing step: information in the activations of future
data is bounded by the information in the weights during training,
where stochasticity can be explained [ASi18b] (Section 8.6).

Besides, to prove this theoretical result, they created a variational
method (equivalent to Deep Variational Information Bottleneck (DVIE),
Section 9.4.1) for estimating mutual information using Deep Learn-
ing’, obtaining more accurate mutual information measurements. In
another venue, Chaudhari et al. corroborated the statistical mech-
anics’ intuition for the behaviour of SGD with experimental res-
ults [Cha+1iga].

9.4 IB-BASED DEEP LEARNING APPLICATIONS: TRAINING AND

ALGORITHMS

9.4.1 Deep Variational Information Bottleneck (DVIR)

A common criticism on (BT was related to difficulties in calculating
mutual information (Section 9.3.4). DVIE not only describes a loss
metric that takes advantage of |B properties but also defines state-of-
the-art approximations of 1 [Z; X] and [[Z; Y] [Ale 16].

Tishby and Zaslavsky already envisioned using the 1B to train
DNNs | 1%215a). Tishby, however, wanted [ET to be seen as |B-based
analysis tool. Subsequently, he believed that I1B-based applications

“miss the point” that IBT works even if you do not know anything about

the 18 |Tiszo].

Still, Alemi et al. considered the idea of using the IB in training
appealing as it defines a good representation in terms of the trade-off
between a conciseness and predictive power. They noticed, however,
that the main drawback in using it in practice was that calculating the
mutual information is challenging. 'The proposed method solves this
drawback.

Curiously, the proposed method is equivalent to the variational
inference presented in ‘Information Dropout: Learning Optimal Rep-
resentations Through Noisy Computation’ [AS:18b]. 'This similarity
was noticed by the authors themselves that despite not citing [AS:18b]
in the first version, cited it in subsequent versions. Despite of the
concurrent idea development, the organisation and clear focus made
DVIE the prefered reference for using the IB objective to estimate
information measures.
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[VIB became essential to evaluate the claims of Tishby that, during
training, DNNs experience two distinct phases, fit and compression.

Deep Variational Information Bottleneck Method

Let us formulate a variational 18:

0 =argmax![Z; Y|0] s. £ I[X; 2]0] < 1. (9.a)
0
Rip(8) = 1[Z; Y]] - P12 X|0] (9-2)
I
{A) (¥)

where 8 is the set of parameters of the network. This 18 Lagrangian
formulation has two parts (A and B). Notice that

1[ZY]=H,[Y] H,[Y|z], (A)

where p(y|x) and p(x) are unknown, which makes part A intractable.
Let g{ y|z) be the variational approximation, our decoder, which will
be another DNN with its own parameters, which is tractable.

Dg(plg) 20 » H, 2 Hy (9.3)
constant
Az Y] 2 BT H,[Y]Z] (9.4)
> - Hy[Y|Z] = 3’ p(yle)p(alx)p(x)logq(yiz).
¥z
(9.5)
And now part B:
1[Z:X] = D (p(zlx)//p(2)). (8)

But p(z) might be difficult to calculate. So, let r{z) be a variational
approximation of this marginal. Since Dy (p//r) 2 0,

1[2:X] € D (p(ebe)/ (=) 96)
< ¥ ply)plalx)p(x)logq(ylz)-- (9.7)
Xy
I[Z;Y] - Bl[Z:X] > I;P'[}'EL')P(EEI]P(I) log q(ylz)

B 2 pOyI)p(x)p(x)logg(ylz) = L. (9.8)
T
Approximating L empirically:

Lok 3| Sl loga(nle) - Boleln)og 22220 | o)

Which can be solved using the reparametrisation trick [KSWis].

[ESWis| Kingma of 4l "Variational Dhropout
nnd the Local Reparnmeterization Trick”.
T hktps 1 & procesdings
NI o papar JF O MMS ) FEle S
e FA AU e L b S b B Rl e dech B Paper. pd )
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[€5:8] Chaudher and Soatio, ‘Siochastic
Gradient Descent Pedorms  Variational
Inference, Converges o Limit Cycles for
Dieep Metworks'

[Fam+ig] Hamir et sl  “Teshonomy:
Disentnngling tz=k transfer learning -

9.4.2 Information Dropout

‘Information Dropout: Learning Optimal Representations Through
Noisy Computation’ establishes links between different and seemly
unrelated research topics as dropout, variational auto-encoders and
optimal representations through the IB principle. lts theoretical devel-
opment is not being the paper focus, is its most important contribution
to [ET. In this sense, the method that names the paper is just a way to
empirically support their interesting theoretical claims (Chapter 8).

Nevertheless, the technique is a generalisation of the well-known
Dropout method. Chaudhari and Seatto theoretically suggest that
noise intrinsic to the architecture (dimensionality reductions, dropout,
small mini-batches, efc.) is better for generalisation than noise in
the dataset [C518]. In this sense, there are research opportunities in
exploring Information Dropout and other forms of controlling the
information in the weights with the injection of noise. In areas like
NLP, where data-augmentation is challenging, Information Dropout
may play an important role.

The emergent properties of representations, the generalisation of
dropout and the connection to variational autoencoders are surpris-
ing results that should be of interest to researchers in representation
learning (Section 8.8).

9.4.3 Transferability metrics

To this day, transferability is measured experimentally or inferred sub-
jectively by experts according to tasks "proximity” [£am+{18]. Given
an analytical transferability measure obtained directly from the data
in a cost-effective way, with experimentally proved prediction ability,
automatic selection of source tasks as feature extractors for target
tasks (auto-DL) is a simple search in the topology of learning tasks.

1his illustrates the importance of building such a topology. In
other words, we want to know:

— What is the complexity of a learning task?
— How far or close are two tasks?

- How difhcalt it is to transfer from one task to another?

Intuitively, the complexity of a learning task is related to its best
expected out-of-sample error.
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Given a fixed architecture, the amount of information in the weight
measures how much “memorisation” was used to fit the model. High
information in the weights suggests more difficult tasks. 'The Fisher
Information Matrix (FIM) measures the resilience of the loss due to
perturbation in the weights (Figure 9.5). If a weight accepts more noise
(i.e. it can be perturbed without a significant change in the model
error), it is less important, and there is no need to "memorise” it. Also,
this amount of noise has a direct correspondence to generalisation
(Section 9.5.1). Using this intuition, Achille t al. uses the diagonal
of the FIM as an embedding that represents the task itself. Since the
FIM can be too noisy when trained from a few examples, the diag-
onal of the FIM is used as it is considered a more simple and robust
representation [Ach+ig].

Different choices of fixed architectures, however, produce FiMs
that are not comparable. To address this, a standard “probe” network
pre-trained on ImageNet is used. The FIM of the probe represents the
canonical task f, from which other tasks are compared. The embed-
ding of a new task ¢; is obtained by re-training only the classifier layer
p(y|z), which usually can be done efficiently, and then computing the
FIM for the feature extractor parameters.

Transferability (or fine-tuning gain) from a task ¢, to a task 1, is
the difference in expected performance between a model trained for
task b from a fixed initialisation, #;, and the performance of a solution
to t, ine-tuned for 1

E [E.:_..ﬁ] E [E!lj

Dt-:“‘a ’til]z E[fh]

(9.10)

where expectations are taken over all training, €, is the hinal test
accuracy obtained by training task b from initialisation, and £,_.; 1s
the error when starting from a solution to task a fine-tuned for task
b. Hence, transferability depends on the similarity between two tasks
and the complexity of the first. Indeed, the fact that pre-training in
ImageNet has become a de facto standard is due to its high complexity.

IB-BASED DEEP LEARNING LEARNING THEORY

In Section 8.1, we concluded with a seemly missing step of BT in
the context of Deep Learning: the fact that Corollary 1 requires an
information-limiting regulariser in the loss function, which is not
explicitly present in many DL models that converge. In this chapter,

however, we presented the work of Chaudhari and Seatto who showed

[Ach+m] Achille et al, "TaskaVer Twsk

Embredding for Meta-Learning’.
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[GBC6] Goodfellow et al., Deep Learming.

|CSe8t] Chaudhard and Scatto, ‘Stochastic
Gradient Dwescent  Performs  Variational
Inference, Converges to Limit Cycles for
Dieop Metworks',

“In [BT, dizentanglermamt is defimed as this
proporty.

9.5.1

that-even if there is no explicit regulariser, the use of SGD guarantees
it is implicitly there.

Another assumption of [ET learning is that the task is a stochastic
mapping between the input and output. In the context of Deep Learn-
ing, with its large datasets, this is hardly a limitation.

An important theoretical discussion specific to Deep Learning
that has not been addressed yet is about the role of layers. This will be
the subject of Section g.5.2.

A new narrafive

According to Goodfellow et al. |GBCi6{, Deep Learning success is
ascribed to several pleasant features for which our current understand-
ing is largely empirical. Here, we use Information Bottleneck Theory’s
(I8T) most crucial strength, its narrative, to give theoretical ground

to some DL phenomena.

GENERALISATION POWER DESPITE A HUGE NUMBER OF PARAMETERS
As we have already shown in Section 6.2, the complexity of a task
relates to the amount of information needed to describe it. In this
sense, even if the network has a nominal capacity that relates to the
parameters, its effective capacity is the mutual information 1{X; Y|
(or L[X; ¥|W]). This interpretation of complexity does not invalidate
the complexity-performance trade-off in MLT.

GENERALISATION DESPITE EXPRESSIVENESS—OVERFITTING For high-
capacity models, generalisation has to do more with overfitting than
underfitting. We have shown that the loss function that emerges from
a definition of good representations (Section 8.2), has an implicit
overfitting term that can be neutralised (Section 8.5).

To neutralise the effect of overfitting, the loss needs a regulariser
term that penalises the model for keeping information about the train-
ing dataset. Even if this term is not explicitly added to the loss function,
Chaudhari and Soatto shows that it is implicitly there [(CSi8].

DEgp LEARNING BIAS FOR DISENTANGLED REPRESENTATIONS '[his
happens because the implicit regulariser term in S5GD is in a form
that is equivalent to the assumption that the representation has zero
multi-information, i.e. no correlation between its components. This
property relates to disentanglement.”
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Liw)

SCARCITY OF BAD MINIMA ENCOUNTERED BY SGD OPTIMISATION
It is a known fact that SGD optimisation tends to find “flat minima’,
regions in the weight space where small perturbations in the value
of the weight leads to similar small error (Figure 9.5) [H5g7; Macgz|.
Mackay already explained, via Bayesian inference, that this relates to
small information in the weights (amount of information affects the
curvature of the space) [Macgz].

'This explanation is consistent with IET perspective. As we have
already shown, the information in the weights is bounded by the
Fisher information in the weights that measures the curvature of the
weight space. Another interesting implication of this information in-
terpretation is that due to the AEP all local minima have approximately
the same chance of being found in the weights typical space.”

CRITICAL-LEARNING PERIODS Critical-learning periods are time win-
dows of early development during which sensory deficits can lead to
permanent skill impairment. These are well-documented phenomena
in humans, and other animals |Wie82|. Surprisingly, Achille et al.
show that DNNss exhibit such critical periods as well [ARS17] . This
finding questions the assumption that the order in which a model
experiences evidence does not affect learning.

In their experiments, Achille et al. used the Fisher Information
Matrix (¥iM) of the weights to measure information in the network
‘They caused sensory deficits by blurring input images and noticed that
such deficits cause the information in the weights to grow and remain
higher even after they are removed. ‘This deficit may be attributed to
forcing the network to memorise the labels.

‘The IBT explanation for such phenomena is due to the training
phase transition [S117]. In the first phase, the network moves towards
high-curvature regions of the loss landscape, while in the second
phase, the curvature decreases, and the network eventually converges
to a flat minimum.

Analysing Figure 9.6, we can see that networks maore affected by

Frovme g.5: Informstion in the wiights ez-
plain the preference of SGI for Hat minima.
In regions of lat minima, the effect of noise
{dashed line) is minimal,

[HSw | Hechreiter. and Schmidhuober, “Flat
M

[Macgs| Mackay, “The Evidence Framewark
Aprplied 10 Classification Networks',

"W se this praperty to show that Layers help
to find local minima, Section o.5.2.

[Wictiz| Wicael, Tostnatnl Development
of the Visual Cortex and the Influence of
Ervironmaent’

[ARS;]| Achifle et al, Critical Learning
Perinds B Deep Newral Networls

[5Ty] Shwartz-Fiv amd Tishby, ‘Opening
the Black Box of Theep Meural Netwoarks via
Infrrmation’
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the deficit converge to relative sharper minima.

During the first phase, with a sensory deficit, the network is ob-
liged to cross regions of high curvature in the loss geometry in order
to achieve a certain performance before eventually entering a {lat-
ter region of the loss surface and ending up trapped in the higher
curvature region.

THE ROLE OF LAYERS IN DEEP LEARNING 'This will be explained in a

section of its own (Section g.5.2)

9.5.2 The role of layers in deep learning

Why do we need multiple layers in a neural network? 'This question
is fundamental in Deep Learning, and still, there is no definitive an-
swer. A feedforward network with a single layer can represent any
function [GBCi6|. Also, Leshno et al. [Les+93] (as cited by [GBCa6])
demonstrated that shallow networks with rectified linear units as ac-
tivation functions have universal approximation properties. When
confronted with these facts; the usual answer for the need for depth
is that these results require an infeasible large layer or do not address
efficiency. Another common answer is that layers provide levels of
abstraction and a paramount composability property, i.e. stacking
layers allow a network to represent functions of increasing complex-
ity [GBC16]. These answers seem correct but, at the same time, some-

what qualitative and vague.
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This section will try to advance the discussion by answering the
need for depth in Neural Networks with an Information Bottleneck
perspective. Shwartz-Ziv and Tishby have provided an explanation
based in Physics [5117]. Here we will not use such correspondence.

The IBT perspective and its weakness

We have already established that a DNN optimised with SGD solves
an I8 problem. In this view, the body of the network is an encoder that
compresses the input X into a representation Z. In the BT perspective,
training a DNN is finding the encoder that minimises 1[Z; X |, while
keeping 1[Z; Y]:

Q(Z|X) ;= argmin 1[Z; X]
plsx)
st 1[Z4:Y] =21y

Corollary 2 (Bottlenecks promote invariance [ASi8al). Assume a

Markov chain of layers:
X2y~ 2,,

and that there is a bottleneck between Z, and Z, (for example, if
dim(Z,) > dim(Z;) or noise has been added between to the chan-
nel Zy —+ Z; via dropoul’). Then, if Z; is sufficient, it is more invariant
to nuisances than £, (see Section 8.2.1).

Corollary 3 (Stacking increases invariance [AS18a|). Assume a Markov
chain of layers:

.-.'.: ¥ Zl —* zl o —F zl_!
and that Zy is sufficient of X wert. Y. Then, by DI
HZ: X] < [Z;X],Vie {1--L -1},

therefore Z; is more insensitive to nuisances than all preceding layers
and generalises better.

In other words, Achille and Soatto argue that stacking layers
improve generalisation | AS18a] is a direct consequence of DPL

A possible weakness of this argument is that it only shows that
in the multi-layered scenario, the last layer is more compressed and

invariant to nuisances than the earlier layers. It does not contradict

[5Tip] Shwarte-Ziv -and Tiskby, ‘Opening
the Black Box of Deep Neural Networks via
Infrermation’.

P Hmersinnality reduction can be seen 258
form of noise.

[ASiHa| Achille and Sostto, “Emergence
of Invariance and Disentangling in Drep
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Froume g.7: Adding Layers to 3 petwork (A)
by innerting (B) o stacking ().

Fwie will leave this discussion for futnre work.

Y4 will try to provide ssch proaf i future
work

that a single-layered network could achieve the same level of com-
pressibility of the input as the last layer in the multi-layered scenario.
To illustrate our argument, imagine two networks, A and B, where A
has 3 layers that reduce the dimensionality to a certain size s, and B
has 4 layers where the last reduces the dimensionality to the same size
s. The aforementioned corollary nothing has to say about comparing
A and B, B did not stack a layer on A.

0! UOL) (| ]] Ola
T

Imseread Stacked j

A B C

Now, if C is a network that stacks a layer on A, the last layer of
C has a lower dimension than s and therefore noise was added, then
you can compare A and C with Corollary 3. In this case, C has with
certainty more noise than A, but that is enly a consequence of the
final amount of noise in the channel represented by C an not on how
this noise was added. Their argument reduces to the realisation that
stacking layers is a guaranteed way of adding noise to the network and,
therefore, of channel capacity reduction. The explanation nothing has
to say to the difference on how the noise is added, i.e. if B has any ad-
vantage over A by the fact that it has an additional layer in the middle,
inserting layers, without changing the last layer dimensionality. In
othier words, we still have the question: Does inserting layers improve
generalisation?”

Besides, according to Achille and Soatto, the above corollary
does not simply imply that the more layers, the merrier, as there is
the assumption that one has successfully trained the network (Z; is
sufficient). For Achille and Soatto, a successfully trained network
becomes increasingly difficult as the network grows. A higher com-
plexity seems straightforward because stacking layers increases the

number of computations per batch.

Proposed hypothesis

We will here lay out a new hypothesis and provide its intuition without
a formal proof”.
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By pure logic, it is evident that the complexity of an algorithm that
searches for the best possible hypothesis will depend on the size of the
hypothesis space. Stacking layers, therefore, increases the complexity
of the algorithm as it certainly increases the hypothesis space size,
|Hq|. Counter-intuitively, however, we argue that stacking layers also
decreases the “typical” hypothesis space size, [H{)|. In other words,
despite increasing the number of all possible functions generatable
by the algorithm, stacking layers decreases the number of probable
functions generatable by the algorithm.

Hypothesis 1 (Layers reduce the typical hypothesis space). In the
IBT perspective, a neural network is a Markov chain where each layer
acts as a random variable. 'The algorithm can be seen as a stochastic
mapping Q, a lossy encoder-decoder (Q = Q(Z]|X) 0 Q(Y|Z,)). The
cardinality of hypothesis space of this algorithm is |Hg|, but only a subset
’Hf} c Hg contains the typical and most probable hypotheses, Stacking
layers is a guaranteed way of adding noise to the channel/lossy encoder.
Noise reduces the capacity of this channel and change the algorithm. The
cardinality of the new hypothesis space is exponentially greater than the
original, [Hg| = [Hg™w, in the number of bits added in the weights
(s21,,). The cardinality of the new typical hypothesis space, however, is
exponentially smaller than the original, [H2,| = EI‘:% in the number
of bits of noise added in the channel. Therefore, the new algorithm
generates a smaller number of probable mappings and the chance of

finding a good solution in the same number of steps increases.

This hypothesis lacks formality and validation by peer review.
Anyway, here we explain its intuition.

Let Q represent a neural network in the IBT perspective in a
supervised image classification task, Le. ) = {0,1} and A" = 2*, where
sx represent the size in bits of the input images, therefore X is finite:

Q: X -y (g.11)
Q=0Q(Z|X) o Q(Y]Z1) (9.12)

‘The cardinality of the hypothesis space Hg, of Q is:
[Hol = [YPotesml = 2%, (9.13)

where sw represent the size in bits of the set W of weights of the
network and [Ho(z, ix)| represents Q( 2, |X) space cardinality, i.e. the
number of possible mappings X » Z;.

Finune a.4: The hypothesis space Hyy and the
typical hypothesis space 'Hf_,_
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However, not all |}, possible (QQ mappings are probable. Futher-
more, there is a subset 'HE ¢ Hq that is typical’” according to the
AEP [CTo6, th. 7.6.]:

Pr(‘HE] =1-68 80 (9.14)
Prih, € Hy) = 277105 v (9.15)
A neural network evaluates a sequence of one input at a time, so n = L.
The cardinality of the typical hypothesis space is:
- 1
| [ —— '] L
= =2 16
el =57 < HY) (5.16)

Now, let Q' be a network with a stacked 2, , layer.
‘The cardinality of the hypothesis space of Q" is [Hg| = 2950,
therefore:

[Har| = [Hol ™", i.e. (917}

the cardinality of the hypothesis space increases exponentially in the
number of added bits in the weights of the network.
Let us see what happens with the cardinality of the typical hypo-

thesis space.

['HEM = = [ X:Y] (9.18)

I
Be(h )
As ()’ adds a layer, it adds noise, therefore, it reduces the channel
capacity:
lae[ X Y] < Io[ X5 Y], (9.19)
Pr(h; € Hy) > Pr(h; e HE), (9.20)
[Hey| < M. (9.21)
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Not only [Hgy| < [H3], but it can be shown that it is also exponentially
smaller. Using the rational of Section 5.7, using ¥, asinput and Z; ., as
output, ['HE,| is the number of non-confusable inputs in the /; —+ Z;
mapping, therefore:

2H[A ] gl %:]
& = =
|?'£ "| = JH[Zp )] = Ty (9.12}
[H
- 2’}1?.. : (9.23)

where 1, , is the number of bits of noise added in the ¥, ., layer.
'Therefore, the typical hypothesis space reduces exponentially on the
number of bits of noise added.

During training, an $GD algorithm searches a good mapping g ¢
Hg in a certain number of steps. Not all possible mappings are equally
probable. The AEP property is a direct consequence of the weak law
of large numbers that states that there is a small subset 'H?_, c Ha
that represent the mappings that are most probable of happen. The
solutions found by the SGD at each of its step are most likely mappings
from this typical hypothesis space and all mappings of this subset
have approximately the same chance of being found. By stacking
layers, we change the hypothesis space to Hg. 'The cardinality of the
typical hypothesis space of Hy, [Hf| is exponentially smaller than
the cardinality of the original hypothesis space. 'Therefore, there is a
smaller number of probable mappings and the chance of finding a
good solution in the same number of steps increases,

CONCLUDING REMARKS
‘Lhis chapter presented the IBT for Deep Learning, showing that it was
initially envisioned as an analysis tool to comprehend what happens
during training. We also explained why it was received with criticism.
Most of the questions in regards to the lack of rigour were already
previously addressed in Chapter 8. In this chapter, we closed the last
missing step by showing that even in the absence of an explicit regu-
lariser in the loss function, it is implicitly added by SGD (Section g.1.2).
"The acknowledgement of two distinct phases during training may
lead to the development of phase-specific training strategies.
Moreover, we demonstrated the power of 1BT narrative by giving
coherent explanations for several Deep Learning phenomena. For

that we did not increase our list of assumptions.
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9.6.1 Assumptions

1. MLT assumptions:

a) D= P(X,Y) is unknown at the training stage.
b) D = P(X,Y) is fixed: the ordering of examples in the

sample is irrelevant.

c) Xisisiid. sampled.
2. Information is what changes belief.
3. IBT for Representation Learning assumptions:

i D=P(X,Y) = P(Y|X)P(X), where P(Y]X) is a stochastic
mapping.
ii. 'The random variables X, Y and W are discrete;
iii. ¥ » X » W form a Markov-chain during training;
iv. Ay, Ay and Ay, are finite sets;
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Conclusion

QOur goal was to investigate to what extent the emergent Informa-
tion Bottleneck Theory (IBT) can help understand generalisation and
other Deep Learning Phenomena. In this chapter, we summarise our
findings.

10.1 GENERALISATION IN IBT

Foremost, we presented information in the weights as a measure of
complexity, a measure with no apparent paradox between general-
isation and the number of parameters (Chapter 6). This measure of
complexity is model-independent; it is a measure of task complexity.
As the task, in our context, is dehined by the unknown distribution

of the data P(X, Y ), information/complexity is only a measure of the

compressibility of the input data, 1.e. a measure of its underlying struc-
tural pattern or its randomness. 'This perspective beautifully relates to

the Kolmogorov-Chaitin complexity (KC) of algorithmic information

theory.

Section 8.5 revealed the overfitting term in the cross-entropy loss
decomposition. The cross-entropy loss emerged naturally from a wish-
list for representations. We shed light to Achille and Soatto insight
of neutralising the overfitting term, leading to a loss function in the

IB-Lagrangian form | ASi8a). "This insight is the linchpin of IBTs view- [ASifia] Achille and Soatto, “Emergence
=] i i of Invariance and Disentangling in Deep
point on generalisation. Representations’.

'The last missing step was filled in Chapter g, where we acknow-
ledged Chaudhari et al. demonstration that even if a deep learning
model omits such regulariser term in its loss function, SGD implicitly

adds the regulariser term [C518; Cha+1gal. [€%i8] Chaudhari and Seafio, ‘Stochastic
Y . - Gradient Descent Performs  Varistional
Another original consequence of the Weights-1B is that each value G lErevice. ;;m;.ﬂgﬁ 10 Limit Cycles for

of the |8 parameter p corresponds to a maximum (e, 8) tuple of the Dleep Natiiiak.

[Cha+igm| Chondbari o al, Entropy-5GT:
Biasing gradient deseent Intn wide valleys',
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PAC tolerance and confidence margins.

10.2 ANSWERS TO RESEARCH QUESTIONS
1. What are the fundamentals of 18T? How do they differ from

the ones from MLT? We have shown that BT is based on IT
and the 18 method. I'T and ML share most assumptions (Sec-
tion 5.9.2), and it is possible to bridge both subjects. MDL is an
example of such bridge (Section 6.5). In terms of assumptions,
the main difference is that the 18 Principle (Chapter 7) assumes
discrete random variables from finite spaces. Rissanen and Hin-
ton and Van Camp have shown, however, that such a limitation
is not significative, because it is possible to make the quant-
isation error arbitrarily small with enough resources |Ris86;
HVCos).

What is the relationship between IBT and current MLT? Are

they redundant? The 1B Principle uses Shannon's theorems

to define unreachable levels of tolerance-confidence, i.e. fora
certain desired margin of tolerance ¢, it defines the maximum

confidence § it is possible to reach and vice-versa. If in MLT, bias

and variance are two conflicting objectives that the learning
algorithm tries to minimise; IBT is a single-sided optimisation

problem [Slooz| for a certain value of B (of course there is still

the matter of choosing ). IET is model-agnostic, distribution-
dependent, i.e. generalisation is determined by the compress-
ibility limits of the data and does not depend on the choice of
a model class (in this way, it is similar to Rissanen’s Stochastic

Complexity [Ris86]). MLT is loss function agnostic, while the

whole purpose of the 1B Principle is to give a task-specific dis-
tortion measure.

. Is IBT capable of explaining the phenomena MLY already ex-

plains? Yes, given the acceptance of an arbitrarily small quant-
1sation error.

. Does IBT invalidate results in MLT? Instead of invalidating MLT

results, IBT gives new meaning to them. 'The pseudo-paradox
evinced by Zhang et al. [Zha +16] of over parametrised models
that generalise well is solved by 1BT's conclusion that the com-
plexity relates to the amount information in the parameters and
not to amount of the data, the parameters themselves.
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5. Is IBT capable of explaining phenomena still not well under-
stood by MLT? As already mentioned, IBT “rethinks” generalisa-
tion (Chapter 8) relating complexity to the data itself, instead
of the model. 'this new paradigm provides a common narrative
that allows us to give a theoretical explanation for phenomena
that were only empirically understood (Section 9.5.1).

10.3 STRENGTHS, WEAKNESSES, THREATS AND OPPORTUNITIES

This section answers research questions 6 to g.

10.3.1 Strengths

narrative: |BT is capable of connecting seemly unrelated phenom-
ena (Section 9.5.1) and practices (Section 8.11) in a coherent
narrative,

analysis: the usage of information measures during training “opens
the black-box™ of DNNs [ST17], allowing us to identify two dis-
tinct phases in training.

model-independent/distribution-dependent: instead of depending
on an user-defined model class, IBT depends only on the un-
known data distribution, which is the task itself.

task-dependent loss: the IB Principle shows that a user-defined loss
define what is relevant in the optimisation. Instead, IBT relies
on the relevance variable (the target), defined by the task itsell.

10.3.2 Weaknesses

discrete random variables in finite spaces: 'Lhe [E Principle assumes
discrete random variables in finite spaces. However, Rissanen
and Hinton and Van Camp have already demonstrated that this
is hardly a problem.

1B is ill-posed for deterministic functions: if a DNN is considered
an invertible deterministic function |[JS(18), the information
in the activations is constant for discrete random variables {and
infinite for continuous random variables), ‘This observation
seems to contradict 1BT. We have shown (Chapter 6), however,
that the network can be an invertible function as long as we con-
sider the weights as our random variable and the information
in the weights will bound the information in the activations

[5Ti7| Shwartz-Ziv amd Tishby, ‘Cpening
the Black Box of Deep Newral Networks via
Information’.

[150ns] Jacobsen o al. “i-RevNek: Docp
Invertible Metworks',
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(Chapter 8). 5till, the stochastic mapping assumption during
training is an overlooked consideration.

Markovian assumption: Another overlooked consideration is the
Markovian assumption. IBT lacks a rigorous assessment of this
assumption during training to show when it happens and why
it is sufhicient.

lack of rigour: BT was presented without clear objectives: was it an
analysis tool or a general theory? Also, it did not initially ex-
plain the relation between the information in the weights, for
which there is a Bayesian ground, and the information in the
activations, for which there is no such ground. The same lack of
rigour can be seen in the overlooking of important assumptions

(the Markovian assumption, for example).

10.3.3 1Threats

discredit : IBT claims drove much attention. Lhe lack of rigour, unfor-
tunately, turned a natural suspicion into discredit. In Tishby's
opinion, “|the critiques| are throwing the baby with the bathwa-
ter” However, the critiques were hardly unjustified. In time, a
corpus of literature is corroborating with [8T's perspective and
building its rigour. It is difficult to change the first impression,
IN any case.

fragmentation : IBT literature is still very fragmented.

10.3.4 Opportunities

PAC reformulation: In the PAC formulation, there is a margin of
tolerance € and a confidence measure 8. The I8 f unifies those
into a unique (g, &) limit. With that in mind, it is possible to
create a PAC formulation that depends uniquely on j.

New optimisation strategies: 'The realisation of the fact that there
are two distinct phases in training, where the macroscopic stat-
istics abruptly change (Figure 9.2) may lead to the use of differ-
ent optimisation strategies for each phase of the training.

Transfer Learning: If in 18T complexity depends uniquely on the
compressibility of the input and the desired performance-generalisation
level ([}), it is possible to analyse the complexity of datasets

|Ach+io] Achille ot al. “TaskaVic: Task and build a topology of learning tasks (as in [Ach+1y]) where
Embedding for Meta-Learning
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there is a theoretical prediction of task similarities. There s
also an opportunity to relate this theoretical result to empirical
hindings like "lTaskonomy: Disentangling task transfer learn-

ing |Zam18]. |Zam+1§] Zamir e al, “Teskonomy:
Disentangling task transfer learning’.

Ergodic processes: We saw that information theory does not require
1.1.d. sampling (Chapter 5). We are not aware of any theoretical
development in MLT that exploits this property.

Connections to Statistical mechanics: The area of Statistical Mech-
anics has been developed for more than a century. With the
connection of machine learning and information theory, there
is much to gain in exploiting findings in Statistical Mechanics
in the learning realm (as did Chaudhari et al. [C518; Chat1gal). [¢Hi8) Chaudhari and Soatis, ‘Sochastic
Ciradient Descent  Performs Varistional

Infesence, Comverges o Limit Cycles for

10.4 CONCLUDING REMAREKS Deep Networks.

This dissertation was a “Greek endeavour” (Section 1.1.1): it tried to
“connect the dots” and give ordinance to (81 Babylonian enterprise.

We found that [8T neither invalidates nor contradicts MLT, but
rather conciliates MLT with Deep Learning Phenomena. IBET main
weakness is its lack of rigour, a gap that is being filled with time.
Interestingly, this weakness can be ascribed to a lack of assumptions
definition, i.e. a lack of choice. The same kind of choice for which MLT
15 in instances criticised for (Section 4.8).

'The present dissertation revealed that [BT, far from being rigorous
and complete, is an emerging theory with a compelling narrative and

[Cha+iga] Chandhari et al., "Entropy-SG1T:
Bissing pradient descent into wide valleys'"

many open opportunities for research.
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