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Abstract

In the world where big data reigns and there is plenty of hardware prepared to gather a
huge amount of non structured data, data acquisition is no longer a problem. Surveillance
cameras are ubiguitous and they capture huge numbers of people walking across different
seencs. Howewver, extracting value from this data is challenging, specially for tasks that
involve human images, such as face recognition and person re-identification. Annotation of
this kind of data is a challenging and expensive task. In this work we propose Unsupervised
Domain Adaptation (UDA) methods for person Re-Identification (Re-1D) that rely on
target domain samples to model the marginal distribution of the data. To deal with the
lack of target domain labels, UDA methods leverage information from labelled source
samples and munlabelled target samples.

Firstly, we proposc a bascline method that may use Rosnet-50 or AlignedRelD -+ + as
backbone, trained using a Triplet loss with bateh hard. The domain adaptation is done
in two phases: 1) using a GAN generated intermediate dataset that leverages from the
gsource domain labels and approximate the source samples appearance to be similar to
the target domain samples, and 2) using pseudo-labels generated with an unsupervised
learning strategy.

Next, we realised that the quality of the clusters clearly plays a major role in the
method’s performance, however this point has been overlooked by the majority of meth-
ods, including our first approach. Therefore, we propose a multi-step psendo-label refine-
ment method to select the best possible clusters and keep improving them so that these
clusters become closer to the elass divisions without knowledge of the class labels. Our
refinement method includes a cluster selection strategy and a camera-based normalisa-
tion method which reduces the within-domain variations caused by the use of multiple
cameras in person Re-1D. This allows our method to reach state-of-the-art UDA results
on DukeMTMC — Market1501 (source — target). We surpass state-of-the-art for UDA
Re-1D by 1.6% on Market1501 — DukeMTMC datasets, which is a more challenging
adaptation setup because the target domain (DukeMTMC) has cight distinet cameras.
Furthermore, the camera-based normalisation method causes a significant reduction in

the number of iterations required for training convergenee.
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Our results show that domain adaptation technigues really improve the model per-
formance when applied in the target domain. Also, these technigues unlock the person
Re-1D use for real world problems, once they may be automated to adapt a model for

new unseen scenarios while maintaining its original performance.

Keywords: Computer Vision, Deep Learning, Person Re-Identification, Metric Learning,

Domain Adaptation



Resumo

(s avancos da tecnologia ¢ a globalizacao da industrializacio democratizaram o acesso
a equipamentos de alta qualidade. Cameras de seguranca seguem essa tendéncia e se
um dia clas foram consideradas nm equipamento de luxo utilizado apenas por grandes
empreendimentos on condominios, hoje nao ¢ mais assim. Qualquer pequeno comércio ou
residincia ja possuem um conjuto de cimeras para monitorar os scus arredores.

No entanto, as ciimoras por si 50 nao conseguem prover um monitoramento inteligente,
clas apenas geram dados que podem ser analisados, em tempo real ou posteriormente.
Uma vez que alocar pessoas para monitorar as cimeras em tempo real ¢ enstoso, algo-
ritmos de visao computacional sio a solugio para extrair informacoes em tempo real dos
dados coletados.

Métodos de visao computacional como re-identificacao de pessoas, reconhecimento de
acoes suspeitas ¢ reconhecimento facial sao fundamentais para anxiliar nesse monitora-
mento inteligente de ambientes. Em especifico, a re-identificacao de pessoas ¢ um método
que visa indicar se duas imagens sao da mesma pessoa ou nao. Dessa forma, esse ¢ um
método extremamente valioso para grandes empreendimentos como shoppings ou acro-
portos, pois ele permite manter num historico da movimentacao de cada pessoa dentro da
arca monitorada. Caso houvesse alpuma ocorréneia de seguranca, o responsavel pelo mo-
nitoramento do ambiente nao precisaria rever os videos de todas as cimeras para entendoer
o ocorrido, cle poderia apenas verificar a movimentacao do infrator.

A grande maioria dos métodos propostos para esses algoritmos nao visa a utilizacao
desses em ambientes reais, mas sim em otimizar os resultados em bases de dados eriadas
para fazer benchmarks. Logo, quando esses algoritmos sao utilizados em situacoces reais,
cles apresentam performance mmito inferiores is apresentadas nos testes. HA trés caminhos
possivels para resolver essa diferenga de performance: a) criar uma base de dados do
ambiente real e especializar o algoritmo nessa base de dados, b) criar algortimos robustos
a variacoes de ambiente ou ¢) criar métodos que adaptem esses algoritmos para novos
ambientes de forma automatizada. Independente do caminho esceolhido para solucionar
esse problema, o insumo necessario para criar tal solucao sao imagens de pessoas passando

em frente a caimeras de seguranca.
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Num mundo dominado pelo Big Data a aguisicao de dados nao ¢ mais um problema,
pois ha imimeros cquipamentos preparados para captar uma grande quantidade de dados
nao estruturados. Cameras de seguranca sao onipresentes o capturam virias imagens de
pessoas andando pelos mais diversos cendrios. No entanto, extrair valor de dados nao
estruturados ¢ desaliador, especialmente para tarefas que envolvem imagens de pessoas.
A anotacao desses dados é um processo extremamente complexo ¢ caro, portanto a criacao
de bases de dados especificas para cada ambiente nao ¢ vista com bons olhos.

A eriaciao de algoritmos robustos a variagoes de ambiente seria a solugao ideal, no
entanto as pesquisas desse tema apontam que ainda estamos mmito distantes de aleancar
tal feito. Logo, téenicas de adaptacao de dominio que permitam adaptar os algoritmos
para novos cendrios de forma automatizada tém sido muito estudadas tanto na academia
quanto na indistria.

Nesse trabalho, propomos téenicas nao supervisionadas de adaptacio de dominio para
a re-identificacao de pessoas, visando reduzir a lacuna de performance entre a pesguisa
de re-identificacao de pessoas e as aplicacoes reais. Essas téenicas buscam modelar a
distribuicao dos dados do dominio alvo (ambiente de aplicacgao), utilizando apenas imagens
provenientes desse novo cendrio, sem tor acesso as anotacoes dessas imagens. Para lidar
com cssa falta de anotacoes no dominio alvo, os métodos de adaptacao de dominio também
utilizam imagens e anotagoes de nm dominio fonte (base de dados anotada) para auxiliar
no aprendizado dos algoritmos.

Os métodos de re-identificacao de pessoas utilizados nesse trabalho usam redes neurais
convolucionais para cxtrair features das imagens das pessoas. () treinamento dessas redes
newurais ¢ realizado de forma que as features extraidas das imagens pertencam a nm cspaco
vetorial Euclidiano, onde features provenientes de imagens de uma mesma pessoa cstao
proximas ¢ features provenientes de imagens de pessoas distintas estao distantes.

Ao treinar a rede nearal em uma base de dados, ela aprende caracteristicas especificas
daguela base de dados para resolver o problema em questao, por isso ao aplicar essas
redes em novas bases a performance decai. No caso cspecifico da re-identificacao de
pessoas, uma das principais caracteristicas gue a rede nenral precisa ter ¢ a capacidade
de diferenciar o que ¢ o fundo da imagem do gue ¢ uyma pessoa. Por exemplo, uma base
de dados pode ter wirias imagens que apresentam grama no fundo, logo a rede nearal
aprende a diferenciar grama de pessoas. Ao aplicar essa rede neural em um ambiente
onde o fundo das imapens apresenta paredes, essa rede pode ter problemas de diferenciar
o que ¢ informacao de parede do gue ¢ informacao de pessoas. O rellexo disso na re-
identificacao de pessoas € que o espago Euclidiano da saida da rede tenderda a agrupar
features de imagens proveninete da mesma cimera, ao inves de features provenientes de

imagens da mesma pessoa.



Em nossa primeira abordagem, propomos nm método agnostico a arquitetura de redes
neurais utilizada como base. Portanto, utilisamos a arquitetura elassica Resnet-50 ¢ a
arquitetura AlignedRelD + 4 proposta por Luo ot al. em nossos experimentos para analisar
como diferentes arguiteturas se comportam frente ao nosso método. Em ambos os casos
realizamos o treinamento utilizando a fungao de custo Triplet com a estratégia bafch hard
para gerarmos csse espaco vetorial Enclidiano com a feafures de saida das redes neurais,

A adaptacio de dominio proposta ¢ feita em duas ctapas:

« 1) Uma GAN (rede neural especializada em gerar imagens) ¢ utilizada para alterar
a aparéncia das imagens do dominio fonte de forma que elas se aparentem com
as imagens do dominio alvo. Desta forma eriamos nmm dominio intermediario que
contém as anotacoes do dominio fonte e imagens com aparéneias proximas as do

dominio alvo;

« 2) Meétodos de clusterizagao nao supervisionados sao utilizados para gerar pseudo
anotacoes (clusters) no dominio alvo. A partir dessas pseudo anotacoes somos ca-

pazes de retreinar a nossa rede neural nas imagens reais do dominio alvo.

Com cssa primeira abordagem consegnimos melhorar a performance dos algoritmos ao
aplicarmos cm novos dominios. No entanto, niao nos atentamos a qualidade das psendo
anotacoes (clusters) gerada. Portanto, nao fomos capazes de extrair todo o potencial do
método ¢ atingirmos resultados que se aproximassem do estado da arte.

Ao percchermos que a qualidade dos clusfers sio cruciais para a performance do mé-
todo, por mais que csse fator tenha sido subestimado pela maioria dos métodos existentes.
Nos propomos nm novo método para refinar as pseudo anotacoes ntilizando mltiplas cta-
pas, quée consistem em selecionar os melhores clusters possivels ¢ continnar melhorando a
qualidade deles para que eles se aproximem da real anotacao dos dados. Nosso método
de refinamento consiste em uma estratégia de selecao de clusters ¢ em uma normalizacao
guiada pelas cimeras que reduz a variancia intra-dominio cansada pelo uso de mmltiplas
cameras na re-identificacao de pessoas.

Esse novo método clevou nossos resultados a um novo patamar, com cle alcancamos
o estado da arte da adaptacao de dominio nao supervisionada para re-identificagio de
pessoas nas bases de dados DukeMTMC — Market1501 (fonte — alvo). Para as bases
de dados Market1501 — DukeMTMC nds ultrapassamos o estado da arte em 1.6%, cssa
combinacao de bases de dados representa nm desafio maior de adaptacao, pois o dominio
alvo (DukeMTMC) conta com oito cimeras distintas. Além do mais, nossa normalizacao
gmiada por cimeras gera uma reducao significante na quantidade de iteracoes necessarias

para atingir a convergéncia durante o treinamento.
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Nossos resultados mostram que as téenicas de adaptacao de dominio sio capazes de
melhorar significativamente a performance dos modelos gquando aplicados no dominio alvo.
Ademais, essas téenicas permitem que a re-identificacao de pessoas possa ser usada em
casos reais, pois clas antomatizam o processo de adaptacao do modelo para novos cendarios

cnquanto mantém a performance muito prixima a do original do modelo.

Palavras-chave: Visao Computacional, Aprendizado Profundo, Re-Identificacao de Pes-

soas, Aprendizado de Métricas, Adaptacio de Dominio
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Chapter 1

Introduction

1.1 Problem

Person re-identification (Re-1D) is an image retrieval task which aims at matching person
images from different non-overlapping cameras views (Figure 1.1). This is an essential fea-
ture for diverse real word challenges, such as smart cities [86], intelligent video surveillance

[76], suspicious action recognition [7T8] and pedestrian retrieval [72].

Figurc 1.1: Person Re-Identification is an image retrieval task. Given a query image,
Poerson Re-11Ds objective is to find images from the same person in a gallery.

Although person Re-1D and face recognition are similar problems, they have a crucial
difference. Face recognition requires images with high quality and from a frontal face view,
while person Re-1D works with images from CCTV (closed-cirenit-television) systems that

have low resolution and varied viewpoints.



Furthermore, personal data protection and privacy are mainstream topics with regu-
lations like GDPR (general data protection regulation) in Europe and LGPD (lei geral
de protegao de dados) in Brazil. As person Re-1D systems do not necessarily recognise
a person, only re-identifics a previously scen person (inside a restricted time difference),
they have way less friction to be used in real-world systems.

With all these popular possible applications and advantages, there is a elear demand
for robust Re-1D systems in the industry. Academic rescarch groups have achieved re-
markable in-domain results on popular person Re-1D datasets such as Market 1501 [89]
and DukeMTMC-relD [91]. Despite these advances, there is still a dichotomy between
the suceess in academic results versus the industrial application. This is because the best
academic results [51, 75, 97] are based on supervised methods that require a huge amonnt
of annotated data for their training,

The use of pre-trained state-of-the-art Re-ID models in new scenarios nsually leads
to disappointing results becanse cach gronp of cameras has distinet characteristics, such
ag illumination, resolution, noise level, orientation, pose, distance, focal length, amount
of people’s motion as well as factors that influence the appearance of people, such as
ethnicity, type of location (e.g. leisure vs. work places) and weather conditions.

Therefore, we have a seenario where a lot of non-annotated data (from CCTV systems)
is available and we have some pre-trained models that are specialised on specific domains.
Our main research guestion is how to leverage from the pre-trained model knowledge to

poerform well in data from new scenes?

1.2 Objectives

Our main objective is to propose a person Re-1D framework that is capable to learn good
representations from non-annotated data. Then, we set some auxiliary goals to help us

achieve our main objective and answer the rescarch question. Our auxiliary goals are:

+ Implement a baseline domain adaptation method to have a baseline to start from;

» Identify the Haws in our bascline domain adaptation method and propose techniques

to undermine them;

« Compare our proposcd methods with the state-of-the-art algorithms.

1.3 Publications

While working towards our goals, we proposed some techniques that generated the fol-

lowing publications:



+ Poereira, T. and de Campos, T. Domain Adaptation for Person Re-identification on
New Unlabeled Data[59] (best student paper award winner at VISAPP 2020)

« Poereira, T. and de Campos, T. Domain Adaptation for Person Re-ldentification

with Part Alignment and Progressive Psendo-Labeling[58]

= Pereira, T. and de Campos, T. Learn by Guessing: Multi-Step Psendo-Label Re-

fincment for Person Re-Identification [60]

1.4 Outline

The reminder of this dissertation is organised as follows:

s« Chapter 2 - Background: we present the theoretical background acquired while
rescarching about person REe-1D, the background diseussed in this chapter will be

the base knowledge to the proposed methods in chapters 4 and 5.

s« Chapter 3 - Datasets and data augmentation: we discuss the datasets used
in our work, also we go through some data processing techniques that are useful for

our task.

s« Chapter 4 - Domain adaptation on new unlabelled data: we present the
method for our first approach where we used a two phase domain adaptation frame-
work with ResNet-50 and AlignedRelD -+ + as backbones.

« Chapter 5 - Multi-Step Pseudo-Label Refinement: although promising, the
results of previous Chapter highlight some deficiencies of several Unsupervised Do-
main Adaptation (UDA) person Re-ID methods. In this chapter, we propose a

combination of technigques that addresses those limitations.

s+ Chapter 6 - Proposal: we conclude this dissertation and present a schedule with

next steps to improve our work.



Chapter 2
Background

Person Re-1D is a recent challenge, the first works to use this term were published in 2005
[82]. Initially, this problem was approached extracting hand-crafted features which led to
poor results and generalisation ability. Then, cireca 2014, with the deep neural networks
success, this challenge got more popular and diverse methods relying on Convolutional
Neural Network (CNN) have been proposed. In this Chapter we present some background
about CNN architectures, loss functions and transfer learning technigues that are the

building blocks for a robust person Re-1D model.

2.1 Machine Learning

Machine Learning (ML) is a sub-field of Artificial Intelligence (Al) that involves computers
learning to perform a task (7) by itself, without being explicitly programmed for it. In

this Section we will present some foundation concepts.

2.1.1 Definitions

The definitions and notations nsed in this work are based on Csurka, Pan and Yang works
[11, 55].

Feature Representation and Label Space

A ML maodel is an alporithm able to perform a task without being previously programmed
for it. The learning process of a model requires two main components, a feature space
A and a label space Y. In a gencric manner, we can say that a ML model is a mapping

function from the feature space X into the label space Y.



Domain

A domain D is composed of a d-dimensional feature space X ¢ RY and a marginal
probability distribution P(X), where X = {x;,--- ,x,} € X. For the person Re-ID
challenge, a domain D may contain a single camera view 1, or even a set of camera views
V = {vy,--- ,v;} with ¢ cameras. As cach camera view have its own characteristics as
illnmination, resolution, noise level, orientation, focal length, a sample set X from a new

camera view v, € V will represent a new domain, because P(X) # P{i}

Task

A task T is defined by a label space Y and the conditional probability distribution
P(Y|X), where X and Y are sets of random variables (which usually are mmltivariate).
The person re-identification task T consists in learning a projection from x € X to
a feature f in a Euclidean space £ where £ is closer to other vectors if they originated
from the same person, more distant to vectors from other people. The set of labels can be
thought of as the space of all possible person identities in the world, which impractical.
Alternatively, the person re-1D problem can be seen as a binary problem that takes two
samples as input, indicating whether or not they come from the same person. Therefore,
cach person re-1D dataset (or indeed cach surveillance camera environment) can be seen
as a different domain, however the task is always the same, ie., telling if two images

contain the same person or not.

2.1.2 Supervised Learning

Given a particnlar sample set X = {x,--- ,x.} € &, with corresponding labels Y =
{¥1,--- .y} € Y, P(Y|X) in general can be learned in a snpervised manner from these
feature-label pairs {x;, y:}.

Classification

The classification task is a classical ML challenge where the model objective is to classify
an input into a desired class. For example, an image classification problem may need
to distinguish different types of beverages, then the sample set X = {x,--- ,x,} € X
wonld be composed by beverages images and the eorresponing labels would be the specific
“soda”

{x:, yi} would have a beverage image and elass, then the model would use this information

beverage class (i.e. Y = {*beer”, -, “guice”}). Therefore, cach feature-label pair

to learn how to distingnish images from the desired classes.



Regression

The regression task aim to predict a value given an input, therefore its label space YV is a
continuous set instead of the discrete label space from classification tasks. For example,
house price prediction is a regression task where the input may contain relevant informa-
tions as neighbourhood, number of rooms, construction date, type of foundation, and the

output would be the actual house price.

2.1.3 Unsupervised Learning

The unsupervised learning is a setup where there is no informations from the label space
Y, therefore P(Y|X) can not be learned. In this seenario, the alternative is to learn some
patterns from the sample set X = {x;,--- ,x,} € &, this can be useful to gronp data

with similar characteristics (i.e. clustering) or deteet outliers (i.e. anomaly detection).

2.1.4 Metric Learning

There are tasks where the label space Y is mutable along the time. For example, as we
said in the task definition, person Re-1D and face recognition may want to consider every
human in the world as a class, then every time a person is born or dies the label space
mutate. In this case, it is unfeasible to define a closed set of labels and train a model on
them, thercfore we define it as an open set label space.

In an open set label space there is a need to design a model able to perform the
same way for seen and unscen samples/labels. To achieve this desired goal we can use a
model that maps a sample from X = {x;,--- ,x,} € & into a Euclidean feature space
£ where the proximity of vectors £ will determine if they belong to the same class or
not. Specifically, in the resnlt space £ = {f;,--- . £,} a feature pair {f;, f;} where both
features lay near each other will output ¥ = 1 (same class), while distant features will
output y = 0 (different class). Therefore, nsing metric learning, the problem is reduced
to a binary task with ¥ = {0,1}.

2.1.5 Neural Networks

Neural Networks are a set of ML models inspired in the human brain, becaunse it mimicks
how the human brain process and propagate informations. Nowadays, it 1s a trending ML
rescarch topic and usunally the first approach for several problems, however it have not

always been like this.



Figure 2.1: The basic Perceptron structure.

Perceptron

The Perceptron proposed by Rosenblatt [67] is the first neural network to ever exist. It
simulates the operation of a single neuron and works as a linear binary classifier. The Per-
ceptron (see Figure 2.1) have the ability to learn a weights vector w = {wy, un, - -+, w,, b}
that will be used to perform a weighted sum of an input vector x = {y, 5, -+ - , 7, 1} and

the output y will be given by

1 S wnt+b>0

¥y= .
0 38, wn+b<()

(2.1)

The weight b stands for bias and will always have an input value of 1, this weight
allow the Perceptron to learn a boundary away from the origin. Although the Perepetron
is able to learn some patterns, it is restricted to lincar problems only. Therefore, the

Perceptron is not capable of solving real-world problems.

Multilayer Perceptron

The Multilayer Perceptron (MLP) [68] ereate a network of Perceptrons organized in mul-
tiple layers. As we said before, the Perceptron can be compared to a single neuron,
therefore a MLFP ean be seen as a network of neurons and this is the origin of the name
neural networks.

The input vector x = {z1, 7, -+ , %, 1} is the same for all Perceptrons in the first
hidden layer (see Figure 2.2). The ontputs of cach Perceptron in the first hidden leayer
compose an intemediate vector x = {#, £, --- , %, 1} that is then used as input for the
second hidden layer. This process of using the output of a layer as input for the next one
continues thronghout the entire network, which can consist of multiple hidden layers.

The composition of multiple hidden layers ereate non linearities in the model, therefore

MLPs are capable of solving non lincar problems. However, this architecture have a high
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Figure 2.2: An example from a possible Multilayer Perceptron (MLP) architecture. There
is a weight associated with each arrow and the activations from the Output Layer Per-
ceptrons compose an output vector y.

computational cost related with the ammount of weight vectors (parameters) necessary

to learn different equations for all those Perceptrons.

Convolutional Neural Networks

Prior, we generalised the input vector as x = {z,m,--- , 1, 1}, however “what this
input vector represent”?”.  In the regression example we pictured an input vector x =
{*n® rooms”, “date”, - - - | “type of foundation™} and the desired output would be y =
“house price” € IR. In this scenario, the use of a single Perceptron or a MLP is dircct,
however “how do we input an image into a nearal network?”

An initial approach conld be to reduce the 3 image channels (RGB) into a single
grayscale channel and then Hatten the pixels values to ereate a 11D vector with size wx b,
where w and h are the image width and height respectively. This 11D vector then would
be used as the input layer of a MLP. There are two main problems with this Hattened

image approach:

= Each Perceptron from the first hidden layer would need to learn a weight vector
with size (w x h) + 1. As even small images have sizes in the order of 200 x 200
pixcls, cach Perceptron would need to learn 40001 parameters. As we said before,

all this parameters require a high computational cost to be learned.

s When the image is flattened, 2D patterns are lost. Althongh it is possible to learn

these 2D patterns from the 1D Hattened array, it increase the problem complexity.



In image processing the convolution operation is used to exploit 2D patterns on an
image, for example there are some convolutional kernels designed to detect edges on images
or blur/sharpen them. Therefore, Fukushima and Miyake proposed the Neocognitron [22]
with the first ideas of learning convolutional kernels to solve a specific problem. However,
their work did not have a globally supervised learning procedure and was limited by it,
then LeCun et al. [38] proposed a supervised learning approach using convolutional kernels
to exploit the image 2D patterns.

Although the Convolutional Neural Network (CNN) popularity really boomed around
2010, LeCun et al’s work was a breakthrough in the computer vision field. Their method
allowed the use of diverse ML techniques for images. In addition, the CNN solved im-
age problems, onee it was capable of exploiting 2D information and needed a lot less
parametors.

The CNN were the go to method to diverse applications in the 2010s, a lot of different
architectures were proposed (person Re-ID architectures will be further discussed in next
Section). However, recently, transformers [74] started to gain attention, primarly in the
Natural Langnage Processing (NLP) field and now entering the computer vision field with

some promising results (e.g. Vision Transformer[16]).

2.2 Neural Network Architectures

Recently, CNNs are the go to technique for several computer vision tasks. The CNN
ability to extract robust featurces is essential for its success. There is a huge variety of
CNN architectures, cach one better for some tasks than others, e.g. U-Net[65] for image
segmentation, faster R-CNN[63] for object detection, Inception[73] for image classification.

For the person Re-1D challenge, we need a feature extractor that can encode person
information while disregarding camera variations and background noise. Therefore, we do
not need Region Proposal Networks (RPN) that are present in the faster R-CNN for object
detection or the contracting path present in the U-Net. We need an architecture capable
of producing a strong image encoder, then architectures designed for image classihication

arc an cxcellent starting point.

2.2.1 Residual Networks

The CNNs popularity boom in the first hall of the 2010s lead researchoers to pursue better
architectures. Firstly, they thought that increasing the number of layers and creating
decper architectures would be sufficient. Although, they gquickly hit a performance wall
and noticed that deep architeetures were overfitting quickly and got worse results than

shallower architectures.



He et al. [29] noticed this dimensional problem with deeper architectures and proposed

a residual block to unlock the use of very deep architectures as shown in Figure 2.3,
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Figure 2.3: Difference between a classical (left image) architecture and a residunal (right
image) one. Reproduced from He et al. [29]. ©@2016 IEEE.

The classical convolution blocks aimed to learn a function H(X) to map the input X
directly to the output Y, while the residual block defines a function F(X) = H(X) - X
which ean be rewritten as H(X) = F(X) + X. Their hypothesis is that for some tasks an
identity mapping may be the optimal solution and the CNN should learn F(X) = 0 and
so H(X) = X. Therefore, the optimal function is mapping the input (X) in the output
(Y), althongh it is a trivial equation, the classical architectures have problems to do it
while the residual blocks can casily feedfoward this information. A deeper look into the

residual blocks is illustrated in Figure 2.4.

weight layer
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Figure 2.4: Residual block structure. Reproduced from He et al.[29]). ©2016 IEEE

Usnally, the initial (shallow) layers from CNNs extract features from simple character-

istics of the images and deeper Iayers will be responsible to extract information from more
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complex characteristics. To illustrate this behaviour in the person Re-1D problem, one
can imagine that the initial layers will learn to identify what is background /foreground
and extract information like cloth colours and bags, while deeper layers will extract in-
formations like age, hairstyle and gender.

Although this is just an example to ilustrate the idea, it is clear that a robust person
Re-1D system need to integrate informations from all those complexity levels. Therefore,
the information extracted on the initial layers have to be efficiently propagated to the
output, then we believe that the residual blocks from ResNet are a great tool to achieve

our goal.

2.2.2 Factorization Networks

To deal with these features from multiple semantic levels, person Re-1D rescarchers started
to work on factorization networks [1, 6]. These networks have mechanisms to case the
information propagation from multiple layers into a final fusion block. Then, they di-
rectly propagated middle layers information to deeper layvers with the hypothesis that
this information is important to puide the learning process.

An ideal factorization network could be illustrated as a first block which identifics
what in the image is foreground and what is background, thercfore creating an atten-
tion map which will be used to filter the final feature. Then, it could have subsequent
blocks responsible to extract information about the person itsclf, like gender, age, clothes,
hairstyle. Finnaly, all these simple and complex information sources would be fused by
the last block to create a robust vector for that person.

Chang et al. [6] proposed a highly factorized architecture (sec Figure 2.5) which rely on
arions intermediate layers to generate the person feature. They achieved state-of-the-art

in multiple datasets to prove their architecture effectiveness.

2.2.3 AlignedRelD++

Although RBesnet-50 is a great neural network architecture, relying only on its generalisa-
tion capacity to perform in such a challenging task as person Re-1D is naive. One of the
complications is the amount of pose variation present in this scenario, as cach camera will
capture the person’s image from a different point of view. To deal with this kind of pose
variation, some works proposed a pose-guided person Re-1D [46, 54, 62, T1] where they
used an algorithm to detect the person pose (c.g. OpenPose [5]) and used this information
to undermine the pose variation problem.

Even though it sounds like a great idea to identify the body parts and align the images

to reduce the pose variation, it is an expensive step added to your pre-process. Therefore,
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Figure 2.5: Multi-Level Factorisation Net (MLFN). Reproduced from Chang et al. [6].
©2018 TEEE.
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AlignedRelD+ + [53] proposed an architecture (see Figure 2.6) that is able to learn how
to align two images without the need of a body part detection. The AlignedRelD++ is
not as lightweight as using only a classification network (e.g. Resnet-50), but it allow us
to do an end-to-cnd training without detecting body parts and undermining the negative

cifects of the pose variations.
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Figure 2.6: AlignedRelD++ Pipeline. Adapted from Luo et al.[53].

The AlignedReID+ + [53] uses Resnet-50 as a feature extractor and propagates its
output to two branches, local and global. The final convolutional laver produces a feature
map with dimensions ¢ X h % w (¢ is the number of channels and h x w is the spatial size).
This feature map is the information that is propagated to both branches.

For the global branch, a global average pooling is used to reduce the feature map into
a global feature vector £ with size ¢ % 1. Then, this global feature vector £ is used to
calculate a cross-entropy Loss (£,,.,..) and to calculate the global distances that will be
used by the global triplet loss (£5.;). Further details abont loss functions will be discnssed
in Section 2.3.

The local branch uses a horizontal max pooling to reduce the feature map into a
e % h x 1 local feature map, which is further reshaped into the size of h x ¢, The local
feature maps are then split into horizontal regions (stripes) and compared with all the
horizontal stripes from other image to caleulate a distance matrix. This distance matrix
has the size h x b and is used to calenlate the shortest path from (1 x 1) to (h x k). This
method is called Dynamically Matching Local Information (DMLI) and provides a local
distance (shortest path) between two local feature maps. The local distances are then
used to calculate the local triplet loss (L)

The local branch is able to align parts of the image that may be displaced because of
the camera view (Fig. 2.7). The global branch is able to extract the global image context

and a class biased information (cross-entropy loss). Finally, the AlignedRelD 4+ loss is a
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Aligned distance: 0.5544 Distance Matrix
Original distance: 0.8466

L.efr. Image

Right Image

Figure 2.7: Example of how AlignedRelD- +'s Dynamically Matching Local Information
(DMLI) is able to align two pictures that were displaced beecanse of the camera views. The
distance matrix on the right is computed by comparing stripes of the two images and their
minimum path on that matrix generates the alipnment shown on the left. As expected,
the aligned distance is smaller than the global distance. The code used to generate this
image is available from https://github.con/michuanhachao/AlignedReID

combination of these 3 losses given by Eqg. 2.2,

Eﬂfig-m:r! = f’r:r'ms | ﬂj':-.‘ t E? {22]

ri

2.2.4 IBN-Net

A typical Re-ID system relies on ResNet [29] as their backbone (nsually the ResNet-50
model), which is a safe choice, becanse Re-1D is a task that requires multiple semantic
levels to produce robust embeddings and the residual blocks help to propagate these
multiple semantic levels to deeper layers. Also, ResNet is a well studied CNN that leads
to a step change in the performance on the ImageNet dataset [12].

Howoever, the vanilla ResNet has its generalisation compromised because it does not
mclide instance-batch normalisation. To deal with that, Pan et al. [56] proposed the IBN-
Net50, which replaces Batch Normalisation (BN) layers with instance batch normalisation
(IBN) layers. The IBN-Net carefully integrates IN and BN as building blocks, significantly

increasing its gencralisation ability.
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2.3 Loss Functions

Loss functions are the base foundation for model optimisation, once they are the mathe-
matical functions that guide the model update. They measure the dissimilarity between
the model output and the ground truth, then the optimisation method uses it to update
the model and reduee this distance. A well designed loss funetion guarantees that lowering

its value will result in the optimisation of a model for a given data for a desired task.

2.3.1 DMetric Learning vs Classiflication

The most popular computer vision applications have their method designed as a classi-
fication system. In a classification scenario it is important to learn how to classify the
input as one of the desired classes (c.g. classify animals, beverages, objects). Then, the
model will learn decision boundaries which will segment the output space into n different
regioms, where nis the number of classes.

A typical approach to a classification task is to desien the model so it outputs a
n-dimensional vector £ where cach dimension will represent a class. Then, the ground
truth y is encoded using a one-hot encoding scheme, that is a vector of 0's with a 1 in
the dimension of the corresponding class. Normally, the model output will be activated
by a softmax function [35] (see Equation 2.3), therefore the sum of the output vector

dimensions will be equal to 1.

et

N E;‘__] cfs

Oncee the experiment has been designed for a classification task, the ground truth y

(2.3)

softmax(f;)

nses A one-hot encoding and the model ontput is activated by the softmax function, the

cross-cntropy loss [3]
Loross = y Infsoftmax(f)] + (1 — y) In[1 — softmax(f)] (2.4)

is used to space the distributions as mmch as possible.

As follows, the model will learn a feature space specialised in separating the desired
classes given the usual input.

Although a classification model is very good to classify inputs to a determined class,
it may have an nnexpected behaviour for an input from a new unseen class. As person
Re-1D aims to re identify people one could design the model with an output dimension
cqual to the nnmber of people on Earth. However, that is impossible because the numboer
of people in the world is mutable and the computational cost to train a model of this size

is immeasurable.
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Thercfore, we define the person Re-1D as a open set challenge where we do not have
a specific number of elasses. Then, we cannot use the classical softmax and cross-entropy
approach as the classification task. Because, woe do not want to classify a image as “person
17, what we really want is to convert an open set problem to a binary problem, where we
are able to say that two images are similar enough to classify then as the same person, or
not.

This idea of similar images and measuring a distanee between images is the base of
metrie learning. Now, our goal is not to guide the output space to segment n classes and
learn decision boundaries, it is to produce an output vector that belongs in a feature space
where features from the same person have a small distance and features from different

people have a greater distance.

2.3.2 Siamese Loss

The training strategy is fundamental to enhance the model capacity on learning a spocific
task, as we discussed in the prior Seetion the softmax combined with the cross entropy
loss is ideal for classification tasks. For metric learning, the eguivalent combination relies
on comparation networks.

The first idea for a comparation network was the siamese network presented by Brom-
ley et al. [4]. The original siamese network architecture received two images as input
and extracted the output feature vector from cach image using the same weights. Then,
it compared the two output vectors using cosine similarity, expecting a high similarity
(cosine ~ 1.0) for images from the same class and a low similarity (eosine ~ —1.0) for
images from different classes.

The siamese architecture allow the training of metrie learning models, however it still
needs to be paired with a loss function to guide the weight adaptations in the right
direction.

Unlike cross-entropy loss that compute its value over samples, a metric learning loss
runs over pairs of samples. Therefore, a distance function is necessary to measure the
distance between two output vectors £} and £f5. In Bromley et al’s work, they used the
cosine similarity

n il
cos(f, f) = =

ENTET (2.5)

as their distance function.
Although they did not inform which loss function was used to guide the model update,
they said that training was carried out using a modified version of the backpropagation

proposed by Leenn [37]. Therefore, they probably designed their experiment with the
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Mean Squared Error (MSE) loss given by
Lyse = [cos(fi, Fa) - H]z (2.6)

where g is set to 1.0 when the features originated from the same class and —1.0 otherwise.

2.3.3 Contrastive Loss

The MSE loss function used by the original siamese networks is able to approximate
features from the same class and push away features form different classes. However,
when pushing away features from different classes, the MSE loss always push it to the
maximum disance possible (cos(fi, f2) ~ —1.0) and by doing it the loss may approximate
fa from a third feature £5 that belongs to a third class.

The problem is then *How much to push a feature from a different class?”. To deal
with this problem Hardsell et al. [26] proposed the contrastive loss, which introduced a
margin (m) parameter that defines a radius around f. Therefore, dissimilar pairs only
contribute to the loss if their distance is within this radius.

They decided to use the Euclidean distance

D'[fl-. fz]' — i{fli fm]2~ {2~?]

as their distance function. Then, their contrastive loss is defined by

/- {i}jﬂﬂ{f.,fgf 2 fmax(0,m ~ D(f, &)}, (2.8)
where y = 1 for dissimilar pairs and y = 0 for similar pairs.

The contrastive loss is ideal when trying to learn a metric because it allows one to
perform an end-to-end learning from a dataset to an embedding space. The contrastive
loss receives as input a pair of feature vectors and tries to approximate them if they are
from the same person or set them apart if they are from different people. This generates

an embedding space where feature vectors from the same person tend to lie near each

other.

2.3.4 Triplet Loss and Batch Hard

The triplet loss is an upgrade from the contrastive loss which instead of nsing a pair of
samples as input, it uses an anchor, a positive sample and a negative sample. Therefore,

the triplet loss approximates feature vectors from the same person while it also separates
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features of different people, according to Equation 2.9. This way, one can cxpoect better

samples separation in the embedding space:

sy (n, m A D(fm fp) . D(fu,ﬁ,)) (2.9)

where m is a margin that defines how mnch we want to push the classes away (similar to
the constrative loss), £ is the CNN output(sub indexes a, p and n mean anchor, positive
and negative, respectively) and D(-) is the Enclidean distance (Equation 2.7).

A question that arises from the triplet loss use is “how to choose the positive/negative
examples?” Hermans et al. [30] investigated this problem and came to a conclusion that
the best learning is This approach was coined batch hard and it works as follows: for cach
anchor sample x, from the achicved when using the hardest positive/negative samples
during training. batch, the choice of positive sample x;, is done as the one that maximises
D(f,, £,) and the negative sample x,, is chosen as the one that minimises D(f,, £,). Using

this strategy, Equation 2.9 can be rewritten as

Ly = max (ﬂ ;M max D(fa,f,_.) (2.10)

i nﬁnﬂ(fu,f")),

where positive and negative samples are chosen within each bateh and the losses across
all anchors in a batch are averaged ont.

Figure 2.8 illustrates how samples are chosen for a bateh, All the rectangles at the top
represent samples from a person and the rectangles at the bottom represent samples of
another person. The triplet will choose cach rectangle as anchor at a time, caleulate the
loss for it and in the final sum all the losses. From the green rectangle as an anchor, the
numbered arrows indicate the distance D(-) from it to the samples, where £, , 1 = {1,2, 3},
arc possible positive samples and £, , j = {1,2,3.4}, arc the possible negative samples.
In a batch hard approach, £, is sclected as positive sample, f,, as negative sample and

1 Lp

Ly =m + 0.361 — 0.490,

2.3.5 Centre Loss

The triplet loss is responsible for grouping features from the same class and move away
features from different classes, however as datasets nowadayvs have millions of samples it
is unfeasible to apply this pull /push for all possible triplets. Then, as we discussed before,

we use the batch hard strategy to make the loss more robust by using the most ditheult
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Figure 2.8: Example of how the batch hard triplet loss is computed for an anchor. The
rectangles at top represent features from a person while the ones at the bottom represent
features from another person. Numbers on arrows show the distance between two features
(D(f,, £)), the green rectangle is the anchor and the bold arrows represent the distances
sclected by the batch hard.

triplets. However, as person Re-1D is an open set challenge, the testing set may have
examples that wonld gencrate features extremely close to a training class.

Therefore, it is also important to minimise the intra-class feature variation, so cach
class is defined by a compact region in the output space. This way, we increase the model
robustness, once the region of interest for each class would be more compact.

The centre loss [79] proposed by Wen et al. does that. It penalises the distance
between features £, £ = {1,--- ,n} and the centroid of the class g, so the model is guided

to produce more compact clusters. The centre loss function is defined by
B 2
Leentre = E z ”ft P;” . {2_11:]
i=1

2.3.6 Combined losses

As we saw, each loss function presented has its own characteristics and objectives. These
objectives are not opposite to cach other and can work together to deliver more robust
featurcs. Therefore, a joint supervision using more than one of the losses presented may
be bencficial for the problem.

Usnally, the person Re-1D research is inspired by the face recognition research, becanse
face recognition is an older and more developed challenge. Also, the recent state-of-the-
art algorithms for face recognition do not rely anymore in metric learning based losses
(i.e. triplet loss, centre loss and contrastive loss). This happened because the number of
hatches and iterations to space features vectors with a triplet based loss from million 1Ds

would be enormous, as stated by Deng et al. [13]. Therefore, they proposed an Additive
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Angular Margin Loss (ArcFace) that introduces a margin loss in the classical softmax,
then they ean rely on the softmax for the inter-class dispersion and in the angular margin
for the intra-class compactness.

Person Re-1D datasets do not have same magnitude as face recognition ones, therefore
using margin based softmax losses have not been really necessary yet. Although, using
joint supervision with more than one loss is well seen. An interesting approach for the

person Re-1D loss used by Luo et al. [51] is to define the loss as

L= Er:wms 1 f-'.!'t':' + f]'ﬂffﬂf'l'ﬁ‘ {212]

whore £ .. is the softmax loss, £ is the triplet loss and £ ... is the contre loss.
This joint supervision leverages from the softmax capacity of creating inter-class dis-

poersion, the triplet loss capacity of create robust features to the most difficult seenarios

and the centre loss ability to increase intra-class compactness. The 8 term used in the

L eentre 18 to maintain all three losses in the same magnitude order, normally 5 = 0.0005.

2.4 Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) is a class of neural networks proposed by Good-
fellow et al. [24], which aims to produce new images as output. The GAN framework
have been used in a wide range of applications including person image gencration [34],
synthesising images from text [85], increasing image resolution [39], blending images [80]
and deblurring images [36].

The GAN framework consists of training, simultancously, two ncural networks: a
generator (¢ and a discriminator @. The generator G is responsible to learn the database
probability distribution P(X) while the discriminator @ predict if the image is from the
original database or if it was generated by G, It is an adversarial process because G's
objective is to maximise ©'s error rate, therefore (s goal is to learn how to map a white
noise z in a way that P(((z)) ~ P(X). In this case, ® would not be able to distinguish
between an original image x € X and a generated image G(z).

The GAN input then is a white noise z with a probability distribution P(z) and 7 is
a mapping function (7(z) that maps P(z) into P(((z)) while approximating P(G(z)) to
the original data distribution P{X). While ®(x), x € {XUG(2z)} is a classifier to predict
if x 15 a real image or a generated one. Therefore, the GAN training is given by a minmax
game with a dual objective: a) minimise the shift between P((G(z)) and P(X), and b)

maximise $(x) error rate.



To achicve its goal, the GAN loss function is given by
Loan = 111Ei_n. max []E,W,J{xj log ®(x) + Exqz log (1 : tﬁ((}{zj))], (2.13)

although this is the full representation of the GAN loss, it is not feasible to maximise @
crror at the same time as minimising (¢ error. Therefore, the training have the following

two steps and keep alternating between them:
= A @ crror maximisation step using gradient ascent in Equation 2.14;

» A (¢ error minimisation step using pradient descent in Eguation 2.15.
£ = max[Bxupix) 108 8(x) + Egncia log (1 - &(G(2)) )] (2.14)

L— rrﬂnlEh{;(z} log (1 - q:((;r:z)))] (2.15)

2.4.1 CycleGAN

Since the proposal of GANs, various interesting methods nsing (GANs have been published.
In between all GAN applications, Isola et al. [33] proposed a method to translate an
image from a source domain D* (e.g. sketehs) to a target domain D' (e.g. real objects), as
illustrated in Figure 2.9. However, in real-world situation it is rare to have paired images
from D* and D!. Usually, there is plenty of data available from both domains, but the
inter-domain data have no relations between them. Thercfore, the challenge is to learn a
mapping function G : P* — T*, where P(G(X*®)) ~ P(X'), without examples of how a
specific x* € X* would look like in X,

The fact that there are not paired images available increase the challenge complexity,
hecanse there are infinite mapping functions (7 that may present the ideal quantitative
result during training, but this does not guarantee the expected gualitative results.

To deal with this problem, Zhu et al. [98] proposed a method capable of producing the
ideal quantitative and gualitative results. Their proposed method is called CyeleGAN,
because besides learning a generator (¢ : DP* — D' there is also a generator G Dt — D
and an extra term in the loss function to approximate G(G/(X*)) = X=.

The cyeleGAN loss function is then given by Equation 2.16, where L 45 18 the classical
GAN loss defined by Equation 2.13, A is a hyperparameter to control the influence of the
cycle loss (L) given by Equation 2.17:

L= Loan(G, Oxt) + Loan (G, Pxs) + ALae(G. B, (2.16)
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input output

Figure 2.9: Example of paired images to anxiliate the training of and image translation
GAN. In this example, the GANs objective is to learn the mapping between sketchs and
real object images. Reproduced from [33]. ©2017 IEEE.
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2.5 Transfer Learning

It is well known that deep nenral networks need a huge amount of clean and annotated
data in order to learn good metries for a determined problem. Also, it is assumed that
testing data will be in the same feature space and have the same distribution as training
data, which often not trc.

There are some strategics to deal with this data shift, as using data normalisation to
rednee this variance in data, or using data angmentation to build a more robust model,
or using transfer learning [55] to leverage the previous knowledge and ease the process of
learning in a new feature space.

In a deep feedfoward neural network, the deeper the layer it will have more abstract
representations from the input. Then, a model trained with a large dataset (e.g. ImageNet
[12]) in a fully supervised manner will learn a wide range of abstract representations that
may be useful for several tasks, even if they are a little different from the original one.
Donahue et al. [15] proved that leveraging the knowledge from these large datasets is
beneficial, therefore it is naive to not use these technigue.

As one can see in Figure 2.10 there are multiple types of transfer learning, whether
the task is maintained, if labelled data are available for souree and target domains, or

even if there are not labelled data at all, cte.
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Figure 2.10: Transfer Learning taxonomy based on availability of data and maintenance
of task. The real-world person Re-1D challenge is classified as a Transductive Transfoer
Learning, once there are available data only in a source domain, however it is a single
task. Reproduced from Pan and Yang [55]. ©2010 IEEE.

Furthermore, Person Re-ID usually uses CCTV cameras, therefore there is a high
variance factor in this challenge, once cach camera have its own characteristics as illnmi-
nation, angle, distance from people, saturation, resolution, distortion, cte. We consider
that cach camera view is a domain and people will have different appearance in different

domains. So. domain adaptation technigues are very important for person Re-T1D.

2.5.1 Domain Adaptation

As discussed before, cach camera view can be scen as a domain because of its charac-
teristics. However, the typical person Re-1D dataset have images from multiple cameras
annotated, therefore one could train a model using examples from the same person in
mmultiple cameras views. This way we are capable of reducing the multiple feature spaces
of cach camera to a single feature space that belongs to that group of cameras.

For simplicity, let us assume that there are two domains: a source domain D* =
[, P(X*)} with T* = {¥*, P(Y*|X*)} and a target domain D* = {X*, P(X")} with
Tt = {¥', P(YYX"}. Those domains are different D* # D', because P(X*) # P(XY)
due to domain shift. Also, we do not have the target domain labels Y?, so we do not have
the feature-label pairs {x;, 3} to learn P(Y*|X*) in a supervised manner.

As one can see in Figure 2,10, Pan and Yang [55] defined domain adaptation as the

situation where there is a single task (7* = T*), but labelled data is only available in
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source domain. We find ourselves in the same situation, however once J* is not available
the Person Re-1D research community named this as Unsupervised Domain Adaptation
(UDA), so we will use this term from now onwards.

The UDA setup usually start training a model in the souree domain to learn PY*|X*)
and use the related information to learn P(Y'|X') without annotating target domain
images. Recent research on unsupervised domain adaptation (UDA) for person Re-1D

has two leads:

GAN based methods [14, 47, 77, 84, 95, 100]

The ability of GANs to generate images that follows the distribution of a given feature
space is perfect for UDA, because one can approximate images from two domains. Zhu ot
al. [98] proposed a eycle-consistent GAN that is able to generate images from a new domain
without the need of paired images during training which opened a lot of opportunities for
the person Re-ID community.

Deng ot al. [14] used the eyeleGAN to generate an intermediate dataset where the
source domain images have been transformed to appear similar to those from the tar-
get domain. This way they produced a dataset that leveraged from the source domain
annotations and had similar characteristics to the target domain. Their work beat the
stato-of-the-art at the time.

Zhai et al. [84] used GANs to angment the target domain training data, so they could
create images that preserved the person ID and that simulates other camera views at the
same time. This strategy maximises the inter-class distance with a more diverse sample

space and minimises the intra-class distance with more diversity on the person image.

Methods Based on Pseudo-Labels [18, 21, 23, 45, 59, 83, 84, 100]

The idea behind the pseudo-labels model is to use an unsupervised method to create labels
for the dataset. The classical way to generate those pseudo-labels is to use a pre-trained
model to extract the features from target domain, use this features to predict the label
space for this unlabelled target domain, assume those predictions are correct and use then
to fine-tune a model previously trained on souree domain.

This method is commonly used for person Re-1D unsupervised domain adaptation
because it allows the model to train with the real images from the target domain withont
the need of manual annotation. As we discussed, cach COTV camoeras normally used
for the person Re-1D task have a lot of unique characteristics and even can be seen as a
domain, then using the actual images pencrated by the camera is useful to Iearn robust

featnres.
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This approach has shown remarkable results and is the idea behind enrrent state-of-
the-art UDA Re-1D methods. The drawback with psendo-labels is that if the domains
are not similar enough, they can lead to negative transfer, becanse the labelling noise
might be too high. To deal with that, Ge et al. [23] propose a soft softmax-triplet loss
to leverage from pseudo-labels without overfitting their model. Zeng et al. [83] propose
a hicrarchical clustering method to reduce the inHuence of outliers and use a batch hard

triplet loss to bring outliers closer to interesting regions so they could be used later on.

2.6 Data Augmentation

As ML models learn from the given data, one can imagine that more data presented will
result in a better model. Although that is nsually true, there are three common problems

in real-world applications:

= Not enough data is available;
s The data is not a good representation from the application Domain;

= The data is too repetitive, there are fow variations.

These three problems may harm the model learning process and result in a model with
poor generalisation for unscen images. It is then essential to deal with them before the
training stage.

Data augmentation is a set of techniques used to increase the ammount of available
data. These technigues will slightly change the data to create new examples with more
variation, then it directly solves the problem of few and repetitive data. For the case where
the data is not a good representation of the application Domain, there are some advanced

data augmentation technigues to undermine it as we shall present in this Section.

2.6.1 GAN domain approximation

In this method, we have images from source domain X* and target domain X', but we
do not have the labels from target domain Y. So, we approximate data from images of a
known source domain to images of a target domain generating an intermediate dataset.

An nnsupervised domain adaptation methoed can be used to gencrate an intermediate
dataset D' that leverages the source domain annotation Y and is similar to the target
domain. For that, we follow an approach based on GANs [24]. More specifically, we
use a CyeleGAN using the method proposed by Zhu et al. [98] and applied to person
re-identification by Deng et al. [14] and by us in [59].
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The idea is to use images from the source domain (X#) as input and train a GAN to
generate ontputs which are similar to the images from the target domain (X*). However,
once we have no paired images between domains the problem has a high complexity. Zhu
ot al. proposed to train two generators G and G where G: X* 5 Xtisa mapping from
the source domain to the target and G: X5 Xisa mapping from the target domain
to the source. Also, the eyclic component presented in Equation 2.17 is added to the loss.

The eyelic component is there to do an identity mateh between souree domain images
X* and their double transformed pairing images ﬁ'{(}(}[”}}? and vice-versa. By minimising
this cyclic loss we expect to have transformations that can map both domains.

Therefore, we use the generator G 2 X* — X" in all images of our source domain to
generate an intermediate dataset. That is, we create a dataset that leverages from the
labelled data of the source domain and have similar characteristics to the target domain.
This way we can cxpect that a training on the intermediate dataset will perform well in

the target domain.

2.6.2 Camera style adaptation

GAN based methods have been widely used to produce more data for training. These
methods are able to fulfil gaps that are left on the dataset, as disbalance of images poer
camera or absence of images from the same person in a specific pair of cameras. The lack
of data which cause these problems can have a negative effect in the training phase.

To deal with those problems, Zhong et al. [95] proposed a camera style adaptation
method. They trained a eyeleGAN for each camera pair and used these models in every
dataset image to translate it to all other ecameras views. Therefore, given a source domain
D* with 6 cameras views V = {1, 12, 13, 14, ¥5, 5}, cach image x; € A® from camera v;
will be translated to all the other 5 views.

The generated images preserve the person identity and simulate the view from other
cameras, therefore facilitating the process of learning how the person appearance is trans-
formed between every camera pair. This method is used for data angmentation during
the training phase and the ratio between original images and GAN gencrated images is
1:3.

Although the GAN generated images give them more munition to learn specitic camera
transformations, the GAN imapges arc noisy. Then, there is a need to use label smoothing

regularisation in the penerated images.
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2.6.3 Random Erasing

In real world person Re-1D systems there are problems that are not always present in
public datascts, like the problems related with crrors in the pedestrian detector and
occlusions [52]. The second one is very common in the real world, primarily when the
system is applied in locals with a high volume of persons, e.g. shopping malls, airports,
subways.

The occlusion problem gencrate partial images of the person, where the person may
be oceluded by other person or by an object. To deal with the occlusions, some works
relied in part detection systems [10, 40, 83, 96], therefore they knew which parts from the
person were visible and learned how to weight the visible and the oceluded parts from the
person to compare the images. Although this strategy led to good results, it includes one
more algorithm that is subject to errors thus increasing the risk of error propagation and
increasing the computational cost.

We believe that the best way to deal with occluded images is to have examples of them
in the training datasct, so the CNN will learn robust features against the occlusion by
itsclf. We therefore use Zhong et al. [93] random erasing method for data augmentation.
At cach training batch we scleet 50% of the images to be randomly cropped, therefore
simulating occlisions.

Although the use of random crasing method is very interesting to deal with occlusions,
Luo et al. [51] showed that this data augmentation method is not beneficial for domain
adaptation. Because the method erases part of the image, the CNNs end up relying
on other domain-guided characteristies to learn the person identity and thercfore do not

generalise very well for other domains.

2.7 Evaluation Metrics

In order to evaluate a model performance and compare it with other methods, evaluation
metrics are needed. The main evalnation metrics used for the person Re-1D challenge are
the Mean Average Precision (mAP) and the Cumulative Matching Characteristics (CMC).
In addition, some person Re-1D domain adaptation technigues rely on pseudo-labels which
arc generated by clustering methods. In this section we provide a bricf explanation of the

above mentioned person Re-ID metrics as well as clustering evaluation metrics.
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2.7.1 Precision and Recall

Precision and recall are two of the most used machine learning metrics. Precision measurces
the proportion of positive predictions which are correct. On the other hand, given a sct
of positive class samples, recall measures what proportion of them are correctly predicted
as positive.

There are four possible ontcomes for every prediction:

false positive (FP): when the model prediets false, but it was a true example;

false negative (FN): when the model predicts true, but it was a false example;

true positive (TP): when the model predicts true and it was a true example;

true negative (TIN): when the model predicts false and it was a false example.

with these possible outcomes, we can dehine precision and recall as:

TP

Precision = —— 2.18

recision = om s (2.18)
TP )

Recall = TP 1 FN' (2.19)

2.7.2 Mean Average Precision (mAP)

Usnally, the model output represents the probability or a likelihood of the input belong-
ing to a given class (classification learning), or the distance between two inputs (metric
learning). Therefore, a threshold value is needed to determine if the model answer is
considered positive or negative. For each threshold value used, the model will present
different precision and recall values (e.g. a threshold of 0% will classify every example as
positive and will result in a recall of 100%, but with a considerable drop in the precision).

As a threshold variation will modify the precision and recall values, we may plot a
precision ¥ recall graph and use it to help determine an optimal threshold. The precision
» recall graph is a great tool to get a global picture of the performance of the model under
all thresholds. The average precision (AP) is given by the arca under the curve (AUC) of
this plot and works as a robust measure to summarise it. A perfect system generates a
graph with an AUC of 1, which indicates precision of 100% for all nonzero recall values.

In the person Re-1D challenge, we define cach person 1D as a elass. Then, we are able
to plot a precision x recall graph and ealeulate a value of average precision (AP) for cach
person 1D, We therefore, may summarize our models performance on a given test dataset

using the mean average precision (mAP) metric for the entire dataset (see Equation 2.20).
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2.7.3 Cumulalive Malching Characleristics (CMC)

The most nsed metrie in the person Re-1D challenge is the eumulative matching char-
acteristics (CMC). As the person Re-1ID is basically an image retrieval task, this metric
evaluates how good the model is to retrieve images from the correct class.

We can eval the CMC metric for different ranks, where the CMC metrie for a rank 7
indicate the percentage of cases where the correct prediction was in between the T most
gimilar images given a rank prediction. Therefore, if we set 7 = 1, for cach image from
our testing set we will check if the first image retrieved image by the model is from the
same class, if so we consider it correet for the CMC Rank-1, otherwise it is wrong. After
doing it for all the images, we sce the percentage of the correct predictions and this value
indicates the CMC Rank-1.

The Figure 2.11 illustrates the difference between the CMC and the mAP metrics.
In this figure, cach square indicates an image, where the green square is an image from
the same class as the query and the red ones are from other classes. In this example we
would have a CMC Rank-1 of 100% that could mislead us and indicate that the model is
perfect, however if we check the mAP we wonld have a value of 90.33%.

Figure 2.11: Comparision between mAP and CMC. For this example, we have the CMC
Rank-1 as 100%, but this do not happen for all AP values and, therefore, for the mAP.
Reproduced from [89]. ©2015 IEEE.



2.7.4 Cluster Evaluation Metrics

A person Re-1ID) model trained as a metric learning system yiclds a feature vector for
cach image. In a scenario where we do not have labels from a person Re-ID dataset, we
may extract all image vectors with our model and cluster those vectors. We then assume
that cach cluster represents a person ID and generates pseudo-labels for this previously
unlahelled dataset. There are many different clustering technigues to do this and in this
casc we have errors associated with both: the person Re-1D model and the clustering
technique used, then it is important to have some metrics that enable us to evalunate the
quality of the generated clusters.

For a scenario where we have access to the real datasct labels, we may use the V-
measure (A) [66], which is an entropy-based metric to evaluate the clustering quality.
The V-measure consists of two eriteria that must be satisfied to achieve an optimal cluster

assignment, these criteria are:

« Completeness ((): the proportion of samples from a given class which are in the

same cluster;

« Homogeneity (£): for cach cluster, measures the proportion of samples which

helong to the same class.

To understand how the completeness and the homogencity metrics are calenlated, let
us assume a dataset with A” data points, and two partitions of these: a set of classes,
C = {§fi = 1,...,n} and a sct of clusters K = {&;]7 = 1,...,m}. Let A = {a;;} bea
clustering solution, where a;; is the number of data points from the class §; that are in
cluster x;.

To achicve a good homogeneity metric, a clustering solution must assign only data
points from a single class to a single cluster. This could be done by assigning only one
data point poer eluster, however it would present a poor completeness score unless each class
has only one example. To achieve a perfect homogeneity score, the conditional entropy
of the class distribution given the proposed clustering H(C[K) must be 0. As the size
of H(C|K) varies with N and €, it is normalised by H(('). Therefore the homogeneity

score may be caleulated as:

¢ 1 Jif H(C|K) =0 (2.21)
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The completeness criteria is symmetrical to homogeneity. To satisfy this criteria, a
clustering solution must assign all data points from a single class in a single cluster.
Therefore, in a perfect case H(K|C') = 0, however in the worst case scenario, cach class
have example in every clusters with a distribution proportional to the distribution of
cluster sizes, then the max possible H(K|C) equals H(K). Therefore, symmetric to the

homogencity calculation, completeness is given by:
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Finnaly, the V-Mcasure (A) metric is given by the harmonic average between com-
pleteness and homogencity as follows:
14+A)-&-
gt T AR (2.25)
(A-€)+¢

where A is the weight attributed to homogencity.

2.8 Final Remarks

In this Chapter we reviewed some concepts about CNN architectures, loss functions,
transfer learning and metrics to evaluate classification and clustering results. They are
the pillars to real world person Re-ID models and even small changes on them can result
in improvements. In Chapters 4 and 5 we are poing to present how we deal with each of

these pillars to achieve state-of-the-art.
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Chapter 3
Datasets

As the Machine Learning (ML) methods learn from the data presented, it is important to
analyse the datasets and understand what kind of data you are using. Specially, CNNs
demand a huge amount of data to obtain great results, but public datasets are limited.
Therefore, we need to use a strong set of data augmentation techniques to produce more
data without losing critical informations.

During the course of our work, we used four publicly available datasets for training
and validation of our models.

Each datasct has its own characteristics and can be seen as a domain.  Identifying
those specific characteristics is essential to nnderstand the complexity behind the person
Re-1D domain adaptation challenge. Therefore, in this Chapter we analyse cach one of

them.

3.1 Viper

The Viper dataset released by Gray et al. [25] in 2007 is the oldest dataset used in
our work. It only contains 1264 images from 632 different persons, therefore for each
person only one image was captured per camera. To capture these images, the authors
used 2 distinet cameras, however they were not fixed cameras, so their position have
been relocated multiple times during the data collection. These moving cameras generate
a high variance on the images characteristics, so even with only 2 cameras they have
challenging setup.

The authors forced some kind of variations to increase even more the diversity of
images. The main variation applicd by the authors was an angle variation, capturing
images with the camera angle varying from 45 to 180 degrees. Also, the data collection

process lasted a few days, therefore illumination changes are present.
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They recorded all the scenes and processed the video files to create the dataset. All
images from the dataset have a resolution of 48 x 128 pixels, although some of these images
have elearly been distorted to achieve these dimensions. The Figure 3.1 show images from

the same person in different views from this dataset.

g-;
)
-

Figure 3.1: Example images from the same person in different cameras from Viper
datasct[25]. ©2007 IEEE.

3.2 CUHKO03

The CUHKO3 dataset released by Li et al. [42] in 2014 has 13164 images from 1360
different persons (an average of 4.8 images per person per camera). To create this dataset,
they used up to 6 different cameras, however cach person appears in only 2 from these
6 cameras. Also, there are 2 released setups available for this datasct, the first relied
on an object detection algorithm to annotate the person bounding box, while the other
setup produced the person images using mannal annotations. In our work, we choose the
manually annotated setup.

All the 6 cameras used are security cameras from CCTV systems, therefore illumina-
tion variability and occlusions are common (this problem is minimised for the manually
annotated setup). The image resolution also has some variation because of the different
cameras uscd, however the average image resolution is 100 x 300 pixcls. In Figure 3.2 we

present an example of how the same person look in different views from CUHKO3.

3.3 Market1501

The Market1501 dataset released by Zheng et al. [89] in 2015 is one of the most used

dataset for person Re-1D research nowadays. This dataset is great to train CNNs, because
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Figure 3.2: Example images from the same person in different views from CUHKO3
dataset[42]. ©2014 IEEE.

of the amount of available data. There are more than 32 thonsand images from 1501
different people in 6 distinet camera views, averaging 3.6 images per person per camera.
Also, in this datasct they have some examples where the person was seen in all 6 cameras,
which is great for the person Re-ID learning once you have examples that show how
someone appears in all different views.

While creating this dataset, the anthors listed 3 problems they wanted to solve:
s The other available datasets did not have enough data to train decp CNNs;

» The images from other datasets were manually annotated, reducing the real world

factor from the challenge;
s There were fow example images per person in other datascts.

To solve these problems, the anthors gathered more than 32 thousand images from people
in a real market and merged these images with around 3 thousand distractor images (a
group of images where no person is seen). All these images were acquired and annotated
using the using the Deformable Part Model (DPM) [20] as pedestrian detector. Finally,
these images were collected in an uncontrolled open space and they were able to col-
lect examples from the same person in multiple views (for some persons all views were
available)

All the images from this dataset have been resized to 64 x 128 pixels, Figure 3.3 shows

cxample images from the same person in different views from this datasct.



Figure 3.3: Example images from the same person in different cameras from Market1501
dataset [89]. ©@2015 IEEE.

3.4 DukeMTMC

Originally, the DukeMTMC dataset [64] was created to help accelerate the progress in
multi-target, multi-camera (MTMC) tracking systems. Ristani et al. recorded 85 minutes
videos from 8 distinet high resolution cameras at Duke University campus. Therefore,
they had 8 x 85 minntes of video recorded at 1080p, 60fps with more than 2800 identities
to perform multi-camera tracking.

Then, in 2017, Zheng et al. [91] processed the DukeMTMC dataset to create the
DukeMTMC-relD dataset, which is a subsct of the DukeMTMC specific for image-hased
person Re-1D. For that, they followed the format of Market1501 and cropped pedestrian
images every 25 of each video, leading to a total of 36411 images from 1812 identities,
where 1404 identitics appear in, at least, two cameras and the other 408 identitics only
appeared in one camera (these IDs were considered distractors). The 1404 identitics that
appear in more than one camera were randomly separated in training/testing groups, so
the dataset have 16522 images from 702 IDs for training and 19889 images from 702
408 (distractors) IDs for testing.

The identity which appear in most distinet cameras is in the training sct and have the

ID 0071, this man appearcd 42 times in 6 different cameras. Figure 3.4 show example
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images from him in different views from this dataset.

A

Figure 3.4: Example images from the person 0071 in 6 different cameras from

DukeMTMC-relD dataset [91].

3.5 Final Observations

As our work proposes a person Re-1D model that is ready for the real world challenges,
we need to simulate it in our experiments. Therefore, having multiple datasets that were
captured in real scenarios is exeellent for us. Also, the unsupervised domain adaptation
techniques that we are going to propose in the next two chapters do not rely in the data
annotation which is the exactly situation that someone would face in the real world.

In Table 3.1 we present the statistics for all used datasets'. It is interesting to notice

how the ammount of samples in a dataset increased over time, this is direct related with

"W are aware of other Person Re-ID datasets as the Person30K [2], MSMTL7 [77], CUHKO02 [41] and
PRID [31]. We have not conducted experiments in these datasets because PRID and CUHKO2 were too
small to train deep neural networks, Persond0K was released after we performed our experiments and we
had technical diffieults obtaining MSMTI17 dataset.
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the CNNs popularity and need for more training data. In addition, the variety of scenes,
indoor for CUHKO3 and outdoor for the others, will be an important factor to validate
our models generalisation capacity. However, the Viper dataset is really small and their
cameras were not fixed during the process of gathering data, these problems will reflect

in our models performance.

Table 3.1: An overview of the statistics from cach dataset used in this work. This table
was inspired in Bai et al’s work [2]

Viper [25] CUHKO3 [42] Market1501 [89] DukeMTMC [64]

Release Year 2007 2014 2015 2016
Samples 1264 28192 J2668 andll
Identities 632 1467 1501 1812
Cameras 2 2 5] &

Aveg Number of Cameras
Passed per ldentity 2 2 4.42 2.67

Heene onutdoor indoor ontdoor ontdoor




Chapter 4

Domain adaptation on new
unlabelled data

4.1 Overview

Person Re-1D models are usually applicd on surveillance systems, such as CCTV images.
Therefore, there is no clear pattern for the images, once cach camera has it own character-
istics as illumination, angle, saturation, resolution, distance from people, ete. Then, we
define cach camera, or group of cameras, as a domain and the addition of a new camera
or the modification (hardware or position) of an existent camera will change the domain.

With all this diversity it is challenging to create a model robust to domain variations.
The person Re-1D challenge then has diverse possible setups, each one trying to solve
a different case. These setups can be divided in three main groups: fully supervised
(in-domain) person Re-1D, generalisable person Re-1D and UDA person Re-1D.

In our work we aim to create a person Re-1D algorithm that is feasible for industrial
use. As creating the perfect generalisable model sounds impossible, our research focuses
on UDA methods that are able to leverage information from a public annotated datasct
and adapt its knowledge to perform well in a new unlabeled dataset (domain).

In Chapter 1 we set three auxiliary goals to achieve our main objective, Chapters 2
and 3 presented the theme knowledge we acquired. In this Chapter, we address the first
two anuxiliary goals of creating a baseline method and tackling its problems.

Firstly, we adopt a simple approach with a basic Resnet-50 backbone as bascline to
perform UDA in person Re-1D. Then, we improve our backbone with the AlignedRelD

and analyse how a more robust model is key for domain adaptation.



4.2 Methodology

4.2.1 Training Strategies

To have an initial boost [15], we start with a ResNet-50 CNN pre-trained on ImageNet
[12]. We then transfer learn it to the problem of person Re-1D using a public dataset.
This is done by replacing the last fully connect layer by a new fully connected layer with
128 features which are used as an embedding for metric learning. We use Adam optimiser
and the triplet loss.

As we know, person Re-1D is typically approached as a metric learning problem,
then a siamese-like loss is the ideal choice, which allows one to perform an end-to-end
learning from a dataset to an embedding space. Therefore, we choose the triplet loss which
nses a triplet anchor against the siamese pair. This way, one can expect botter samples
separation in the embedding space. Also, as we saw in Section 2.3.4, it is important to
nse the batch hard stratepy alongside the triplet Loss.

However, the batch hard will always work the worst case scenario and this decision
substantially increases the training complexity.  Then, to take advantage from batch
hard while controlling the training complexity we propose a batch scheduler algorithm to

decrease the nnmber of negative samples and lower the training complexity.

4.2,2 Batch Scheduler

Our batch scheduler algorithm (see Algorithm 1) was designed to case the training con-
vergenee, and once the training is converging we slowly imerecase the batch size v (and
therefore its complexity, having an impact in the loss). This cnables us to learn step by

step and converge the training even with a noisy dataset.

Algorithm 1 Batch Scheduler
I: y=23 X
2: for : = ) to epochs do

3 loss = train(z, )

4: if loss < (0.8 x m) then
i: y=94x2

fi: end if

7. end for

While training with the triplet loss, the goal is to make D(f,,£,) < D(f,, £.) (D(-) is
the Euclidean distance). However, if the batch is big, the number of negative examples

is way bigger than the number of positive examples, particularly in the case of person

Re-ID. It is therefore possible to have a negative sample that is nearer to the anchor than
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the hardest positive sample. This way the loss will always be greater than the margin
(Lpp; = m), then the optimiser learns that ontputting vectors of Os will reduce the loss
to the margin, ie., (Cpy = m).

In Algorithm 1, m is the loss margin of Eq. 2.9 and ¢ is the number of samples for
cach person ID, we used ¢ = 4. The training start with samples from 2 person 1Ds per
batch. When Ly < m the training converged, because this is only possible if the CNN
can distinguish the person IDs, as shown in Eq. 4.1, In line 5 of the algorithm we used a

(.8 factor to ensure this convergence.

Loywi < me D(f,, ) < D(f,,£,) (4.1)

Onee the convergence is ensured, we can go one step further and increase the training
complexity. Then, we double the bateh size, doubling the number of person IDs per batch.
This process is repeated until we reach the final epoch or the maximum GPU memory.

For this work, we used a NVDIA GTX 1070 Ti GPU with 8 GB of VRAM, so0 the
maximum batch we could reach had 88 images (22 person 1Ds). We recognise this still is
a small batch and recommend experiments to use up to 256 images per batch.

Smith et al. [69] argne that increasing the batch size instead of deereasing the learning
rate results in a faster training convergence. This argument is based in the scale of random

Huctuations in the optimiser given by

§=E(i—"r -1); (4.2)

Where N is the training sct size, <y represents the batch size and = is the learning rate.

Assuming a big training set N, Eq. 4.2 can be approximated by g = eN /4. Therefore,
increasing the batch size or decreasing the learning rate should have the same impact in
the noise scale. However, increasing the batch size leads to a significantly reduction in
the number of parameter updates needed, speeding up the training.

Also, the initial high noise scale allows us to explore a larger fraction of the loss
function without becoming trapped in local minima. This way, we believe that the slow
increase in the training complexity may lead us to a better region in the parameter space.
Therefore, we reduce the noise scale and fine-tune the parameters to find a promising

local minimum.

4.2.3 Domain Adaptation Strategies

In Subsection 4.2.1 we presented our training strategy that is initially used to train a CNN

in the source domain, which is our baseline and will be cvaluated in the target domain as
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the dircet transfer method. To improve our model performance in the target domain we

will use the two domain adaptation strategies discussed above.

Intermediate Dataset Generation

As diseussed in Section 2.6.1, a CyeleGAN may be used to generate an intermediate
dataset that leverages from the source domain labels and approximates the images to
the target domain appearance. We use this intermediate dataset to fine-tune our model
trained in the source domain and, hopetully, improve its performance in the target domain.
We are aware that image-to-image translation has become an incredibly active rescarch
ficld in the last couple of vears!, and that CyeleGAN is no longer the state-of-the-art for
unpaired translation. Even CyeleGAN's authors have published a more recent method
that not only improves over the original one, but it is also much faster for training [57].
However, at the time we proposed our first method [59], CyeleGAN was the state-of-
the-art for unpaired translation. Therefore, we stick to it in [58] to ensure our benchmarks

are compatible and focus the comparisons on other aspects.

Pseudo-Labels Generation

For this method, we use the CNN to extract all features £f from target domain images X*
and these features belong to an Euclidean vector space. Then, we used a clustering algo-
rithm to group these features, using the obtained group identifications as target domain
with psendo-labels Y'. In addition, we fine tune the CNN using the feature-label pairs
{x:, y:} with the real images from target domain and the pseudo-labels generated by the
chustering algorithm.

Even though the psendo labels generated may contain some errors, this next training
step uses the real images from target domain X', Therefore, the CNN is able to learn
more robust features for the target domain, beecause it learns the exact characteristics of
the target domain.

We choose the k-means [27] clustering algorithm to group the features in the Euclidean
vector space. The value of kwas chosen as a proportion of the size of cach target dataset.
Table 4.1 indicates the values used in this work. However, the naive assignment of samples
to clusters is a Hawed strategy to annotate the data, becanse a simple look at the data
may cluster viewpoints rather than people. In other words, features from different people
taken from the same camera view are often more similar to each other than features from

the same person from different camera views.

1%¢e e.g. https://paperswithcode.com/task/inage-to-image-translation
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Table 4.1: The chosen k for cach dataset when using k-means algorithm.

Dataset k
CUHKO3 | 2000
Market1501 | 1600
Vipor 632

(Our solution 1s to use k-means algorithm to generate k clusters for cach camoera view,
then use a nearest neighbour algorithm to associate these clusters across the camera views.,
This way, we guarantee that every person from our pseudo-labels space has images from
cach camera. That results in a noisy annotation, because that assumption is not a true
in the real label space of the dataset. However, using this approach we case the CNN
task of learning features robust for multiple camera views and achieve better results in

validation.

Progressive Learning

The first pseudo-labels generated in target domain are often inaccurate and may not
lead our method to a significant improvement. However, even these inacourate and noisy
pseudo-labels allow our method to learn some features from the target domain, such as a
person appearance in new viewpoints. Learning these features help our model to disregard
camera-specific information and focus on the people.

High quality psendo-labels are key to unlock our framework’s full potential and provent
negative transfer, hence the need to keep improving the pseudo-labels guality. Hehe ot
al. [18] then proposed progressive learning, which is an iterative technique composed of

two parts:
« pencrating target domain pseudo-labels to train the model without labeled data;

« fine-tuning the model with previously generated psendo-labels;

After each iteration, the model is expected to become better snited to gencerate new
psendo-labels in the target domain as it learns from it. Such approach has been used
in shallow domain adaptation methods in the past as well [19] and [50] for standard
classification tasks.

Thercfore, in [58] we improve our previously proposed framework [59] with the pro-
gressive learning strategy to update the psendo-labels in target domain. We keep iterating
over the progressive learning loop until our model achieves convergence. We will demon-

strate this method effectiveness with results in Subsection 4.4.3.
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4.3 Qualitative Results

4.3.1 Intermediate Dataset Generation

As said in section 4.2.3 our method tries to approximate the source domain to the target
domain. This is done training a cycleGAN between both domains and using the generator
to create an intermediate dataset that shifts the souree domain samples so that they
become more similar to the target domain data. The idea is to generate images that
preserve the person morphology, but are visnally adapted to the target domain. While
there is no guarantee that a GAN preserves person morphology, the eyelic loss contributes
towards this goal, as it has an identity match component.

Fignre 4.1 presents examples of transformation results between all domains. Tt is
interesting to note that the person morphology have been well preserved and the changes
have been more in the colours, texture and background. That means we could produce a
great approximation of how a person would appear in the view of another dataset.

The CUHKD3 dataset was created using surveillancee cameras from a university in Hong
Kong with an clevated viewpoint, so normally the backeground of their images consists in
a pranular Hoor. While the Market1501 dataset was created with cameras in a park, so
the images usually have grass in the backeround of their views. Viper is the oldest dataset
nsed in this work, it was published in 2007 and is composed of low resolution outdoor
Images.

These characteristics of the datasets make it easy to understand the effects seen in Fig-
ure 4.1. When using C1UTHK03 as the target domain, the transformoed images tend to have
a gramilar backeground to approximate the Hoor texture in CUHKO3 images. When using
Market1501 as target domain, images from CUHKO3 had a background transformation
from the granular Hoor to grass, and images from Viper had just a colour transformation,
because both datasets are from ontdoor images. When using Viper as target domain,
images from Market1501 had a colour transformation and images from CUHKO3 had a

texture background transformation and a brightness enhancement.

4.3.2 Pseudo-Labels Method

Although the eveleGAN did a great job shifting images between domains, when using the
pseudo-labels method we can achieve even better results. This is because the training
is now performed with the actual target domain images and estimated psendo-labels.
S0, there is no longer the problem of images in which the person morphology was not

preserved. The target dataset characteristics are better represented.
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CUHKO3 Market1501 i CUHKO3 Viner

Figure 4.1: Examples of the cyeleGAN transformations between domains.



Table 4.2: CMC accuracy results (in %) using Rank-1, Rank-5 and Rank-10), obtained
using one dataset as source domain and another as target. The Backbone used to obtain
these results was the Resnet-50. As for the methods, Direct refers to application without
transfer and Ours is the combination of CyeleGAN and psendo-labels (without progressive
learning) for domain adaptation.

CMC Accuracy(in %)
Source Target Method | Rank-1 | Rank-5 | Rank-10

Direct 12.5 25.0 33.1

Viper Cycle(GAN 0.8 26.9 36.4
Ours 13.9 29.0 40.7T

Aatknd Direct | 190 | 49.4 630
CUHKO03 | CycleGAN 318 66.7 79.1

Ours 38.2 69.7 81.6

Direct 10.1 22.5 29.0

Viper sycleGAN 11.6 25.9 4.7

s Ours 13.6 33.9 16.0
GUHEGS Direct 26.8 45.9 55.1
Market syveleGAN 35.8 H6.5 65.7

Ours 7.3 G0.4 T0.4

Direct 5.9 18.1 29.0

CUHKO03 | CycleGAN 31.9 64.4 7.5

Vioer Ours 36.1 69,2 81.3
Direct a7 15.5 22.2

Market | CycleGAN 6.7 17.0 23.7

Ours 8.6 20.5 28.4

Figure 4.2 illustrates the dataset created nsing pseudo-labels — as one can sec the
estimated labels are not perfect, but the grouped images show a strong colour similarity.
Also, the effectivencss of progressive learning is clearly visible in Figure 4.2, as the cluster
obtained without using this method (left cluster in Figure) clearly has multiple person
[Ds with some variety. On the other hand, the cluster obtained using progressive learning

have a stronger clothes similarity (e.g. everyone wearing shorts) besides the colour one.

4.4 Quantitative Results

4.4.1 Resnet-50 as Backbone

The eyeleGAN method was compared with the direct transfer method, where the direct
transfer method consists in evaluating in the target domain a CNN trained in the source

domain without further training. The direct transfer method therefore shows how different

the domains are and is used as a baseline.
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Without Progressive Learning With Progressive Learning

Figure 4.2: Images from two final clusters when using the psendo-labels method. The
clusters were obtained using Viper as source dataset and Market1501 as tarpet datasct.
Although different people were included in this cluster, the attributes of their elothing
arc similar. Furthermore, the left cluster was obtained without using progressive learning,
while the right one was obtained after the use of progressive learning.
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As one can see in Table 4.2 the eyeleGAN method presents huge rank-1 improvemoents
when using CUHKO3 as target domain (26% improvement for Viper as source domain
and 14.9% improvement for Market1501 as source domain). This happens because the
CUHKO3 images have granular background texture as a strong characteristic that was
casily learned by our eyeleGAN.

A great rank-1 improvement was also obtained for Market1501 as target domain and
CUHKO3 as source domain, where the eyeleGAN method achieved a 9% improvement
comparcd with the baseline. Furthermore, for Market1501 as target and Viper as source
domain our method achieved 1% improvement, meaning that the colour transformation
helped to approximate these domains, but this was not as significant as texture changes
that oceurred when working with CUHKO3 images.

For Viper as a target domain the eyeleG AN method achieved 1.5% rank-1 improvement
using CUHKO03 as source domain and 1.9% rank-5 improvement for Market1501 as source
domain. Again, this means that texture transformations are more significant than colour
transformations. Although those are not our best results, they are very significant because
Viper is an old dataset it has far less images than the others (only 1264 images), so
learning to create the intermediate dataset in a nnsupervised manner without much data
is extremely hard.

As one can see in Table 4.2, our psendo-labels method showed great improvements in all
test cases. Even when using the Viper dataset as target domain our method could improve
the eyeleGAN results in 2% or more. For the Market 1501 dataset the rank-1 improvement
was around 2% also and for the CUHKO03 our method achieved improvements of 4% in
rank-1 accuracy.

It is important to notice that the psendo-labels have a stronger positive impact on
smaller target datasets. This is becanse small datasets require fewer elusters to annotate
the data. This was a significant factor for the improvements we obtained for the Viper
dataset as target domain.

In summary our method is sipnificantly better than direet transfor without adapta-
tion. It is important to emphasise that our method docs not make use of any label from
the target domain, completely removing the burden of annotating new data when the

application domain changes.

4.4.2 AlignedRelD+4+ as Backbone

As one can see in Table 4.3 the pseudo-labels method always give the best CMC Rank-1
results. This is the same case as in the Table 4.2 and proves the effectiveness of our domain
adaptation model and the advatage of using the original images to train the model, even

thongh they are not with the perfect labels.
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Table 4.3: CMC accuracy results (in %) using Rank-1, Rank-5 and Rank-10, obtained
using one dataset as source domain and another as target. The Backbone used to obtain
these results was the AlignedRelD 4+, As for the methods, Direct refers to application
without transfer and Ours is the combination of CyeleGAN and psendo-labels (without
progressive learning) for domain adaptation.

CMC Accuracy (in %)
Source Target Method | Rank-1 | Rank-5 | Rank-10

Diirect 22.9 41.8 500

Viper CveleGAN 214 40).2 50.3

Ours 23.7 41.5 50.8

Markot Dircst | 225 | 450 580
CUHEKOD3 | CyeleGAN 37.0 f9.1 ®.9

Ours 42.9 T72.5 81.2

Direct 20.6 a8.0 47.2

Viper CyeleGAN 21.8 43.2 h2.2

" Ours 22.5 43.2 6.1

Nl Le i Dhirect 38.7 55.1 62.6
Market | CycleGAN 427 bo.T 67.3

Ours 46.8 65.9 73.6

Diirect 0.9 27.9 40.1

CUHEKODO3 | CyeleGAN 17.1 41.6 b8
Viper Ours 20.4 413.9 58.5
Direct 15.9 28.2 35.4

Market | CycleGAN 23.1 37.9 45h.8
Ours 28.4 46.4 5h5H.2
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It is interesting to compare Tables 4.3 [58] and 4.2 [59], because the difference between
the reported methods is the backbone architecture used, and they highlight that the
contribution of AlignedRelD + 4 is clear.

Using this state-of-art method as a feature extractor allowed us to achieve improve-
ments from 4.1% up to 16.4% in CyeleGAN method. The only domain combination that
did not give a better result was using the Viper as souree domain and CUHKO3 as target
domain.

When it comes to our full method, AlignedRelD 4+ brings an improvement of up to
19.8%. Although the result with Viper as source domain and CUHKO03 as target domain
was not the expected, this is not our method’s fault. If we analyse the Table 4.3 with this
domain combination the CyecleGAN method could not provide the same results as when
only the Resnet-50 was used as backbone, then even with a 3.3% improvement with our

method, the result still is bellow expected for the AlignedRelD 4 .

4.4.3 Ablation Studies

In this Subsection we perform ablation studies to show the influence of cach component
of our method separately and the impact that the progressive learning has in our method.
All the results reported in this Subsection were obtained using the AlignedRelD 4+ as
the backbone.

Batch Scheduler

In order to analyze the batch scheduler contribution, we performed experiments with and
without the batch scheduler algorithm using the new method (based on AlignedRelD 4 +)
and domain adaptation with CycleGAN and CycleGANE&psendo-labels (Ours). We have
not performed experiments with the batch scheduler for direct transfer becanse for the
Market1501 and CUHKO3 datasets we used pre-trained weights from the AlignedRelD 4
paper [53] and the Viper dataset does not have enough data to profit from the batch
scheduler algorithm.

Considering only the rank-1 results shown in Table 4.4, we have 8 test cases where
it was better not to use the batch scheduler and 4 test cases that indicate the opposite.
Although the majority of test cases indicates that the batch scheduler does not help, 4 of
these 8 cases nse the Viper images for training (adapted or not). The problem is that the
Vipoer dataset has only 1264 images, then the assumption that we made in Eq. 4.2 when
we said that N was big enongh to approximate the Equation to g = =N/ B does not hold
for this dataset. Because of that, the —1 factor in Eq. 4.2 has a strong contribution and
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Table 4.4: CMC acenracy resnlts (in %) using Rank-1, Rank-5 and Rank-10, obtained
using one datasct as source domain (Sre.) and another as target (Trg.). The column BS
stands for bateh scheduler and indicates whether the bateh scheduler algorithm have been
used or not. As for the methods, Ours is the combination of CyeleGAN and pseudo-labels
(without progressive learning) for domain adaptation. All the results were achieved using
AlipnedRelD 4 4 as backbone.

CMC Accuracy (in %)
Src. | Trg. | Method | BS. | Rank-1 | Rank-5 | Rank-10
L X T 10.2 50.3
E PRGN 22.8 301 18.0
s 5 v X | 23.7 a5 50.8
% AT v 21.5 11.9 51.3
d [ = | . . X 37.0 69.1 20.0
2 | B | CreleGAN | — 38.0 69.2 R1.1
& o X | 429 72.5 812
0 Sl 7 | 431 727 84.2
. X | 218 13.2 52.2
Eg CpeleGAN — 7.0 30.9 50.9
2| g — X | 225 13.2 54.1
§ ) v 18.5 38.0 50.2
- P [— X | 427 50.7 67.3
o | & |G 7 655
& B X 16.8 5.0 73.6
- e v 50.1 68.2 75.6
e x 17.1 41.6 55.8
= voelels
g | SeeAN e 335 5.7
E o X | 204 130 ERE
E, 0 ' 7 17.5 14.5 50.5
= X | 23.1 37.9 15.8
» | 8 | CycleGi
% CpeleGAl — 11.2 9.6 36,2
] Ours X 284 46.41 55.2
= e . 27.6 139 52.4




the assumption g & 1/ is not valid, but g o ¢ is correct. Therefore, a classical learning
rate decay scheduler works better in these cases.

Having this limitation of the Viper dataset in mind, we can focus our analysis on the
experiments that did not imvolve that dataset. However, that still gives a draw of 4 cases
in favour and 4 cascs against the batch scheduler.

Onr results are thercfore inconshisive regarding the bateh scheduler. We hypothesise
that a major factor for that is that we used a GPU with an amount of memory that was
too small (8GB) to be effective for this strategy, allowing a maximum bateh size of 88

samples,

CyveleGAN as intermediate step

To analyse CyeleGAN's contribution to our framework, we compared the pseudo-labels
results when applied directly with the source domain model against the pseudo-labels
results when applied with the model trained on the intermediate dataset. To simplify
this cxperiment, we did not use the progressive learning in the psendo-labels step. All
these experiments were performed using the AlignedRelD 4+ as the backbone and are
summarised in Table 4.5.

Table 4.5:  CMC accuracy results (in %) using Rank-1, Rank-5 and Rank-10, for the

psendo-labels (withont progressive learning) method using the CycleGAN intermediate
step or not. All the results were achieved using AlipnedRelD 4+ as backbone.

CMC Accuracy (in %)
Source | Target | CycleGAN | Rank-1 | Rank-5 | Rank-10
s s X 215 38.3 16.5
_E C i 7 3.7 1.5 50.8
% X 31.6 58.5 70.5
[ B
i RS v 43.1 27 84.2
) - = 19.5 41.0 T0.5
[ | .
é Viper v 22.5 13.2 5.1
; x 45.7 61.5 b3
= hariek v 50.1 68.2 75.6
) X 18.0 0.8 53.6
E CHHEGS % 20.1 13.9 58.5
= X 23.0 37.6 119
- Marke
ket 7 28.1 16.1 55.2

The CycleGAN step ereates an intermediate dataset that has the source domain labels
and the target domain style, therefore reducing the domain shift between source and target
domains. We cxpect that a model trained on this intermediate dataset outperforms a

model trained only on the source domain.
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As one can see in Table 4.5 the model pre-trained on the intermediate dataset was
able to generate better pseudo-labels than the model pre-trained in the source domain in
all eases. Ewven when using Market1501 as source domain and Viper as target domain,
where the CyeleGAN achieved worse results than direct transfer, the CyceleGAN step was

helpful for the framework.

Progressive Learning

The psendo-labels guality plays a erucial role in the target domain performance, but to
avoid negative transfer, it is important that the pseudo-labels be as close as possible to
the real labels.

As diseussed before, the pseudo-labels generated by a model that has not been npdated
may be noisy once the model has never seen target domain images and some camera
features may mislead the clustering function. However, even with noisy pseudo-labels we
are able to improve our model performance in the target domain. We thercfore believe
that if we create new pseudo-labels using a model that has been fine-tuned with previous
pseundo-labels, we will be able to improve the model performance on target domain.

In Table 4.6, we can see that this hypothesis is indeed true, once the use of progressive
learning improved the model in all cases, except for those where the Viper dataset was
used as target domain. This happened because Viper dataset only has a pair of samples
for each person 1D, therefore the celustering complexity is too high once there is only one
positive sample for cach image. In bipger datasets even if we select mmltiple person 1Ds
within a cluster, there is the possibility of having correct sample pairs to balance that.

In addition, it is important to notice the difference when Viper is nsed as the source
domain. For the case where we have CUHKDS as target domain, we needed 14 progressive
learning steps when Viper was used as source domain. On the other hand, only 3 steps
were necded for Market 1501 as source domain. Also, for Market1501 as target domain,
we needed 14 progressive learning steps with Viper as source domain, versus 9 steps when
CUHEKO3 was the source domain. These results show that having fewer images to learn
from the source domain does not allow the model to easily learn features that are robust

against domain variations.

4.5 Conclusion

In person re-identification, each type of environment (e.g. airport, shopping centre, uni-
versity campns, ete.) has its own typical appearance, so a system that is trained in one
cnvironment is unlikely to perform well in another environment. This observation was

confirmed by our cross-dataset (direct transfer) experiments, indicating that cach dataset



Table 4.6: CMC accuracy results (in %) using Rank-1, Rank-5 and Rank-10, for the
psendo-labels method using, or not, the progressive learning strategy. The iterations
column show how many progressive learning steps were needed to achieve convergene.
The rows with value of 1 indicate that no progressive learning was used. All these results
were achieved using AlignedRelD 4 4 as backbone.

CMC Accuracy (in %)
Source Target Iterations | Rank-1 | Rank-5 | Rank-10

§ | Vier 5155 T %9 [ 40

e E—
) 2 =% :

S | Ve o7 a5 | 50

S e A

: Fa

RIEEREAE i

g Market 11 552 '?:H 21[)

can be treated as a domain. Therefore, we showed that a domain adaptation method
based on eyecleGAN can be applied to transtorm the marginal distribution of samples
from a source datasct to a target dataset. This enables us to retrain a triplet CNN on
adapted samples so that their performance is improved on the target dataset without
using a single labeled sample from the target set. Furthermore, woe showed that using this
CNN and a clustering algorithm to generate pseudo-labels and retrain the triplet CNN
leads to a significant performance boost on the target dataset. Finally, we presented an
iterative strategy to keep improving the pseudo-labels and retraining the CNN to achieve
the best possible performance on target domain. This opens doors for the deployment
of person Re-1D software to real applications, as it completely removes the burden of
annotating new data.

Further to proposing a domain adaptation technique for this problem, we also pre-
sented the use of a batch scheduler which inereases the batch size as training starts to
converge. However, the hardware limitations and the lack of data in Viper dataset pre-
vented us to perform a deep analysis of this method’s effectiveness.  In addition, this
Chapter proved that our method ean be applied with state-of-art person re-identification
methods as backbone (AlignedRelD 4+ ). Also, it was clear that the better the backbone

method, the better are the results achieved with our worktow.



Chapter 5

Multi-Step Pseudo-Label Refinement

5.1 Overview

In this Chapter, we dive deep in the UDA Re-1D setup relying only on the pseudo-labels
to enhance models performance in target domain. The quality of pseudo-labels clearly is
essential for the performance of this kind of method. However, psendo-labels are expected
to be noisy in this scenario. Many methods used soft cost functions to deal with this
noise, however we believe that cleaning and improving pseudo-labels is key to achieve
high performance. We therefore focus in two main points: camera-based normalisation,
which we observed to be key to reduce domain variance; and a novel clusters selection
strategy. The latter removes outlying clusters and generate psendo-labels with important
charactoristics to help model convergence. This strategy aims to gencrate clusters which
arc dense and each contain samples of one person captured from the view of multiple
CAINCTAS.

Enhancing cluster gquality has been overlooked by methods based on psendo-labels and
this has certainly held them back. To evaluate this proposal we work with the most pop-
ular cross-domain dataset in unsupervised Re-ID works: Market1501 and DukeMTMC,
Our multi-step psendo-label refinement keeps eleaning and improving the predicted target
domain label space to enhance model performance without the burden of annotating data

(Figure 5.1). Further, we introduce strategies to build and select elusters in a way that

T

maximises the model’s generalisation ability and its potential to transfor learning to new

Re-1D datasets where the labels are nunknown.
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Figure 5.1: The Multi-Step Pseudo-Label Refinement pipeline. The proposed method con-
sists of four components: extraction of features from unlabelled target domain images,
camera-based normalisation, prediction of pseudo-labels with a density-based clustering
algorithm, selection of reliable clusters and fine-tuning of the model. The pipeline is cyeli-
cal, becanse at cach step it predicts more robust pseudo-labels that offer new information
for the model. In the feature space panels, each shape (e.g. triangle, plus signal and circle)
represents a camera view and each colour represents a person 1D,

5.2 Methodology

5.2.1 Training Protocol

First of all, we train our model in the source domain D as a bascline. All our models
use the IBN-Netbl-a as backbone and outputs a feature vector £ and a logit prediction
viertors p.

Our loss function has three components:

« A bateh hard triplet loss (L) [30] that maps f in an Eunclidean vector space;
o A centre loss (L) [79] to guarantee cluster compactness;

« A cross entropy label smooth loss (C;p,) [90] that nses the logit vectors p to learn a

person ID classifier.

The smoothed person 1D component has been proved to help Re-1D systems [51] even
thongh the training IDs are disjoint from the testing IDs. Furthermore, its soft labels
has shown interesting features for UDA Re-1D [23]. Our loss function is thus given by
Equation 5.1.

L = Loyri + Lip + 0.005L centre (5.1)

The weight given to the centre loss is the same that was used in [51].
We start our training with pre-trained weights from ImageNet [15] and use the Adam

optimiser for 90 epochs with a warm-up learning rate scheduler defined by Equation 5.2,



which is based on [51].

E ] eprnch
3.5x107° x T=  , epoch < 10
3.5 x 10 , 10 < epoch < 40
lr = ¢ {5.2)
3.5 x 1077 ., A0 < epoch < 70
3.5 x 107° . epoch = T0

For data angmentation we use random erase [93], resize images to 256 x 128 and apply a
random colour transformation that could be a 20% brightness varation or a 15% contrast

variation. We also use random horizontal Hipping.

5.2.2 Progressive Learning

As we discussed in Section 4.2.3, the key for good domain adaptation results while working
with pseudo-labels is to continuously improve them. Thercfore, we adopt the progressive
learning strategy, such that in cach step the new pseudo-labels get closer of the real labels.
However, if the initial model is not good enough, this leads to negative transfer [55] and
the performance of the system actually degrades as it iterates. However, since target
labels are unknown, it is not possible to predict negative transfer.

For this reason, we argue that progressive learning must be coupled with other tech-
niques, snch as the method we describe in the next sections, particularly in §5.2.4 and
£§5.2.5. In those scctions, we propose to evaluate the reliability of samples and ther
pseudo-labels based on the confidence of the model. If only reliable samples and ther
pseudo-labels are used, the model should progressively improve and generate more robust

psendo-labels in the consecutive iterations.

5.2.3 Clustering techniques

For standard classification tasks, pscudo-labels generation is direct: it is assumed that
the predictions obtained are usnally correct and these predictions on the target set are
used as psendo class labels. However, as mentioned ecarlier due to the lack of control on
the number of classes, person Re-1D is usually approached as a metric learning task. The
model prediction is therefore not a label, but a feature vector in a space where samples
of the same person are expected to lie closer to each other (and further to samples of
different people). Therefore, it is necessary to use clustering algorithms and define each
cluster as a psendo-label (or pseudo person 1D).

Given a target domain D' with N images {x;}, we need to predict their labels

{y:}¥,. We use a model pre-trained on source domain D* to extract the features for cach
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image {x;}, from D! and then use a clustering algorithm to group/predict cach image
label.

K-means

As a first choice, we used the k-means [27] algorithm to cluster our data. The only
parameter k-means needs is the number of clusters £ For our experiments, we choose &
using this henristic:

= l‘:“—': (5.3)

where N is the total number of training images in target domain D', If all clusters have
a balanced number of features (images) this would mean that we are assnming that cach
poerson 1D in the target domain contains about 15 samples.

There are two problems with k-means for Re-ID: a) how to define k withont infor-
mation about D' and b) as stated by Zeng et al. [83] k-means does not have an outlier
detector, so the ontliers may drag the centroids away from denser regions, causing the
decision boundaries to shift, potentially entting through sets of samples that actually

belong to the same people.

DBSCAN

As disenssed above, k-means is not recommended to generate robust pseudo-labels for
UDA Re-ID methods. Therefore, we propose the usage of DBSCAN [17] which is a
density-based clustering algorithm designed to deal with large and noisy databases.

In a Domain Adaptation Re-11D scenario we can say that the hard samples are actually
noise, 50 a clustering algorithm that identifies them as ontliers is indamental to improve
results. Furthermore, when applying Progressive Learning we can leave hard samples ot
for some iterations and bring then to the pseudo-labelled dataset in later iterations where
our model is stronger and the level of confidence in those hard samples is higher.

Une important point is that DBSCAN does not require a pre-defined number of clusters
(as in k-means), but it requires two parameters: the maximum distance between two
samples to determine them as neighbours (¢) and the minimum mumber of samples to
consider a region as dense (w).

In our experiments, we set w = 4. As for the parameter e, its value depends on the
spread of the data. We performed a simple scarch in an carly training step determine a
value that would balance the nnmber of clusters selected and the number of outliers. This
lead to e = 0.35 when DukeMTMC is the target domain and € = .42 when Market 1501

is the target domain.
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5.2.4 Cluster Selection

Re-1D datascts have disjoint label spaces, that is given a source domain D* and a target

domain D' their labels space do not share the same classes, 1.c.
{vi}" # {y;} Vii (5.4)

Thercfore, Re-ID methods typically use triplet loss with batch hard [30] and pg sam-
pling. The p¢ sampling method consist in selecting p identitics with ¢ samples from cach

identity to form a mini-batch v in training stage, which leads to the following:
FT=pXs. (5.5)

In this work we used the triplet loss and pg sampling to train our models, so we expect
that every person 1D has at least ¢ images. This clustering step thercfore ignores clusters
with less than ¢ images.

An important factor for Re-ID models is to learn features that are robust to camera
view variations. For that we guarantee that, in the training stage, our model is fed with
samples of the same person 1D in different cameras. Theretore, we also prune clusters

that had images from only one camera view.

5.2.5 Camera-Guided Feature normalisation

The high variance present in Re-1D datasets is mainly caused by the different camoera
views, as cach view has its own characteristics. This is why a model trained in a source
dataset presents poor results when evaluated in a target dataset (or domain). Normally,
Re-1D models learn robust features for known views, but lack the ability to generalise for
NEW UNSCeNn Views.

In Chapter 4 and in [59] we realised that this lack of generalisation power has a negative
impact in psendo-labels generation. We observed that the main reason for that is the fact
that, in new unscen camoeras, the model tends to eluster images by cameras rather than
clustering images from the same person in different views. The majority of clusters would
therefore be ignored in the Cluster Selection step.

Zhuang et al. [99] replaced all batch normalisation layers by camera batch normali-
sation layers. Although this helped them to reduce the data variance between camoera
views, they normalise the data only on the source domain. We propose to run this cam-
cra feature normalisation step before the pseudo-labels step on the target domain training

set. By generating pseundo-labels that are normalised by camera information, our method



guides the model to learn robust features in the target domain space without the need of
changing the model architecture or having additional cost functions.

Camera-guided feature normalisation therefore aims to reduce the target domain vari-
ance, enhance the model capacity in the target domain and create better pseudo-labels
that further will result in a more robust model.

To apply camera guided feature normalisation, we first divide all target domain train-
ing images {x;}" in n groups where V = {w,--- , v} are the camera viewpoints in the
dataset. Then we extract their features £, y with our model and caleulate, for cach camera
v, its mean g, and its standard deviation o, (i.e., these statistics are computed over
the activations that they operate in the neural net, in a per camera basis, rather than per
batch). Finally, cach feature is normalised by

L Py

LB

(5.6)

4

The normalised features £, are then used to generate the psendo-labels.

5.2.6 Unsupervised Domain Adaptation

For unsupervised domain adaptation, we start with the model pre-trained in D* and use
it to extract all the features £ from D* training images. Once we have all these features
extracted, we separate them by camera and use Equation 5.6 to normalise them. Then,
we use DBSCAN to create gencral clusters in D* and finally apply our cluster selection
strategy of Section §5.2.4 to keep only the clusters which are potentially the the most
reliable ones.

From the selected clusters we create our pseudo-labeled dataset and unse it to fine-
tune our previous model. Sinee the domains are different datasets, the person 1Ds on the
pseundo-labeled dataset are always different from those of the souree dataset. Addition-
ally, as our progressive learning strategy iterates, psendo-labels are expected to change.
Therefore, it is expected that the cross-entropy loss £ spikes in first iterations, which
can destabilise the training process and lead to catastrophic forgetting. To prevent that,
we follow the transfer learning strategy of freezing the body of our model for 20 epochs
and let the last fully connected layer learn a good enough p. Then, we unfrecze our model
and complete the fine-tuning following the procedure deseribed in 5.2.1.

After the fine-tuning we evaluate our model on D' and iterate the whole process,

according to the progressive learning strategy.



5.2.7 Post-Processing

Considering the person Re-1D challenge as an image retrieval task, for cach query feature
f, there is a set N(q,7) = {f1. 5, -+ ,fx}.|N(q,7)| = 7 containing the ncarest gallery
features. Our main objective is that the top-7 gallery features are from the same person
ID as the probe feature. However, due to variations in illuminations, poscs, views or
occlusions some gallery features from the same person ID may not be present in the top-7
features.

To tackle this problem, Zhong ct al. [92] proposed a re-ranking technique that uses
the T-reciprocal neighbours from a query feature f) to caleulate its Jaceard distance to a

gallery feature f,. The T-reciprocal neighbours R(g, 7) can be defined by

Ria,7) = {g:l(g: € N(q,7) A (q € N(g:,7))}- (5.7)

These T-reciprocal nearest neighbours are more related to the query feature f) than

the T-nearest neighbours. However, they propose an even more robust reciprocal neigh-
" g * 3 LT - ¥ 3 1 - . g “ o g

bours set R*(q, 7) by incrementally adding the sT-reciprocal nearest neighbours of cach

candidate in R(qg, 7) into this new set, according to the following condition

R*(q.7) « R(q,7) UR(p, %T}
s.t. [R(g,7) N R(p,57)| > 5[R(p, 37|, (5.8)
Vp € R(q,7)

Finally, the Jaccard distance from a query feature £, and a gallery feature f; can be

calculated as

_ i‘H'*{'rL T} ngr? (gi i T}l
[R*(q,7) UR*(gs, 7)|’

and the final distance between these features is measured by jointly agegregating the Jac-

D,(q,9) =1 (5.9)

card distance with the Enclidean distance as

D'(g,9) = (1 — A)Dy(g,9) + AD(q. g). (5.10)

5.3 Results

In this Section we present the experimental results for our proposed method. Firstly,
in 5.3.1 we compare our results with supervised methods, then in 5.3.2 we comparc our
method against other state-of-the-art methods. Finnaly, in 5.3.3 we perform some ablation

studics.
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Table 5.1: Comparison of our results with results using supervised learning on the target
domain, using supervised learning on both source and target domain at the same time
(which is expected to give the best results) and direet transfer results, i.e. the use of a
model trained on source direetly applied to the target domain, without domain adaptation
(which s expected to be a lower bound).

Supervised Markeil501 — DukeMTMC DukeMTMC — Market1501
Training Rank-1 Rank-5 Rank-10 mAP | Rank-1 Rank-5 Rank-10 mAP
1 Source 44.7 60.7 G6.4 27.3 58.9 74.3 80.1 29.0
2 Targel B2.T 921 94.6 6i8.6 a92.5 97.6 98.7 815
3 | Source and Target 53.9 92.5 94.8 T1.1 92.6 o7.7 O8.6 81.2
q Source (OQurs) B2.T 90.5 93.5 fit.3 891 85.8 97.2 T3.6

5.3.1 Comparison with Baseline and Upper Bound

In table 5.1, row 1 is a naive domain adaptation strategy which is expected to be a
baseline, as the model trained on the source domain is directly applied to the target
domain with no adaptation - this is also known as “direct transfer”; row 2 is the traditional
single domain supervised learning scenario, where training samples are available in the
application domain; row 3 is expected to be an uppper bound in performance; row 4
is our method, which only uses labeled samples in the source domain but benehits from
unlabeled target samples.

In method 3 of Table 5.1, we evalnate our base method (without transfer) in a multi-
source domain scenario. For this experiment, we merged the training samples and labels
from Market1501 and DukeMTMC. Then, we used this multi-source domain to train
our bascline model and further evaluated the resnlts in both domains separated. This
cxperiment is set to be a better upper bound for our study, because when we apply our
UDA method, we expose our model to training images from both domains (even if it has
no labels from one of them), therefore we believe that it would be fair to compare the
results with a supervised method that also had all these information available.

The Direct transfor method (method 1 of Table 5.1) is used to evaluate the domain
shift and the model generalisation power. It is expected that this setting gives results
that arc worse than the domain adaptation setting, because no knowledge of the target
get is used in the training process. Our method does not focus on being generalisable, we
aim to use the source domain knowledge as start and enhance the model’s performance
in target domain without any labels. We found it important to present direct transfer
results in order to show how much our method enhances over it.

As one can see, our method reaches remarkable results for DukeMTMCOC as a target
dataset. It can be surprising to sce that we matched the supervised result for CMC

rank-1 and even surpasses it in (L.5% for mAP. DukeMTMC is a dataset with a high
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intra-variance caused by its cight distinet camera views. We believe that the camera-
guided normalisation applicd before the elustering step provided pseudo-labels that were
more robust to camera view variations. Therefore, the method was able to learn camera
invariant features. It is also likely that by transferring from one dataset to another, our
method was less prone to over-fitting than the supervised learning setting.

For Market1501 as a target, our method performed equally well enhaneing the direct
transfer result in 30.2% and 44.6% for CMC rank-1 and mAP, respectively. However, with
lower intra-variance in Market1501 the supervised result is already saturated. Therefore,
even tough labels from the target set were not used, our methods gives results which are
not far below those of the supervised setting,

The multi-source domain setting (method 3 of Table 5.1) shows some improvemoents
against the bascline supervised result. As this setup used samples from both datascts, woe
believe that it is a better upper bound for our UDA method. Althongh these results are
better than ours, it is important to remind that in our method, nearly half of the samples
arc unlabelled.

5.3.2 Comparison with state-of-art UDA results

Table 5.2: Comparison of our results with state-of-art methods in UDA. We highlighted
in bold, underline and italic the first, sccond and third best results, respectively. RR
stands for He-Ranking.

Market1501 — DukeMTMC DukeMTMC — Market1501

MRyl Rank-1 Rank-5 Rank-10 mAP | Rank-1 Rank5 Rank-10 mAP
SPGAN [14] 69 626 68.5 264 | 581 76.0 827 269
UCDA-CCE [61] | 55.4 : ! 367 | 64.3 2 y 315
ARN [44] 60.2 739 795 334 | 703 804 86.3 394
MAR [81] 67.1 79.8 - 480 | 677 819 - 0.0
ECN [94] 633 758 804 404 | 75.1 87.6 91.6 430
PDA-Net [43] 63.2 770 825 451 | 752 863 902 476
EANet [32] 67.7 - . 480 | 780 : s 51.6
CBN [99] + ECN | 680  §0.0 839 449 | 817 919 947  52.0
Theory [70] 68.4 801 835 400 | 75.8 895 932 537
CR-GAN [9] 68.9 802 R47T 486 | TT7  89.7 927 540
POB-PAST [87] | 724 543 | 78.4 . 54.6

AD Cluster [84] T2.6 82.5 Bh.5 hd.1 B6.7 94.4 96.5 (8.3

SSG [21] 76.0  85.8 89.3 603 | 862 946 96.5  68.7
DG-Net++ [100] | 789  87.8 904 638 | 821 90.2 92.7 617
MMT [23] 79.2  89.1 924 657 | 909 964 979 765
Ours 82.7 905 93.5 693 | 89.1 058 97.2 7.6
Ours + RR [92] | 84.8  90.8 93.2  81.2 | 92.0 953 96.6  88.1
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In Table 5.2 we compare our multi-step pseudo-label refinement method with multiple
state-of-the-art Re-1D UDA methods. As one can see, we beat all other methods in
DukeMTMC target dataset and push the state-of-the-art by 3.4% and 3.6% for CMC
rank-1 and mAP, respectively. For Market1501 we are able to reach second place with a
noticeable gap to the third place with an improvement of 2.4% and 4.9% for CMC rank-1
and mAP, respectively.

In addition, our framework has a lightweight architeeture when compared to other
frameworks that achieve state-of-the-art. MMT [23] uses two CNNs so that one generates
soft labels for the other. DG-Net 4+ [100] uses a extremely complex framework with
GANs and multiple encoders and decoders.

As we approach Re-1D as a metric learning task, re-ranking algorithms have a great
impact in the results. We therefore evaluated our model using k-reciprocal encoding
re-ranking [92] which combines the original distance with the Jaceard distance in an
unsupervised manner. The importance to use a ranking system is shown by CMC Rank-1
mmprovement of 2.1% on DukeMTMC and 2.9% on Market1501 when compared to our
raw method. Furthermore, re-ranking significantly pushes the mAP performance in 11.9%
for DukeMTMC and 14.5% for Market1501.

5.3.3 Ablation study

Table 5.3: The contribution of each method in the model performance evaluated on Mar-
ket1501 and DukeMTMC-relD datasets. CN stands for Camera Guided normalisation.

Methods Market1501 — DukeMTMC | DukeMTMC — Market1501
Tank-1 mAFP Rank-1 mAP

ResNet 50 [51] 41.4 25.7 54.3 25.5

+ IBN-Neihll-a 44.7 27.3 nR.9 29.0)

+ Domain Adaplalion ha 2 37.1 6.1 34.8

+ Progressive Learning 52.2 371 61.4 35.5

+ Clusler Selection 7.2 61.8 B6.5 6.0

+ (1 B2.T 693 89.1 3.6

Table 5.3 shows how ecach technique contributes to our inal method performance.

IBN-Net50-a: the difference between the original Resnet-50 and the IBN-Net50-a is
that the IBN-Neti0-a modifies all batch normalisation layers so they also take advantage
of instance normalisation. This modification enhances the model’s generalisation power,
leading to an improvement on the CMC rank-1 performance improvement of 3.3% in
DukeMTMC and 4.6% in Market1501.

Domain Adaptation: in Table 5.3 we call domain adaptation the use of psendo-

labels from target domain for training. This clustering-guided DA method allows our
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model to train using actual images from target domain, which helps the model to learn
various aspects of the domain, such as illumination, camera angles, person pose. Learning
the characteristics from target domain is a major factor for domain adaptation which
hecomes evident by the CMC rank-1 improvement of 7.5% in DukeMTMC and 1.2% in
Market1501.

Progressive Learning: this technique has a great potential to keep improving the
model’s performance with new pseudo-labels. However, as we said in Section 5.2.2 to
get full advantage of this technique one needs to guarantee that the pseudo-labels are
close to the class divisions. Therefore, this step only gives a significant improvement if
associated with the proposed cluster selection technique. In Table 5.3, the progressive
learning results were obtained using the raw clusters defined by the elustering algorithm.
That model used all the available information in target domain and overfitted to these
psendo-labels. In the next step these clusters tend to be the same and the model does
not have a stimulus to learn better features. This is why the progressive learning results
on their own do not scem to help for Market1501 — DukeMTMC.

Cluster Selection: this method relies on a continnous improvement on the psendo-
labels. For that, we remove clusters that are unlikely to help improve the model, such as
small clustors with less than 4 images and clusters that had images from only one camoera
view. Using this strategy we can get full advantage of progressive learning and push the
model to learn camera view invariant features, sinee all our pseado-labels have samples
from multiple camera views.

The real contribution of the progressive learning technique is shown alongside the
contribution of the cluster selection strategy, becanse they are complementary technigues.
This is certainly the most relevant clement of our pipeline, as it leads to a step change in
the performance, enhancing the rank-1 CMC performance by 25.0% for DukeMTMC and
25.1% for Market1501.

Camera Guided Normalisation: learning camera invariant features is essential for
person Re-1D, because the person appearance may vary on different cameras. Since target
labels are unknown, when the model extracts features from the target domain, instead of
gronping images by the person that appears in them, the feature vectors tend to cluster
camera viewpoints. The camera gunided normalisation helps to reduce this camera shift
and align the features from different cameras. Our cluster sclection method thus selects
more clusters to be part of the pseudo-label dataset (this can be seen in Figures 5.2d, 5.2¢,
5.3d and 5.3¢). With this richer and camera invariant pseudo-label dataset, our model
has better samples to learn from and its mAP is improved by 7.5% for DukeMTMC and
7.6% for Market1501.

Also, Fipures 5.2¢ and 5.3¢ allow us to see that using the camera gnided normalisation
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significantly enhances the completeness of our pseudo-labels. This happens because when
the normalisation is applied, it facilitates the clustering method to group images from the
same person in different camera views.

Although the camera normalisation step sometimes does not imply in better homo-
geneity and thus V-Measure scores, this is not a problem. As we stated before, when
using the normalisation step, a higher pereentage of available images are chosen and the
total number of clusters slightly increases (DBSCAN only as Bmeans have a fixed number
of clusters). Therefore, without normalisation we end up generating smaller clusters with
just a few samples from one person, while the methods using normalisation are able to
produce bigger (richer) clusters with almost all samples from a person as shown for the
completeness graph.

The more populated clusters combined with preat completeness score and average
homogeneity score are probably clustering images from people with similar appearance.
As the model is trying to learn how to group images from the same people, a cluster with
multiple people with similar appearance is less harmful than having multiple clusters with
images from the same person (which is the case of the methods withont normalisation
that show high homogeneity and medinm completeness). In addition, as the test and
training sets are disjoint, learning to cluster images by strong similarities at the person
level may be more adegquate to train a generalisable model than learning to identify spocific
identitics that will not be present in the test set.

Training efficiency: the boetter pseudo-labels which are obtained when applying
camera pguided normalisation speeds up the model convergence, independently of the
clustering method used. Figures 5.2 and 5.3f show how many progressive learning steps

were needed to reach convergence with or without camera pnided normalisation.

Table 5.4: Comparison between DBSCAN and k-means as the clustering algorithm. After
cluster selection, different quantities of samples were kept for each clustering method. This
portion is shown in the last columns.

Method Market1501 — DukeMTMC

Rank-1 Rank-5 Rank-10 mAP Porlion (in %)
k-means 7.7 B7.5 90.8 fid.1 8.0
DBSCAN B2.7 90.5 3.5 6.3 H9.7
Method DukeMTMC — Market1501
k-means B7.0 94.7 06.9 (5.9 95.9
DBSCAN 89.1 95.8 597.2 736 79.9

Clustering methods: we ran our multi-step pseudo-label refinement method with
two different clustering algorithms in its pipeline: k-means and DBSCAN. Table 5.4

presents the results achicved using cach of them and the portion of training data that
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was sclected for use as psendo-labels after the cluster selection phases. This is shown
in Figures 5.2d and 5.3d, which show that amount for cach progressive learning step.
DBSCAN does not need a fixed number of clusters and has a built-in outlier detector,
s0 it can deal with outliers better than k-means. For k-means, all samples count, then
the outliers have a negative impact in the quality of the psendo-labels. The results in
Table 5.4 confirm our hypothesis that it is better to use fewer and less noisy samples,

therefore DBCAN is better snited for us.
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Figure 5.2: General cluster evaluation metrics for Market1501 dataset as target domain.
The curves are plotted up to their convergence point. These metries helps us to nnderstand
why the k-means and DBSCAN differ and how the camera guided normalisation help the
pseudo label generation.

5.4 Conclusions

In this Chapter we propose a multi-step psendo-label refinement method to improve results
on Unsupervised Domain Adaptation for Person Re-ldentification. We focus on tackling
the problem of having noisy pseudo-labels in this task and proposed a pipeline that

reduces the shift caused by camera changes as well as technigues for outlier removal and

fiti
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Figure 5.3: General cluster evaluation metrics for DukeMTMC dataset as target domain.
The curves are plotted up to their convergence point. These metries helps ns to understand
why the k-means and DBSCAN differ and how the camera guided normalisation help the

psendo label generation.
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chuster selection. Our method includes DBSCAN clustering algorithm that was designed
to perform well in large and noisy databases; a camera-guided normalisation step to
align features from multiple camera views and allow samples from different cameras to
be included in the same clusters; and a smart cluster selection method that improves
pscudo-labels for our training setup. These steps are iterated until convergence giving
better results.

Onr method generates a strong label space for target domain without any supervision.
We reach state-of-the-art performance on Market1501 as a target dataset and push the
state-of-the-art on the challenging DukeMTMO target dataset by 5.5% (or 3.4% without
re-ranking ). Our work highlights the importance of pseudo-labels refinement with strong
normalisation techniques. We evaluated the impact of two different clusterring techniques
for pseudo-label generation and concluded that DBSCAN is better suited for this task, as
it has a built-in outlicr detecton and do not specify the number of clusters. It also takes

advantage of a metric learning process and re-ranking [92, 97].



Chapter 6

Conclusion and Further Work

6.1 Final Considerations

In this work, we focused in the real world person Re-1D challenge and could have followed
two paths: a) Creating a generalisable model capable of achieving a good performance
in any dataset or b) Using domain adaptation techniques to enhance our (or any) model
performance in new domains without the need of further supervision.

A pgeneralisable model that perform the same way despite the domain would be the
person Re-1D holy grail, onee it conld be directly deployed in any scenario. Howewer,
this is still far from happening. We are able to affirm that, because even face recognition
which nowadays appears to be a less challenging problem, still has not been solved in a
generalised way as we can sce diverse scandals becanse methods do not perform the same
way for people of different ethnicity.

Therefore, we foensed our efforts on a more targeted and realistic path that is the
domain adaptation. Ewen though the domain adaptation does not allow the direct de-
ployment of a model to a new seenario, it can automate that process without the cost
of labelling samples. We have in fact shown that using our proposed domain adaptation
pipeline, the model performance is comparable to in-domain training strategics where the
target domain labels are available.

With the presented results, we belicve that our main goal was achieved, as we could
propose a person Re-1D framework that starts from a publicly awailable dataset and
performs well in a new dataset without the need of annotated data. This framework can
be used in the real world to adapt existent person Re-1D models into new domains in
a scalable manner, nnlocking this feature to become a product that can be deploved in
diverse real applications.

More specifically, we have shown that

= we are able to learn from a new set of images without the need of labels;
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« using the camera information allow us to better alipn the features in a new domain;

» the more samples is not always the merrier: Bmeans does not remove outliers so it
uses more images than DBSCAN, but the latter usually performs better; it is better

to use more reliable psendo-labels.

6.2 Future Works

In this work, we proposed two domain adaptation frameworks for the person Re-1D chal-
lenge that are able to improve the model’s performance in a new domain without the
burden of annotating new data. Our Multi-Step Pseudo-Label Refinement method pre-
sented in chapter 5 pushed the state-of-the-art and achieved a performance comparable
with the supervised models trained in the target domain.

Althongh our results are very satisfactory, there is still room for improvement in
this arca. As we saw in Chapter 4, not all domain combinations allow us to achicve
remarkable results using domain adaptation, it must be becanse some domains are too
distinct. Therefore, relying on a source domain to train a first supervised model and then
adapting it to a new domain may not be the best move always. Also, in Chapters 4 and 5
we saw that the most significant improvement in the pseudo-labels method was because
it uses actual target domain images. We therefore believe that using some self-supervised
methods (e.g. contrastive unsupervised learning [7, 8, 28]) to warm up the model and
then using the warmed model as a starting point to our Chapter 5 method may lead to
superior results.

In addition, our main rescarch focus was on the domain adaptation technigues, al-
though the neural network architecture is also erucial to achieve preat results.  Since
the introduction of Vision Transforms (ViTs) [16], transformers have been used to solve
several computer vision tasks and have evolved to hierarchical Transformers (e.g. Swin
Transformers [48]) that better suits a wide variety of vision tasks. Also, ConvNets arce
cvolving to keep up with the Transformers and new architectures have shown remarkable
ImageNet results (e.g. ConvNeXt [19]). We therefore believe that this work conld benefit

from the nse of newer and better neoural network architectures.
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